PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

MISSISSIPPI-KASKASKIA-ST. LOUIS BASIN

HUELIN McDANIELS DAM
WARREN COUNTY, MISSOURI
MO 30508

UNITED STATES ARMY
Corps of Engineers

St. Louis District

PREPARED BY: U.S. ARMY ENGINEER DISTRICT, ST. LOUIS
FOR: STATE OF MISSOURI

This document has been approved for public release and sale; its distribution is unlimited.

SEPTEMBER, 1979
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Phase I Dam Inspection Report

National Dam Safety Program

McDaniels, Huelin Dam (MO 30508)

Warren County, Missouri

PERFORMING ORGANIZATION NAME AND ADDRESS

U.S. Army Engineer District, St. Louis

Dam Inventory and Inspection Section, LMSED-PD

210 Tucker Blvd., North, St. Louis, Mo. 63101

AUTHOR(s)

Consoer, Townsend and Associates, Ltd.

PERFORMING ORGANIZATION NAME AND ADDRESS

U.S. Army Engineer District, St. Louis

Dam Inventory and Inspection Section, LMSED-PD

210 Tucker Blvd., North, St. Louis, Mo. 63101

ABSTRACT

This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.
SUBJECT: Huelin McDaniels Dam (Mo. 30508) Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Huelin McDaniels Dam (Mo. 30508).

It was prepared under the National Program of Inspection of Non-Federal Dams.

This dam has been classified as unsafe, non-emergency by the St. Louis District as a result of the application of the following criteria:

1) Spillway will not pass 50 percent of the Probable Maximum Flood
2) Overtopping could result in dam failure
3) Dam failure significantly increases the hazard to loss of life downstream

SIGNED

Chief, Engineering Division

APPROVED BY: Colonel, CE, District Engineer

Date
HUELIN McDANIELS DAM
WARREN COUNTY, MISSOURI

MISSOURI INVENTORY NO. 30508

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

PREPARED BY
CONSOER, TOWNSEND AND ASSOCIATES, LTD.
ST. LOUIS, MISSOURI
AND
ENGINEERING CONSULTANTS, INC.
ENGLEWOOD, COLORADO
A JOINT VENTURE

UNDER DIRECTION OF
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
FOR
GOVERNOR OF MISSOURI

SEPTEMBER 1979
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Huelin McDaniels Dam
Missouri Inv. No. 30508

State Located: Missouri
County Located: Warren
Stream: Lost Creek
Date of Inspection: May 18, 1979

Assessment of General Condition

Huelin McDaniels Dam was inspected by the engineering firms of Consoer, Townsend and Associates, Ltd. and Engineering Consultants, Inc. (A Joint Venture) of St. Louis, Missouri using the "Recommended Guidelines for Safety Inspection of Dams". These guidelines were developed by the Chief of Engineers, U.S. Army, Washington, D.C., with the help of Federal and State agencies, professional engineering organizations, and private engineers. The resulting guidelines are considered to represent a consensus of the engineering profession.

Based on the criteria in the guidelines, the dam is in the high hazard potential classification, which means that loss of life and appreciable property loss could occur in the event of failure of the dam. The estimated damage zone extends approximately 5 miles downstream of the dam. Within the damage zone are
six houses, seven buildings, and one road crossing which may be subjected to flooding, with possible damage and/or destruction, and possible loss of life. Huelin McDaniels Dam is in the small size classification since it is less than 40 feet high and impounds less than 1,000 acre-feet of water.

Our inspection and evaluation indicates that the spillway of Huelin McDaniels Dam does not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. Huelin McDaniels Dam being a small size dam, with a high hazard potential, is required by the guidelines to pass from one-half of the Probable Maximum Flood to the Probable Maximum Flood without overtopping. Since there is high hazard potential downstream of the dam, the appropriate spillway design flood for this dam is the Probable Maximum Flood. It was determined that the reservoir/spillway system can accommodate 15 percent of the Probable Maximum Flood without overtopping the dam. Our evaluation indicates that the reservoir/spillway system will accommodate the 10-year flood without overtopping. However, the dam will be overtopped during the occurrence of the 100-year flood.

The Probable Maximum Flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorological and hydrologic conditions that are reasonably possible in the region. The 100-year and the 10-year floods are defined as the floods having a 1 percent and a 10 percent chance, respectively, of being equalled or exceeded during any given year.

