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Abstract 

Polya's fundamental work in heuristic is well known and well regarded in artificial intelligence. However, no 

one has built seriously on his work, eg, by constructing programs that make use of his heuristic. This paper 

attempts to understand why this might be the case. First, an attempt is made to characterize the nature of 

Polya's heuristic. Then six theses are put forward that might account for the failure of his work to have a major 

impact. Three are easily discarded, but three are serious candidates: that the essential heuristic knowledge is 

not captured in Polya's work; that the emphasis on learning in Polya's heuristic is beyond the current art in 

artificial intelligence; and that the use of auxiliary problems is beyond the current art. This last thesis is 

explored in detail in the remainder of the paper. Some interesting concepts emerge, particularly the notion of 

object-centered problem space and the contrast between tame and wild subproblems. 
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The Heuristic of George Polya 
and its Relation to Artificial Intelligence1 

1. Introduction 

1.1. Polya Reve red and Polya Ignored 

This paper is an inquiry into the relationship of George Polya's work on heuristic to the field of artificial 

intelligence (hereafter, AI). A neat phrasing of its theme would be Polya revered and Polya ignored. Polya 

revered, because he is recognized in AI as the person who put heuristic back on the map of intellectual 

concerns. But Polya ignored, because no one in AI has seriously built upon his work. In the coin of the AI 

realm, no one has built an AI system to realize the schemes investigated in Polya's works. 

Everyone in AI, at least that part within hailing distance of problem solving and general reasoning, knows 

about Polya. They take his ideas as provocative and wise: "And everyone should know the work of Polya on 

hi ■ to solve problems" (Minsky, 1961). But they also see his work as being too informal to build upon: 

" \nalogical reasoning is potentially a very powerful heuristic device. In fact, Polya (1954) devoted one entire 

volume of his two volume work to the discussion of the use of analogy and induction in mathematics. 

Unfortunately, he presents ad hoc examples but no general rules" (Hunt, 1975 p221). 

Since it is clear to all (no doubt 10 Polya most of all) that his work on heuristic was not fashioned to aid in 

creating machines to solve problems, the issue could be laid to rest as no issue at all. The occasional explicit 

references to Polya's work are exactly suitable -- nods to the precursors of the more detailed work that AI 

needs to do. All is as it should be. 

It does not seem so to me. Not that anything is wrong, but that there is more to be considered than what lies 

on the surface. 

1.2. Why Take Up this Task? 

On the surface, there is good reason to take up this task. The topic of this conference is heuristic. Polya has 

written more about heuristic per se than anyone else -- six volumes, each short, but full to overflowing with 

concrete analysis of heuristic. Furthermore, this conference is not limited at all to AI, but is meant to range 

wherever heuristic will take it 

I thank Jon Bcntley, who shares an abiding interest in Polya's work (Bentley, 1976), for many discussions on the topic of this paper. I 
aiso thank Jaime Carbonell and John McDermott for comments on an earlier draft. 
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However, there is another, more personal, reason; I am, in an odd way, a student of Polya's. Perhaps a bit of 

early history will be permitted. 

I entered Stanford as a freshman in 1945 for one quarter, before a short World War II stint in the Navy, 

returning there in 1946 to do my undergraduate work in physics. I had some mathematical leanings, and had 

taken some calculus when in high school, a novelty in those days. In that first returning quarter I took an odd 

course entitled Mathematical methods in physical science -- odd, in not being the standard freshman fare of 

physics, chemistry, western civilization and French. I can recall no reason. Perhaps, it was the usual course 

catalog shopping that students always do, perhaps the oft noted returning veteran's independence (though I 

was still only 19). 

The course turned out to be Polya's How to Solve It course. The little book of that title must have been just 

out, although I have no recollection of it in the course. We did go through all its pieces and parts. I remember 

diagramming in detail the progress through a problem -- remarkably like the sequence on the inside cover of 

volume II of Mathematical Discovery. I do not remember becoming a better problem solver, I'm afraid -- 

though who am I to say? I certainly graduated and went on to become a professor. Among academics, at least, 

that should not diminish the credibility of the hypothesis that I learned something. But I did become 

fascinated with Polya and his teaching. It was a neat course. 

I have incontrovertible evidence of my fascination. I took every course of Polya's open to an 

undergraduate. I think I took them all, though no doubt I am mistaken. In any event, I took his courses on 

Theory of Probability, Interpolation and Numerical Integration and Differential Geometry, all before the end of 

my freshman year. Why, 1 ask you, would a young freshman physics major take a course in differential 

geometry, or interpolation, unless he was fascinated by the teacher? Even then it seemed a bit arcane. I was 

clearly majoring in Polya. On the orJier hand, I had no personal relationship with Polya at all. I was just an 

undergraduate and the culture of our great universities makes it quite normal to pass through them with only 

the course as the channel between student and professor. 

When I look over my own early papers, many explicitly devoid to heuristics and problem solving, 1 find 

they are totally silent about the work of Polya.2 Thus, the question posed about the field is a question posed 

of myself. I certainly knew Polya's work. I had assimilated it at a stage when learning is as e-isy and natural as 

getting wet in the rain. I acquired all his books, as soon as I came across them, long before starting research in 

what was to be AI. Polya surely influenced me in all my early work. No explicit evidence ofthat exists, so far 

as I know, but it is surely true. 

^e first reference is a brief footnote in (Newell, Shaw & Simon, 1962, written 1958), but due to Simon, my co-aulhor. 

-„„ , 1 » 



v - 

PAGE 3 

i j. The Nature of the Paper 

This paper is not to be an inquiry into my own personal scientific development. 'Hie focus is to be on the 

substance of Polya's work and its relationship with the enterprise of Al. The first task is to characterize the 

body of heuristic that Polya has built up. Interestingly, no such characterization exists in the literature, as far 

as I know. It can be taken as just one more indication that Polya is revered but ignored -- he is to be 

appreciated hut not analyzed. Then we will consider several alternatives that might explain why the impact of 

this work on AI has not been greater. One particular thesis will be examined in detail, though all the others 

will not thereby be disposed of. 

Before launching into the main enterprise, it is important to be clear that Polya's work in heuristic is aimed 

explicitly at teaching the young to be better problem solvers and teaching their teachers how to help them. 

Polya never aspired to have any influence or relevance to work in Al. From certain remarks in his book, it 

seems he had real doubts about die feasibility of mechanizing reasoning. He never refers to any of the work in 

Al, even though his last book. Mathematical Discovery II, was published in 1965, several years after the early 

work in heuristic search (starting in the mid fifties), had become quite well known. Indeed, he has indicated 

recently that he is unacquainted with AI, except for its name.3 Be that as it may, both Polya's practical aim 

and overarching view are different from those of the present investigation. A neat phrasing of this difference 

might be wisdom versus science. Polya is concerned with giving wisdom to problem solvers. We are here 

concerned with a science of intelligence and with the construction of cor, puter programs that exhibit 

intelligence. 

In a letter commenting on an earlier draft of (his paper. 
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2. Polya's Heuristic 
Polya's heuristic is contained in a corpus of six small volumes, published between 1945 and 1965. A 

scattering of papers also contains material on heuristic, but almost all of these appear to have been 

incorporated into the books. There may be some publications after 1965, but I do not know of them. 

For those unacquainted with him, Polya is an eminent mathematician, whose work is primarily in classical 

analysis and combinatorial analysis. Born in Budapest well before the turn of the century (1887), his 

productive career has an immense span. Throughout this time he has been a professor, first at the Swiss 

Federal Institute of Technology in Zurich, from 1914 to 1940, and since then at Stanford University (where he 

has been emeritus since 1953). 

By the time he turned his attention strongly to the issue of heuristic in 1945 (with the publication of How to 

Solve It), he was already in the later part of his career; he was 78 when the last book was published. Thus, his 

explicit work on heuristic was entered into as a reflection on a long and active career, both in research and in 

teaching. His interest in the issues of how mathematics is done -- how discoveries are made and how problems 

are solved -- had been with him throughout his career. Many of the attitudes in the book are prefigured in the 

analysis text he produced in 1924 jointly with Gabor Szego (Polya & Szego, 1972), which consisted entirely of 

problems, answers and interesting remarks. 

The first book. How to Solve It (Polya, 1945), has the form of a how-to manual. This little volume is a jewel, 

compared to the standard books of the how-to genre (see DeBono, 1968, for one of the best of the latter). It is 

graceful, straightforward, and pleasantly open. Furthermore, it deals with real problems, usually mathematical 

ones. Though often quite elementary, in response both to the requirements of pedagogy and the focus on 

teaching mathematK.. at the high school level, these problems range widely in the mathematics involved and 

include many problems of classical mathematical interest. 

Most noteworthy about How to Solve It is the formulation of a set of heuristics for problem-solving, cast in 

the form of brief questions (What is the unknown?) and commands (Draw a figure!), within a frame of four 

problem solving stages: Understand the problem. Obtain a plan. Carry out the plan, and Look back at the 

solution. These heuristics are given flesh by being worked out in many examples, often in hypothetical 

dialogues of the problem solving and teaching process. 

A second feature of the book is its Dictionary of Heuristic, a collection of very brief articles about all aspects 

of heuristic, from expanded notes on the basic heuristic questions, to historical comments on famc.,.> early 

contributors to heuristic, such as Descartes, Liebnitz and Pappus. ITiis style of very brief, isolated essays on 

points of interest is carried through the other volumes on heuristic, though as part of Examples and comments 
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Sie parts do not match the volumes; Volume 1 holds the four chapters of h.   1 plus two chapters of Part II; Volume 2 holds the 

remaining nine chapters of Pan II This undoubtedly explains why the volumes arc M separately üUed. 

at the ends of chapters, rather than as separate sections. 

The third feature of the book is the emphasis on the art of solving problems. 'Hie main substance is 

communicated by problems worked and discussed. Though the text ranges over die full breadth of issues 

about problem solving, their packaging as micro-essays keeps them in their place, clearly subordinate to the 

examples No systematic theory or scholarly assessment is attempted; it is often explicitly disavowed. 

Nine years later, in 1954, Polya published Mathematics and Plausible Reasoning in two volumes. Induction 

and Analogy in Mathematics and Patterns of Plausible Inference (Polya, 1954). This work may be seen simply 

as an extension of How to Solve It - more problems, more useful commentary, more examples worked 

though with an analysis of how to solve Üiem. 

Alternatively, this work may be seen as a treatise on how to assess the plausibility or credibility of 

inductions ahd inferences. To this end, all the examples of the first volume are case studies of induction and 

analogy. They provide a base for asking in the second volume whether there is any way to develop a logic of 

induction or a calculus of credibility for hypotheses. What, in particular, is die role of the theory of 

probability? 

Like the work on plausible reasoning, the third book. Mathematical Discovery, was published in two 

volumes, one in 1962, the other in 1965 (Polya, 1962, Polya, 1965). Three themes commingle here. The first is 

die one common to all the prior work. Mathematical Discovery contains many additional problems, all solved 

in ways that lay the analysis bare, all with various micro-essays of illuminating commentary. 

The second theme is the analog of the investigation into the logic of plausible inference. Polya attempts to 

lay out, somewhat generally, a theory of problem solving. Again, the style is similar. The first part. Patterns, 

lays out a series of cases to form the base for the second part, denoted. Towards a General Method. 

Consistent with his style, the treatment of general methods is not systematic or theoretical, but discursive and 

continuously built around problems. 

The third theme is giving advice to high school teachers of mathematics. Though always clearly present in 

all the earlier volumes, the topic is developed quite explieiüy in Volume II. 

During the same period when Mathematical Discovery was being written, Polya was devoting substantial 

time to working with teachers of mathematics. Several of the chapters in Mathematical Discovery were taken 

* 
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from lectures to such groups. He also gave a series of lectures during a summer program that focused on 

elementary mathematical methods in physics and astronomy. These lectures were transcribed and published 

as Mathematical Methods in Science in 1963 (Polya, 1977). They differ from the other works in not being 

about heuristic at all, but in providing treatments of classical problems from a viewpoint embued with his 

philosophy of heuristic. They are Polya put into practice. 

In sum, the entire corpus can be taken simply as a large pool of worked problems with commentary on 

heuristic. Modulating this are some deliberate investigations, namely, whether there can be a calculus of 

credibility and what is the nature of general method. But these sc.ve, not so much as the central analyses to be 

established by the instances, but as themes which channel considerations in a local and pleasing way, 

producing a coherent selection of example problems. Polya presents a consistent point of view, whose 

exposition and message is evenly distributed throughout the work. 

My own summary of Polya's heuristic will divide into six parts; (1) the nature of the human problem 

solver; (2) problem solving methods; (3) a theme of working with relied problems; (4) a theme of the current 

problem as preparation for future problems; (5) the calculus of crediuilities; and (6) other heuristics. This 

division hardly seems one that Polya would use. It reflects instead a view of problem solving current in AI. 

