A COMPARISON OF CASUALTY ASSESSMENT RESULTS FROM THE TENDS AND ETC(U)
A COMPARISON OF CASUALTY ASSESSMENT RESULTS FROM THE TENDS AND CIVIC CODES

Eugene J. Swick
Science Applications, Inc.
P.O. Box 2351
La Jolla, California 92037

27 June 1980

Final Report for Period 1 July 1978—27 June 1980

CONTRACT No. DNA 001-78-C-0343

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B364078464 V99QAXNH30304 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
Title: A Comparison of Casualty Assessment Results from the TENOS and CIVIC Code

Authors: Eugene J. Swick

Performing Organization: Science Applications, Inc.
P.O. Box 2351
La Jolla, California 92037

Controlling Office: Defense Nuclear Agency
Washington, D.C. 20305

DISTRIBUTION STATEMENT (of this Report):
Approved for public release; distribution unlimited.

SOUPPLEMENTARY NOTES:
This work sponsored by the Defense Nuclear Agency under RDT&E RMSS Code B364078464 V99QAXNH30304 H2590D.

KEY WORDS: Population Casualty Assessment, CIVIC, TENOS, Damage Methodology, Population Representation, Fallout Models, WSEG-10, Improved SEER II.

ABSTRACT:
Comparison of assessment results from the CIVIC and TENOS Population Casualty Assessment Codes was accomplished under selected input conditions and two U.S. population representations (data bases). Results indicate that for the large yield strike file employed, national results obtained from both codes did not differ significantly because of the significant overlapping of fallout fields. However, state-by-state results showed some significant.
variations due to the different fallout models employed (CIVIC, TENOS-WSEG-10) and the methodology for combining prompt and fallout effects. These variations, however, were not biased in any particular direction, i.e., in some cases TENOS results were higher while in others CIVIC results were higher.
PREFACE

The author wishes to express his appreciation for the invaluable support provided by LT COL's R. Edwards and D. Thomas, the DNA COR's for this work.

Dr. Dave Bensen and Mr. Jim Jacobs of the FEMA performed and provided the TENOS assessment. Their cooperation in providing the basic population data base, the strike file and the TENOS assessment results were instrumental to the project and their work is greatly appreciated.

Messrs. Ron Dietz and Mel Schoonover of SAI were instrumental in generating the required data bases for CIVIC use and performing the CIVIC assessment.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>1</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>3</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>3</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>5</td>
</tr>
<tr>
<td>1-1 GENERAL</td>
<td>5</td>
</tr>
<tr>
<td>1-2 ASSESSMENT CONDITIONS</td>
<td>5</td>
</tr>
<tr>
<td>1-3 CAVEATS</td>
<td>5</td>
</tr>
<tr>
<td>1-4 OBSERVATIONS</td>
<td>6</td>
</tr>
<tr>
<td>2 INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>3 COMPARISON GROUND RULES AND ASSESSMENT CODE DIFFERENCES</td>
<td>10</td>
</tr>
<tr>
<td>3-1 GROUND RULES</td>
<td>10</td>
</tr>
<tr>
<td>3-2 BASIC DIFFERENCES IN THE ASSESSMENT CODES</td>
<td>10</td>
</tr>
<tr>
<td>4 DEVELOPMENT OF ASSESSMENT PROBLEM SETS AND CIVIC MODIFICATIONS</td>
<td>13</td>
</tr>
<tr>
<td>4-1 DEVELOPMENT OF ASSESSMENT PROBLEMS</td>
<td>13</td>
</tr>
<tr>
<td>4-1.1 Impact of Fallout Models Employed</td>
<td>13</td>
</tr>
<tr>
<td>4-1.2 Impact of Weapon CEP and Population Representation</td>
<td>13</td>
</tr>
<tr>
<td>4-1.3 Impact of Methodology for Combining Prompt and Fallout Environments</td>
<td>14</td>
</tr>
<tr>
<td>4-1.4 Summary of CIVIC and TENOS Problem Sets</td>
<td>14</td>
</tr>
<tr>
<td>4-2 CIVIC MODIFICATIONS</td>
<td>14</td>
</tr>
<tr>
<td>4-3 DCPA POPULATION DATA BASE CHARACTERISTICS</td>
<td>14</td>
</tr>
<tr>
<td>5 SPECIFICATION OF PROMPT DAMAGE FUNCTIONS</td>
<td>19</td>
</tr>
<tr>
<td>6 RESULTS AND OBSERVATIONS</td>
<td>29</td>
</tr>
<tr>
<td>7 GLOSSARY</td>
<td>35</td>
</tr>
<tr>
<td>APPENDIX A - CIVIC INPUT OPTIONS</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Figure Page
1 Shelter 35/25-mines, caves and tunnels (Type A) 20
2 Shelter 10/7-best basements (Type B/C) 21
3 Shelter 10/4-basements of wood frame structures
 (Type D) 22
4 Shelter 8/2-upper stories (<10) of strong walled
 buildings (Type E/F) 23
5 Shelter 5/2-tall (>10 stories) weak walled upper
 story space and weak basements (Type G/H/I) 24
6 15 psi upgraded blast shelter 25
7 TENOS fallout radiation damage functions (warned)
 (fallout only) 26

LIST OF TABLES

Tables Page
1 Assessment stipulations 11
2 TENOS and CIVIC assessment methodology differences 12
3 Assessment problems 15
4 Weapon laydown characteristics 16
5 CIVIC modifications 17
6 NSS structure types 18
7 Summary - shelter characteristics 27
8 National total comparisons 32
9 TENOS results 33
10 CIVIC-1 results 33
11 CIVIC-2 results 33
12 CIVIC-3 results 33
13 % differences in assessment cases 34
SECTION 1

SUMMARY

1-1 GENERAL

A comparison of results from the civilian casualty assessment codes CIVIC and TENOS was accomplished with the intent of determining the influence of methodology differences employed by the two codes. The principal methodology differences examined were:

- fallout model - SEER versus WSEG-10,
- techniques for combining prompt and fallout effects,
- population representation (point versus area targets) and CEP considerations.

