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ABSTRACT

Refinement in calculating the roll damping characteristics
of surface ships, particularly in the speed-dependent 1ift damp-
ing terms, has significantly {mproved the prediction of lateral
ship motions. Incorporation of these refinements into the new
revised ship moticu computer program has greatly enhanced the
accuracy and usefuliess of the program. Validation of the rcll
damping computations 1= presented in this document through the
comparison of computer-predicted damping with model test data
for a number of ships. Relatively good agreement ig found be-
tween the analytical and experimental results.

ADMINISTRATIVE INFORMATION

The David W. Taylcr Naval Ship Research and Devel opment Center (DTNSRDC) was au-
thorized and funded over a pericd of years to perform this investigation. For fiscal
years 1977 and 1978, funding was provided by the Independent Exploratory Development
(1ED) Program under Project Number 62766N and Block Number ZF-61-412-001, identified
at DTNSRDC as Work Unit 1568-124., For fiscal 1978, funding was also provided by the
Naval Sea Systems Command (NAVSEA) under Work Request 81650 and identified at DTNSRDC
as Work Unit 1568-806. 1In addition, the Conventional Ship Seakeeping Research and
Development Program funded this investigation under Project Number 62543N, Block
Numbers SF-43-421-001 and SF-43-411-212 in 1978 and 1979, respect:ively. Work Unit
identification at DINSR . for this funding was 1504-100. Funding for 1980 was pro-
vided by the Ship Perf>rmance and Hydromechanics Program under Project Number 62543N,
Block Number ZF-43-421-001, identified as Work Unit 1500-104. Fiscal 1981 work is
funded by the Surface Ship Hydromechanics Program under Project Number 62543N, Block
Number ST-43-400-001, identified as Work Unit 1507-101.

INTRODUCTION
The David W. Taylor Naval Ship Research and Development Center's Ship-Motion
and Sea-Load (SMSL) Computer Programl’z* has recently been completely revised. This
task was performed in order to provide a standard U.$. Navy Ship Motion Program
(SMP)** to all U.S. Navy research and development and design agencles. In addition,
this program was updated to improve basic computational procedures as well as to
enhance its usefulness as a ship design tool. One of the major improvements in the

new program 1s a significant increase in the accuracy of the roll motion predicticas.

*A complete listing of references is given o1 page 9.

**Meyers, W.G., T.R. Applebee and A.E. Baltis, "User's Manual for the Standard
Ship Motion Program, SMP," Report DTNSRDC/SPD-0936-01 to be published.
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In order to validate the motions predicted by the SMSL program at varlous head-

ings, speeds, GM's, roll radii of gyration and bilge keel sizes, free-running model
experiments with the DE-1006 model were performed at DTNSRDC in the early 1970's.
These expet:lments3 indicated that the roll damping calculated by the SMSL program
was inadequate, particularly at low CM's a=d high ship speeds. The subsequernt

analytical work of Schmitkea found that the reason for this i1iadequacy was the
neglect of the very important speed-dependent 1ift damping of the appendages, par-
ticularly for the rudders which had not been previously included in the calculations.

As a result, the newly revised SMP calculates the roll damping by a procedure
which also includes 1ift damping terms duc to the hull and its appendages. Since
SMP can output all the component parts of the roll damping coefficients plus their
totals for any candidate ship, direct comparisons between the SMP-predicted roll
damping and the results from model test data are made herein.

Thirteen ships at various speeds, configurations and loading conditions are

compared.

SHIP PARTICULARS

The ships used in this investigation are divided Into four classes:

1. Aviation ship hulls - the CVV and the Sea Control Ship (sCS);

2. Cruiser~type hulls - the CSGN with large waterplane (LWP) and conventional
waterplane area designs, 2ud the CGN-42;

3. Destroyer/Frigate-type hulls - the DD-963, the FFG-7, the DE-1006, and the
USCG 270-ft Medium Endurance Cutter (WMEC);

4. Auxiliary hulls - the AOE, the A0-177, the T-ARC, and the MCM.
A liscing of the hydrostatic characteristics of each ship is presented in Table 1

and Figure 1 contains the computer-drawn underwater hull shapes.

ANALYTICAL APPROACH
A major improvement in SMP is the inclusion of previously neglected but very
important, speed-dependent dynamic 11ft damping due to the hull and appendages. The

SMSL program's computational procedure for the roll damping coefficient, designated

T
as BA&’ is defined as

T
By, = Bg + By (1)
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Here roll damping is treated as the sum of two terms, B being roll angle dependent
(viscous) and B, being roll angle independent (potentjal). SMP calculates the roll

damping as the sum of three terms, where the third term, B, , represents the dynamic

L
1ift damping of the hull and appendages. The roll damping coefficient is now defined
as

T
B,

= + 2
4l BE + B B (2)