2.1. Model of Human Problem Solving 

AI views a problem solver as an information processing system, which acquires a problem from a task 

environment by encoding it in an internal data structure, and which solves the problem by processing these 

structures by (a sequence of) internally available methods, making use of bodies of encoded knowledge 

(Newell & Simon, 1972, Nilsson, 1980, Winston, 1977). The basic processing system (the architecture) is thus 

separated from the methods and knowledge. The same methods and knowledge can be used by many 

different types of processing systems. AI declares thereby for a general theory of problem solving, applicab e 

to humans, computers, animals or Martians. Differences exist between different types of problem solvers, of 

course. But these differences arise from specific features in the architecture -- different tradeoffs in speed, 

memory and accessing, which induce different styles of prob', m solving, different choices of methods, etc. 

In part, Polya's heuristic rests on the specific nature of the human processing system, in contradistinction to 

the general methods of solving problems, which are presumably common to all intelligent agents. We will 

focus on the three characteristics that loom largest in Polya's treatment. 

Attention must be focused. Problem solving happens when the human attends to various aspects of a 

problem, A large amount of advice in Polya is devoted 10 coaching the reader (as someone learning how to 

problem solve) to attend to this or that aspect. This is seen as problematical. Attention in humans does not 

^ 
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happen automatically, but occurs only because the problem solver picks up this and that part of the problem, 

successively attending to the parts and then to their relations. 

It is rather easy to see how focusing attention is a necessary condition for a problem solver. Whatever else 

might be involved in attending, processing some part of a problem implies attending to that part. But there is 

also a flavor of sufficiency about Polya's version of the proposition. If a problem solver attends to all the right 

tilings, then the appropriate processing will automatically occur. To paraphrase an old adage (one that Polya 

doesn't happen to use): "Take care of attention and the problem solving will take care of itself." There is no 

notion in Polya that attention is actually sufficient, only that one gets something more by attending than just 

getting the inputs assembled correctly for some planned operations. 

Memory must be tickled. Memory is indirectly accessed. Explicit throughout Polya is that contact must be 

made with ■ vhat the problem solver already knows. Implicit is that this cannot be done directly, but occurs 

only because attending to X suggests Y. Thus, many things are jusfified, Lot because they lead to the solution 

(indeed, they may be failures), but because they lead to tickling something in memory that will help. 

"Many of these questions and suggestions [in Polya's main set] aim directly at the mobilization of 
our formerly acquired knowledge; Have you seen it before? Or have you seen the same problem in a 
slightly different form? Do you know a related problem? Do you know a theorem that could be 
useful? Look at the unknown! And try to think of a familiar problem having the same or a similar 
unknown." (Polya, 1945 pl46)s 

Problem solvers must be motivated. Polya has a theory of motivation as part of his model of specifically 

human problem solving. 

"The intelligent problem-solver tries first of all to understand the problem as fully and as clearly as 
he can. Yet understanding alone is not enough; he must concentrate upon the problem, he must 
desire earnestly to obtain its solution. If he cannot summon up real desire for solving the problem 
he would do better to leav- it alone. The open secret of real success is to throw your whole 
personality into your problem." (Polya, 1945 pl80) 

"Teaching to solve problems is education of the will. Solving problems which are not too easy for 
him, the student learns to persevere through unsuccess, to appreciate small advances, to wait for 
the essential idea, to concentrate with all his might when it appears." (Polya, 1945 p89) 

Motivation for Polya also has a social component. In common with many others concerned with teaching 

mathematics and science, he views people, especially young people, as naturally curious and interested in both 

knowing and exercising competence. They are especially interested in what they can discover for themselves. 

Yet, our schools tend to make learning dull and gradually stifle the natural curiosity of the young. Thus an 

important role of the teacher of problem solving, and by extension these works o~\ heuristic, is to awaken and 

t t 
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Here and throughout, italics in quotations occur in the original. 
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kindle the interest of the student 

The psychological plausibility of Polya's model. These propositions of Polya's agree with all that is known 

in modem cognitive psychology. The role of attention has been emphasized throughout psychology. Its 

surplus action (ic, beyond its being just a way to refer to the operands of cognitive processes) has beer 

emphasized more for leanr J than for perforn-nce, namely, that learnin» takes place automatically on 

whatever is attended to. 

Modern cognitive psychology has generally accepted the proposition ihat memory is content addressed -- 

that what is recalled next is a ftinction of what is being attended to now. This is explicit in production system 

models of cognition (Anderson, 1976, Newell, 1973) and implicit in generalizations such as the Encoding 

Specificity Principle (Tulving & Thomson, 1973), which states that retricvi is on the basis of cues, and these 

must match the cues stored at learning time. 

Interestingly, one proposition that does not play a strong role in Polya's heuristic is that humans have a 

tendency to block, ie. to get into cognitive ruts, and that they must do special things to open themselves up to 

alternatives that break out of the restrictive sets. Such a proposition is taken as central in the popular 

literature of how to think and solve problems, as indicated for instance in the title of Adam's (1974) 

Conceptual Blockbusting (see also DeBono, 1968). 

2.2. Probleti Solving Methods 

Much of Polya's heuristic is taken up with specific problem solving methods. Ihese are proposals for 

generalized steps to be taken to solve a problem. As far as the problem solver's structure is concerned, they 

presume only that it attempts problems by setting goals and is capable of following procedures. Some of the 

methods are the stock in trade of work in AI, some of them are not. Consistent with Polya's goal of educating, 

the methods are usually given by examples, with their generality indicated by comments, but it is still .ather 

easy to extract many of the methods themselves. 

Consider first the main method that occurs in Polya, namely, the one that graces the inside covers of How 

to Solve //. It is outlined in Figure 2-1. It is used to organize all the major questions that constitute the core 

of Polya's heuristic: Understand the problem; then devise a plan; then carry out the plan; and finally examine 

the solu'ion.   Explicitly laid out and used as an organizing principle throughout How to Solve It, these 
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questions or their paraphrases also run through ue entire corpus. 

I Inderstand the problem 
What is the unknown? Ihe data? The condition? 
Is the condition satisfiable? Sufficient for unknown? Insufficient? Redundant? Contradictory? 
Draw a figure. Introduce suitable notation. 
Separate the parts of the condition. Write them down. 

Devise a plan 
Seen the problem before? In a different form? 
Know a related problem? A theorem that could be useful? 
Know a familiar problem with the same unknown? With a similar unknown? 
Given a related solved problem, use it. Its result? Its method? Could an auxiliary element help? 
Restate the problem. Restate it still differently. 
Go back to definitions. 
Solve first some related problem. 

More accessible? General? Special? Analogous? 
Solve a part of the problem? Keep part of condition? 
Use the data somehow. What other data could determine the unknown? 
Change the unknown? The data? Both? Make them closer to each other. 

Use all the data? The whole condition? All essential notions? 

( arry out the plan 
Check each step. 
See it clearly? Prove it? 

Kxamine the solution 
Check the result? The argument? 
Derive the result differently? See it at a glance? 
Use the result elsewhere? The method elsewhere? 

Figure 2-1: Polya's main method (adapted from Polya, 1945). 

We can use this method to make an important point. No matter how general this statement seems to the 

leader, it is indeed a method. It has all the earmarks of what has come in AI to be called a method (Newell, 

1969): 

1. It is a specific way to proceed. There are lots of ways of working on problems (even successüil 
ways) that do not follow these steps. (Eg, many methods do not involve planning; and modem 
programming methodology promulgates proving as you go, to avoid the need for verification at 
the end.) 

2. // is a rational way to proceed. Following the steps provides chances of actually solving the 
problem. The chances are much better than just following any old sequence of actions. Polya, of 

: 
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course, argues that they arc better than that, ie, better than many other methods Whi'h are it!so 
rational. 

3. // involves subgoals and subplans. Methods of any scope attain their generality by means of 
subgoals, ic, positing obtaining things that satisfy general specifications, without stating how they 
arc to be obtained. In Polya's method the main intermediate object (the plan) is itself a method, 
thus making the method itself seem exceedingly unspecific. But a plan is a symbolic object, just 
like any other -- something that can be discovered, criticized, revised, etc. -- so this is perfectly 
legitimate. The only question (an empirical one) is whether, given the capabilities of the problem 
solver to solve the subgoals, the method organizes behavior sufficiently to increase appreciably the 
chances of success on the main problem. 

4. Its occurrence is observable. From an experimental point of view, it is easy to detennine whether 
this general method is being carried out rather than some other (or perhaps no method at all, but 
behavior in the service of other goals). Hxploration of the problem must occur prior to 
formulating a plan. The plan exists prior to its implementation. Both these events can be detected 
(see Newell & Simon, 1972 ChlO, for strikingly clear empirical examples). 

Many methods exist in Polya in addition to the main method. Only rarely does he actually describe them in 

clear step by step terms, preferring to illustrate them in the context of specific examples. The" vary in 

interesting ways, as a sample of them shows: 

1. Reductio adabsurdum. A classical method of proof, going back to the Greeks. It has three steps: 

1. Assume the negation of what is to be shown. 
2. Derive a contradiction (a falsehood). 
3. Conclude that the original must be true. 

2. Method of loci. A method for doing geometric constructions with compass and straightedge, also 
classical and going back to the Greeks. Polya's statement of it runs as follows (Polya, 1962 p5): 

1. First, reduce the problem to the construction of ONE point. 
2. ITien, split the condition into TWO parts so that each part yields a locus for the 

unknown point; each locus must be either a straight line or a circle. 

3. Go back to definitions. Though appearing to be little more than a slogan to direct attention, this is 
in fact a method carried out by a straightforward symbolic procedure of expanding the immediate 
working representation of the problem to incorporate the definitions of die terms. 

4. Sequence of convertible transformations. This also is a straightforward symbolic procedure of 
iteratively applying operations to an expression to yield a succession of new ones. The 
specification of convertible operations serves to limit the use of this method to situations where 
transformations exist that do not lose information, so that if a solution to a transfonned problem is 
found, it can be converted back to a solution to the original. 

5. Working backwards. Ihe method is actually the formation of the inverse problem space, in which 
the states of the space remain the same, but the operators arc inverted, the original desired state 
becomes the new initial state, and the original initial state becomes the new desired state. Ihus, 
the method can be stated as: 
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1. Form the inverse problem space. 
2. Solve the in-^rse problem in this space. 
3. Use the solution path to generate the solution in the original space. 

Although it is not always possible to form this inverse space or to pose the inv: rse problem, it can 
be a powerful device. 

6. Accumulate knowledge. This method is implicit in many of Polya's )its of advice about 
understanding the problem: 

1. Examine a part of the problem to add new knowledge about the problem. 
2. Retry the whole problem from its expanded description. 

Again, however simple-minded this may seem, it is a genuine method. The special knowledge it 
carries is the advice to reconsider the whole given the new information at hand, even though (for 
instance) the new constraint or relation did not of itself seem to solve the problem. 

7. Test by dimension. This method applies to the goal of testing a result. It is an adaptation of the 
general technique of dimensional analysis in physics, based on the fact that if A = B, then they 
must be in the same units. If A is an unknown and ß is a formula for computing it, then the units 
of A are known, and those of B may be determined from the components of the formula. 

8. Interpret the formula This method applies to the goal of deriving a result in a different way from 
that originally discovered. Given that the result is expressed in a formula, the subexpressions and 
operations in the formula can be interpreted in the model or diagram of the problem as 
components and relations. This will suggest a way of deriving the result (often different from the 
original). 

9. Switch the unknown. This method applies to the goal of deriving a new problem after a problem 
has been solved, something that Polya encourages. It is a simple procedure whereby the unknown 
and one of the givens simply switch roles: Unknown —> Given, Given -» Unknown. 

As can be seen from examining this list, some of the methods (1 and 2) are classical, well known enough to 

have their own names. Others (3 and 4) are not only familiar, but are straightforward symbolic procedures -- 

substituting and applying known operators. These methods represent the sorts of things routinely carried out 

by computer programs that do symbolic mathematics, such as MACSYMA. If they were not so obvious in 

classical times (and Polya's quotations from the Greek, Pappus, show much care lavished on describing a 

sequence of convertible transformations), it is because the notion of a calculus has become familiar to us 

beyond notice. 

The next two (5 and 6) are typical of methods currently in routine use in AI programs. These are both 

typical abstract behavior schemes, which make use of subgoals and submethods to actually attain some 

definite behavior. The Accumulatc-knowiedge method is actually somewhat more general than its AI 

correspondents. For instance, the Transform Method in GPS (Newell & Simon, 1972) says: create a 

subproblem of reducing a difference; if succeed, add a new expressioi.; then retry the original goal, now 



PAGE 12 

working from the new expression. This is narrower in the more specific character of the subproblem, and the 

more limited form of the resulting new knowledge, which is always an expression. 