1-2 ASSESSMENT CONDITIONS

Three CIVIC and one TENOS assessment problems were executed with a population data base and weapon strike file provided by FEMA. Only one TENOS assessment was conducted by FEMA because of other high priority commitments. With the possible exception of variations in population posture (shelter conditions), this single assessment was representative of the normal operating capabilities of the code under the specified strike file. The population data base consisted of 98,606 records with a total population of 211,706,673 contained within the 48 contiguous states. The weapon strike file consisted of 1,459 weapons ranging in yield from 1-20 MT, with a total megatonnage of 6,607. Of the total number of weapons, 795 were fallout producers, with a total megatonnage of 4,375. The weapons inventory and strike file are considered reasonable and prudent. The weapon strike file produced significant overlapping of fallout areas over large areas of the United States.

1-3 CAVEATS

The observations noted below pertain only to the assessment conditions noted above. Based on this work and other code comparison work, it is clear that results obtained through the use of different assessment codes are heavily dependent on the size and nature of the data base and on size and yields employed in the weapon strike file. In general, the smaller and more dispersed the weapon laydown, the larger the differences between various assessment codes.
1-4 OBSERVATIONS

The results of the comparison show the following:

a. Comparison of CIVIC runs using the WSEG-10 option and the improved SEER-II option (all other input conditions identical) showed that the WSEG-10 model produced nearly 11% more fallout-only fatalities than the improved SEER-II model.

The fallout-only fatality difference in this assessment is not as large as those that were produced in other assessment comparisons performed for DNA. This may be due to either a preponderance of very large weapons or the number of lesser yield weapons in the strike file. Either will subject a large part of the population data base to many overlapping fallout fields. Secondarily, at the larger yields, the differences in fallout contours produced by the two fallout models are not as pronounced as they are for the lower yield weapons. In addition, the GWC October winds used in this assessment has low wind shear characteristics. It was noted in previous studies that WSEG-10 compares well with other fallout models when the wind shear is low.

b. The comparison which was developed to show the influence of the prompt and fallout environment combining methodology in the two codes indicated that the CIVIC combining methodology produced about 11.2% greater fatalities than the methodology in TENOS. The combining methodology is independent of the fallout model employed.

c. TENOS does not use weapon CEP in casualty assessments and treats population areas as points, whereas most casualty assessment codes consider the CEP in prompt casualty calculations. To assess the impact of these conditions, two CIVIC calculations were made. In one, zero weapon CEP's and a point target representation of the population was employed. In the other, a normal CEP of 1500 feet and an area (P-95 circle) representation of the population was employed. Comparison of results from the two calculations showed that these two parameters, when employed in conjunction with

(1) Two fallout models are contained in CIVIC—SEER and WSEG-10. The user can select at run-time, via an input flag, which model he desires to use for fallout assessments.
one another, had no influence on the outcome of the assessment for the weapon strike file employed.

d. The TENOS/CIVIC-1 comparison case in which CIVIC was employed with zero weapon CEP and a point target representation of the population (to be consistent with TENOS methodology), showed national assessment results that were in reasonable agreement. The difference in prompt fatalities was about 4%, and almost all of this difference can be attributed to differences in the shelter damage functions and the prompt damage probability calculations because of the insignificant influence of CEP and target representation parameters noted in (a), above.

The combined environment fatality difference of 6.3% represents differences in three aspects of the assessment; the prompt environment calculations, the differences in the fallout models employed by the two codes, and the methodology for combining the prompt and fallout environments. From paragraphs (b) and (c) above, we note that the fallout model differences (TENOS/WSEG-10 results larger) and the combining methodology differences (CIVIC results larger) are sufficiently counterbalancing in this scenario that the differences between the CIVIC and TENOS assessment results can be considered negligible.

e. As might be expected, the results from the state-by-state summaries show the much wider variations that can be attributed in large part to the differences in fallout models and the extent of fallout area overlapping. The results for two states serve to illustrate this point. The combined fatality difference for the TENOS/CIVIC-1 comparison in the State of Alabama, for example, shows a 23.5% difference with the TENOS (WSEG-10) fatalities being higher. On the other hand, for the State of California the difference in combined fatalities is 9.7% with the CIVIC (SEER) fatalities being higher.

(2) The notation CIVIC-1, CIVIC-2, CIVIC-3 is used only to describe the three CIVIC assessment cases (see Table 3) which involves only variation to the input run-stream. The differences in the methodology employed when these variations are employed are discussed in Appendix A.
For large weapon laydowns, particularly where large yield weapons are involved, one can conclude that differences in code methodology are washed out when looking at national results. However, where specific areas or location are of interest, particularly as regards constraints that may be employed with certain attack options, significant assessment differences may be observed when using the different methodologies/models employed in CIVIC and TENOS.

It should be noted that the assessments addressed in this study were based on the use of shelter distance-damage functions derived from FEMA data. AP-550 distance-damage functions for similar shelter categories are somewhat different because of the larger damage sigmas and could conceivably result in larger casualty estimates. However, this aspect of the damage methodology was not examined in this study.
SECTION 2
INTRODUCTION

This report documents the results of a code comparison program sponsored by DNA. The primary objective of the program was to evaluate the casualty differences that would be encountered when employing different population casualty assessment codes. This objective was to be satisfied by accomplishing the following:

- Exercise damage assessment models against a number of specific problem sets.
- Compare casualty output results.
- Identify where possible, the source of any significant differences in output results.

During the initial planning stages of the program, it was believed desirable to perform the comparative assessments using four computer programs:

- TENOS (employed by FEMA)
- READY (employed by FPA)
- SIDAC (employed by CCTC)
- CIVIC (development sponsored by DNA)

However, because of other high priority commitments, FPA and CCTC could not participate in the program and thus the only assessment codes that could be employed in the comparison were TENOS and CIVIC. Furthermore, the FEMA participation with TENOS was limited to a single assessment run.
SECTION 3
COMPARISON GROUND RULES AND
ASSESSMENT CODE DIFFERENCES

3-1 GROUND RULES

In order that meaningful comparisons could be made, a number of ground rules or initial conditions were established by the program participants (FEMA, SAGA, DNA) at the outset of the work effort. These are shown in Table 1.

