MISSISSIPPI-KASKASKIA-ST. LOUIS BASIN

LITTLE INDIAN CREEK DAM
WASHINGTON COUNTY, MISSOURI
MO. 30718

PHASE 1 INSPECTION REPORT
NATIONAL DAM SAFETY INSPECTION

PREPARED BY: U.S. ARMY ENGINEER DISTRICT, ST. LOUIS
FOR: STATE OF MISSOURI

SEPTEMBER 1980

"Original contains color plates; All DTIC reproductions will be in black and white"
Phase I Dam Inspection Report

National Dam Safety Program
Little Indian Creek Dam (MO 30718)
Washington County, Missouri

Author(s)
Woodward-Clyde Consultants

Performing Organization Name and Address
U.S. Army Engineer District, St. Louis
Dam Inventory and Inspection Section, LMSED-PD
210 Tucker Blvd., North, St. Louis, Mo. 63101

Controlling Office Name and Address
U.S. Army Engineer District, St. Louis
Dam Inventory and Inspection Section, LMSED-PD
210 Tucker Blvd., North, St. Louis, Mo. 63101

Report Date
September 1989

Number of Pages
Approximately 70

Distribution Statement (of this Report)
Approved for release; distribution unlimited.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

National Dam Safety Program, Little Indian Creek Dam (MO 30718), Mississippi-Kaskaskia-St. Louis Basin, Washington County, Missouri. Phase I Inspection Report.

Supplementary Notes

Key Words (Continue on reverse side if necessary and identify by block number)

Dam Safety, Lake, Dam Inspection, Private Dams

Abstract (Continue on reverse side if necessary and identify by block number)

This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.
INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in all technical reports prepared by or for DoD organizations.

COMPLETION GUIDE

General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank.

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future retrieval of the document.

Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abstracting Scientific and Technical Reports of Defense-sponsored RDT&E," AD-647 000). If the report has a subtitle, this subtitle should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a title in a foreign language, translate the title into English and follow the English translation with the title in the original language. Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers are used, leave this space blank.

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary" or the DD Form 1634, "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding/sponsoring agency. For definition see DoD Directive 5200.20, "Distribution Statements on Technical Documents.")

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Block 17. Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of the report). Insert here the applicable distribution statement of the abstract from DoD Directive 5200.20, "Distribution Statements on Technical Documents.")

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with Translation of (or by) . . . Presented at conference of . . . To be published in . . .

Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST), AD-672 000, can be helpful.

Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report would consist of publicly-releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000.
SUBJECT: Little Indian Creek Dam Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Little Indian Creek Dam (MO 30718).

It was prepared under the National Program of Inspection of Non-Federal Dams.

This dam has been classified as unsafe, non-emergency by the St. Louis District as a result of the application of the following criteria:

a. This dam retains less than 50 percent of the Probable Maximum Flood without overtopping the embankment.

b. Overtopping of the embankment could result in failure of the dam.

c. Dam failure significantly increases the hazard to loss of life downstream.

SIGNED

SUBMITTED BY: Chief, Engineering Division 29 SEP 1980

APPROVED BY: Colonel, CE, District Engineer 30 SEP 1980
LITTLE INDIAN CREEK DAM
Washington County, Missouri
Missouri Inventory No. 30718

Phase I Inspection Report
National Dam Safety Program

Prepared by
Woodward-Clyde Consultants
Chicago, Illinois

Under Direction of
St Louis District, Corps of Engineers

for
Governor of Missouri
September 1980
PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams for Phase I Investigations. Copies of these guidelines may be obtained from the Office of the Chief of Engineers, Washington, D.C., 20314. The purpose of a Phase I investigation is not to provide a complete evaluation of the safety of the structure nor to provide a guarantee on its future integrity. Rather the purpose of the program is to identify potentially hazardous conditions to the extent they can be identified by a visual examination. The assessment of the general condition of the dam is based upon available data (if any) and visual inspections. Detailed investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify the need for more detailed studies. In view of the limited nature of the Phase I studies no assurance can be given that all deficiencies have been identified.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with any data which may be available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action removes the normal load on the structure, as well as the reservoir head along with seepage pressures, and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected, so that corrective action can be taken. Likewise continued care and maintenance are necessary to minimize the possibility of development of unsafe conditions.
Little Indian Creek Dam, Missouri Inventory Number 30718, was inspected by Richard Berggreen (engineering geologist), David Hendron (geotechnical engineer), and Sean Tseng (hydrologist). The dam is an abandoned barite tailings dam.

The dam inspection was made following the guidelines presented in the "Recommended Guidelines for Safety Inspection of Dams". These guidelines were developed by the Chief of Engineers, US Army, Washington, D.C., with the help of federal and state agencies, professional engineering organizations, and private engineers. The resulting guidelines represent a consensus of the engineering profession. They are intended to provide an expeditious identification, based on available data and a visual inspection of those dams which may pose hazards to human life or property. In view of the limited nature of the study, no assurance can be given that all deficiencies have been identified.

The St Louis District, Corps of Engineers, has classified this dam as a high hazard; we concur with this classification. The estimated damage zone extends approximately 10 mi downstream of the dam. Several vacation homes and permanent residences are located within this damage zone. The loss of life and property could be significant in the event of overtopping and failure of the dam.

The dam is classified intermediate due to its maximum height of 64 feet. The reservoir storage capacity is 578 ac-ft.

Our inspection and evaluation indicate the dam is in a generally unsatisfactory condition. This dam has no spillway or discharge channel. The cohesionless nature of the embankment materials suggest the dam would be severely eroded in the event of significant overtopping. Inclined trees on the face of the embankment indicate that some
sloughing of the face of the embankment has occurred. Mining activities at the toe of the dam have left cut faces which have reduced the apparent stability of the embankment. The downstream face of the dam appears steep, 33 to 35 degrees, and future stability of the slope is questionable if small changes occur to conditions observed during the inspection.