\ L
BL is dependent on speed, the zeometry and center of pressure of the lifting surface,
and the location of the roll center. Bw is calculated using potential theory in
1,2
essentially the same fashion as was done in the older program. ’ B.. 1s speed

independent though it is dependent upon the frequency of wave encoun?er. BE is
similarly calculated using the procedv:es of the old program with certain modifi~-
cations due to more recent Japanese work. BE is regarded as veing dependent on
speed, roll angle, frequency, and ship or appendage geometry. The viscosity-related

damping is composed of the following components

= + Y
Bp = Bpg + Bgp X FZ(V) + [BHull Bﬁpp]Fl(V) (3)

BBK is the bilge keel damping calculated according to the expressions of Kato.5
BSF is the damping gue to hull skin friction and calculated in accordance with the
procedures of Kato; the function FZ(V) is the gpeed dependence of this skin friction
damping 1in accordance with Tamliya and Komura.7

BHull is the eddymaking damping due to the hull calculatec according to the

8
procedures of Tanaka with minor modifications. For the appendages, B represents

the flat plate eddymaking damping calculated using the empirical data ggpﬂoerner.g
The speed dependence of these two eddymaking damping components 1is introduced hy
using the function Fl(V) in accordance with the work of Tkeda, Himeno and Tanala.lo
It is to be noted that the modular nature of SMP will simplify the anticipated
future changes in the calculation procedures for severel of the roll damping compo-
nents as the theory becorn 's more refined.

In calcviating BL’ the hull contribution 1is obtained by considering the entire
hull to be a very low aspect ratio foil, and each appendage contribution is calcu-
lated separately. Here it should be mentioned that the appendajes considered are

bilge keels, skegs, rudders, fins and propeller shaft brackets. It should also be
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noted that the skegs are :reated as an integral part of the hull section for the

Tanak: eddymaking damping calculations. However, they are treated as separate

appendages for purposes of dynamic 1ift demping calculations.

1 Fxamples of p:edicted roll damping usfig this analytical procedure versus )

1
i
i
|

experimental roll dumping results from free-running model roll decay teste are pre-

1 sented in Figures I through 5.

i EXPERIMENTAL DATA

A standard experimental procedure 1s used at DTNSRDC to investigate the roll

damping characteristics of surface ships. A free-running model experiment 1s per-

formed in caim water to determine the nondimensionai roll decay coefficient for

various mean roll angles. The details of the experiment are given below.

The self-powered model 1s brought up to a p-edetermined speed on a straight

course, restrained in sway, yaw and surge. The model is then released from all
restraint, and roll motion is induced by pushing down on the side of the model. The

induced roll motion occurs at the natural roll frequency of the model and decreases

in magnitude in successive motion cycles. This decay of the motion is considered to

r be representative of the total roll damping. Thus roll decay due to coupling between

' roll sway, and yaw 1s assumed to be negligible. A time history of the roll motion

that the model experiences is measured and recorded on an analog strip chart, such

as shown in Figure 6. This procedure is repeated for each speed over a range of

different initial roll angles. The roll decay coefficlent, n, 1s determined from

these analog records by the formula:

¢

1 1
n= gy 4)

2
where ¢1 and ¢2 correspond to consecutive double amplitude roll angles (see Figure
6).

where

Each value of n has a corresponding mean roll angle, E} associated with it,

T =3 [(oy+4,)/2] (5)

Simply stated, ¢ is the average single amplitude roll angle. Then pairs >f values,

n and ¢, can be plotted for comparison with analytical results as shown in Figuies 2

! )n .oy
2 R i I sk Rt e im0 eI D R T il a0 ' ’e .
L e :



RN T TIR TRTNT

through 5. All of the experimental roll damping data shown represents rcll damping
at the natural roll frequency.

It should be noted that sizable variations in the roll decay coefficient may
occur under conditions where roll angles sre small or model speeds are high. Accu-
racy can be lost in both recording and analyzing small roll angles. At high speeds
(e.g., 20 knots full scale), only several cycles in the roll decay process can be
obtained. Moreover, as speeds Increase, the ability to excite the model in roll
alone without inducing extraneous sway and yaw motions is greatly diminished. Often
only the first two cycles in the decay record can be considered reliable.

For these reasons, the roll decay coefficient correspond’ng to the initial two
roll decay cycles is regarded as the most accurate and dependable. These points
have been blackened in Figures 2 through 5.

The experiments to determine the roll damping chaiacteristics of the ships pre-
sented in chis report have been conducted over the years at DINSRDC. The ships and

corresponding refererces for the original data are as follows: CVV*,  SCS*, CSCNll,

GERERAN FFG—712, NHEClB, AOE3, A0-177*, and MCM*. The roll damping experiment for
the T-ARC was performed by Hydronautics, Inc.* Kkoll decay data for the DE-1006 and
DD-933 was provided from model experiments conducted by Baitils and Rossignol,

respectively, both of DTNSRDC.