3-2 BASIC DIFFERENCES IN THE ASSESSMENT CODES

In order to establish some rationale or logic for the selection of assessment problems, it was useful to identify general methodology or data base factors that might contribute to differences in casualty results. Among those considered the most significant were:

- Population representation
- Population shelter distribution
- Prompt weapon effects damage methodology
- Fallout model employed
- Methodology for combining prompt and fallout effects
- Weapon associated parameters

With the establishment of these general factors, they were then specifically related to the capability of the codes that were to be employed in the comparative analysis. These are shown in Table 2.

The comparison ground rules and the methodology factors noted above were the basis for the specification of the assessment problems discussed in Section 4.
Table 1. Assessment stipulations.

- BASIC WEAPON LAYDOWN DATA PROVIDED BY FEMA
- CCTC WIND DATA BASE WAS TO BE Employed
 - OCTOBER "MOST-PROBABLE" WINDS
- POPULATION DATA BASE PROVIDED BY FEMA
 - "BEST SHELTERED" U.S. POPULATION DATA BASE (2x2 MINUTE GRID CELL DATA)
 - SHELTER DISTRIBUTION GIVEN FOR EACH CELL IN DATA BASE
- FALLOUT FATALITY/CASUALTY CALCULATIONS TO BE BASED ON MAXIMUM BIOLOGICAL DOSE
 - IRREPARABLE DOSE FRACTION = 0.1, REPAIR RATE = 2.5%/DAY
- SHELTER CHARACTERISTICS TO BE PROVIDED BY FEMA
 - DAMAGE PROBABILITY VERSUS OVERPRESSURE
 - FALLOUT PROTECTION FACTORS
- SAI WOULD TRANSFORM FEMA SHELTER CHARACTERISTICS INTO FORM SUITABLE FOR CIVIC
Table 2. TENOS and CIVIC assessment methodology differences.

<table>
<thead>
<tr>
<th></th>
<th>TENOS</th>
<th>CIVIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Representation</td>
<td>Point</td>
<td>Option-Point or Area (P-95)</td>
</tr>
<tr>
<td>Shelter Distribution at Each Population Place</td>
<td>From Population Data Base</td>
<td>From Population Data Base or Assigned Through Code Algorithms</td>
</tr>
<tr>
<td>Weapon Impact Point Distribution Considerations</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Probability of Weapon Arrival Considerations</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Prompt Effects Damage Function</td>
<td>Blast Only (1 MT and Above)</td>
<td>Blast and Nuclear Radiation</td>
</tr>
<tr>
<td>Fallout Model</td>
<td>WSEG-10</td>
<td>Option-Improved SEER-II or WSEG-10</td>
</tr>
<tr>
<td>Combined Prompt and Fallout Effects</td>
<td>Independent Events Compounding</td>
<td>Procedure for Summing Radiation Components Plus Independent Events Compounding</td>
</tr>
<tr>
<td>Wind Data Base</td>
<td>5 Altitude Level GWC Grid Data</td>
<td>10 Levels for SEER; 5 Levels for WSEG-10</td>
</tr>
<tr>
<td>Biological Repair Function for Fallout Radiation</td>
<td>Yes</td>
<td>Option, Yes or No</td>
</tr>
</tbody>
</table>
SECTION 4

DEVELOPMENT OF ASSESSMENT PROBLEM SETS AND CIVIC MODIFICATIONS

4-1 DEVELOPMENT OF ASSESSMENT PROBLEMS

Based on the assessment code capabilities and program objectives, problem sets were developed which were designed to address the issues specified in the following subsections. It should be noted that in order to examine the impact of most methodology and/or input parameter differences between the two codes, it was estimated that about 22 CIVIC assessment cases would be required with various permutations in input parameters or damage methodology. Because the large strike file and data base implied long computer run times, this number of assessments could not be accommodated. Thus, a compromise of the three assessment cases described below was instituted. The necessary limitation in assessment runs accommodated investigation of the most important methodology differences between the two codes under nominal input conditions. It did not, however, permit investigation of differences that might result due to variations in strike file (weapon yield), population shelter distribution, and wind data base.

4-1.1 Impact of Fallout Models Employed

With all input parameters identical, a direct comparison between TENOS (WSEG-10) and CIVIC (improved SEER-II) was desired. This baseline comparison coupled with two other comparisons was expected to provide some insight regarding the influence of other input parameters and code methodology.

4-1.2 Impact of Weapon CEP and Population Representation

Because TENOS does not employ CEP in its damage calculations, it was believed useful to compare output results with a CEP = 0 employed in both codes and then to employ CIVIC with a nominal weapon CEP of 1500 feet. TENOS also uses a point target representation of the population. To ascertain whether this parameter is important in casualty assessments CIVIC would be run with both point and area population representations. To accomplish this, each 2 x 2 minute cell location in the DCPA population data base was converted to an equal area circle with the center of the circle coincident with the DCPA cell center. The conversion was based on the algorithm.
\[R(n,m) = \sqrt{4 \times \cos \text{(latitude of population place)}} \]

to estimate the radius of an equivalent P-95 radius.

4-1.3 Impact of Methodology for Combining Prompt and Fallout Environments

TENOS calculates damage to population points due to prompt and fallout environments independently and then compounds the two, under the independent events assumption, to specify total fatalities and casualties. CIVIC on the other hand strives to account for the additive nature of the radiation environments (prompt and fallout) in ascertaining total fatality and casualty results. It appeared useful, therefore, to establish whether this refinement in methodology makes any impact on casualty and fatality results. To ascertain this impact, a direct comparison of the output results of the TENOS and CIVIC codes (using the WSEG-10 option in CIVIC) was desired.

4-1.4 Summary of CIVIC and TENOS Problem Sets

Table 3 summarizes the conditions of the CIVIC and TENOS comparison problems. Table 4 summarizes the characteristics of the weapon strike file provided by FEMA.