Hydrologic analyses indicate that precipitation events greater than 12 percent of the Probable Maximum Flood (PMF) will overtop the low point of the embankment. This is following an antecedent storm of 6 percent of the PMF. The PMF is defined as the flood event that may be expected to occur from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the region. A flood with 1 percent probability-of-occurrence (100 year storm) will be contained within the reservoir. The starting water surface for the 12 percent PMF storms was 805.1 ft following the antecedent storm. Starting water surface for the 50 and 100 percent PMF storms was 808.4, minimum top of dam due to the antecedent storms. Starting water surface for the 1 percent storm was the high water line of 803.4 ft.

The dam is currently abandoned and there are no maintenance or inspection programs.

It is recommended that the following studies be made and the following actions be taken, under the guidance of an engineer experienced in the design and construction of dams:

1. Construct a spillway to minimize storage behind the dam and to pass the appropriate design flood.

2. Construct a discharge channel so that erosion of the toe of the embankment will not occur.

3. Make seepage and stability analyses of the dam comparable to those required in the recommended guidelines. These analyses should be made for appropriate loading conditions, including earthquake loads.

4. Implement a program of periodic inspections to detect any changes in seepage rate and turbidity of seepage water and to identify areas of slope instability, such as slumping and erosion of the face of the dam.
It is suggested the owner takes action on those recommendations without undue delay to avoid further deterioration of this structure which could lead to the development of unsafe emergency conditions.

WOODWARD-CLYDE CONSULTANTS

Richard G. Berggreen
Registered Geologist

Stanley F. Gizieski, P.E.
Vice-President
OVERVIEW
LITTLE INDIAN CREEK DAM
MISSOURI INVENTORY NUMBER 30718
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Paragraph No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Description of Project</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Pertinent Data</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Design</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Construction</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Operation</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Evaluation</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Project Geology</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Findings</td>
<td>10</td>
</tr>
<tr>
<td>3.2</td>
<td>Evaluation</td>
<td>11</td>
</tr>
<tr>
<td>4.1</td>
<td>Procedures</td>
<td>13</td>
</tr>
<tr>
<td>4.2</td>
<td>Maintenance of Dam and Spillway</td>
<td>13</td>
</tr>
<tr>
<td>4.3</td>
<td>Maintenance of Operating Facilities</td>
<td>13</td>
</tr>
<tr>
<td>4.4</td>
<td>Description of Any Warning System in Effect</td>
<td>13</td>
</tr>
<tr>
<td>4.5</td>
<td>Evaluation</td>
<td>13</td>
</tr>
<tr>
<td>5.1</td>
<td>Evaluation of Features</td>
<td>14</td>
</tr>
</tbody>
</table>
SECTION 6 - STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability 16

SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 Dam Assessment 17
7.2 Remedial Measures 18

REFERENCES 20

FIGURES

1. Site Location Map
2. Drainage Basin and Site Topography
3a. Plan and Section of Dam
3b. Section of Dam and Crest Profile
4. Regional Geologic Map

APPENDICES

A Figure A-1: Photo Location Sketch

Photographs

1. Bullrock (coarse tailings) on face of dam. Note mining cut face at toe of dam, left center. Looking northeast.
2. Roadway on crest of dam. Impoundment area to the right. Looking north.
3. Downstream face of dam. Note leaning trees indicating possible slumping of slope face. Looking southwest.
5. Inoperative outlet pipe near south end of embankment. Looking south.
6. Total seepage and overland drainage below toe of dam. Looking east.

B Hydraulic/Hydrologic Data and Analyses
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
LITTLE INDIAN CREEK DAM, INVENTORY NO. 30718

SECTION 1
PROJECT INFORMATION

1.1 General

a. **Authority.** The National Dam Inspection Act, Public Law 92-367, provides for a national inventory and inspection of dams throughout the United States. Pursuant to the above, an inspection was conducted of the Little Indian Creek Dam, Missouri Inventory number 30718.

b. **Purpose of inspection.** "The primary purpose of the Phase I investigation program is to identify expeditiously those dams which may pose hazards to human life or property... The Phase I investigation will develop an assessment of the general condition with respect to safety of the project based upon available data and a visual inspection, determine any need for emergency measures and conclude if additional studies, investigations and analyses are necessary and warranted." (Chapter 3, Recommended Guidelines for Safety Inspection of Dams).

c. **Evaluation criteria.** The criteria used to evaluate the dam were established in the "Recommended Guidelines for Safety Inspection of Dams"; "Engineering Regulation No. 1110-2-106 and Engineering Circular No. 1110-2-188", Engineering and Design National Program for Inspection of Non-Federal Dams, prepared by the Office of Chief of Engineers, Department of the Army, and "Hydrologic/Hydraulic Standards, Phase I Safety Inspection of Non-Federal Dams" prepared by the St Louis District, Corps of Engineers (SLD). These guidelines were developed with the help of several federal agencies and many state agencies, professional engineering organizations, and private engineers.
1.2 Description of Project

a. Description of dam and appurtenant structures. Little Indian Creek Dam is an abandoned tailings dam. Its construction procedure and usage are typical of other barite tailings dam in the area but are not typical of dams constructed for the impoundment of water. The unique nature of these tailings dams has a significant impact on their evaluation. A brief description of the general construction procedure and usage of Missouri barite tailings dams is necessary to understand the unique nature of these dams, and understand the differences between these dams and conventional water-retaining dams.

At the start of a barite mining operation in this area, a 10 to 20-ft high starter dam is usually first constructed across a natural stream channel. Generally the streams are intermittent so that construction is carried out in the dry. Trees and other vegetation are removed from the dam site and then a cutoff is often made to shallow bedrock. Locally obtained earth, usually a gravelly clay, is then placed to form the embankment. Compaction is limited to that provided by the equipment.

The barite ore is contained within the residual gravelly clay which is mined with earth-moving equipment. At the processing plant, the ore is washed to loosen and remove the soil. This water is obtained from the reservoir area behind the dam. The soil-laden, wash water (and water from other steps in the process) is then discharged into the reservoir. There, the soil is deposited by sedimentation and the water recycled. Another step in the process removes the broken gravel-sized waste which is called "chat".