COMPARISON OF RESULTS

Compar isons between the calculated and measured roll damping characteristics of
the 13 ships investigated are made in Figures 2 through 5. Results are presented in
terms of the nondimensional roll decay cocefficient as a function of the single
amplitude mean roll angle. This decay coefficient represents, in accordance with
the nomenclature of Cox and Lloyd,lh the ship damping moment per unit roll rate,
nond imensionalized by the product of twice the natural roll frequency and the total
mass moment of inertia of the ship about the roll axis. The experimental data,
represented by circles, are elther darkened to indicate the decay coefficient
assoclated with the initial roll amplitude or open to indicate coefficient values
from subsequent roll amplitudes (see EXPURIMENTAL DATA, page 4). SMP-predicted roll
decay 1s represented by the solid line. Each plot for each ship has a speed, in

*Documents reporting tle results of roll damping «xperiments for these ships
have limited distribution,

o 2 bbb
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knots, and a Froude uumber, in parentheses, associated with 1t. In some cases, ex-

perimental data may not be available. In the case of the T-ARC at 20 knots, no

data is available.

In general, good agreement is illustrated in these comparisons. The =lope of

| the roll damping with increasing roll angle is an indication ¢f the nonlinesrity of
roll damping and is quite well predicted by thecry. Tendencies are for the analyti-
cal results to overpredict the damping at lower speeds and to underpredict at the

i higher speeds.

Onz outstanding exception is the case of the A0-177 in Figure 5. Predicted |
roll damping grossly underestimates the measured data at every speed. Because this
is the only case of the 13 ships where the comparison suffers notably at all speeds,

; it 1s felt that the original experimental data may be in error. This is supported
E by the relatively large amount of damping measured for this ship which has no bilge
keels. A similar vessel, the AOE, as presented in Figure 5, demonstrates signifi-
5 cantly less damping (on the order of one-~half or less) than the A0-177 when tested

without bilge keels.
The effect of speed on the roll damping is presented for three different bilge

keel sizes, in Figure 7, for the DE-1006 at its nominal base GM of 12 percent of
beam. BK4 represents the hull without bilge keels, BK3 represents bilge keels with

an area of 1.25 percent of the wetted area of the hull, and BKl represents the
nominal base bilge keel with a 2.54 percent of wetted area size. These results are
shown for speeds of 0, 9, and 27 knots corresponding to Froude numbers of 0, 0.15,
and 0.46. The agreement between (he slopes of the experimental and calculated roll
damping suggest that the roll angle dependent eddymaking damping, BE, is essentially
correct. Similarly, the growth of the damping with increasing speed which was not

present in the earlier program, where B, was reglected, appears to be reasonably

L
well represented.

The bilge keei effect at zero speed is presented for the three GM's in Figure 8.

The 1ift dependent damping BL is therefore zero in this figure. GMl represents the
nominal base value for the ship of 12 percent of beam, GM2 represents 9 percent of
beam value, and GM3 represents the smallest tested GM of 6.1 percent of beam. Again,

the eddymaking damping component B, appears to be generally correct since the

E
measured and calculated slopes agree. GM does not significantly affect these slopes

as expected, although hilge keel size does. As the bilge keels become larger, the




amount of eddymaking damping relative to the *total damping increases, and thus the
nonlinearity of damping with roll angle increases.

The adequacy of the roll angle independent damping term, Bw, on the other hand,
is less certain since the agreement between the zero rolil angle intercept value of
measured and calculated damping with GM is much pocrer. Note for example these
discrepancies for BKl.

Figures 9 and 10 were prepared to illustrate the values of various damping com-
ponents predicted by SMP es well as their sum. Both figures retain the same format
as Figure 7. Figure 9 illustrates the components of the computed damping in terms
of basic damping types, i.e., skin frictilon viscous damping, eddymaking damping
except for the bilge keel, bilge keel Jdamping éxcept for 1ift, and the wavemaking
damping. Figure 10, on the other hand, presents the damping provided individually
by the hull and skeg, the rudders, the propeller shaft brackets ind bilge keels.
The importance of the speed dependent &and roll angle independent dynamic 1lift
damping, BL’ as a portion of the total damping at even a relatively modest speed of
9 knots is quite well illustrated in Figure 9, as 1s the essentially insignificant
contribution of the skin friction. The impact of the speed dependence on the
eddymaking damping is also 1llustrated.

The relative importance of the hull and skeg as roll damping sounrces is illus-
trated in Figure 10 as is the insignificance, at least for the DE-1006, of the pro-
peller shaft brackets.

CONCLUDING REMARKS
The components of roll damping computed in SMP and considered in this report
are for '"normal" ships. Certain components which are ignored as being insignificant
for "mormal" ships should be recognized when nece isary; for example, wave damping

due to very large bilge keels mounted near to the free surface.
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Figure 1 -~ Computer-Generated Body Lines
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Figure 1 (Continued)
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Figure 1 (Continued)
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Figure 10 - Components (Bare Hull plus Skeg, Rudder, Bilge Kecls,
etc.) of the Calculated Roll Decay Ccefficient
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DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH
NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF
THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM.

INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE.
THEY CARRY A DEPARTMENTAL ALPHANUMER!CAL IDENTIFICATION.

3. TECHNICAL MEMUHANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATIOM
OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN
TERMNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE
NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC

MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY.CASE
BASIS.
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