4-2 CIVIC MODIFICATIONS

The ground rules and problem sets established above required that some non-inconsequential modifications be made to the CIVIC code in order to perform the desired assessments. The major modifications are shown in Table 5.

4-3 DCPA POPULATION DATA BASE CHARACTERISTICS

The DCPA "best sheltered" U. S. population data base for the contiguous 48 states contains 98,606 population records with a total population of 211,766,673. For each record in the data base, a distribution of the population into one or more of six structure/shelter types is given based on data from the National Shelter Survey. This distribution was employed in both the TENOS and CIVIC assessment runs. Definitions of the various structure types contained in the National Shelter Survey are given in Table 6.
Table 3. Assessment problems.

<table>
<thead>
<tr>
<th>Problem Number</th>
<th>Population Representation</th>
<th>CEP (feet)</th>
<th>Fallout Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>TENOS(1)</td>
<td>Point</td>
<td>0</td>
<td>TENOS/WSEG-10</td>
</tr>
<tr>
<td>CIVIC-I(1)</td>
<td>Point</td>
<td>0</td>
<td>CIVIC/SEER</td>
</tr>
<tr>
<td>CIVIC-II(3)</td>
<td>Area(2)</td>
<td>1500</td>
<td>CIVIC/SEER</td>
</tr>
<tr>
<td>CIVIC-III(4)</td>
<td>Point</td>
<td>0</td>
<td>CIVIC/WSEG-10</td>
</tr>
</tbody>
</table>

(1) To provide direct comparison with TENOS results.
(2) 2X2 minute cell converted to equal area circle

\[P_{-95}(nm) = \frac{4 \times \cos(\text{lat. of population place})}{\pi} \]

(3) To determine influence of CEP and point versus area target representation
(4) To determine influence of CIVIC prompt and fallout combining techniques.
Table 4. Weapon laydown characteristics.

<table>
<thead>
<tr>
<th>YIELD</th>
<th>TOTAL NUMBER</th>
<th>HOB'S (FT)</th>
<th>NUMBER SURFACE BURST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MT</td>
<td>847</td>
<td>0/9400</td>
<td>429</td>
</tr>
<tr>
<td>2 MT</td>
<td>190</td>
<td>0/9323</td>
<td>93</td>
</tr>
<tr>
<td>3 MT</td>
<td>180</td>
<td>0/10673</td>
<td>100</td>
</tr>
<tr>
<td>20 MT</td>
<td>242</td>
<td>0/20087</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>795</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4375 MT</td>
</tr>
</tbody>
</table>

All weapons presumed to arrive, i.e., PA = 1.0
Table 5. CIVIC modifications.

- MODIFICATION TO ACCESS AND EMPLOY A U.S. POPULATION DATA BASE
 - Original code was constrained to Eurasian continent
- MODIFICATION TO ACCESS AND EMPLOY SHELTER DISTRIBUTION BY POPULATION PLACE DIRECTLY FROM DATA BASE
- MODIFICATION TO OPERATE ON AND PROVIDE OUTPUT FOR SIX SHELTER CATEGORIES INSTEAD OF FOUR
- MODIFICATION TO ACCESS AND EMPLOY A WIND DATA BASE APPLICABLE TO WESTERN HEMISPHERE
 - Original code was constrained to Eurasian continent
- CONVERSION OF CCTC WIND DATA BASE INTO CIVIC COMPATIBLE FORMAT
- INSTALL WSEG-10 FALLOUT MODEL AS OPTION TO SEER
 - Test to determine significance of CIVIC prompt + fallout compounding methodology
- CONVERT CIVIC TO CDC 7600 COMPUTER
 - LARGE LAYDOWN AND DATA BASE - EXCESSIVE RUN TIME ON SLOWER MACHINE
- MODIFICATION TO MAKE ASSESSMENTS ON EITHER POINT OR AREA TARGETS
Table 6. NSS structure types.

<table>
<thead>
<tr>
<th>MLOP/ MCOP (PF)</th>
<th>Shelter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>35/25 (5000)</td>
<td>A</td>
<td>Subway stations, tunnels, mines, and caves with large volume relative to entrances.</td>
</tr>
<tr>
<td>10/7 (500)</td>
<td>B</td>
<td>Basements and sub-basements of massive (monumental) masonry buildings.</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Basements and sub-basements of large, fully engineered structures having any floor system over the basement other than wood, concrete flat plate, or band beam support.</td>
</tr>
<tr>
<td>10/4 (25)</td>
<td>D</td>
<td>Basements of wood frame and brick veneer structures including residences.</td>
</tr>
<tr>
<td>8/2 (55)</td>
<td>E</td>
<td>First three stories of buildings with "strong" walls, less than ten aboveground stories, and less than 50% apertures.</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>Fourth through ninth stories of buildings with "strong" walls, less than ten aboveground stories, and less than 50% apertures.</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>Basements and sub-basements of buildings with a flat plate or band beam supported floor system over the basement.</td>
</tr>
<tr>
<td>5/2 (70)</td>
<td>H</td>
<td>First three stories of buildings with "strong" walls, less than ten aboveground stories, and greater than 50% apertures; or, first three stories of buildings with "weak" and less than ten aboveground stories.</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>All aboveground stories of buildings having ten or more stories. Fourth through ninth stories of buildings having "weak" walls.</td>
</tr>
<tr>
<td>5/2 (5)</td>
<td>R</td>
<td>Classified as "Residual" on FEMA Population File, i.e., not belonging specifically to any of above structural types. Given vulnerability of shelter type G/H/I by SAI.</td>
</tr>
</tbody>
</table>

Note: For the above description, load bearing walls are considered as "weak" walls.

*Grouped together because of similar vulnerability characteristics.
SECTION 5
SPECIFICATION OF PROMPT DAMAGE FUNCTIONS

One of the fundamental inputs required for the calculation of prompt casualties is the information necessary for specifying casualty criteria for each of the shelter categories considered. Under the ground rules established for the program, the shelters to be employed were those specified by FEMA. If meaningful comparisons were to be made between code output, it was necessary that in the base case assessment problems, similar damage functions be employed in both codes to remove this factor as a potential source of difference in assessment results.