Other deficiencies noted by the inspection team were: the rust colored seepage exiting from the embankment in the vicinity of the service spillway discharge pipe; the erosion of the embankment near the service spillway pipe and to the adjacent hillside; the growth of trees on the downstream embankment slope;
rodent activity on the embankment; questionable stability of the right cut bank of the emergency spillway channel; sloughing and erosion of the upstream embankment slope due to wave action, a need for periodic inspection by a qualified engineer and a lack of maintenance schedule. The lack of stability and seepage analyses on record is also a deficiency that should be corrected.

It is recommended that the owner take action to correct or control the deficiencies described above.

Walter G. Shifrin, P.E.
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

HUELIN McDANIELS DAM, I.D. No. 30508

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Sect. No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 1</td>
<td>PROJECT INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 General</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Description of Project</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Pertinent Data</td>
<td>8</td>
</tr>
<tr>
<td>SECTION 2</td>
<td>ENGINEERING DATA</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.1 Design</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.2 Construction</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.3 Operation</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.4 Evaluation</td>
<td>11</td>
</tr>
<tr>
<td>SECTION 3</td>
<td>VISUAL INSPECTION</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3.1 Findings</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3.2 Evaluation</td>
<td>17</td>
</tr>
<tr>
<td>Sect. No.</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>SECTION 4</td>
<td>OPERATION PROCEDURES</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4.1 Procedures</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4.2 Maintenance of Dam</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4.3 Maintenance of Operating Facilities</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4.4 Description of Any Warning System in Effect</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4.5 Evaluation</td>
<td>20</td>
</tr>
<tr>
<td>SECTION 5</td>
<td>HYDRAULIC/HYDROLOGIC</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>5.1 Evaluation of Features</td>
<td>21</td>
</tr>
<tr>
<td>SECTION 6</td>
<td>STRUCTURAL STABILITY</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>6.1 Evaluation of Structural Stability</td>
<td>26</td>
</tr>
<tr>
<td>SECTION 7</td>
<td>ASSESSMENT/REMEDIAL MEASURES</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>7.1 Dam Assessment</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>7.2 Remedial Measures</td>
<td>31</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS
(Continued)

LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>LOCATION MAP.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>PLAN, ELEVATION, AND SECTION OF DAM</td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td>GEOLOGIC MAPS</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>SEISMIC ZONE MAP.</td>
</tr>
</tbody>
</table>

APPENDICES

APPENDIX A — PHOTOGRAPHS
APPENDIX B — HYDROLOGIC COMPUTATIONS
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

HUELIN McDANIELS DAM, Missouri Inv. No. 30508

SECTION 1: PROJECT INFORMATION

1.1 General

a. Authority

The Dam Inspection Act, Public Law 92-367 of August, 1972, authorizes the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspections. Inspection for Huelin McDaniels Dam was carried out under Contract DACW 43-79-C-0075 to the Department of the Army, St. Louis District, Corps of Engineers, by the engineering firms of Consoer, Townsend & Associates, Ltd., and Engineering Consultants, Inc. (A Joint Venture), of St. Louis, Missouri.

b. Purpose of Inspection

The visual inspection of Huelin McDaniels Dam was made on May 18, 1979. The purpose of the inspection was to make a general assessment as to the structural integrity and operational adequacy of the dam embankment and its appurtenant structures.
c. Scope of Report

This report summarizes available pertinent data relating to the project; presents a summary of visual observations made during the field inspection; presents an assessment of hydrologic and hydraulic conditions at the site; presents an assessment as to the structural adequacy of the various project features; and assesses the general condition of the dam with respect to safety.

Subsurface investigations, laboratory testing, and detailed analyses were not within the scope of this study. The conclusions drawn herein, therefore, are based on the presence of, or absence of, obvious signs of distress. No warranty as to the absolute safety of the project features is implied by the conclusions presented in this report.

It should be noted that reference in this report to left or right abutments is as viewed looking downstream. Where left abutment or left side of the dam is used in this report, this also refers to north abutment or side, and right to the south abutment or side.

d. Evaluation Criteria

Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in "Recommended Guidelines for Safety Inspection of Dams", Appendix D. These guidelines were developed with the help of several Federal agencies and many State agencies, professional engineering organizations, and private engineers.
1.2 Description of the Project

a. Description of Dam and Appurtenances

It should be noted that design drawings are not available for the dam or appurtenant structures. The following description is based exclusively on observations and measurements made during the visual inspection.

The dam embankment is a compacted earthfill structure. The crest is 30 feet wide on the left fifth of the dam and 35 feet wide on the remainder of the dam. The total crest length is 400 feet. The crest elevation is approximately 839.5 feet above MSL, and the maximum height of the embankment was measured to be 25.0 feet.