As the level of the fine tailings increases, the dam is raised. The usual method is to dump chat on the dam crest. The chat is spread over the crest so that a relatively constant crest width is maintained as the dam is raised. Generally the crest centerline location is also maintained. However, the crest centerline location may migrate upstream if there is insufficient chat available and downstream if an excessive quantity of chat is available. The latter is uncommon, because it is indicative of a poor ore deposit.
This method of construction results in embankment slopes which are close to the natural angle of repose for the chat. They can be considered to be near a state of incipient failure.

A large quantity of water is required for a barite processing, on the order of 2000 to 5000 gal/min. Thus, it has been the operators’ practice to construct the dam so that all inflow to the reservoir is recycled in order to have sufficient water for the operation. The result is that formal spillways or regulating outlets are generally not constructed. In most cases, a low point on or near the dam is provided for overflow, should the storage capacity be exceeded.

The fine tailings typically fill more than 80 percent of the total storage volume. This results from the operator’s practice of maintaining only a 2 to 5 ft elevation differential between the level of the tailings and the dam crest. The differential is usually greater further away from the discharge point and also typically further away from the dam.

The geotechnical characteristics of the fine tailings are somewhat similar to recent lacustrine clay deposits. Where the tailings have been continuously submerged, they have a very soft consistency and high water contents. When evaporation causes the water level to recede and the tailings are exposed, a stiff crust forms as the tailings dry out. Below the crust, the tailings retain their soft consistency for long periods of time. This consistency is very gradually modified by a slow process of consolidation.

Little Indian Creek Dam is generally representative of barite tailings dams. The dam has no spillway or discharge channel. The controlling elevation for overflow from this dam appears to be approximately at el 808 ft (MSL) near the north end of the embankment. An outlet pipe was found through the embankment near the southwest corner, but was at el 814 ft (MSL), above the overflow point on the crest of the dam. No control structures exist at the overflow area to control flows.
b. **Location.** The dam is located on an unnamed tributary of Little Indian Creek, approximately 0.5 mi southeast of the town of Richwoods in Washington County, Missouri, Mineral Land Survey #3020, T40N, R2E; (Fig. 1), USGS Richwoods NE 7.5 minute quadrangle map.

c. **Size classification.** The dam is classified as intermediate size due to its maximum height of 64 feet. The storage capacity of the reservoir is 578 ac-ft.

d. **Hazard classification.** The St Louis District, Corps of Engineers has classified this dam high hazard; we concur with this classification. The estimated damage zone extends approximately ten miles downstream of the dam. Within this damage zone are nine dwellings and several trailers.

e. **Ownership.** We understand the dam is owned by Desoto Mining Co, Box 35, Richwoods, Missouri, 63071. Correspondence should be addressed to Mr Durward Spees.

f. **Purpose of dam.** The dam was constructed to impound fine barite tailings produced by washing of barite ore mined in the vicinity. Water was recycled from the reservoir and used in the barite processing operations. The dam is currently abandoned.

g. **Design and construction history.** The present owner has no records of the design or construction of the dam. A former owner was located (Mr J. E. Politte) and he indicated the dam was started 30 to 40 years ago but could not recall the original owner. His company, Politte Brothers Mining Co, took over operations in 1961 or 1962, used the pond and added to the height of the dam. Operations ended in 1971 or 1972, and the pond has been inactive since then. We understand Desoto Mining Co currently owns the property. Mr R. L. Davidson of Desoto Mining Co said there are no present plans to reactivate the pond.

h. **Normal operating procedures.** No operating records were found for this facility.
1.3 Pertinent Data

a. Drainage area.

Approximately 0.63 mi2

b. Discharge at damsite.

- Maximum known flood at damsite: Unknown
- Warm water outlet at pool elevation: N/A
- Diversion tunnel low pool outlet at pool elevation: N/A
- Diversion tunnel outlet at pool elevation: N/A
- Gated spillway capacity at pool elevation: N/A
- Gated spillway capacity at maximum pool elevation: N/A
- Ungated spillway capacity at maximum pool elevation: No spillway
- Total spillway capacity at maximum pool elevation: No spillway

c. Elevation (ft above MSL).

- Top of dam: 808.4 to 817.0
- Maximum pool-design surcharge: N/A
- Full flood control pool: N/A
- Recreation pool: N/A
- Spillway crest (gated): N/A
- Upstream portal invert diversion tunnel: N/A
- Downstream portal invert diversion tunnel: N/A
- Streambed at centerline of dam: Unknown
- Maximum tailwater: N/A
- Toe of dam at maximum section: 750.8

d. Reservoir.

- Length of maximum pool: Approximately 1925 ft
- Length of recreation pool: N/A
- Length of flood control pool: N/A
e. **Storage (acre-feet).**

<table>
<thead>
<tr>
<th>Pool Type</th>
<th>Storage (acre-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreation pool</td>
<td>N/A</td>
</tr>
<tr>
<td>Flood control pool</td>
<td>N/A</td>
</tr>
<tr>
<td>Design surcharge</td>
<td>N/A</td>
</tr>
<tr>
<td>Top of dam</td>
<td>578 (this volume does not include the volume occupied by the fine tailings impounded by the dam)</td>
</tr>
</tbody>
</table>

f. **Reservoir surface (acres).**

<table>
<thead>
<tr>
<th>Pool Type</th>
<th>Surface Area (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of dam</td>
<td>48</td>
</tr>
<tr>
<td>Maximum pool</td>
<td>48</td>
</tr>
<tr>
<td>Flood control pool</td>
<td>N/A</td>
</tr>
<tr>
<td>Recreation pool</td>
<td>N/A</td>
</tr>
<tr>
<td>Spillway crest</td>
<td>N/A</td>
</tr>
</tbody>
</table>