As a starting point in the analysis, the National Shelter Survey damage functions employed by TENOS were examined to determine their characteristics in terms compatible with the CIVIC code. Six shelter damage functions associated with a "best" sheltered posture were examined. It should be noted that these damage functions pertain only to the blast environment because the yields employed in most FEMA assessment analyses are large and, therefore, blast is the predominant damage mechanism. However, because CIVIC calculates the weapon radius contributions from the blast and radiation environments, those input parameters necessary for the radiation calculations were assigned by SAI.

For each shelter category (for fatalities and casualties) a VNTK assignment was made to specify the blast vulnerability along with a damage sigma that was appropriate to each TENOS shelter damage function. Plots of the probability of fatality (and injury) as a function of peak overpressure are shown in Figures 1-6 for six shelter categories. Figure 7 is a similar plot for fallout radiation. Included in Figures 1-6 (where appropriate) are references to the AP-550 personnel vulnerability VNTK values associated with the corresponding structure categories given in AP-550. These references are shown because AP-550 provides for only five structure types for civilian casualty assessments, i.e., single story structures, multi-story structures basements, hasty shelters and deep underground shelters. Table 6 summarizes the assignments made for each of the necessary CIVIC input parameters. The damage sigma values shown for the blast environment (and used in CIVIC) were obtained by folding the basic damage probability as a
Figure 1. Shelter 35/25-mines, caves and tunnels (Type A).
Figure 2. Shelter 10/7-best basements (Type B/C).
Figure 3. Shelter 10/4-basements of wood frame structures (Type D)
Figure 4. Shelter 8/2-upper stories (<10) of strong walled buildings (Type E/F).
Figure 5. Shelter 5/2-tall (>10 stories) weak walled upper story space and weak basements (Type G/H/I).
Figure 6. 15 psi upgraded blast shelter.
Figure 7. TENOS fallout radiation damage functions (warned) (fallout only).
Table 7. Summary - shelter characteristics.

<table>
<thead>
<tr>
<th>Shelter Category</th>
<th>TENOS Overpressure (1)</th>
<th>VNTK CIVIC Approximation (2)</th>
<th>CIVIC Prompt Radiation Transmission Factors</th>
<th>TENOS and CIVIC Fallout Protection Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>35</td>
<td>25</td>
<td>19PO</td>
<td>17PO</td>
</tr>
<tr>
<td>B/C</td>
<td>10</td>
<td>7</td>
<td>12PO</td>
<td>10PO</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>4</td>
<td>12PO</td>
<td>7PO</td>
</tr>
<tr>
<td>E/F</td>
<td>8</td>
<td>2</td>
<td>14P6</td>
<td>5P4</td>
</tr>
<tr>
<td>G/H/I</td>
<td>5</td>
<td>2</td>
<td>11P5</td>
<td>5P4</td>
</tr>
<tr>
<td>Resid.</td>
<td>5</td>
<td>2</td>
<td>11P5</td>
<td>5P4</td>
</tr>
</tbody>
</table>

(1) Overpressure for 50 percent damage probability.
(2) For yields of 1 MT or greater.
function of overpressure data with overpressure as a function of range data for a scaled HOB of 650 feet/KT$^{1/3}$ to obtain distance-damage functions. From these distance-damage functions, values for σ_D were calculated via the approximate relationship

$$\frac{\sigma_D}{1-\sigma_D^2} = \frac{R^{.31} - R^{.69}}{R^{.5}}$$

where the subscripts to the range (R) values indicate the damage probabilities at which the range values are taken.

For all the shelters specified, the damage sigmas resulting from the above expression were equal to or less than .2. Thus, for the purposes of the CIVIC calculations the damage sigmas employed were as shown below.

CIVIC Damage Sigmas

<table>
<thead>
<tr>
<th>Shelter Category</th>
<th>Blast</th>
<th>Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Fatalities</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>- Casualties</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>B/C - Fatalities</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>- Casualties</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>D - Fatalities</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>- Casualties</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>E/F - Fatalities</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>- Casualties</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>G/H/ - Fatalities</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>- Casualties</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Resid - Fatalities</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>- Casualties</td>
<td>0.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>
SECTION 6
RESULTS AND OBSERVATIONS

The results of four assessment cases are shown in Table 8 for the national summaries and in Tables 9-12 for the state-by-state summaries. Table 13 shows the percent differences between those national assessment cases that contain the methodology differences which were the objective of the study.

Based on the data contained in these tables, the following observations can be made.

a. Comparison of results from the cases CIVIC-I and CIVIC-2 where in CIVIC-2 a zero CEP was replaced with a nominal CEP of 1500 feet and an area (P-95 circle) rather than point target representation of the population was employed, shows that these two parameters, when employed in conjunction with one another, had no influence on the outcome of the assessment for the weapon laydown employed.

b. Comparison of results from cases CIVIC-1 and CIVIC-3 in which the only differences in CIVIC operation was the use of different fallout models (SEER and WSEG-10), showed a fallout-only fatality difference of nearly 11% with the WSEG-10 model producing the larger fatalities. The combined environment fatality difference was about 9%, which reflects the phenomena that some of the excess WSEG-10 fallout-only fatalities were also prompt fatalities and thus were not counted in the combined calculation.

The fallout fatality difference in this assessment is not as large as those that were produced in other assessment comparisons performed for DNA. This is due primarily to the preponderance of very large weapons in the strike file which affected a large part of the population data base to many overlapping fallout fields. This is the typical case for strategic assessments.