The downstream slope of the embankment was measured as 1V to 3H. It was not possible to accurately measure the upstream slope because of high reservoir level, a wave eroded upstream slope and a near horizontal berm just under water level. No riprap was placed on the upstream slope. The entire exposed embankment has a grass cover.

The dam site is situated on the border between the Dissected Till Plain Section of Central Lowlands Physiographic Province which extends to the north and the Ozark Plateau Province to the south. Although the area in which the dam and reservoir are located was glaciated during Pleistocene time, the till and loess which characterize the uplands of the Till Plains have been largely removed by erosion since the end of the Pleistocene. The area is characterized by wooded hills which have gentle to steep slopes.
The bedrock geology of the area typically consists of gently northeastwardly dipping (ca. 30-50 feet/mile) sediments of Paleozoic age. To the north of Warren County these beds are often capped by young (Pleistocene) deposits of glacial drift and wind blown loess. In the southern areas of the county the bedrock is generally covered by residual soil, colluvium, or alluvium. The rocks underlying the area are predominately carbonates (limestones and dolomites) although beds of sandstone and shale are not infrequent.

The bedrock in Warren County contains some minor folding. The largest known geologic structure in the area is a gentle anticline centered about 2 1/2 miles northwesterly of the town of Warrenton. It is not known if the beds beneath the dam site are affected by the folding.

According to the Soil Conservation Service (Soil Survey of Montgomery and Warren Counties, Missouri, 1978), the soil in the bottom lands at the site consists of silt loam and silty clay loam (CL-ML, CL) of the Dockery series. Upslope of these materials is predominantly lindley loam (CL, CL-ML) and silt loam, clay and clay loam (CL, CL-ML, CH, MH) of the Keswick series. Some silt loam (ML) and cherty clay loam (GC) of the Cedargap series are shown to be located in the channel bottom upstream of the damsite.

The dam is constructed with two spillways. The service spillway is a 22 inch diameter steel pipe located at the right side of the embankment. The inlet end of the steel pipe daylights into the reservoir, with an elevation difference of 4.5 feet from the invert of the pipe to the crest of the dam. A wire mesh trashrack is provided at the inlet. From the inlet the steel pipe extends through the embankment and discharges near the downstream toe of the embankment into
a small pool. The drop from the downstream end of the pipe to the pool is approximately 6 feet. The pipe extends approximately 5 feet out of the embankment and daylights at the downstream end.

The emergency spillway is grass-lined open channel at the right side of the embankment. The channel has a 12 foot bottom width and an elevation difference from crest of the spillway to the crest of the dam of 10 inches. The right bank of the spillway crest is a very steep hillside, while the left slope is 1V to 4H. The spillway channel is grass-lined and flows along the hillside to a point approximately 100 feet from the reservoir where it flows down a steep hillside into the pool located downstream of the service spillway pipe. From this point spillway discharges are carried away from the dam in a stream channel.

There is no low level drain or outlet pipe at the damsite.

b. Location

The dam is located about 1 mile downstream of the extreme headwaters of Lost Creek. From the dam, Lost Creek runs southeasterly for about one mile, then southerly for about 2 1/2 miles and then southwesterly about 11 miles where it flows into the Missouri River near the village of Gore. The upper part of Lost Creek is intermittent but it becomes perennial about 4 miles below the dam.

The main access to the dam from Warrenton, Missouri, is west on the Interstate Highway No. 70 frontage road approximately 4 miles to a gravel road heading south, thence south on this road 1/4 mile to a private road to the
west. The damsite is located at the end of this private road, approximately 1000 feet from the beginning of the road. The dam and reservoir are shown on the Warrenton Quadrangle Sheet (7.5 minute series) in Section 23, Township 47 North, Range 3 West.

c. Size Classification

According to the "Recommended Guidelines for Safety Inspection of Dams", by the U.S. Department of the Army, Office of the Chief Engineer, the dam is classified in the dam size category as being "Small" since its storage is less than 1,000 acre-feet. The dam is also classified as "Small" in dam height category because its height is less than 40 feet. The overall size classification is, accordingly, "Small" in size.

d. Hazard Classification

The dam has been classified as having "High" hazard potential in the National Inventory of Dams, on the basis that in the event of failure of the dam or its appurtenances, excessive damage could occur to downstream property, together with the possibility of the loss of life. Our findings concur with the classification. The estimated damage zone extends approximately 5 miles downstream of the dam. Within the damage zone are six houses, seven buildings, and one road crossing.

e. Ownership

The dam is owned by a private owner, Huelin McDaniels. The mailing address is Huelin McDaniels, 7733 Forsyth Road, Room 1840, Clayton, Missouri, 63105.
f. Purpose of Dam

The purpose of the dam is to impound water for recreational use as a private lake.

g. Design and Construction History

Huelin McDaniels Dam was designed in 1970 by Mr. H. McDaniels of Stolwyk, McDaniel, and Ferrenbach of 7733 Forsyth in Clayton, MO., a local engineering firm.