The last thice methods (7, 8 and 9) show that not all methods deal with Polya's top goals of solving a 

general problem or proving a general theorem. Subgoals exist in the main method, eg, to test if a result is 

correct; to derive the same result in a different way; and to use the result to obtain a new problem, different 

from the original. Each of these subgoals have their own specialized methods, though they are still highly 

general methods in themselves. 

As the range of this sample shows, the methods in Polya include both famous methods and obscure ones; 

and methods of great and of little power. They also include the full range of methods with respect to their use 

in current AI programs: some that have already been used; some that have not, but probably easily could be; 

and some (eg, the main method) that pose challenges of undetermined magnitude. 

2.3. Working with a Diversity of Related Problems. 

A striking feature of Polya's heuristic is its pervasive use of related problems as a path to the solution. Just 

from the basic questions in Figure 2-1 under Devise a plan there is a litany of suggestions whose point is to 

generate auxiliary problems (as Polya calls them). There is a wide diversity of these from many different 

sources. Fliis diversity of auxiliary problems of a given problem is not to be confused with the wide range of 

example problems that Polya uses to illustrate his ideas. To indicate the emphasis on auxiliary problems in 

Polya, 50% of the questions in the basic set are devoted to auxiliary problems in one way or another. In 

addition, 60% of the worked examples in How to Sähe It have at least one auxiliary problem, sometimes 

several. 

As the questions above indicate, one reason why auxiliary problems are so prevalent is that they play 

several distinct roles, their total frequency of occurrence thus being fed from several sources. For instance, 

they can be used for their results, for their method, or to suggest further useful approaches, methods or 

problems. Polya gives examples of all types and on a few occasions he is able to use an auxiliary problem in 

more than one way on the same problem, producing a powerful impression of elegance. 

As an example of an auxiliary problem, consider finding the center of gravity (CG) of a homogeneous 

tetrahedron (Polya, 1945 p38). This is a problem in solid (three dimensional) geometry. An analogous 

problem can be set up in plane (two dimensional) geometry, namely, to find the center of gravity of a 

homogeneous triangle. This latter is the auxiliary problem. It is easier to solve and the hope is that it will be 

useful in solving the larger problem. In fact, Polya is able to use its method as a plan for tlie three-dimensional 

problem. As another example, consider the problem (the top of Figure 2-2) of finding the closest distance of 

I   
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approach of two ships, given their positions and (constant) velocities at a given initial moment (Polya, 1945 

pl66). Here the auxiliary f. oblem is the special case (shown in the lower part of the figure) in which one of 

the ships, say B, is at rest. Again, the auxiliary problem is much easier to solve and Polya finds a way of using 

its result in solving the main problem. Even these two examples make apparent the diversity of auxiliary 

problems. 

Problem: 
Given: 1. The speed and positions of two ships at a given moment. 

2. Each ship steers a linear course with constant speed. 

Find:   The distance of the two ships when nearest to each other. 

Q 

Auxiliary Problem: 
Find:   The distance in the special case that one ship is at rest 

B 

P 

Figure 2-2: Two ships problem (from Polya, 1945). 
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2.4. Preparing for Future Problem Solving 

Another striking feature of Polya's heuristic is its emphasis on preparing for the future - on learning. The 

final step of every problem is to Examine the solution (Figure 2-1). Three pairs of questions arc given in the 

figure. The first pair, on checking, certainly relates to verification, a final step in solving the man. problem. 

But the last two pairs extend beyond that to using the present problem to provide things for future problems - 

- methods, results, etc. Polya leaves no doubt about this. For instance, he quotes Descartes with approval 

(Polya, 1965 p2): 

" 'Fach problem that I solved became a rule 
which served afterwards to solve other problems.' 

Descartes: Oeuvres, vol 17,; Discourse de la Methode." 

Given the other elements in Polya's heuristic, this emphasis is understandable. It goes beyond the usual 

defense of the importance of subject matter in education. For Polya, problems are often solved by analogy 

from the solutions of prior specific problems. Thus, a large stock of specific problems, their solutions, and the 

specific method of their solution is a necessary feature of a good problem solver. 

One effect of this emphasis in Polya's work, if taken seriously, would be to make no problem important for 

itself, but important only for what it contributes to future problems. 1 his emphasis might be taken as arising 

from the special educational context in which Polya's books are written -- where all problems are toy 

problems, made up only for pedagogical purposes and of no intrinsic interest. But that is not so. I daresay 

Polya would argue strongly that the chances of solving real problems depends every bit as much on what has 

been learned from prior problems, both real and educational. Further, he would aver that the acquisition of 

useful and helpful problems depends on the problem solver always attending to lessons as he goes along. 

This total emphasis on future-orientation could be entirely justified. The sketch in Figure 2-3 shows one 

way to view this. The figure represents the space of problems. The capability of the problem solver is shown 

by the inner area. Any problem within the area can be solved essentially by recognition - it will seem a 

familiar problem. The true dynamic proolem solving abilitv itnounts to only a small rind on the outside of 

this surface. This is how far search will reach beyond ady known. This is indeed governed by 

various methods, but there are a small variety of these in )nce they are mastered, the rind comes to 

have a typical absolute thickness representing the maximum that can be extended in a given problem solving 

session. Each problem solving attempt, if successful, grows a small bulge on the boundary, that is, the rind 

becomes part of the interior. Reworking a solution adds some modest additional amount to the bulge. 

Integrated over the life of the problem solver, the area plus the perimeter becomes the important determiner 

of total problem solving power. Thus, tho perimeter should be maximized, as well as the area. Whenever two 

perimeter segments are close to each other, the rinds (ie, the projections from each) overlap, thus adding less 

T 
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than two rind's worth to the total coverage. Thus, it pays to be diverse. 

Unsolved 
Problems 

Figure 2-3: A world where only ftuure oriented problem solving makes sense. 

2.5. Credibility of Inductions and Analogies 

Polya treats in detail the credibility of analogies and inductions. It shows up most explicitly in Patterns of 

Plausible Inference, but is present throughout. The reason for this emphasis is clear. The process of problem 

solving continuously generates new problems -- transformations of the original problem as well as auxiliary 

problems. These are problems precisely because the problem solver does not know how to solve them. 

Therefore the persistent question is whether a just posed theorem or conjecture is true or a just posed problem 

can be solved. 

But the concern runs deeper. For there is the sharp contrast for Polya between the results of mathematics, 

which delivers results of certainty, and plausible methods, which do not. The gulf between these two is 

repeatedly emphasized throughout the entire corpus. 

"We secure our mathematical knowledge by demonstrative reasoning, but we support our 

• 
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conjectures by plausible reasoning." (Polya, 1954 vol. I p v) 

The upshot of his position is easy enough to state in bald form (thoUcii Polya himself always shies away 

from categorical statement). In a nutshell, Polya's answer is that a qualitative notion of credibility of a 

conjecture or an induction is possible and useful, but that it cannot be extended to a quantitative calculus. 

Moreover, the informal logic of induction and credibility is mirrored quite precisely in the qualitative form of 

the calculus of probability. He develops this correspondence in considerable detail. But he also includes 

several examples to show that any attempt to use the probability calculus quantitatively leads to foolishness. 

Polya's basic attitude toward heuristic and the enterprise of its discovery and elucidation is nowhere better 

seen than in his treatment of this matter. It is, to put the matter simply (and recursively), heuristic. Polya's 

own catch phrase is "investigating induction inductively" (Polya, 1954 vol. I pviii). The mathematics of 

probability entails the existence of cardinal measures; there is no way in which the axioms of probability can 

be satisfied uniformly but qualitatively over a domain without also implying that it can be applied 

quantitatively, though obtaining relevant numbers on specific occasions may be frustrated or only 

approximately accomplished, due to a variety of causes. But Polya appears to have had no urge to push the 

analysis into such directions, either to provide some qualitative calculus that can exist without being 

quantifiable or to ask wherein the use of the probability calculus breaks down in its applicability to heuristic 

situations, so that the entailment doesn't carry though. 

2.6. Heuristics 

Polya is usually thought of as a source of heuristics for problem solving. Heuristics, as every Aler knows, 

are rules of thumb and bits of knowledge, useful (though not guaranteed) for making various selections and 

evaluations. The classical tongue-in-cheek example is the advice tc •iginners in chess: Always check, it may 

be mate (Selfridge, 1959). A large, useful set of heuristics is found in Lenat's (1976) AM program for 

conceptual discovery in arithmetic. An example from his set is. An analogy is interesting if it associates (for 

the first time) two concepts which are each unusually filled out. 

In referring to Polya's work I have used the singular heuristic, to indicate thereby a body of doctrine, rather 

n"he search for a notion of subjective probability, in contradistinction to objective probability satisfying a frequency interpretation, 
explored this terrain thoroughly (Savage, 1954). 
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than the plural heuristics, to indicate a collection of rules. As set out here, this doctrine contains elements of 

a theory of the architecture, a collection of methods,, and some strong principles respecting the role of 

auxiliary problems .'nd mixing learning with performance. The question is whether Polya's heuristic contains 

heuristics. The answer is that it does, but that they do not seem to be of great importance. In general, the 

rules of thumb in his work are parts of his integrated system of heuristic, showing up primarily as methods 

(eg. his main method). However, here are a few examples of separate heuristics that do occur in Polya's work: 

1. Work in letters not numbers. (Polya, 1945 p58) 

2. Treat symmetric elements symmetrically. (Polya, 1945 p47) 

3. If you can't construct a figure, construct one geometrically similar. (Polya, 1965 p9) 

4. Check only "touchy" parts of an argument. (Polya, 1945 pl7) 

5. If the unknown is a derivative, then introduce derivatives generally. (Polya, 1945 p29) 

6. Two proofs are better than one. (Polya, 1945 p60) 

7. Good problems, like mushrooms, grow in clusters. (Polya, 1945 p64) 

8. Do not believe anything, but doubt only what is worth doubting. (Polya, 1945 pl97) 

9. Teachers should ask questions that are simple, general, unobtrusive and from a short list. (Polya, 
1945 p20) 

10. An idea which can be used only once is a trick. If one can use it more than once it becomes a 
method. (Polya & Szego, 1924 p vii') 

All of these appear useful, but the;, do not comprise a coherent body of advice.8 The justification for many 

of them is patent, as in the advice to formulate problems algebraically rather than numerically, which permits 

many additional operations to occur easily, such as finding special cases, applying the problem to several 

cases, etc. Others are perhaps primarily psychological. By stating something in paradoxical form -- two proofs 

versus one, not believing versus doubting -- a simple truth is commanded to the attention. A few actually 

carry rather subtle insights, such as the next to last heuristic on the questions teachers should use. The first 

I I 

Having used a linguistic variation lo convey a matter of substance, a comment on etymology is in order. The root sense of the term 
heuristic, which pertains to aiding discovery, is not at issue. Dictionaries define heuristic both as an adjective and as a noun. As an 
adjective, the examples in the prior paragraph are heuristic principles or heuristic advice. As a noun, heuristic (also heuretic. a variation 
due to Sir William Hamilton) means the science or art of discovery, ie, a body of doctrine In AI, standard usage extends the adjective to 
be a noun, so that a heuristic device becomes simply a heuristic. Ihis does not appear to be recognized in any dictionary yet. though it 
happened a quarter century ago when we deliberately decided that (he adjectival form would be loo awkward and therefore nouned the 
adjective (Newell, Shaw & Simon, 1957). 

a 
Allrmpts :.n AI to lay out a large body of heuristic, as in AM (l^enal, 1976) or MYCIN (Shortliffe, 1976), often do appear somewhat 

systematic, though no attempts have been made to study this aspect of such bodies of knowledge. 

\-        ' 
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three characteristics (simple, general and unobtrusive) are perhaps obvious. But why should the questions be 

from a short list? Poiya's reason is grounded in some not completely obvious psychology: The goal is to get 

the student to assimilate such questions to his own use; therefore a little stercotypy will let the student believe 

he could think of such advice himself. 

2.7. Summary 

There is of course more to Poiya's heuristic than has been laid out. Some things have been left out and 

substantial expansion is possible within the main headings that have been sketched. In a serious exegesis of 

Poiya's work, an important question would be the extent to which the ideas above (possibly in expanded 

form) cover the content of Poiya's works on heuristic. I do not intend to do that here. The points brought out 

reveal much of what is there and are sufficient for investigating the relation of Poiya's heuristic to Al, the task 

of this paper. 
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3. Six Theses. 
The body of work just reviewed is not only relevant to problem solving but, on the facü of it, relevant to AI. 