Secondarily, at the larger yields, the differences in fallout contours produced by the two fallout models are not as pronounced as they are for the lower yield weapons. In addition, the GWC October wind used in the assessment has the low wind shear characteristics most suited to favorable WSEG-10 comparisons with other models.

c. Comparison of results from cases CIVIC-3 and TENOS basically reflect the influence of the prompt and fallout environment combining methodology in the two codes. As a first approximation, if one adds the difference between the TENOS and CIVIC-3 prompt fatalities to the TENOS combined fatalities, one finds the difference between the TENOS and CIVIC-3 results to be about 11.2% with the CIVIC code giving higher fatalities.

d. The TENOS/CIVIC-1 comparison case in which CIVIC was employed with zero weapon CEP and a point target representation of the population (to be consistent with TENOS methodology), showed national assessment results that were in reasonable agreement. The difference in prompt fatalities was about 4%, and almost all of this difference can be attributed to differences in the shelter damage functions and the prompt damage probability calculations because of the insignificant influence of CEP and target representation parameters noted in (a) above.

The combined environment fatality difference of 6.3% represents differences in three aspects of the assessment; the prompt environment calculations, the differences in the fallout models employed by the two codes, and the methodology for combining the prompt and fallout environments. From paragraphs (b) and (c) above, we note that the fallout model differences (TENOS/WSEG-10 results larger) and the combining methodology differences (CIVIC results larger) are sufficiently counterbalancing in this scenario that the differences between the CIVIC and TENOS assessment results can be considered negligible.
e. As might be expected, the results from the state-by-state summaries show the much wider variations that can be attributed in large part to the differences in fallout models and the extent of fallout area overlapping. The results from two states serve to illustrate this point. The combined fatality difference for the TENOS/CIVIC-1 comparison in the state of Alabama for example, shows a 23.5% difference with the TENOS (WSEG-10) fatalities being higher. On the other hand, for the state of California the difference in combined fatalities is 9.7% with the CIVIC (SEER) fatalities being higher.

For large weapon laydowns, particularly where large yield weapons are involved, one can conclude that differences in code methodology are washed out when looking at national results. However, where specific areas or locations are of interest, particularly as regards constraints that may be employed with certain attack options, significant assessment differences may be observed when using the different methodologies/models employed in CIVIC and TENOS.
Table 8. National total comparisons.

<table>
<thead>
<tr>
<th></th>
<th>PROMPT ONLY</th>
<th>FALLOUT ONLY</th>
<th>COMBINED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FATALITIES</td>
<td>CASUALTIES</td>
<td>FATALITIES</td>
</tr>
<tr>
<td>TENOS</td>
<td>74,210,098</td>
<td>-</td>
<td>19,718,868*</td>
</tr>
<tr>
<td>CIVIC-1</td>
<td>77,209,418</td>
<td>103,697,559</td>
<td>54,126,875</td>
</tr>
<tr>
<td>CIVIC-2</td>
<td>77,151,184</td>
<td>103,687,632</td>
<td>54,077,218</td>
</tr>
<tr>
<td>CIVIC-3</td>
<td>77,209,18</td>
<td>103,697,559</td>
<td>59,987,640</td>
</tr>
</tbody>
</table>

*Figure reflects fallout fatalities of that population surviving prompt effects, i.e., it is not an independent accounting as are the CIVIC figures.
<table>
<thead>
<tr>
<th>State</th>
<th>Fatalities</th>
<th>Casualties</th>
<th>Fatalities</th>
<th>Casualties</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>820,032</td>
<td>1,797,880</td>
<td>2,617,912</td>
<td>3,085,395</td>
<td></td>
</tr>
<tr>
<td>Arizona</td>
<td>355,819</td>
<td>418,362</td>
<td>774,181</td>
<td>1,128,218</td>
<td></td>
</tr>
<tr>
<td>Arkansas</td>
<td>256,649</td>
<td>1,117,799</td>
<td>1,379,448</td>
<td>1,802,436</td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>11,645,653</td>
<td>2,016,168</td>
<td>14,564,921</td>
<td>16,792,677</td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>629,736</td>
<td>225,876</td>
<td>758,617</td>
<td>1,190,277</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>1,348,490</td>
<td>456,092</td>
<td>1,799,382</td>
<td>2,391,779</td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>226,973</td>
<td>21,866</td>
<td>246,839</td>
<td>341,042</td>
<td></td>
</tr>
<tr>
<td>District of Columbia</td>
<td>650,664</td>
<td>442</td>
<td>651,106</td>
<td>677,993</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>2,922,917</td>
<td>170,819</td>
<td>3,093,736</td>
<td>4,688,467</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>1,234,483</td>
<td>1,600,057</td>
<td>2,490,740</td>
<td>3,880,935</td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>46,238</td>
<td>1,004</td>
<td>47,240</td>
<td>89,558</td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>5,138,054</td>
<td>101,378</td>
<td>5,239,432</td>
<td>6,685,903</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>1,638,872</td>
<td>347,374</td>
<td>1,986,246</td>
<td>2,832,742</td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td>548,030</td>
<td>108,231</td>
<td>656,681</td>
<td>968,944</td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>986,629</td>
<td>272,533</td>
<td>671,162</td>
<td>1,108,493</td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>791,216</td>
<td>40,892</td>
<td>932,208</td>
<td>1,245,727</td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>1,322,490</td>
<td>247,719</td>
<td>1,570,209</td>
<td>2,278,041</td>
<td></td>
</tr>
<tr>
<td>Maine</td>
<td>133,178</td>
<td>103,702</td>
<td>236,080</td>
<td>406,253</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>2,109,732</td>
<td>167,602</td>
<td>2,277,354</td>
<td>2,631,801</td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>2,613,097</td>
<td>497,620</td>
<td>3,110,717</td>
<td>4,376,461</td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td>3,331,029</td>
<td>189,219</td>
<td>3,720,239</td>
<td>5,001,645</td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>1,096,269</td>
<td>50,673</td>
<td>1,146,942</td>
<td>1,567,962</td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>283,032</td>
<td>1,059,606</td>
<td>1,347,638</td>
<td>1,847,676</td>
<td></td>
</tr>
<tr>
<td>Montana</td>
<td>1,460,900</td>
<td>447,054</td>
<td>1,907,955</td>
<td>2,992,916</td>
<td></td>
</tr>
<tr>
<td>Nebraska</td>
<td>193,704</td>
<td>80,313</td>
<td>274,017</td>
<td>331,652</td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>169,938</td>
<td>95,646</td>
<td>285,902</td>
<td>364,547</td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>357,915</td>
<td>688,485</td>
<td>4,246,600</td>
<td>5,599,870</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>218,107</td>
<td>96,916</td>
<td>315,023</td>
<td>474,319</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>7,816,936</td>
<td>1,036,054</td>
<td>8,852,990</td>
<td>11,289,066</td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>929,401</td>
<td>322,710</td>
<td>1,252,111</td>
<td>1,617,771</td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>44,216</td>
<td>91,631</td>
<td>135,847</td>
<td>201,489</td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td>3,577,915</td>
<td>733,046</td>
<td>4,310,961</td>
<td>5,554,007</td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>548,207</td>
<td>1,129,706</td>
<td>1,677,917</td>
<td>2,078,535</td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>645,951</td>
<td>16,802</td>
<td>662,753</td>
<td>911,889</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>3,324,362</td>
<td>1,029,875</td>
<td>4,394,237</td>
<td>6,895,623</td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>554,789</td>
<td>133,970</td>
<td>668,759</td>
<td>766,995</td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>568,826</td>
<td>197,593</td>
<td>764,419</td>
<td>962,012</td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td>39,448</td>
<td>112,757</td>
<td>147,905</td>
<td>258,564</td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>820,838</td>
<td>454,980</td>
<td>1,275,816</td>
<td>1,923,042</td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>4,695,773</td>
<td>534,414</td>
<td>5,230,187</td>
<td>7,262,345</td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>413,999</td>
<td>194,723</td>
<td>608,122</td>
<td>704,736</td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>14,833</td>
<td>20,942</td>
<td>35,775</td>
<td>72,720</td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>1,101,278</td>
<td>169,543</td>
<td>1,270,828</td>
<td>2,258,351</td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>1,255,718</td>
<td>392,346</td>
<td>1,648,064</td>
<td>2,206,494</td>
<td></td>
</tr>
<tr>
<td>West Virginia</td>
<td>240,630</td>
<td>86,186</td>
<td>326,815</td>
<td>521,429</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>1,500,278</td>
<td>20,797</td>
<td>1,521,075</td>
<td>1,930,836</td>
<td></td>
</tr>
<tr>
<td>Wyoming</td>
<td>51,068</td>
<td>25,750</td>
<td>76,818</td>
<td>101,838</td>
<td></td>
</tr>
</tbody>
</table>