g. **Dam.**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Barite tailings</td>
</tr>
<tr>
<td>Length</td>
<td>Approximately 1685 ft</td>
</tr>
<tr>
<td>Height</td>
<td>Approximately 64 ft</td>
</tr>
<tr>
<td>Top width</td>
<td>20 to 30 ft</td>
</tr>
<tr>
<td>Side slopes</td>
<td>Downstream 1.5(H) to 1(V); Upstream Unknown</td>
</tr>
<tr>
<td>Zoning</td>
<td>Unknown (probably none)</td>
</tr>
<tr>
<td>Impervious core</td>
<td>Unknown (probably none)</td>
</tr>
<tr>
<td>Cutoff</td>
<td>Unknown (probably to shallow rock surface)</td>
</tr>
<tr>
<td>Grout curtain</td>
<td>Unknown (probably none)</td>
</tr>
</tbody>
</table>

h. **Diversion and regulating tunnel.**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>None</td>
</tr>
<tr>
<td>Length</td>
<td>N/A</td>
</tr>
<tr>
<td>Closure</td>
<td>N/A</td>
</tr>
<tr>
<td>Access</td>
<td>N/A</td>
</tr>
<tr>
<td>Regulating facilities</td>
<td>None</td>
</tr>
</tbody>
</table>
i. **Spillway.**

- Type: No spillway
- Length of weir: N/A
- Crest elevation: N/A
- Gates: N/A
- Downstream channel: Flow runs intermittently through a relatively flat, open, rural area.

j. **Regulating outlets.**

- None
SECTION 2
ENGINEERING DATA

2.1 Design

No design data or other engineering data are known to exist.

2.2 Construction

No construction records are known to exist. Construction is apparently typical of barite dams in the area. See Section 1.2a.

2.3 Operation

No operation records are known to exist.

2.4 Evaluation

a. Availability. No engineering data were available for review.

b. Adequacy. The field survey and visual inspection conducted for this report and presented herein, are considered adequate to support the conclusions of this Phase I report.

Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record. These analyses should be performed by an engineer experienced in the design and construction of dams.

c. Validity. Not applicable.
2.5 **Project Geology**

The dam site lies on the northern flank of the Ozark structural dome. The regional dip is to the north. The bedrock in the area is mapped as Cambrian age Eminence and Potosi dolomite formations on the Geologic Map of Missouri (Fig. 4). The Potosi Formation is a medium- to fine-grained, light gray dolomite, and typically contains an abundance of quartz druse characteristic of chert bearing formations. The Eminence Formation conformably overlies the Potosi Formation, and is similar in appearance but contains less quartz and chert. Some caves and large springs have been found in the Eminence in parts of Missouri; however, at the site, no evidence of solution activity was noted during the field inspection.

The soil at the dam site is a dark red-brown, plastic residual clay (CH), characteristically developed on the Potosi Formation. It is locally overlain by 1 to 5 ft of silty loess (ML). The area is mapped on the Missouri General Soils Map as Union-Goss-Gasconade-Peridge Association.

The Richwoods Fault zone lies approximately 2 mi south of the dam site and is mapped on the Structural Features Map of Missouri (1971) as discontinuous for approximately 19 mi, in a WNW-ESE direction. The Ditch Creek Fault System is located about 3 mi north of the site and is mapped on the Structural Features map as approximately 11 mi long, paralleling the Richwoods Fault zone. The Ditch Creek System is mapped as north side down; the Richwoods fault is mapped as north side up. These faults are Pre-Cambrian in age and are not in a seismically active area. They are not considered to pose a significant hazard to the dam.
SECTION 3
VISUAL INSPECTION

3.1 Findings

a. **General.** Dam was inspected on 5 June 1980 without the owner's representative present. This inspection indicated the dam was in a generally unsatisfactory condition.

b. **Dam.** Little Indian Creek Dam consists of coarse tailings locally referred to as "chat". This material is sandy gravel and sand (GW, SW). It is cohesionless and permeable, and would likely be severely eroded if the dam were overtopped.

The slope on the face of the dam has an angle of 33 to 35 degrees, which is probably very close to the natural angle of repose for this material.

There was no evidence of horizontal or vertical displacement of the dam crest alignment. No evidence of serious erosion, detrimental settlement, cracking, animal burrows, depressions or sinkhole development was noted during the visual inspection.

Seepage noted along the toe of the left abutment (as the observer faces downstream) was estimated at about 5 gal/min. Away from the toe of the dam, the small stream which collects both seepage and overland runoff was estimated to be carrying about 15 gal/min. The seepage water did not appear to be carrying any fine soil particles.

Near the right abutment, mining activities have extended to the toe of the dam (Photo 1), and left a near vertical cut (6 to 7 ft in height) near the toe of the dam.

Vegetation on the face of the dam consists of scattered bush and small to moderate size trees. Several of the trees appear to be inclined downhill, suggesting some surface sloughing may have occurred on the face of the dam.
However, no evidence of currently active or recent slope movements was noted during the site inspection.

c. **Appurtenant structures**

1. **Spillway.** This dam has no spillway or discharge channel. In the event that the reservoir would become filled, discharge would occur at the low point in the dam crest near the north abutment. Elevation of this low point was surveyed at 808.4 ft (MSL). No reports or other evidence of overflow was identified during the visual inspection.

2. **Overflow pipe.** A 8 in. pipe is buried in the dam, about 4 ft below the dam crest as shown in Fig. 3B and Photo 5. There are no controls on the pipe. The pipe is above the elevation where overtopping of the dam crest near the north abutment would occur, and is therefore of no value prior to overtopping.

d. **Reservoir area.** Approximately 60 percent of the impoundment surface area was above the water level at the time of inspection. This area is underlain by tailings which consist primarily of a relatively impervious mixture of sand, silt and clay. Low brushy vegetation is growing on the tailings.

Slopes surrounding the reservoir area are relatively flat and estimated to be less than 10 (H): 1 (V). No indication of potential instability of these slopes was observed, at the time of the inspection.

e. **Downstream channel.** The channel below the dam flows through a relatively flat, open, rural area. It is an intermittent stream. No reports or other evidence of overflow was identified during the visual inspection.