As already mentioned. A! has treated Polya with as much distance as respect, with the implication that little 

can be taken from his work, except perhaps inspiration. What might account for this state of affairs? In 

particular, what might justify it? Let us consider the possibilities. They will come rather d.rectly from how the 

ingredients of Polya's heuristic were described. 

3.1. Thesis: Polya's Het risiic is Not Relevant. 

The first thesis is simply to accept the situation for what it appears to be on the surface, namely, that Polya's 

work is irrelevant to AI, except as inspiration. The basis for this lies in the difference in aim between teaching 

problem solving and constructing intelligent programs. Teaching leads toward qualitative generalities and 

maxims -- what can be assimilated by human problem solvers. It leads away from precise formulations -- 

which are useful only if analysis is the aim. 

I reject this thesis. Positive grounds for rejection can come only from showing (in succeeding sections) the 

relevance of Polya's heuristic in particular detail. However, its irrelevance is certainly implausible on the face 

of it. On the one hand, a number of problem solving methods are enumerated in Polya, some of which are in 

use, others of which are not. That surely seems like relevance. On the other hand, no programs existing today 

come close 10 being able to do the sorts of exemplary problems that Polya sprinkles through his text in great 

profusion. Certainly programs exist that do problems that are difficult by human standards, though it is 

difficult to assess whether they are comparable in difficulty to the problems in Polya. However, all such 

programs are substantially narrower; none handle anything like the range of problems that exists in Polya. 

In any event, this must remain the default thesis. 

3.2. Thesis: Human Psychology is too Different 

A thesis, similar to the first but narrower, is that the heuristic of Polya is too specifically adapted to human 

psychology to be relevant to AI. Indeed, there is a great deal in Polya that stems from the three features listed 

earlier: attention focusing, associative retrieval, and motivation. It is difficult to find ways to make this aspect 

of the work relevant to AI. Even though there are problems of attention focusing and associative retrieval in 

AI systems, no AI system has the problems that Polya addresses, which is how to modify behavior through 

exhortation and rhetoric. However true and important, what Polya has to say subsLmtively about these 

functions is elementary. His main problem is how to attain some modification of the ncice problem solver's 

behavior through repetition with variation in interesting contexts. 
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ITic psychology-dependent aspects were separated out in our description of Polya's work to make It clear 

that much else exists besides this psychology. This thesis seems unreasonable, ultimately, because of the 

relevance of al! the rest 

3.3. Thesis: Polya's Methods are either Known or Inapplicable 

As our illustrations attempted to indicate, a substantial component of Polya's heuristic can be stated in 

terms of specific problem solving methods. Distinct possibilities exist for how these might enter into the 

failure of AF to make use of Polya's heuristic. 

One extreme is that Polya uses methods Üiat AI simply cannot assimilate or use. However, the list we gave 

makes transparent that this is not the case in any obvious way. Not only is the form in which these methods 

are cast similar to the form in which AI methods are often cast (Newell. 1969). but some of them are even 

identical. Polya's methods seem quite appropriate to AI. 

The other extreme is that M already knows all the methods Polya has to offer and has long since 

assimilated them to its use. Again, the list makes transparent that this is not so. Although some of the 

methods on the list are clearly in use in current AI programs, others clearly have never occurred in AI. 

In sum, it seems unpromising to look for the explanation to lie in some fashion within the types of specific 

methods. 

3.4. Thesis: The Action is Outside Polya's Heuristic 

One is struck when reading Polya -- and indeed much other work that attempts to instruct in how to solve 

problems -- by how general the advice is. There seems to be a large gap between the advice and what is 

actually required to solve the problem. It is entirely possible that all the advice that Polya formulates, even if 

assimilated and assiduously applied, goes only a very small way toward helping solve problems. In short, the 

action lies outside Polya's heuristic. AI, in pursuing the actual difficulties in obtaining an intelligence, has 

found no need to use the sorts of material reflected in Polya. 

There are actually two forms of this criticism. The strong form asserts that -- pure and simple -- Polya's 

heuristic does nor. contain the important knowledge for solving problems. It is not of great use either for 

humans or for AI systems. The weak form asserts only that it does not provide what AI requires. It may be 

quite useftil for humans (or perhaps for novice humans). Irrelevance for AI may arise because AI must be 

concerned with basic system and representation issues that are not problems for humans, being already built 

in. Alternatively, human and artificial intelligence could simply be different sorts of things (although our 

remarks about methods do not make this seem likely). In any event, we are concerned exclusively with the 

—-r—— 
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implications for Al. The advice could make large differences for human problem solvers, given their existing 

abilities and knowledge, but be all but useless in the present state of Al. 

The grounds of this issue are not evident in the summary of the previous section. Consequently, let us 

consider an example (Polya, 1945 pi30): 

Problem: Write numbers using each of the ten digits exactly once, so that the sum of the numbers 
is exacdy 100. 

Following Polya's injunctions to draw a figure (ie, create a representation of the situation) and state what is 

the unknown and what are the conditions, yields the series: 

19 + 28 + 30 + 7 + 6 + 5 + 4-99 

This set of numbers does not sum to 100. However, it can easily be fixed up: 

19 + 28 + 31 + 7 + 6 + 5 + 4-100 

Unfortunately, the digit 1 is now used twice and the digit 0 not at all. 

Some more experimentation leads to the conjecture that there really isn't any way to do this -- that in fact 

the task is impossible. The problem now shifts to being a problem to prove instead of a problem to find: 

Prove: It is impossible to write such numbers as required in the npin problem. 

The first thing to be noticed is that sometimes it makes no difference what way the numbers are composed, 

only the digits themselves are relevant. For example, 19 might just as well be written 10 + 9; or the 19 + 28 

could just as well be 18 + 29. However, 19 is very different from 90 + 1. So what does make a difference is 

whether a digit ends up in the tens column or in the units column.   Exploiting this, the problem can be 

represented as starting from a basic equation: 

0+1 + 2 + 3 + 4+5 + 6 + 7 + 8 + 9-45 

Any attempted solution will move some of tlie digits to the tens column: 

0        +2 + 3        +5        +7 + 8 + 9-34 
10 +40+60 -110 

The total sum will be the sum for the units and the sum for the tens, namely J4 + 110 -T44. 

This way of looking at the problem suggests considering the sum of the digits that are moved into the tens 

column: 

Let 7- The sum of the digits moved to the tens column. 

Now the condition of the problem can be expressed succinctly: 

10r + (45 - 7) - 100 

7-55/9 

i 
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But 55/9 is not an integer, while 7 surely is. being the sum of digits. Therefore we have shown (in a reductio 

ad absurdum proof) that the original problem is impossible. 

For us. the important part of this problem is that, right after posing the proof problem, Poiya remarks: 

"Some of the figures denote units and others tens. It takes a littk sagacity to hit upon the idea that 
the sum of the figures denoting tens may be of some importance." 

A little sagacity, indeed. This may be seen to be the key step in the problem - the hidden element9 What 

help has Polya provided for seeing this key step? All of his suggestions, his main methods and his remarks, all 

deal only with the peripheral issues. To be a good problem solver is to be able to have such good ideas 

without undue flailing around. That is where the action is in problem solving! 

At least so goes the thesis. I think it must be taken seriously. There does not even exist, so far as I know, 

goc ^ evidence on whether Polya's advice, taken to heart, actually makes for good problem solvers. 

Interestingly, this issue is echoed within AI itself. On the one hand, Al tends to focus on the formulation of 

general reasoning methods and heuristics such as means-ends analysis. On the other hand, problem solving 

success seems to result from large amounts of knowledge producing intricate orchestrated patterns of 

behavior. It seems to manv that .he general methods carry almost no information about how to behave - that 

they are analogous to Polya's advice. They may even be essential -- that is not often in dispute -- but they are 

not where the action is in intelligence, artificial or otherwise. 

3.5. Thesis: Future Orientation is still Beyond A! 

A thesis that seems quite different on the surface from any considered so far is that the key element in 

Polya is learning, ie. that the primary ftinction of each problem solving session 's to prepare to solve ftiture 

problems, not to solve the particular problem at hand. The reason AI has not been able to make use of Polya 

is that it is not prepared to engage in such learning. 

In fact, this thesis reflects the same general view as the previous thesis about Polya's advice not being where 

the action is (at least the major version of that thesis). Both say that the main aspect of successful problem 

solving is detailed knowledge of a massive number of specific problems, solutions and methods. Focusing on 

the learning is just focusing on how that knowledge gets built up, rather than on having it. In both cases, the 

general situation is summarized by Figure 2-3, in which the general advice of Polya relates only to the rind, 

but the action is all in having (and gelling) the inner area. Thus, if Ulis thesis were to hold, it would explain 

; first abstracting ihc digits from Ihe numbers (seeing 40 + 3 - 43): and then representing the Perhaps it could be taken as two steps 
sum of all tens digits (T)). Hut it comes to the same thing, as far as the point of Ihe example for us. 

- -.  - 
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away the prior thesis. The importance of the example is not in the process that discovers using "the Sum of 

the figures denoting tens", which depends primarily on earlier history, hut in putting away one more problem 

instance (or some aspects of it) that permit a slight extension of problem solving on some future occasion. 

Learning has always been an important part of AI. However, it has never yet been the main line of 

development, Al always giving priority to perfonnance over learning. AI's progress in constructing learning 

programs can be tracked roughly by the problem space of performance programs within which the learning 

program was able to search. Most learning programs have been simple hill climbers in a space of parameters 

to the perfonnance program. Examples are the weights on Perceptrons (Rosenblatt, 1961) and the coefficients 

of an evaluation function (Samuel, 1963). The work on concept learning and induction programs worked in 

spaces of program-like expressions, richer structurally than n-dimensional parameter spaces, but still quite 

limited because the concepts themselves were limited. Examples are sequential concepts, such as ABC BBD 

ABE BBE — (Simon & Kotovsky, 1963), and block-like structures (Winston, 1975). Much richer learning 

spaces still are used in automatic programming (Green & Barstow, 1978), but even here the end structure is 

still simply a program. 

The issue of learning from present problem solving to future problem solving, which is what Polya urges, 

seems more like learning an entire set of dispositions and augmenting a present total problem solving 

capability. A recent thesis by Don Cohen at CMU (1980) on a learning theorem prover is interesting in this 

regard. His system builds up its performance program (for proving theorems in a typed logic) entirely from 

the theorems it proves, assimilating each one in the several different ways it can contribute to future problem 

solving. But, though this is a step in the right direction, it shows that there is a long wa> to go. It would seem 

that this thesis, too, is a genuine possibility. 

3.6. Thesis: The Diversity of Auxiliary Problems is still Beyond Al 

The final thesis is responsive to the other main feature of Polya s heuristic that we noted in the previous 

section, namely its intensive use of auxiliary problems. These appear to be of immensely diverse charac.er, 

both in terms of their content relative to the original problems, and in the way they are used to aid the original 

problem. Though Polya offers some description about the use of auxiliary problems, as we noted, it is mostly 

the actual mathematical content that appears to be important. 

Thus, it seems plausible that equivalent behavior is simply beyond AI in its current state of development. 

Certainly, no existing AI system can handle auxiliary problems in anything like the manner in Polya's work. 

10 The fundamental reasons for this arc cntwinct) with many other factors There were paradigms that did give maximum prominence 
to learning, eg, the approach through self-organizing systems: and they went down different and less productive paths. 
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The source of this deficiency is not evident, eg, whether it is beyond AI because of some major deficiency in 

its current repertoire of mechanisms or whether it indicates simply that AI has failed to attempt problem 

solving systems of this type. In any event, this thesis seems to be a major candidate 

3.7. Focusing on a single thesis 

We have enumerated and briefly assayed six theses for why Polya's work on heuristic has not made much 

impact on AI. They start with the default thesis that matters are just what they appear to be -- Polya has 

obtained exactly the attention his work deserves. They then range over the major features of his work, raising 

whether this or that feature is the important one. They are not monolithic in their implications. Some point in 

the direction of current limitations in AI; others point toward limitations in Polya's work. The theses do not 

seem to be mutually exclusive, though some work against each other to some extent. 

Notably, all six arc substantive theses. The generally positive attitude toward Polya's work and its 

widespread acquaintance throughout the AI community precludes simple explanations of a sociological sort. 

The example-driven and discursive character of Polya's work might be taken by some as a kind of sociological 

barrier, taking it as a matter of style. But this aspect seems much better interpreted as being an essential part 

of Polya's view of problem solving. The examples are necessary, because beyond a certain point, solving a 

problem implies dealing with its content, not any generalized descriptions of it. From AI's standpoint, though 

qualitative statements of heuristics might be difficult to assimilate in operational form, the example-driven 

format is tuned exactly to its needs. Most AI programs arc generated by attending to a small handful of 

spanning examples. 