Table 9. TENOS results.

Table 10. CIVIC-1 results.
Table 11. CIVIC-2 results.

<table>
<thead>
<tr>
<th>CITY</th>
<th>FATALITIES</th>
<th>CASUALTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 12. CIVIC-3 results.

<table>
<thead>
<tr>
<th>CITY</th>
<th>FATALITIES</th>
<th>CASUALTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C-1 results.
Table 13. % differences in assessment cases.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Prompt Only</th>
<th></th>
<th>Fallout Only</th>
<th></th>
<th>Combined</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fatalities</td>
<td>Casualties</td>
<td>Fatalities</td>
<td>Casualties</td>
<td>Fatalities</td>
<td>Casualties</td>
</tr>
<tr>
<td>CIVIC-1/CIVIC-2(^{(1)})</td>
<td>+.08%</td>
<td>+.01%</td>
<td>+.09%</td>
<td>+.02%</td>
<td>~0%</td>
<td>-.07%</td>
</tr>
<tr>
<td>(CIVIC-2 Reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVIC-1/CIVIC-3(^{(2)})</td>
<td>0%</td>
<td>0%</td>
<td>+10.8%</td>
<td>+10.7%</td>
<td>+8.9%</td>
<td>+6.7%</td>
</tr>
<tr>
<td>(CIVIC-1 Reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVIC-3/TENOS(^{(3)})</td>
<td>-3.9%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-14%</td>
<td>-9.2%</td>
</tr>
<tr>
<td>(CIVIC-3 Reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVIC-1/TENOS</td>
<td>-3.9%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-6.3%</td>
<td>-3.1%</td>
</tr>
<tr>
<td>(CIVIC-1 Reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) Influence of CEP and point or area population representation

\(^{(2)}\) Influence of fallout models only

\(^{(3)}\) Influence of methodology for combining prompt and fallout effects
SECTION 7
GLOSSARY

AFRRI - Armed Forces Radiological Research Institute.
CCTC - Command and Control Technical Center.
CIVIC - A computer code that estimates civilian fatalities and casualties due to the employment of nuclear weapons. Both prompt and fallout effects can be taken into account in the estimates. Development sponsored by the Defense Nuclear Agency (DNA).
FPA - Federal Protection Agency.
GWC - Global Weather Center.
MCOP - Mean Casualty blast Overpressure Vulnerability expressed in pounds per square inch.
MLOP - Mean Lethal blast Overpressure Vulnerability expressed in pounds per square inch.
PF - Protection Factor. A factor which accounts for the fallout radiation protection afforded by various structure types. When the free-field fallout radiation dose is divided by this factor, the resulting dose is the dose to which people within the structure may be subjected.
TENOS - A computer code developed by the Federal Emergency Management Agency (FEMA) to estimate fatalities and casualties due to the employment of nuclear weapons. Both prompt and fallout effects can be taken into account in the estimates.
APPENDIX A
CIVIC INPUT OPTIONS

For the calculation of prompt effects damage probabilities, three distributions are normally employed; the damage function distribution (normally a log-normal distribution), the weapon impact point distribution (circular normal), and the population distribution within a circle of specified radius (circular normal). The last two distributions are combined into one for the purposes of the damage calculation and are represented by an "Adjusted Circular Error Probable" (CEPA). Mathematically, CEPA is represented by

\[
\text{CEPA} = \left[\text{CEP}^2 + \frac{\ln 2}{\ln 20} (\text{Target Radius} \times 6076.1155)^2\right]^{1/2}
\]

The "\(\frac{\ln 2}{\ln 20}\)" term converts the 95th percentile of the target distribution to the 50th percentile used for CEP. The factor "6076.1155" converts nautical miles (units normally used for target radius) to feet.