3.2 **Evaluation**

Our evaluation indicates the dam is in a generally unsatisfactory condition. There is evidence of some surface sloughing on the downstream slope. Seepage at present does not contain soil particles and is not excessive, but could increase in the future and cause further slope instability.
There is no spillway in this dam. In view of the cohesionless nature of the embankment materials and the steep downstream face of the dam, overtopping could result in serious erosion and failure of the embankment.

Further mining at the toe of the slope could result in slope failures on the face of the embankment.
SECTION 4
OPERATIONAL PROCEDURES

4.1 Procedures

No operating procedures currently exist as the dam has been abandoned.

4.2 Maintenance of Dam and Spillway

No maintenance is performed as the dam has been abandoned. There is no evidence of any planned maintenance in the future. The dam has no spillway or discharge channel.

4.3 Maintenance of Operating Facilities

Not applicable.

4.4 Description of Any Warning System in Effect

The visual inspection did not identify any warning system in effect at this dam.

4.5 Evaluation

There is no evidence of any plan for periodic inspections and performance of maintenance. In view of the abandoned nature of the dam, the lack of spillway, and the erodibility of the embankment, the dam could erode and deteriorate to an unsafe condition with time without being noticed. The lack of a warning system is also considered a deficiency for the conditions observed.
SECTION 5
HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. **Design data.** No hydrologic or hydraulic design information was available for evaluation of this reservoir and dam. Pertinent dimensions of the dam and reservoir were surveyed on 5 June 1980, measured during the visual inspection or estimated from USGS topographic maps. The map used in the analysis is the USGS Richwoods NE 7.5 minute quadrangle map.

b. **Experience data.** No recorded history of rainfall, runoff, discharge, or pool stage data were available for this reservoir and dam.

c. **Visual observations.** Little Indian Creek Dam is an abandoned tailings dam. No designed spillway was identified during the visual inspection. A pipe was located near the west end of the embankment, but surveyed elevations indicate the dam would be overtopped before the pipe carried any flow. Other observations regarding the reservoir, dam, or spillway are presented in Section 3, Visual Inspection.

Seepage through the embankment noted during the visual inspection is not hydrologically significant in the overtopping analysis.

d. **Overtopping potential.** The overtopping potential hydrologic analysis for this dam was performed using the "HEC-1, Dam Safety Version" (1 April 1980) computer program. The method used, the data and output summaries are presented in Appendix B. The analyses show that the dam would be overtopped by any hydrologic event greater than 50 percent of the Probable Maximum Flood (PMF). However, the 1 percent probability-of-occurrence (100-year flood) event would be contained in the tailings pond impoundment without overtopping the dam.
Since the dam is made of erodible materials, overtopping could result in substantial erosion of the embankment. Substantial erosion could lead to failure of the dam.

The dam will be overtopped by a storm of greater than 12 percent of the PMF (following an antecedent storm of 6 percent of the PMF).

The PMF is defined as the flood event which may be expected to occur from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the region.

The following results were obtained for the dam from the hydrologic/hydraulic analyses summarized in Appendix B:

<table>
<thead>
<tr>
<th>Precipitation Event</th>
<th>Max Reservoir W.S. Elev. ft (MSL)</th>
<th>Max Depth of Overtopping ft</th>
<th>Max Outflow ft³/sec</th>
<th>Duration of Overtopping hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>12% PMF</td>
<td>808.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50% PMF</td>
<td>810.7</td>
<td>2.3</td>
<td>1278</td>
<td>48</td>
</tr>
<tr>
<td>100% PMF</td>
<td>811.4</td>
<td>3.0</td>
<td>2628</td>
<td>48</td>
</tr>
</tbody>
</table>

The antecedent storm for the 12 percent PMF event (½ of that storm or equal to 6 percent PMF) was calculated to produce a starting water surface for the 12 percent routing of 805.1 ft. The starting water surface for the 50 and 100 percent PMF routings was equal to the minimum top of dam, 808.4 ft.
SECTION 6
STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. **Visual observations.** Visual observations which adversely affect the structural stability of this dam are reported in Section 3. Features of specific note include the lack of a spillway and discharge channel; evidence of sloughing on the face of the dam, and mining cut faces at the toe of the dam.

b. **Design and construction data.** No design or construction data relating to the structural stability of the dam were found. In particular, seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency.

c. **Operating records.** No appurtenant structures requiring operation exist at this dam.

d. **Post construction changes.** Post-construction changes are apparently limited to the mining activities at the toe of the dam (Photo 1).

e. **Seismic stability.** The dam is in Seismic Zone 2, to which the guidelines assign a moderate damage potential. Since no static stability analysis is available for review, the seismic stability cannot be evaluated. However, as the tailings are fine-grained, saturated materials and the dam is made of loose, granular material, substantial deformation damage or failure could occur in the event of a severe seismic event.
7.1 Dam Assessment

a. Safety. Based on the visual inspection, Little Indian Creek Dam appears to be in a generally unsatisfactory condition.

As a consequence of the widely-used procedure for construction of barite tailings dams, the slopes of the dams are placed at the angle of natural repose for the material. This results in slopes which are very steep and exist near incipient failure with safety factors approximately equal to one. Gradual improvement of the factor of safety against overall slope failure can be expected with time, as consolidation and desiccation of the impounded fine-grained tailings increase their strength and decrease the driving forces acting on the embankment.