No doubt, these six theses are not all that could be generated. Since there is no space to deal with more 

than one in any detail, proliferation of additioi il theses seems pointless. Some of the theses seem implausible 

on surface examination and have been so labeled even as they were introduced. But several remain, notably, 

the failure of Polya's work to contain the important heuristic knowledge, the inability of AI to handle complex 

learning, and the inability of AI to handle diverse auxiliary problems. 

We will select the last thesis for further discussion. There are some grounds for this choice. The assessmenl 

of whether the action is really elsewhere is a more ambitious and technical undertaking. In fact, it is not clear 

whether the conceptual tools exist currently to do the analysis. With rcspcci to the learning thesis, I have 

always had a predilection that learning issues can be understood only against an understanding of 

Performance issues. That operates here. Major aspects of the learning issue require an understanding of what 

it means to learn about auxiliary problems. Without understanding the nature and role of auxiliary problems 

such an analysis must remain superficial. In any event, the remainder of the paper is devoted to the sixth 
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thesis, on auxiliary problems. 

 A.' ■, 



1 

PAGE 26 

4. Thesis: The Diversity of Auxiliary Problems is still Beyond A! 

The starting point for this thesis is the diversity in Polya of the problems created in the course of solving a 

given main problem. Not that a large number of auxiliary problems are considered in any single attempt, in 

general only one or two arc. Hut when the auxiliary problems for problem X arc compared with those for 

problem Y, they seem to have almost nothing in common. The examples given earlier of finding the center of 

gravity in two dimensions to provide the method for the analogous problem in three dimensions; and of 

solving a minimum distance problem in a special case (one ship at rest) to help solve the problem in full 

generality make the point. 

In a superficial way, Polya's use of auxiliary problems can be captured in a simple general method: 

Problem: To solve problem, P: 
Auxiliary-problem method: 

1. Find an auxiliary problem, AP. 
2. Subproblem: Solve problem AP. 
3. Use the solution. 

Harlicr, Polya's main scheme was claimed to be a method by AI standards. The scheme for using auxiliary 

problems is certainly a part of that, hence should be a legitimate method as well. But now it is necessary to 

examine whether it really can be fitted into the sorts of methods that AI can currently handle or poses new 

types of demands. 

First of all, Polya uses the concept of auxiliary problems very broadly. On the one hand, it includes 

examples such as we gave above (the center of gravity, and the ships problems). On the other hand, it includes 

examples such as the following (Polya. 1945 pl32): 

Main Problem: Find X satisfying the equation: 
8(4X + 4'x) - 54(2X + 2"x) + 101 » 0 

Let Y - 2X 

Auxiliary problem #1: Find Y satisfying the equation: 
8(Y2 + Y-2)-54(Y + Y-1),+101 = 0 

Let Z = Y + Y"1 

Auxiliary problem #2: Find Z satisfying the equation: 
8Z2 - 54Z + 85 = 0 

Z-5/2orZ=17/4 

| 
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For Polya, each of these substitutions produces an auxiliary problem. However, this is an instance of the 

Method of convertible iransformal ions and these steps are garden-variety subproblems, such as occur in AI 

symbolic manipulation programs. Finding die auxiliary problem is one of selecting among a set of possible 

operators, one of which is substitution; using the auxiliary problem is simply setting the goal of going the rest 

of the way. We wish to attend primarily to subproblems that do not fit so obviously within the existing AI 

notion of method. When we refer to auxiliary problems we will always understand the more exotic of the 

versions that occur in Polya. 

4.1. The Space of Auxiliary Problems 

The first impulse is to think of auxiliary problems as elements in a space of problems that come to exist 

around a main problem. Most of die problems in this space will never be generated in a given attempt, but 

they all exist potentially. This impulse arises because the basic formulation of problem solving in AI is as 

search in a space of problems. It would be the natural way for AI to assimilate auxiliary problems. With this 

view the thesis becomes: 

Thesis (reformulation): Auxiliary problems require problem spaces that are still beyond AI's 
capability. 

4.1.1. Problem spaces 

To investigate this thesis requires sketching the AI paradigm of heuristic search, though the story is 

familiar. A central hypothesis in AI is that intelligent action occurs by means of search ir. a problem space. A 

problem space consists of a set of states and a set of operators that when applied to states yield new states. 

Thus, the operators provide paths through the space. An agent, being at some state, can apply a sequence of 

operators to trod some path, eventually arriving at other states. A problem is given by giving an initial state 

and specifying in some fashion a class of goa/states plus possibly some path constraints -- the problem being 

to get from the initial state to any of the goal states along a path that does not violate any of the constraints. 

Problem solving in a problem space is necessarily search. However, the search need not be blind. The 

problem solver has knowledge about the space, ic, about the operators, about paths, etc., knowledge that can 

be both general and specific. If there is enough knowledge (and if the problem solver can actually bring it to 

bear) there may be very little search indeed. The problem solver may know cxactl) which operators to apply 

at vi Inch points. If tlicrc is little knowledge (or if it cannot be brought to bear), then the search becomes 

increasingly combinatorial in character. In fact, tinccrtainty in the application of an operator always translates 

into the chance of search, I hus, the combinatorial character of search follows ine\iiabl\ from the cascading 

of uncertain applications. The term heuristic scarch\\a%comQ to mean this combinatorial search, modulated as 

much as possible by whatever knowledge (the hcuhsiics) can be brought to bear. 
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A problem solver's basic capabilities are expressed by the problem spaces it can employ. It is able to work 

on any problem in a space. It may not solve the problem, but it can attempt it and engage in appropriate 

problem-solving behavior. Problems outside this space lie outsiJe the problem solver's competence or even 

comprehension. A problem solver may be able to work in many problem spaces, its total competence being 

expressed iu their union. 

All the earliest AI programs for playing games, proving theorems, doing symbolic mathematics, etc, were 

transparently heuristic search programs (Feigenbaum & I^cldman, 1963). It gradually became clear that 

heuristic search was not simply one particular technique among many for solving problems, but was a central 

component of all intelligent action (Newell & Simon, 1976). Fven where the knowledge is sufficient, there is 

always a contextual threat of combinatorial search. Indeed the hypothesis has gradually evolved that problem 

spaces not only exist for genuinely problematical situations, but for routine ones as well (Newell, 1980). 

4.1.2. The character of actual problem spaces 

Abstractly considered, there seems no reason why problem spaces should not exist that include the 

auxiliary problems that arise in Polya. To pin this down requires examining the character of the spaces that AI 

has actually constructed. Very briefly, here are a few examples: 

• GEOMETRY THEORIST. The task is proving a theorem in elementary synthetic geometry 
(Gelernter, 1963). The space consists of all abstract plane geometric figures made up of points 
and lines, hence including angles, triangles, etc. The operators are theorems. The initial state is 
the conclusion of the theorem to be proved, the goal state is any of the givens of the theorem 
(which are already known to be true). The heuristic knowledge pertains to which theorems are 
similar to which figures (hence, presumably relevant targets for a proof path), which are trivial 
variants of others (eg, syn'actic transforms), and a diagram as a mode! of abstract geometry. An 
additional mechanism is used to apply this latter knowledge: constructing a diagram (ie, a model) 
for each generated figure (ie, element of the problem space) to test its acceptability. 

• SAINT. The task is symbolic integration as in a first year calculus course (Slagle, 1963). The space 
consists of all algebraic expressions containing signs for integration and differentiation. The 
operators are known integrations (as in a table of integrals), plus an array of algebraic 
simplifications and manipulations. The initial state is the original expression, the final state is any 
expression that no longer contains integral signs (hence, the program works backward). The 
heuristic knowledge pertains to when expressions seem integrable, which operators are useful to 
apply, what arc simple expressions, etc. It is brought to bear through mechanisms for selecting or 
rejecting operators and states -- which are the basic techniques for making search intelligent. 

• DESIGN PROBLEM SOLVER. The task is laying out spatial structures, such as arranging the 
furniture in an office (Pfefferkorn, 1968). The space consists of all possible partial layouts. The 
operators place a given piece of furniture in a specified place satisfying various relations -- a given 
location, next to another object, avoiding a restricted space, viewable from a given point, etc. The 
initial; täte is an empty room. The goal state is a room with the full complement of furniture and 
also satisfying a given set of constraints. The heuristic knowledge pertains to preserving as much 
uncluttered space as possible, the greater difficulty of fitting in  larger objects, and the 

:T 
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irrcvcrsibility of the failure of constraints. Additional mechanisms to bring this knowledge to bcaf 
are a causality analysis, which assigns a cause for the failure of a given constraint, and then 
backtracks far enough to avoid that cause on future tries; and the construction of macro-objects, 
which weld together sets of objects with tightly interrelated constraints. 

• NOAH. The task is spatial movement of objects, such as stacking blocks on a table (Saccrdoti, 
1977). The basic space consists of all possible ways of stacking subsets of blocks on the table. The 
operators consist of basic actions (picking up a block and setting it down on a space) plus 
conditions for its feasibility (eg, no block is on top of the block to be moved). The heuristic 
knowledge pertains to satisfying all the conditions plus the interrelations between satisfying one 
type of condition and another. An additional mechanism for bringing this knowledge to bear is 
the creation of hierarchies of abstract plans, which specify incomplete sequences of actions and 
unsatisfied constraints. Thus, in fact, NOAH really works in the space of plans, where the 
operators expand plans to additional levels of detail, and rearrange plans to remove redundancies, 
avoid conflicts and coordinate actions. 

• AM. The task is discovering new concepts in arithmetic (Lenat, 1976). The space consists of a 
domain of data structures that -eprescnt arithmetic concepts (eg, prime numbers), and are 
composed of attributes such as, generalization-of, specialization-of, examples, extreme-instance, 
etc. The operators are ways of fonning new concepts from old, eg, by specialization or by 
generalization. The system has no goal in terms of goal states; instead it seeks to make interesting 
concepts, using a number of rules for determining what is interesting (rather than a measure). The 
operators themselves contain most of the heuristics. 

• EL. The task is analyzing an electronic circuit (Sussman, 1977). The problem space consists of all 
pp-tially analyzed electronic circuits, ie, circuits augmented by constraints that describe relations 
between the voltages and currents that occur in the circuit. A problem starts with a circuit with no 
analysis and the desired final state is one which contains sufficient constraints to give the 
information desired and to verify that the analysis is consistent. An important feature of the search 
is dependency directed backtracking, in which when a contradiction is generated (which shows up 
as a failure of a particular type of constraint), only those constraints are removed that have caused 
the difficulty. This is possible because constraints can be known to be independent of the 
difficulty. 

• MOLGEN. ITic task is planning a genetics experiment (Stefik, 1980). The basic space consists of 
a domain of data structures that represent genetics experiments. An experiment is a sequence of 
various organisms and treatments to produce new organisms with desired properties. The problem 
space of MOl.GHN is a space of partially specified experiments, ic, abstract/;/(7//j for experiments. 
Three kinds of abstraction arc possible: classes of organisms, rather titan a specific organism; 
classes of experimental treatments, rather than a specific treatment; and constraints on the specific 
organisms and treatments that can occur at a given point in the experiment. The operators 
produce expansions of a plan (ic, refinements), and analysis of a plan which genemte constraints 
on other parts of the plan. 

This collection, spanning the entire history of Al. is only a sample out of many limes as many A! programs 

that arc transparently heuristic search.1:    They exhibit a wide range of tasks, a wide range of heuristic 

Many other Al programs do noi appear on the surface lo be heuristic search programs; this list is not mcani to characterize all AI 

programs 
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knowledge, and a wide range of heuristic mechanisms for putting that knowledge into effect - selection and 

rejection of operators and of states, evaluation functions, models, causality analysis, planning, etc. 

4.1.3. Object-centered problem spaces 

A great communality exists in these problem spaces:   They are all object-centered This property can be 

introduced by an idealized example of elementary theorem proving: 

Given: Known theorems, TrT2 T , each of form H.DC . 
To prove: New theorem, H DC. 

In the current art, this problem would be cast as a problem space as follows: 

Slates: Well-formed formula, W.. 
Operators: One for each known theorem, QT(H ) CT. 
Initial slate: The hypothesis of the theorem to be proved, H. 
Desired stale: The conclusion of the theorem to be proved, C. 

The states of the space are taken to be the basic well-formed formulae of the logical calculus (ie, 

expressions such as H and Q. The operators are defined by the given theorems, which take as input any state 

that matches //7. under substitution of variables and which output the corresponding instantiation of C as a 

new suite. The problem in the space is formed by splitting the theorem to prove into two parts: the initial 

state becomes H and the goal state becomes C. Many variations on this occur, from working backwards 

(initial state C, final state //, with inverted operators), to using AND/OR trees because the conditions are 

conjunctions of the expressions (C, dC2d ... Ck D H). to permitting the use of additional transformations 

(eg, definitions) in determining the inputs to operators. None of these complications is of concern here. 