In CIVIC, input run-stream option flags are available to permit the calculation of CEPA with either CEP = 0, target radius = 0, or both.

The reason for these options is to be able to vary the damage calculations without having to modify either the weapon strike file which contains the CEP as a unique entity, or the population data base which contains the target radius as a unique entity.

For the purposes of fallout calculations, CIVIC contains two fallout models; SEER and WSEG-10. Either of these options can be selected at the discretion of the user simply by setting the appropriate flag in the input run-stream.
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

U.S. Documents Officer
AFSOUTH
ATTN: U.S. Documents Officer

Armored Forces Radiobiology Rsch Institute
Defense Nuclear Agency
ATTN: Director

Armored Forces Staff College
ATTN: Coordinator for Studies & Rsch Lib
ATTN: Reference & Technical Svcs Br

Assistant to the Secretary of Defense
Atomic Energy
ATTN: Nuclear Policy Planning
ATTN: Executive Assistant

Command & Control Technical Center
Department of Defense
ATTN: C-343
ATTN: C-332
ATTN: C-315
ATTN: C-312

Commander-in-Chief, Atlantic
ATTN: J-5/J-3
ATTN: N-22

Commander-in-Chief, Pacific
ATTN: J-54
ATTN: J-53
ATTN: CJSRD
ATTN: J-534
ATTN: J-32

Defense Intelligence Agency
ATTN: DT
ATTN: DE
ATTN: DN
ATTN: RTS-2C
ATTN: DB-1
ATTN: DIA/VPRA-2 (Fed Res Div)
2 cy ATTN: DB-6

Defense Nuclear Agency
ATTN: NATA
ATTN: RAEE
ATTN: SINA
ATTN: STRA
ATTN: STEP
ATTN: NATD
ATTN: NAPD
4 cy ATTN: TITL

Defense Technical Information Center
12 cy ATTN: DD

Field Command
Defense Nuclear Agency
2 cy ATTN: FCP

DEPARTMENT OF DEFENSE (Continued)

Field Command
Defense Nuclear Agency
Livermore Branch
ATTN: FCPL

Intelligence Center, Pacific
ATTN: COMIPAC

Interservice Nuclear Weapons School
ATTN: TV

Joint Chiefs of Staff
ATTN: SAGA/SSD
ATTN: SAGA
ATTN: SAGA/SFD
ATTN: J-3
ATTN: J-5, Strategy Division, W. McClain
ATTN: J-3, Strategic Operations Div
ATTN: J-5, Nuclear Division
2 cy ATTN: J-5, Nuclear Division/Strategy Div

Joint Strategic Planning Staff
ATTN: JP
ATTN: JL
ATTN: JLA
ATTN: JPPF
2 cy ATTN: JLTW-2

National Security Agency
ATTN: F. Newton
ATTN: D. Stuarts

Director
ATTN: F. Glessler
ATTN: C. Pease
ATTN: DIR, A. Marshall
ATTN: Military Assistants

U.S. European Command
ATTN: ECJS-N
ATTN: J-2-1TD
ATTN: J-5
ATTN: ECJ2-T
ATTN: J-3
ATTN: J-5W
ATTN: J-2
ATTN: J-6
ATTN: J-5NG

U.S. National Military Representative
SHAPE
ATTN: U.S. Documents Officer

Under Secretary of Defense for Policy Planning
ATTN: USD/P
ATTN: DUSP/P

Under Secretary of Defense for Research & Engrg
ATTN: Tactical Warfare Programs
ATTN: Chairman, Defense Science Board
ATTN: Strategic & Space Sys (OS)
DEPARTMENT OF ENERGY CONTRACTORS (Continued)

Sandia Laboratories
Livermore Laboratory
ATTN: T. Gold
ATTN: L. Hostetler
ATTN: A. Kernstein

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Advanced International Studies Institute
ATTN: M. Harvey

Advanced Research & Applications Corp
ATTN: Document Control

Aerospace Corp
ATTN: Library

Analytical Assessments Corp
ATTN: A. Wagner

BDM Corp
ATTN: C. Wasaff
ATTN: R. Buchanan
ATTN: J. Bode
ATTN: J. Conant
ATTN: J. Braddock

Boeing Co
ATTN: J. Russel

66th MI Group
ATTN: T. Greene

General Electric Co
ATTN: R. Minckler

General Research Corp
ATTN: Tactical Warfare Operations

IIT Research Institute
ATTN: Documents Library

Institute for Defense Analyses
ATTN: Classified Library
ATTN: J. Grote

IRT Corp
ATTN: J. Hengle
ATTN: W. Macklin

JAYCOR
ATTN: R. Sullivan

Kaman Sciences Corp
ATTN: F. Shelton

Kaman Sciences Corp
ATTN: E. Daugs

DEPARTMENT OF DEFENSE CONTRACTORS

Kaman Tempo
ATTN: DASIAC

Pacific-Sierra Research Corp
ATTN: H. Brode
ATTN: G. Lang

Pacific-Sierra Research Corp
ATTN: D. Gormley

R & D Associates
ATTN: W. Graham
ATTN: S. Borjon
ATTN: A. Field
ATTN: R. Port
ATTN: E. Carson
ATTN: A. Lynn
ATTN: P. Haas
2 cy ATTN: Document Control

R & D Associates
ATTN: J. Thompson

Rand Corp
ATTN: V. Jackson

Santa Fe Corp
ATTN: D. Paolucci

Science Applications, Inc
ATTN: J. Foster
ATTN: B. Bennett

Science Applications, Inc
ATTN: J. Warner
ATTN: C. Whittenbury, W. Yengst
ATTN: J. Martin
ATTN: M. Drake
ATTN: J. Beyster
ATTN: L. Nesselar
ATTN: Document Control
4 cy ATTN: E. Swick

Science Applications, Inc
ATTN: J. Shannon
ATTN: W. Layson
ATTN: R. Craver
ATTN: Document Control

Science Applications, Inc
ATTN: L. Goure
ATTN: D. Kaul

System Planning Corp
ATTN: J. Douglas

T N Dupuy Associates, Inc
ATTN: T. Dupuy