The slopes placed at the angle of natural repose will only remain stable if they are protected against changes that will increase load or decrease strength. Such changes include but may not be limited to the following:

1. Overtopping by water.
2. Higher pore pressures (or seepage forces).
3. Undercutting of the toe of the slope by erosion or mining activity.
4. Increase in the height of the slope (applicable to active operations).
5. Liquefaction (such as may result from a seismic event).
The first four changes are subject to control by owners and operators and must receive careful attention to maintain stable dam embankments. The fifth influence represents a risk, the magnitude of which cannot be estimated without further study.

b. Adequacy of information. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available; this precludes an evaluation of the structural and seismic stability of the dam. The lack of these analyses is considered a deficiency.

c. Urgency. The deficiencies described in this report could affect the safety of the dam. Corrective actions should be initiated without undue delay.

d. Necessity for Phase II. In accordance with the "Recommended Guidelines for Safety Inspections of Dams", the subject investigation was a minimum study. This study revealed that additional in-depth investigations are needed to complete the assessment of the safety of the dam. Those investigations which should be performed without undue delay are described in Section 7.2.b. It is our understanding from discussions with the St Louis District that any additional investigations are the responsibility of the owner.

7.2 Remedial Measures

a. Alternatives. There are several general options available which may be considered to reduce the possibility of dam failure or to diminish the harmful consequences of such a failure. Some of these options are:

1. Remove the dam, or breach it to prevent storage of water.

2. Increase the height of the dam and/or construct a spillway adequate to pass the Probable Maximum Flood without overtopping the dam.

3. Purchase downstream land that would be adversely impacted by dam failure and restrict human occupancy.
4. Enhance the stability of the dam to permit overtopping by the Probable Maximum Flood without failure.

5. Provide a highly reliable flood warning system (generally does not prevent damage but decrease chances of loss of life).

d. **Recommendations.** Based on our inspection of Little Indian Creek Dam, it is recommended that further study be conducted without undue delay, under the guidance of an engineer experienced in the design and construction of dams, to evaluate, as a minimum:

1. Design and construction of a spillway and discharge channel of adequate capacity. Location and capacity of discharge channel should be such as to inhibit potential erosion at the toe of embankment.

2. The establishment of an effective, practical warning system for advising downstream residents should unsafe conditions develop at the facility.

c. **Operation and maintenance procedures.** A program of periodic inspections should be initiated to identify evidence of slope instability and increases in the amount of seepage flow or turbidity of the seepage water. Reports of inspections and any recommended maintenance should be made a matter of record.
REFERENCES

Department of the Army, Office of the Chief of Engineers, 1977, EC 1110-2-188, "National Program of Inspection of Non-Federal Dams".

Department of the Army, Office of the Chief of Engineers, 1979, ER 1110-2-106, "National Program of Inspection of Non-Federal Dams".

McCracken, Mary H., 1971, Structural Features Map of Missouri: Missouri Geological Survey, Scale 1:500,000.

US Department of Commerce, US Weather Bureau, 1956, "Seasonal Variation of the Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1,000 Square Miles and Durations of 6, 12, 24 and 48 Hours," Hydrometeorological Report No. 33.

1. Topography from USGS Richwoods NE 1/2 minute quadrangle map.
Plan of Dam

Section A-A
Maximum Section

Elevation, ft (M.S.L.)

-40 -30 -20 -10 0 10 20 30 40 50 60 70
Horizontal / Distance, ft

Sta. 0 + 00
EL 8/14

Sta. 1 + 43.4
EL 8/55

Sta. 3 + 00.7
EL 8/17.1

Sta. 4 + 60.9
EL 8/5.5

Sta. 5 + 6E7
EL 8/13.6

Sta. 7 + 833
EL 8/12.9

Banked Gravel

Mudline

815.6 813.2 814.2

812.9
PLAN AND SECTION
OF DAM
LITTLE INDIAN CREEK DAM
MO 30718
Fig. 3 A
1. Bullrock (coarse tailings) on face of dam. Note mining cut face at toe of dam, left center. Looking northeast.

2. Roadway on crest of dam. Impoundment area to the right. Looking north.
3. Downstream face of dam. Note leaning trees indicating possible slumping of slope face. Looking southwest.

5. Inoperative outlet pipe near south end of embankment. Looking south.

6. Total seepage and overland drainage below toe of dam. Looking east.
APPENDIX B

Hydraulic/Hydrologic Data and Analyses
APPENDIX B
Hydraulic/Hydrologic Data and Analyses

B.1 Procedures

a. General. The hydraulic/hydrologic analyses were performed using the "HEC-1, Dam Safety Version (1 Apr 80)" computer program. The inflow hydrographs were developed for various precipitation events by applying them to a synthetic unit hydrograph. The inflow hydrographs were subsequently routed through the reservoir and appurtenant structures by the modified Puls reservoir routing option.

b. Precipitation events. The Probable Maximum Precipitation (PMP) and the 1 and 10 percent probability-of-occurrence events were used in the analyses. The total rainfall and corresponding distributions for the 1 and 10 percent probability events were provided by the St. Louis District, Corps of Engineers. The Probable Maximum Precipitation was determined from regional curves prepared by the US Weather Bureau (Hydrometeorological Report Number 33, 1956).

c. Unit hydrograph. The Soil Conservation Services (SCS) Dimensionless Unit Hydrograph method (National Engineering Handbook, Section 4, Hydrology, 1971) was used in the analysis. This method was selected because of its simplicity, applicability to drainage areas less than 10 mi², and its easy availability within the HEC-1 computer program.

The watershed lag time was computed using the SCS "curve number method" by an empirical relationship as follows:

\[L = \frac{1.08 (s+\ell)0.7}{1900 Y^{0.5}} \quad \text{(Equation 15-4)} \]

where:
- \(L \) = lag in hours
- \(\ell \) = hydraulic length of the watershed in feet
- \(s = 1000 \frac{1000}{CN} -10 \) where \(CN \) = hydrologic soil curve number
- \(Y \) = average watershed land slope in percent

This empirical relationship accounts for the soil cover, average watershed slope and hydraulic length.

With the lag time thus computed, another empirical relationship is used to compute the time of concentration as follows:

\[T_c = \frac{L}{0.6} \quad \text{(Equation 15-3)} \]

where:
- \(T_c \) = time of concentration in hours
Subsequent to the computation of the time of concentration, the unit hydrograph duration was estimated utilizing the following relationship:

\[\Delta D = 0.133T_c \quad \text{(Equation 16-12)} \]

where:
- \(\Delta D \) = duration of unit excess rainfall
- \(T_c \) = time of concentration in hours.