What is of concern is that the given problem is to find a proof. Yet. the problem space is a space of 

expressions, not a space of proofs. The proof itself is there, of course. It is implicit in the exploration of the 

problem space, being the path that is found from H to C. But a genuine reduction of the problem has 

occurred in casting it in this form. The basic steps are what next theorem to use; The heuristics of selection, 

rejection, and so forth, pertain to this decision. 

This is a creative reduction, responsive to the underlying structure of the theorem proving task. However, it 

is a very limited way of solving this problem. Of course, no proofs are actually lost, since ultimately all proofs 

are expressed as a sequence of theorem applications. What is lost is the ability to discover a proof by taking 

an imperfect proof and improving it. Or, to come to the pervasive occurrence of auxiliary problems in Polya, 

the ability is lost to start with a wrong proof (because it is the proof of a different theorem) and to transfonn it 

into a good proof. A problem solving program that works in such an object-centered (here, expression- 

centered) space is unable to see the forest-of proofs for the trees of expressions. It knows only about the space 

of expressions, not about the space of problems. 

1 ^..'-i-*:- 
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'llic difFcrcnce between the space of problems and the space of expressions in theorem proving is only a 

special case. More generally: 

Objccl-cenieredproblem space: A problem space whose states are generated from the objects in the 
problem by structural composition operations. 

This is to be contrasted with: 

Problem-centered problem space: A problem space whose states arc generated from problem 
statements. 

In the first case the objects are decomposed into their parts in the obvious structural way (eg, as logic 

expressions are composed recursively from alphabets of connectives and terms). In the second case, the entire 

problem statement is taken as the kernel for generation, the constraints and conditions as well as the objects. 

All the examples in our list show this same property - they are instances of object-centered problem spaces, 

rather than problem-centered ones. 

The GEOMETRY THEORIST is a theorem proving program, hence has a structure directly analogous to 

our paradigm example. 'ITie existence of tine geometric diagram docs not extend the types of problems at all. 

SAINT, the symbolic integration program, works in the space of algebraic expressions; it can only take an 

expression and make another try at integrating it. It cannot take an attempt at integration which leads to a 

similar, but not quite right, result and attempt to transform that attempt into one that is satisfactory. To do so 

it would need to work in a space whose elements are entire sequences with associated transformations, 

manipulating it in ways other than adding one more expression to the end of an existing sequence (which is 

what the object-centered space effectively permits). For the DESIGN PROBLEM SOLVHR the important 

generalization on problems comes from the constraints. It cannot work in a space of problems in which it 

manipulates the constraints, creating subproblems that involve other sets of constraints than those originally 

given and using such problems as approximations to the main problem. 

Planning, as it occurs in NOAH, does not evade the difficulty, though it takes a step in the right direction. 

Planning does work with sequences, because the goals in its plans represent undetermined sequences of 

actions in the bisic space. They certainly expand the total set of problems that can be represented. However, 

this is not enough, because the planning arises from a too simple abstraction of the fully detailed problem 

space, namely, only ignoring conditions. The class of approximate problems that can be generated this way is 

still extremely limited, encompassing only a few of the types of auxiliary problems in Polya, eg, those that are 

generated under the heuristic rule of dropping a condition. 

AM, the program for discovering arithmetic concepts, provides no exception to this generalization, because 

AM has no problems at all. Hius, there is no way to discuss what it would mean to have a problem-oriented 

problem space. 
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By now the pattern of analysis should he clear and its application to die last two programs of our list, EL 

and MOLGEN, can be left as an exercise for the reader. 

4.1.4. Alternative paradigms 

Not all of AI looks like search in a problem space. Indeed much recent progress in Al has taken place in 

areas such as memory structure, knowledge representation and natural language, which do not transparently 

exhibit this search structure. Programs, such as Winograd's SHRDLU (1972) or the several efforts by Schänk 

and his students (see Schänk & Ablesen, 1977), arc appropriate examples. Perhaps we are simply looking at 

the wrong collection of Al programs; perhaps programs within some alternative paradigm would permit 

handling auxiliary problems of the type Polya uses. 

The answer is negative. The tasks performed by these other programs are not intellectually demanding (for 

the programs). That is, it is not possible to give these programs tasks that arc problems by human standards, 

ie, that require figuring out. That their performance is often interesting is due to the body of knowledge 

diey contain (and their scientific interest derives from the discovery and repre«entaüon ofthat knowledge). 

They bring this knowledge to bear essentially by m act of recognition or sometimes (as in SHRDLU's block 

manipulation) by a thorough analysis and preprogramming of the task. 

4.1.5. Conclusion 

This section has revealed Üiat if auxiliary problems are to be taken as elements of problem spaces, then AI, 

with its current limitation to object-centered problem spaces, has not yet developed the capability for coping 

with auxiliary problems. However, though the concept of problem spaces is clearly general enough to 

encompass auxiliary problems, we have not established that this is the appropriate way to view them. 

4.2. Finding an Auxiliary Problem 

Let us now examine the steps of the auxiliary-problem method in more detail (see page 26). The middle 

step is unexceptional, since it is the general recursive step common to all methods of solving a subproblem by 

the total intelligence of the problem solver. But the first and the iast steps need scrutiny. In this section we 

look at the first step. As already notec, Polya asks a wide array of questions to help the problem solver find an 

auxiliary problem. It is worthwhile to have a list of these suggestions: 

1. Have you seen the problem before? 

2. Have you seen the problem in a different form? 

12 
An exception is POl.tl ICS (Carbonell. 1978). a program lhat produces ideological interpretations (linguistically described) political 

sit jalions; but this program contains several heunstic search mechanisms. 
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3. Do you know a familiar problem with the same unknown? 

4. Do you know a familiar problem with a similar unknown? 

5. Here is a related problem and solved before. Could you use it? Us result? Its methods? 

6. Solve first some related problem. 

7. Do you know a more accessible related general problem? 

8. Do you know a more special problem? 

9. Do you know an analogous problem? 

10. Use the data somehow! le, create a problem using the same data. 

11. Solve the problem keeping only part of die condition. 

12. Restate the problem. Restate it still differently. 

Polyas view (see Section 2.1) is clearly that auxiliary problems .re to be found in die problem solver's prior 

experience, ie, in his long term memory. The difficulty for the problem solver is making contact with them. 

Memory is content addressed, and the retrieval cues are dependent on where attention is focused. Thus, it is 

useful to provide all sorts of cues to help make contact and this leaus to the multiplicity of Polya's suggestions. 

Besides the sheer number of suggestions, this list has a striking feature. For many of the suggestions, 

generating an auxi'iary problem is not a constructive task, but a task of retrieval from long-term memory (1, 2, 

3,4) or a gift from an oracle (5). This contrasts sharply with the situation in Al. For instance, here is a typical 

AI example: 

Problem: To get from an initial state A to a desired state B: 
Means-ends analysis method: 

1. Compare A to B to detect some difference D between them. 

2. Subproblem: Eliminate D. 

This subproblem arises from the original problem according to a definite procedure. It is reasonable to think 

of it (the method of generating the subproblem) as an operator in a space of subproblems. Given a collection 

of such operators, it is reasonable to think of a space of subproblems being searched gencratively, in a fashion 

similar to all heuristic soiJi programs, with all the various techniques of selection, rejection, evaluation, 

planning, etc. to help out, Hov.ver, if subproblems arc generated by recall or oracles, then no such structure 

exists out of which to compose f space of problems. Fach subproblem is more like an isolated point, available 

only bccancr of historical accident. 
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Even where guidance is given that might help generation, it is mostly highly general (eg, 6 to 10). Only the 

last two suggestions (11 and 12) seem specific enough to be used in current AI programs, eg, dropping a 

condition, as in NOAH, Such general constructions have not been used in AI methods. A step in this 

direction is taken by AM, with its operators for generalizing and specializing. As noted already, AM does not 

actually formulate problems, but only concepts related to tiie original. Consequently, it avoids whether these 

related notions could fonn tractable auxiliary problems or whether they would be useful in solving main 

problems, even if solved. However, its success in generating interesting concepts, without reference to any 

problem to be solved, provides another clue that the generation of auxiliary problems is a much looser 

operation than the generation of subgoals in the typical Al methods. 

In conclusion, it appears that the auxiliary problems may not form a problem space, but that they are 

simply isolated problems. They can bear any of a wide number of weak relations to the main problem, 

without any commitment to its problem-solving relation, eg, whether it can even be worked on. 

4.3. Using an Auxiliary Problem 

We now examine the third step of the auxiliary problem metlv d, in which the auxiliary problem has been 

solved and now must be put to use. 

4.3.1. The independence of using from finding 

The striking feature of the method, which makes it not quite so trivial as it first appears, is the virtually 

complete independence between all its stages. This is unexceptional for the middle step, which is the 

standard geneial recursive step of applying all the problem solver's intelligence to a new subproblem and in 

general is always independent of the rest of the method. However, in this method, what is done with an 

auxiliary problem once it is solved need boar no relation at all to how it was found in the first place. Thus the 

method expresses a genuine factorization. 

For using an auxiliary problem, Polya provides only a very simple taxonomy: (1) use the result; (2) use the 

method; and (3) use the attempt. Any auxiliary problem can be used in any of these ways; which way is not 

determined in advance. In particular, it is not determined by the way the auxiliary problem was cither found 

or solved. Indeed, the third type -- using the attempt -- invariably arises only after the failure to use the 

auxiliary problem in the other ways. It is a sort of salvage operation, asking whether the attempt itself suggests 

new auxil'ary problems that might be considered. 

Once we get beyond these three possibilities, explicit general advice is almost completely absent In its 

stead is placed the working through of examples. Superficially, it seems clear why this is so. Everything 

seems to depend on the particulars of the auxiliary problem, ie, on its coulenU which bears no consistent 

■ 
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relation to the original scheme which generated it. Actually, in using üic auxiliary problem as a method, we do 

know that the mechanics of plan interpretation must be invoked. However, the method itself is still 

completely open. In using the result of the auxiliary p' )b]em, even this much is not clear. 

This independence stems in part from the way auxiliary problems are generated. As wc have just seen, in 

general this is not a constructive operation, but a much looser one. 1 hus there will be few constraints that fhc 

auxiliary problem must satisfy by virtue of its mode of generation, hence little that can be carried over to be 

relied upon when it comes to use it. 

Again, this is in sharp contrast to the situation in A! programs. There, the methods that create subproblems 

fl/Mw>'5 specify exactly what to do with the result. One frequent example is apparently trivial, but in fact very 

important; '\l\c subproblem simply produces another suite in the problem space. From this follows: (1) 

problem solving can just continue from this point without any further consideration of the original problem; 

and (2) the problem solve; necessarily has the capability to work on this problem, since this is what it means 

for a problem solver to have a problem space. An example is the means-ends analysis method of reducing the 

difference, described above. 'ITie result is a new situation in which the difference h reduced; the problem of 

using this, result is simply thc.problem ot finding a path from this new state to the original desired state. 

Another major example occurs in using AND/OR search trees. Each such use implies a method, though 

the method itself is often implicit (and not always the same in each case). In SAINT, for instance, the mcihod 

is the following: 

1. If the expression contains integrals, say Xj, X2,..., Xn, extract them from the expression. 
2. Solve independently the subproblems; Integrate Xj, Integrate X2,..., Integrate Xn. 
3. Replace each integral, X , in the original expression with its result. 

The third step expresses that the method knows exactly what to do with the results of the subproblems. It is 

precisely coordinated with the first step that creates the subproblems. 

The situation with auxiliary problems can be restated in a variety of ways. In terms familiar from design, 

the use of auxiliary problems is boilom-up proolem solving, not lop-down problem solving. The strictures 

against bottom-up design apply: often tilings don't fit together. In terms familiar from AI, the use of auxiliary 

problems is Wsetf problematical. Having in hand a solved auxiliary problem is still not to know exc'ctlv what to 

do. Auxiliary problems are not well behaved; they must be brought under control to get any use out of them. 

On the contrary, subproblems typical of A' methods are under good control and behave in predictable ways -- 

they are docile. To coin some slightly colorful terms to capture this distinction: 

Wild subproblem: A subproulcm whose use in the main problem is still a problem, even after it is 

solved. 

;; 
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Tame suhproblem: A subproblcm that is not wild; how to use it is already known when ii is 
generated. 

Along with this distinction goes a reformulation of the thesis: 

Thesis (second reformulation): Al cannot h.mdic auxiliary problems, because AI docs not yet 
know how to handle wild subproblcms. 

This version of the thesis docs not imply why A! cannot do this.  However, as far as I know, there are no Al 

programs that use wild subproblcms, as defined above. To make the notion of wild subproblcms concrete, let 

us examine several examples. 