The dam was constructed by Mr. Lee Moorman of Wentzville, MO.

h. Normal Operational Procedures

There are no normal operational procedures for the lake which is used solely for recreational purposes. The water level in the lake is controlled by rainfall, runoff, evaporation and the elevation of the 22 inch steel pipe spillway.

There is no low level outlet pipe for the lake.
1.3 Pertinent Data *

a. Drainage Area (square miles): 0.69 (0.61+0.08)

b. Discharge at Damsite
 Estimated experienced maximum flood (cfs): NA
 Estimated ungated spillway capacity at maximum pool elevation (cfs): 120

c. Elevation (Feet above MSL)
 Top of dam: 839.5
 Spillway crest:
 Service Spillway 835.0 (Assumed)
 Emergency Spillway 838.7
 Normal Pool 835.0
 Maximum Pool (PMF): 841.92

d. Reservoir
 Length of maximum pool: (Feet) 2850

e. Storage (Acre-Feet)
 Top of dam: 216
 Spillway crest: 107
 Normal Pool: 107
 Maximum Pool (PMF): 344

f. Reservoir Surface (Acres)
 Top of dam: 33.5
 Spillway crest: 16.0
 Normal Pool: 16.0
 Maximum Pool (PMF): 43 +

g. Dam
 Type: Rolled Earthfill
Length: 400 feet
Structural Height: 25 feet
Hydraulic Height: 25 feet
Top width: 30 to 35 feet
Side slopes:
 Downstream 1V to 3H
 Upstream Unknown
Zoning: Unknown
Impervious core: Unknown

Cutoff: Unknown

Grout curtain: Unknown

h. Diversion and Regulating Tunnel
 None

i. Spillway

Type:
 Service Spillway 22 inch diameter iron pipe, uncontrolled
 Emergency Spillway Earth channel, uncontrolled

Length of weir:
 Service Spillway 22 inch diameter iron pipe
 Emergency Spillway 12 feet

Crest Elevation (feet above MSL):
 Service Spillway 835.0
 Emergency Spillway 838.7
j. Regulating Outlets None

Type:
Length:
Closure:
Maximum Capacity:

* The term "maximum pool" used in this section refers to pool at top of
dam elevation unless otherwise specified.
 SECTION 2 : ENGINEERING DATA

2.1 Design

No design data is available for this report. Most of the design information was obtained verbally from Mr. McDaniels. He mentioned that there are two anti-seep collars welded to the 22 inch steel spillway pipe (exact position unknown).

2.2 Construction

According to Mr. McDaniels, the dam was built by Mr. Moorman of Wentzville, a local contractor at that time. Efforts to contact Moorman regarding the construction were futile.

2.3 Operation

There is no data available concerning operation for this lake and dam.

2.4 Evaluation

a. Availability

No design drawings, design computations, construction data, or operation data is available.

In addition, no pertinent data was available for review of hydrology, spillway capacity, flood routing through the reservoir, outlet capacity, slope stability, seepage analysis, or foundation conditions.
b. Adequacy

The lack of engineering data did not allow for a definitive review and evaluation. Therefore, the adequacy of this dam could not be assessed from the standpoint of reviewing and evaluating design, operation and construction data, but is based primarily on visual inspection, past performance history, and sound engineering judgment.

Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record.

c. Validity

No valid engineering data are available.
SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

A visual inspection of the Huelin McDaniels Dam was made on May 18, 1979. The following persons were present during the inspection:

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Disciplines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. M.A. Samad</td>
<td>Engineering Consultants, Inc.</td>
<td>Project Engineer,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydraulics and Hydrology</td>
</tr>
<tr>
<td>Jon Diebel</td>
<td>Engineering Consultants, Inc.</td>
<td>Structural and Mechanical</td>
</tr>
<tr>
<td>Peter Strauss</td>
<td>Engineering Consultants, Inc.</td>
<td>Soils</td>
</tr>
<tr>
<td>Peter Howard</td>
<td>Engineering Consultants, Inc.</td>
<td>Geology</td>
</tr>
<tr>
<td>Kevin Blume</td>
<td>Consoer, Townsend & Assoc., Ltd.</td>
<td>Civil and Structural</td>
</tr>
</tbody>
</table>
Specific observations are discussed below.

b. Dam

The crest and downstream slope of the dam have a grass cover which appears to be adequately protecting the embankment material.