The final interval was selected to provide at least three discharge ordinates prior to the peak discharge ordinate of the unit hydrograph. For this dam, a time interval of 10 minutes was used.

d. **Infiltration losses.** The infiltration losses were computed by the HEC-1 computer program internally using the SCS curve number method. The curve numbers were established taking into consideration the variables of: (a) antecedent moisture condition, (b) hydrologic soil group classification, (c) degree of development, (d) vegetative cover and (e) present land usage in the watershed.

Antecedent moisture condition III (AMC III) was used for the PMF estimates and AMC II was used for the 1 and 10 percent probability events, in accordance with the guidelines. The remaining variables are defined in the SCS procedure and judgements in their selection were made on the basis of visual field inspection.

e. **Starting elevations.** Reservoir starting water surface elevations for this dam were set as follows:

1. 1 and 10 percent probability events - high water mark elevation of 803.4 ft.
2. Probable Maximum Storm - minimum top of dam elevation of 808.4 ft.

t. **Spillway rating curve.** No spillway is present at this dam.

B.2 **Pertinent Data**

a. **Drainage area.** 0.63 mi²

b. **Storm duration.** A unit hydrograph was developed by the SCS method option of HEC-1 program. The design storm of 48 hours duration was divided into 10 minute intervals in order to develop the inflow hydrograph.

c. **Lag time.** 1.47 hrs.

d. **Hydrologic soil group.** C

e. **SCS curve numbers.**

1. For PMF- AMC III - Curve Number 89
2. For 1 and 10 percent probability-of-occurrence events AMC II - Curve Number 77
f. **Storage.** Elevation-area data were developed by planimetering areas at various elevation contours on the USGS Richwoods NE 7.5 minute quadrangle map. The data were entered on the A and E cards so that the HEC-I program could compute storage volumes.

g. **Outflow over dam crest.** As the profile of the dam crest is irregular, flow over the crest was computed according to the "Flow Over Non-Level Dam Crest" supplement to the HEC-I User's Manual. The crest length-elevation data and hydraulic constants were entered on the D, L, and V cards.

h. **Outflow capacity.** The overflow rating curve was computed by the intrinsic formula within the HEC-I program, with pertinent data entered on the $$ card.

i. **Reservoir elevations.** For the 50 and 100 percent of the PMF events, the starting reservoir elevation was 808.4 ft, the low area on the dam crest. For the 1 and 10 percent probability-of-occurrence events, the starting reservoir elevation was 803.4 ft, the elevation of the high water line in the reservoir area.

B.3 Results

The results of the analyses as well as the input values to the HEC-I program follow in this Appendix. Only the results summaries are included, not the intermediate output. Complete copies of the HEC-I output are available in the project files.
Flood Hydrograph Package (HEC-11) - No Safety Version - July 1978

Last Modification: 01 Apr 40

<table>
<thead>
<tr>
<th>No.</th>
<th>Event ID</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>Dam No. 30718 - Southeast of Richwoods, Washington County, Missouri</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>Woodward-Clyde Consultants, Houston JOB 79CH009</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>Probable Maximum Floods (PMF) Analysis</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>N</td>
<td>3, 10, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>B1</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>J</td>
<td>1, -75, -0</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>L</td>
<td>0, 0, 0, 0, 0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>K</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>M</td>
<td>1, 2, 0.627, 1</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>P</td>
<td>0, 26, 102, 120, 140, 140, 140, 140, 140, 140</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>X</td>
<td>1, -0.075, 3</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Y</td>
<td>1, 1</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Z</td>
<td>1, 1</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
</tbody>
</table>

Input Data

Various PMF Events

Little Indian Creek Dam

MO 30718
JOB SPECIFICATION

<table>
<thead>
<tr>
<th>NO</th>
<th>NMR</th>
<th>NMIN</th>
<th>IDAY</th>
<th>ITHN</th>
<th>MRET</th>
<th>JPLT</th>
<th>JPR</th>
<th>WSAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>840</td>
<td>50</td>
<td>-10</td>
<td>-0</td>
<td>-0</td>
<td>-0</td>
<td>-0</td>
<td>-0</td>
<td>-0</td>
</tr>
</tbody>
</table>

MULTI-PLAN ANALYSES TO BE PERFORMED

- NPLAN = 1
- NRTIO = 4
- LRTIO = 1

RATIOS

| | .25 | .50 | .75 | 1.00 |

SUB-AREA RUNOFF COMPUTATION

DAM NO. 30710 (DESOTO MINING CO.) - MULTI-RATIO PMF RUNOFF COMPUTATIONS

HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>INHYD</th>
<th>IUG</th>
<th>TAREA</th>
<th>SMA</th>
<th>TRS</th>
<th>LK</th>
<th>PRS</th>
<th>RC</th>
<th>INAE</th>
<th>ISAM</th>
<th>ISAN</th>
<th>ISAM</th>
<th>LOCAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

PRECIP DATA

<table>
<thead>
<tr>
<th>SPFE</th>
<th>PMS</th>
<th>R1</th>
<th>R12</th>
<th>R24</th>
<th>R43</th>
<th>R72</th>
<th>R56</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

LOSS DATA

<table>
<thead>
<tr>
<th>LROF</th>
<th>STRR</th>
<th>DITTER</th>
<th>RTD</th>
<th>ERAM</th>
<th>TRA</th>
<th>STRS</th>
<th>RTID</th>
<th>STRS</th>
<th>RTR</th>
<th>CNIL</th>
<th>ALGR</th>
<th>RTMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

CURVE NUM = 00, KETNESS = 1.00, EFFECT CH = 69.00

UNIT HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>TC</th>
<th>LAG</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.00</td>
<td>1.47</td>
<td>1.47</td>
</tr>
</tbody>
</table>

RECESSION DATA

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>MAGN</th>
<th>UNCH</th>
<th>RTION</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