4.3.2. Using a result: The Two-ships problem. 

Consider again the problem, described in Figure 2-2, of finding the minimum distance of ap ;h 

between two moving ships. The auxiliary problem was to consider a special case, namely, when one s\ /as 

at rerL As the figure showed, the solution, to this auxiliary .jroblem was quite easy to find, namely, juf op 

the perpendicular from the resting ship (/l) to the path of the moving ship (/?). 

How is diis auxiliary problem to help? The key idea is that the general case, in which ß als noves, can be 

reduced to the special case in which ß is at rest. This is easy enough to see - consider yours :lf solving the 

problem while perched on the deck of ship /?; then no matter how fast or in what direction B moves, it will t't 

at rest as far as you arc concerned. Ship A will take on a different motion, namely its motion relative to B. fiut 

if die ships both tr.ivel at constant speed in a straight line, then A will still appear to go in a straight line. The 

actual solution to ihis relative motion is given by the standard vector diagram, as shown in Figure 4-1. A 

velocity vector eq jal and opposite to QB is impressed on both ships, yielding B at rest and A traveling along 

AR. 

Our problem is not to solve the Two-ships problem, but to understand how auxiliary problems work. 

Figure 4-2 shows the trace of tlic pre :,!.m solving. 'I"he method of auxiliary problems is evoked. This says first 

to find the auxiliary problem. In this case one of Polya's suggested approaches was used, namely, specialize 

the problem. This succeeded, producing the special case of one ship at rest. 'Ilic next.step was to solve this 

problem, which was accomplished by a simple geometric construction. The third step was to use this auxiliary 

problem. In this case, the result was used, by reducing the main problem to it. Iliis was accomplished 

conceptually by tlic relativity of uniform motion and computationally by the geometric construction of vector 

addition. 

This trace makes evident that an act of problem solving is needed ifter the auxiliary problem has been 

solved -- reducing the main problem to the auxiliary problem simply arrives from nowhere. In general, a 

specialization of a problem is not equivalent to the main problem. At best one can expect to anchor the main 

i   ■: ■■■■ :"T 
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Q 

Figure 4-1: Using the result of the auxiliary problem to solve the Two-ships problem 

Main problem: Find minimum distance between two moving ships 
Auxiliary-problem Method 

Find auxiliary problem 
Specialize 

Solved: Auxiliary problem: Find minimum distance when 
only one ship is moving 

Solve auxiliary problem 
Solved: Drop perpendicular 

Use auxiliary problem 
Use result 

Reduce main problem to auxiliary problem 
Solved: Subtract same velocity from both 

Figure 4-2: Tiace of solving the Two-ships problem. 

solution (as in the boundary conditions of differential equations), or to be one of a set of cases in a 

partitioning of the problem. A rabbit has been pulled out of tlie hat. 

Though it is not known in advance how to use a problem, it is certainly possible iO pose that very issue as a 

problem itself. We can give this a name: 

The connection problem: How to connect the solved auxiliary problem with the main problem. 

This just appears to introduce another phrase instead of "Use auxiliary problem"; however, an important shift 

has occurred.  In the original version of the Auxiliary-problem method, the first and last steps were taken as 
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procedures and only the middle step was taken to be a recursive subgoal    .p. Now the last step, to iise the 

auxiliary problem, is taken as containing a general subgoal step as well. 

A connection problem is not of the same form as the original problem. It takes two problems as given and 

asks how one might be related to the other in terms of its solution. Thus, the connection subproblem docs not 

take place in die same problem space as cither the main problem or die auxiliary problems. The latter two 

often take place in die same space, as in this example, where die space comprises the rectilinear movements of 

two ships. 

4.3.3. Using a result: The Trapezoid-construction problem. 

Consider another example from Folya (1945 pl84): 

Problem: Construct a trapezoid, given the sides a, b, c and d. 

We know how to construct triangles given three sides (say a, ß and y), using the method of loci. The loci of 

each of two sides (say ß and y), attached to the vertices of the common third side (a), can be drawn; they 

intersect in a point, which is die third vertex. But a trapezoid seems to have too much freedom. In fact, we 

may also know that in genera! a quadrilateral is not determined by its four sides. Thought of as a linkage, it 

will just flop around. But a trapezoid is a quadrilateral with one more condition added, namely, that two of its 

sides are parallel (say a and c). This is enough to fix the shape of the trapezoid. The problem, of course, is to 

actually construct it. 

i iioutr.:' would be useful -- and fun - to work though this problem as an exercise in heuristic, let us go 

directly to a trace of Polya's solution attempt (Figure 4-3), to focus on the role of auxiliary problems The 

connection subproblem is now shown explicidy as the first subproblem under using the solved auxiliary 

problem. 

To obtain an auxiliary problem Polya considers varying the dula, looking for special values that might be 

interesting. What he finds is a specialization, namely if one of the sides (eg, c) is set to zero, then the trapezoid 

becomes a triangle. Constructing a triangle given its three sides can be assumed to be known. The first step in 

using this auxiliary problem is to set up die connection subproblem, that is, to find some connection between 

the auxiliary problem and the main problem. This is called./?™/an approach, because all one can expect to 

find is some way in which the auxiliary problem might be useful, ie, some way diat will permit focused 

problem solving to determine whether the approach will pay off or not. The idea behind this attempt at 

connection is to introduce triangles into the trapezoid. This is easy to do per sc (eg, just draw a diagonal), but 

not in a way that uses the auxiliary problem solution, which requires three known sides. 

Abandoning this attempt, Polya considers additional variations of the data. This leads to yet another 

■ 
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Main problem: Construct trapezoid 
Auxiliary-problem method 

Find auxiliary problem 
Specialize 

Succeed: r=0 

^ 
a 

b< d' 

a 
known) Solve auxiliary problem: Construct triangle (Succeed: 

Use auxiliary problem 
Connection subproblem: Find an approach 

Introduce solution figure into the main problem 
Fail: Can't construct triangle with 3 known sides 

Auxiliary-problem method (try again) 
Find auxiliary problem 

Spec ialize 
Succeed: f=c 

c—a 

bZ=7 d-b 
Solve auxiliary problem: Construct parallelogram (Asrume) 
Use auxiliary problem 

Connection subproblem: Find an approach 
Introduce solution figure into main problem 

Succeed: Extend h'  parallel to b 
Solve augmented problem u 

Succeed: Simply lay out c aTong top a 

a-c 

j/   d\/b< - 

a 
Return to auxiliary problem: Construct parallelogram 

Auxiliary-problem method 
Find auxiliary problem 

Succeed: Use triangle already in parallelogram 
Solve auxiliary problem 

Succeed: Already solved 
Use auxiliary problem 

Connection subproblem 
Succeed: Already introduced in figure 

Solve augmented problem 
Succeed: Construct triangle a-c,   b,   don  top a 

Figure 4-3: Trace of solving the Trapc/.oid-construction problem 

specialization, namely, setting the two parallel sides to be the same length (c = a). This turns the trapezoid 

construction problem into a parallelogram construrtion problem. Here Polya doesn't stop to ask if the 

problem is solvable, but simply suspends the attempt. Though Polya has his didactic reasons for this, in fact, 

such a move is common in human problem solving, being the essence of planning. Thus, Polya has generated 

a second auxiliary problem. 

Again, the initial subproblem of using the new auxiliary problem is to find a connection, and the same 

approach is taken, to introduce the result figure (the parallelogram with c = a) into the main problem. This is 

easy to do, just by extending c. Furthermore, this is a connection that works; it is immediately obvious that 
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the trapc/.oid can be gotten just by taking the triangle away from the parallelogram, so to speak. Moreover, 

the triangle is one that is known, namely, all three of its sides arc given (d, b, a~c), just as in the auxiliary 

problem. 

This leads to returning to the suspended auxiliary problem of constructing the parallelogram. However, the 

appropriate auxiliary problem for //)/'s problem is simply waiting in the figure, namely, the original auxiliary 

problem of constructing a triangle from three sides. This is hardly a wild problem at all, because it is already 

located within the main problem (constructing the parallelogram), so that no additional connection is 

required. 

Like so many of Polya's illustrative problems, this one has an ingenious twist, namel/, the failed auxiliary 

problem being the key to unlock two doors: both to solve the second auxiliary problem and to use in the 

main problem. In fact, so intimately are these two parts bound together that it is unclear how problem 

solving might actually proceed in a real case -- which problem would be posed or solved first. After all, the 

problem solver is primed for both problems simultaneously and the solutions to both stare him in the face 

from the same diagram. 

Are the first two auxiliary problems wild? (As noted, the third is not.) How they were used was certainly 

not given. A connection problem was posed and attempted in both cases, even failing in one. Furthermore, 

the use of these auxiliary problems bears no relation to how they were created, namely, as special cases.14 

Hach was used simply as a subproblem, which in no way had to be a special case. If being a special case had 

any effect, it was simply to increase the similarity of the auxiliary figures to the main problem by common 

elements, to make its introduction easy. Observe aiso that the generation of the auxiliary problem in the Two- 

ships problem was likewise a special case; but that the solution to the connection problem was quite different. 

4.3.4. Using a method: The Homogeneous-tetnhedron problem. 

The problem of finding the center of gravity (CG) of a homogeneous tetrahedron (Polya, 1945 p37) was 

already mentioned. This is a problem in solid (three dimensional) geometry. An analogous problem can be 

set up in plane (two dimensional) geometry, namely, to find the center of gravity of a homogeneous triangle. 

ITiis is the auxiliary problem and it is easier to solve. What is taken over from it to the original problem is the 

specific method that was developed for its solution. 

13 
Actually, the triangle need not be used to solve the main problem given the parallelogram; it is enough lo mark off c along the upper 

a line, lo locale the upper righi venex and ihcn rf is .simply drawn in. However, this is noi ihe way discovery would lend lo occur. 

14 
It is one more piece of poetry in Polya's problem solving that both auxiliary problems come out of the same approach. 
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Figure 4-4 shows the rclalionship between the two methods (it is not a trace of the solution attempt). The 

CG for a triangle is solved (on the left) by decomposing it into strips, for which finding the CO is trivial; and 

then using (implicitly) the method of loci to locate the CG as the intersection of the medians. As can be seen 

(on the right), an identical proof schema holds for the three dimensional case. Some steps are actually 

identical in both proofs; odiers are the direct analog. Both proofs rest on corresponding theorems about the 

coincidence of multiple intersecting elements, the three median lines in the two dimensional case and the six 

median planes in the three dimensional case. 

Auxiliary  Problem 

Find CG of  triangle 

View  triangle  as  fibers   parallel   to AB 

CG of a fiber = Midpoint of  fiberx 

therefore  CG  on   locus  of midpoints 

tocus   is   a   lino 

By  symmetry:   CG  on  all   3   lines 

CG  is   intersection 

Check:   Median  lines   intersect   in a point 

Main  Problem 

Find CG  of  tetrahedron 

View tetrahedron  as  fibers  parallel   to edge AB 

CG  of a  fiber  =  Midpoint of fiber 

Therefore  CG  on   locus  of midpoints 

tocus  is  a plane 

By  symmetry:   CG  on al1   6  planes 

CG   is  intersection 

Check:   Median  planes   intersect   in a  point 

Figure 4-4: Using the method of an auxiliary problem: 
Finding the center of gravity (CG) of a homogeneous tetrahedron. 

Using an auxiliary problem as a method, unlike using its result, does determine a connection, namely, the 

auxiliary problem is to be a plan for the main problem. Plan interpreting machinery occurs in systems such as 

NOAH and MOLGEN. Thus, this variant of auxiliary problems is not as wild. However, domestication does 

not last for long. The nature of the interpretation loop is to take a step in the plan and then set up a subgoal of 

finding the analog step in the solution sequence of the main problem to the step in the plan. In programs such 

as NOAH and MOLGEN, matters are carefully arranged so that there is nothing wild about such 

subproblems. However, in the case of using the method, such subproblems involve typical connection 

subproblems. The only thing known is that the step is an analog, which may be related to the analogs used for 

other steps in the proof (if they have been found already). Only in rare cases, such as die one Polya presents, 

are matters so neat that the relation is either identity or the exact analog under the original mapping (actually, 

under its inverse). 

Unlike the connection problem for results, a few efTorts in AI are relevant to analogies of method, growing 

 ■  
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out of an independent interest in analogies.15 Of especial interest is a program called ZORBA (Klinp, !97l), 

which found proofs in a resolution thcoren proving system by drawing analogies between the prodicatcs 

involved. Hie analogy operated as an attention focusing device, without any attempt to map over the structure 

of the proof or to pose any of the connection subproblcms. The interest is not so much in the program's 

success (though it had some), but in its being the final outcome of an effort to use Polya's heuristic generally -- 

exactly the effort we claimed had not occurred successfully. In fact, Kling's earlier efforts to use analogies in 

the full sense sketched out here (the auxiliary problem as proof plan with the connection problems set up for 

each step), failed. Only when the role of analogy was used in this weaker form was success attained. 

A recent program, called ANA (McDermott, 1979), does use one method as an analogy for another (eg, 

painting objects for washing objects). This is certainly a step in the right direction. But the situations arc quite 

simple, so that the connection subproblems arc limited to the finding of objects in the environment to 

substitute for other objects. Hie object-centered character of ANA limits its interest from the present 

viewpoint. 

4.3.5. Can Al deal with wild subproblems? 

The failure of A! to exploit Polya's heuristic can now be linked to its inability to deal with wild 

subproblems. In turn, the key issue for the latter arc connection subproblems. To consider die example from 

the Two-ships problem to explore the nature of the connection subproblem. It can be stated as follows: 

Given:       I. The Two-ships problem. 
2. nie One-ship auxiliary problem, with solution. 

To Find:    An approach to solving the Two-ships problem using the solution to the 
One- ship problem. 

The initial situation is simply die two problems given in isolation (one with solution attached). The final 

desired situation is less well defined. The ultimate result of course is diat the main problem be solved. But the 

result of the connection subproblem is at some intermediate point - where it is clear what sort ofthing is to 

be tried, but before it is clear whether the details will work out. This has been rendered as finding an 

approach, but this is just another term for diis (still unspecified) intermediate stage. One possibility for it is a 

new problem whose solution is the solution of the main problem, and which was built using knowledge from 

the solution of the auxiliary problem. ITiis provides a well defined intermediate state that leaves all of the 

detail to later, and yet has manufactured a connection of the auxiliary problem to the main problem. 

As already noted, except for the simple trichotomy of using the result, method or approach, Polya provides 

Most analogy proßrams deal with sufTieicntly remote domains not to be easily related to the problem here (Fvans 1968 Moore & 
Newell. 1974, Winston, 1979). 

\-    L 
•  ■-   - 
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all his advice about using auxiliary problems by means of working concrete problems. This contrasts with 

finding auxiliary problems, where he provides a rich collection of approaches. However, Folya's actual 

solutions to using auxiliary problems make use of only a modest number of basic approaches. These provide 

the same sort of guidance as the suggestions for specialising, generalizing, etc. Here are several of them: 

1. Find result of the auxiliary problem already in the existing main problem. 

2. Introduce result of auxiliary problem to be a component of main problem. 

3. Reduce main problem to auxiliary problem. 

4. Use solution method of auxiliary problem as solution plan for main problem. 

We have repeated the use-as-method suggestion, since it appears to be exactly at the same level of specificity 

as all the other suggestions. Thus, just like with finding an auxiliary problem, the initial high-level step in 

solving a connection subproblem can be taken to be one of these high level functional suggestions. There are 

few enough of these basic idea'i available so that one after another can be tried. 

In the case of the Two-ships connection problem, the high-level functional idea is that of reduction. A 

plausible trace is given in Figure 4-5. 

Connection subproblem:  Use One-ship problem to solve Two-ships problem 
Approach: Reduce Two-ships problem to One-ship problem 

Means-ends analysis method 
Find the difference between Two-ship & One-ship problem 

Succeed: Difference in velocity of ship B 
Find what reduces difference in velocity 

Succeed: Another velocity 
Apply reducing velocity to ship B 

Fail: Cannot arbitrarily apply a velocity to a ship 
Find what permits applying a velocity 

Succeed: Can apply arbitrary velocity if applied to 
everything 

Apply reducing velocity, but. to everything 
Fail: Exact velocity is not specified 
Find exact reducing velocity 

Succeed, The amount to make B  have zero velocity 
Apply opposite velocity of B  to everything (A  and B) 

Fail: Must construct velocity in diagram 
Succeed (connection subproblem): New problem that solves 
main problem: 

Construct the velocity of A  when a velocity opposite to 
B  is applied to it 

Figure 4-5: Solution of Connection subproblem of Two-Ships problem. 
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This trace follows an apparently typical GPS-likc means-ends analysis path (Newell & Simon, 1972). 

Though the details of representation and prior knowledge have not been specified well enough to characterize 

the gaps in each of die steps, they do not seem very large. The ke.' step occurs right at the beginning, in taking 

the difference and using the result (velocity) to construct a problem space (with velocity operators) within 

which the rest of the problem solving can take place. 

The reader nay not see Ulis solution as the natural course of events, having simply recognized the relevance 

of the concept of relativity of velocity, with the consequent imposition of this entire framework within which 

to solve the problem. 'Ilie trace in Figure 4-5 shows only that, when the problem is approached from a less 

insightful (ie, recognitional) standpoint, cues arise which point toward the solution. 

Hie successful outcome of the connection subproblcm is the formulation of a well-defined problem whose 

solution will yield the solution of the main problem and which makes use of the auxiliary problem. This is the 

problem of constructing in die diagram the equivalent reduced problem, ie, applying the parallelogram of 

velocities. This may be an easy or hard problem for the problem solver. Conceivably (though not in Ulis case), 

it might be impossible, for there could be a flaw in die connection problem. What the connection problem has 

done is to convert the general notion of reduce the main nrobler, to the auxiliary problem to a specific well- 

defined problem. 

A similar plausible development can be construed for the other case, constructing the trapezoid. The a 

priori approach here is to introduce the result as a component. Again, the main method is a GPS-like means- 

ends analysis. The problem space involved is already available, namely constructions on the originally given 

trapezoid. We leave die details as an exercise for the reader. The result of the connection problem (in the 

case where it is successful) is a new problem in the same problem space as the main problem, with the same 

desired state, but starting from the augmented figure. How to proceed to solve this augmented problem will 

still be open, for it is not part of the connection subproblem. This approach to cornccting is less specific than 

reduction, but it is correspondingly easier to set up and has more chances of being successful. 

These two examples raise the possibility that taming wild subproblcms may not be out of sight for AI. The 

mediods involved do not seem too different from typical Al meüiods. To be sure, there is the problem of 

construeüng the problem spaces out of the given information of the connection subproblem (the two 

probleii.s) plus die functional orientation (reduce main problem, introduce result,...). But a lot of structure is 

available in the givens, so this may not be a major difficulty. 

Where then is die major difficulty? Perhaps it do ;s not exist. Rather, Al simply has not yet tried to do this 

task. When it does try, the task will be found tractable. This conjecture should not be discarded lightly. Some 

' '      ■■"■      "-' " ^■"■'l V "     '^         —-■W.f 
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(by no means all) tasks tackled by AI are revealed to be tractable the first time they are tried. Examples 

include the chemical structure identification task done by DRNDRA1 (Lindsay, Buchanan, Feigenbaum & 

Lcderberg, 1980). the medical diagnostic task done by MYCIN (Shortliffe, 1976) and the prouril analysis 

task done by PAS-I (Waterman & Newell, 1971). These tasks all embodied extensions to AI pro, ams into 

new domains and some of the systems represent important advances in AI. The tecb ques and 

understanding available at the time simply proved sufficient for the new area. 
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5. Conclusion 
It has always been clear why reverence has been due Polya in AI. Just at the time digital computers came 

into existence, to provide the technical and conceptual underpinning to explore the information processing 

underlying intelligent behavior, he focussed attention on heuristic. His books - delightful, provocative ind 

technically astute -- helped to provide the Zeitgeist16 for looking at approximate reasoning and inference, and 

how they could be accomplished by computers. 

The question is why Polya has been ignored by Al. Why has his work been limited to being part of the 

groundwork, rather than becoming an integral part of the intricate figurework it has been building? The aim 

of the paper has been to shed light on this question. 

5.1. Review 

Let us retrace the path we have followed in this paper. We started by examining the major outlines of 

Polya's work on heuristic: the implicit model of the human as a problem solver; the role of Al-like methods; 

the role of auxiliary problems; the focus on the future by learning from the present problem; the analysis of 

the credibility of inductions and analogies; and, last, the scattered heuristics that are not embedded 

systematically in the main picture of how problem solving should proceed. This picture reflected already an 

AI viewpoint. If we had presented Polya's work in its own terms, the same elements would have been present, 

but the properties of the human problem solver and the Al-like methods would have been implicit and much 

more attention would have been given to analogy and induction. 

The review of Polya's heuristic led to six theses to explain why AI did not take him more seriously: 

1. Polya's heuristic is not relevant to the real tasks of AI. 

2. Human psychology, as woven into Polya's heuristic, is too different from the character of current 
computers. 

3. Polya's methods are either already known and used, or they are inapplicable to machine use. 

4. The action is outside Polya's heuristic, ie, the important knowledge for solving problems lies in the 
content of the problems themselves, not in the general rules or guidelines that can be transferred 
from Polya's work to Al programs 

5. The future orientation of Polya's heuristic implies substantial learning abilities, which is beyond 

So much happened in the post World War II years - the computer, operations research, game theory, decision theory, control 
theory, information theory -- that it is hard not to think of them all as related Yet, the work of Polya on heuristic bears no apparent mark 
of these events It is grounded in a deep concern for classical mathematics and a reverence for the great mathematicians of the past, eg, 
licscartes and Liebniu Only Polya himself can assess the role of the larger intellectual currents in bringing forth his own work at a 

particular historical moment 
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AI's current capability. 

6. The diversity of the auxiliary problems, which play such a key role in Polya, are beyond AI's 
current capabilities. 

The first three these- we dismissed after brief examination, although the first one remained the default 

thesis. The last three ail had to be taken seriously. One of them (the fourth) is a difficulty with Polya; the 

other two (the fifth and sixth) are diffi-ultics with Al. Though they all deserve serious investigation, only one 

could be followed in this paper. We elected to examine the issues of auxiliary problems, giving some reasons 

why this was the appropriate choice. 

Out of die study of this sixth thesis has come a notion of auxiliary problem that distinguishes it from the 

sort of subproblems that are generated by mediods typical in Al. The main feature of the latter is that the 

relation of the subproblem to the main problem is defined in advance by construction. Contrariwise, with 

auxiliary problems this relation is problematical. The former might be thought of as tame or domesticated 

subproblems. the latter as w/Wsubproblems. 

Given this distinction, what we found can be summarized directly: 

1. Current AI programs have the ability to deal with tame subproblems, but not wild ones. 

2. This shows at least one important way in which AI's own limitations have prevented it from 
making extensive and detailed use of Polya's heuristic. 

3. The space of auxiliary problems does not form a welMefined problem space. The generators of 
auxiliary problems bear at best a weak rclationshi\ i ., s .Ise structure of the main problem. 

4. Taking the place of the space of auxiliary problems are the problem spaces arising in making 
auxiliary problems relevant - the connection problems. A problem solver must have tue 
capability to deal with these connection subproblems to be able to use auxiliary probk-ms. 

5. The character of connection subproblems is essentially unexplored. However, there is no 
indication yet that they arc necessarily especially difficult. 

5.2. What Finally Follows? 

The present paper is hardly a thorough investigation, even into its chosen questions. Yet, though it leaves 

much unfinished, it docs not leave matters where they stood at the beginning. There arc by now four 

independent questions. Fach rates a separate concluding statement. 

Why has AI ignored Polya? We have at least one plausible answer: Because AI doesn't yet handle wild 

subproblems. However, the other two theses -- the intrinsic power of Polya's heuristic knowledge and the role 

i 
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of learning -- arc at least as important to pursue. The present investigation helps set the stage for both, by 

explicating how problems arc solved in Polya. A major component ofthat substance is the nature of auxiliary 

problems. 

What is the nature of the connection subproblem?'\'h\s seems to be the really interesting conceptual question 

posed by the present analysis. We were led to the question, but we hardly began its analysis. Connection 

subproblcms clearly have some common structure and their own collection of methods. It would be extremely 

rewarding to carry out a thorough investigation of this. Polya provides a wealth of examples st II to be 

understood. 

Can Al use auxiliary problems?'^ present paper pro/ides more than adequate initial structure to pose this 

question. My tentative answer is a simple yes -- that the reason why it hasn't happened, is basically 'hat AI 

hasn't gotten around to it. However, this question can only be answered in the classical way, by producing AI 

programs that can solve significant problems by i,iing auxiliary problems that pose significant connection 

subproblcms. Moreover, my answer cannot be entirely correct, because accomplishing this will clearly add 

significantly to the power and flexibility of AI systems. 

What of Polya's student?'rhc outennost story, as you will recall from the opening section of this paper, 

concerns "iy own wonderment that I could have been so thoroughly immersed in Polya in my early college 

years and yet have his heuristic play such a small explicit role in my own work on heuristic. This study, of 

course, was not designed to shed light directly on why I did what I did. Instead, it does something 

substantially more important to me. It shows that there is in Polya's heuristic a wealth of knowledge that is 

pertinent to AI, and which AI would do well to take seriously. It goes some small way, I hope, to acknowledge 

Polya as a genuine contributor to AI. 
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