UNIT HYDROGRAPH 40 END OF PERIOD ORDINATES, TC = -0.00, HOURS = 1.47, VOL = 1.00

<table>
<thead>
<tr>
<th>TC</th>
<th>1449</th>
<th>1972</th>
<th>2494</th>
<th>2094</th>
<th>1449</th>
<th>1449</th>
</tr>
</thead>
<tbody>
<tr>
<td>189</td>
<td>106</td>
<td>131</td>
<td>107</td>
<td>77</td>
<td>66</td>
<td>44</td>
</tr>
<tr>
<td>176</td>
<td>63</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>62</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Input Data

Various PMF Events

Little Indian Creek Dam

NO 30718
<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>20.30</td>
<td>122.00</td>
<td>4.00</td>
<td>1.02</td>
<td>20.20</td>
</tr>
<tr>
<td>1.01</td>
<td>123.00</td>
<td>125.00</td>
<td>4.00</td>
<td>1.02</td>
<td>20.20</td>
</tr>
<tr>
<td>1.01</td>
<td>126.00</td>
<td>127.00</td>
<td>4.00</td>
<td>1.02</td>
<td>21.10</td>
</tr>
<tr>
<td>1.01</td>
<td>129.00</td>
<td>131.00</td>
<td>4.00</td>
<td>1.02</td>
<td>22.10</td>
</tr>
<tr>
<td>1.01</td>
<td>133.00</td>
<td>135.00</td>
<td>4.00</td>
<td>1.02</td>
<td>23.10</td>
</tr>
<tr>
<td>1.01</td>
<td>137.00</td>
<td>139.00</td>
<td>4.00</td>
<td>1.02</td>
<td>24.10</td>
</tr>
<tr>
<td>1.01</td>
<td>141.00</td>
<td>143.00</td>
<td>4.00</td>
<td>1.02</td>
<td>25.10</td>
</tr>
<tr>
<td>1.01</td>
<td>144.00</td>
<td>146.00</td>
<td>4.00</td>
<td>1.02</td>
<td>26.10</td>
</tr>
</tbody>
</table>

Input Data

Various PMF Events
Little Indian Creek Dam
MO 30718
Peak Flow and Storage End of Period Summary for Multiple Plan-Ratio Economic Computations

Flows in Cubic Feet Per Second (Cubic Meters Per Second)

Area in Square Miles (Square Kilometers)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Station</th>
<th>Area</th>
<th>Plan</th>
<th>Ratio 1</th>
<th>Ratio 2</th>
<th>Ratio 3</th>
<th>Ratio 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrograph #1</td>
<td>01-04</td>
<td>0.63</td>
<td>1.050</td>
<td>1.249</td>
<td>2.924</td>
<td>2.699</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.02</td>
<td>1.09</td>
<td>1.34</td>
<td>1.18</td>
<td>0.84</td>
</tr>
<tr>
<td>Routing #10</td>
<td>01-04</td>
<td>0.63</td>
<td>1.000</td>
<td>1.073</td>
<td>2.470</td>
<td>1.950</td>
<td>2.024</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.02</td>
<td>1.09</td>
<td>1.34</td>
<td>1.18</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Summary of Dam Safety Analysis

<table>
<thead>
<tr>
<th>Plan 1</th>
<th>Initial Value</th>
<th>Spillway Crest</th>
<th>Top of Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>800.40</td>
<td>900.40</td>
<td>800.40</td>
</tr>
<tr>
<td>Storage</td>
<td>578.0</td>
<td>578.0</td>
<td>578.0</td>
</tr>
<tr>
<td>Outflow</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Maximum</th>
<th>Maximum</th>
<th>Maximum</th>
<th>Maximum</th>
<th>Duration</th>
<th>Time of</th>
<th>Time of</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHF</td>
<td>Reservoir</td>
<td>Depth</td>
<td>Storage</td>
<td>Outflow</td>
<td>Over Dam</td>
<td>Top</td>
<td>Dusflow</td>
</tr>
<tr>
<td>0.25</td>
<td>810.39</td>
<td>3.24</td>
<td>659.0</td>
<td>900.0</td>
<td>690.0</td>
<td>45.00</td>
<td>41.67</td>
</tr>
<tr>
<td>0.50</td>
<td>810.71</td>
<td>3.21</td>
<td>600.0</td>
<td>1275.0</td>
<td>1050.0</td>
<td>48.00</td>
<td>41.50</td>
</tr>
<tr>
<td>0.75</td>
<td>811.09</td>
<td>2.69</td>
<td>700.0</td>
<td>1050.0</td>
<td>725.0</td>
<td>2620.0</td>
<td>48.00</td>
</tr>
<tr>
<td>1.00</td>
<td>811.34</td>
<td>2.24</td>
<td>725.0</td>
<td>1400.0</td>
<td>2620.0</td>
<td>48.00</td>
<td>41.77</td>
</tr>
</tbody>
</table>

Output Summary

- Various PMF Events
- Little Indian Creek Dam
- MO 30718

B8
PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
AREA IN SQUARE MILES (SQUARE KILOMETERS)

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>STATION</th>
<th>AREA</th>
<th>PLAN</th>
<th>RATIO</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROGRAPH AT</td>
<td>LAKE</td>
<td>.69</td>
<td>1</td>
<td>324.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.621</td>
<td>9.171</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>DAM</td>
<td>.63</td>
<td>1</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.621</td>
<td>0.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUMMARY OF DAM SAFETY ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAN 1</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>STORAGE</td>
</tr>
<tr>
<td>OUTFLOW</td>
</tr>
</tbody>
</table>

RATIO OF	MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	DURATION	TIME OF	TIME OF
RESERVOIR	DEPTH	STORAGE	OUTFLOW	OVER TOP	MAX OUTFLOW	FAILURE	
PHF	V.S.ELEV	AC-FT	CFS	HOURS	HOURS	HOURS	
.12	806.27	0.	572.	0.	0.	0.	

Overtopping Analysis
12% PMF Event
Little Indian Creek
MO 30718