The upstream slope has no riprap protection and has consequently been eroded by wave action. Nearly vertical faces up to 4 feet high are exposed. The dam material where exposed is a low plasticity clay with some silt. There are gravel size pieces of various rock types indicating glacial drift material as well as residual soils.

The downstream embankment slope has some small trees growing on the lower portion near the right abutment. Also, some rodent activity was observed on the upstream slope of the embankment.

There is no evidence of seepage or leakage through or below the dam. There is a small dry natural drainage gulley in natural ground from the left abutment contact and following the downstream toe of the dam at the left half of the embankment. This is believed to be a collector ditch for local runoff and does not affect the dam.

No signs of past or present instability were seen on the embankment or in the foundation except for the wave eroded upstream slope near the crest and an eroded area in the lower part of the downstream slope near the right abutment and above the pipe outlet. This is discussed in the following sections of the report.
There are no outcrops in the vicinity of the dam but, based on a knowledge of the geology of the area from Missouri Geological Survey and Geologic Map of Missouri (1979), one deduces the area is underlain by the Burlington Limestone (Osgean Series, Mississippian). This formation is predominately composed of cherty, crinoidal limestone (Geological Map of Missouri, 1979) dipping northeasterly at about 30 feet per mile.

Near the right abutment there is a cut bank which exposes drift and residual soil. The drift is composed of a mixture of fine grained and frequent glacial erratics from 6-18 inches in diameter and with smaller cobbles and gravels. The rock in the erratics is predominately carbonates but andesite and other rocks can be noted.

Above the emergency spillway by the right abutment, there is a cut bank about 20 feet high with a very steep slope. This and the wooded area above it appear to be unstable. If it were to slide it would block the emergency spillway. The spillway is not founded on rock.

c. Appurtenant Structures

(1) Spillway

The trashrack at the upstream end of the service spillway pipe appears to be doing a satisfactory job of preventing trash from entering and plugging the service spillway pipe. The trashrack was slightly plugged on the day of the inspection. The embankment material at the downstream end of the pipe is sloughing and eroding. This slope erosion has exposed a length of approximately 6 feet of the steel pipe. The erosion is due mostly to surface runoff.
A small seep was observed several feet to the right (looking downstream) and below the spillway pipe. The water at this seep was rust in color, indicating the possibility of flow along the steel spillway pipe. The seep was not a measurable amount of water.

The emergency spillway is located in a slight swale cut into the natural ground next to the right abutment of the dam. The spillway channel is poorly channelized, grass covered and is blocked by a large tree stump which fell from the unstable slope above the channel. This slope is very steep and about 20 feet high. Residual soils, including some glacial drift, undercut trees and some bushes are moving downslope toward the spillway channel. The channel forces a diversion of the spillway flow down a steep side slope adjacent to the right abutment contact of the dam. This area is also adjacent to the outlet end of the pipe spillway. It is believed that this diverted spillway flow eroded some of the material above the spillway pipe in the lower part of the downstream slope.

d. Reservoir Area

The water surface elevation was approximately 835.0 feet above M.S.L. at the time of inspection. The reservoir rim is gently sloping with trees and woods near the shore. With the exception of a small localized undercut slope about 500 feet upstream of the right abutment there was no evidence of instability. This existing area will not significantly affect the capacity of the reservoir.
e. Downstream Channel

The downstream channel is well defined with vegetative and tree growth immediately downstream from the pool created by discharges from the service spillway. The vegetative growth and the trees may affect the hydraulic efficiency of the channel. Some minor erosion could be observed in a few areas in the channel.

3.2 Evaluation

The following items were observed which could affect the stability of the dam, or which will require maintenance within a reasonable period of time.

1. Wave action on the upstream embankment slope causing erosion and sloughing of embankment materials.

2. Trees growing on the downstream embankment slope at the right side of the dam.

3. The eroded material around the discharge end of the service spillway pipe.

4. The rust colored seepage exiting near the service spillway pipe.

5. The poorly channelized emergency spillway causing discharges to flow down the slope at right abutment of the dam, eroding the material at this abutment.
6. Rodent activity on the upstream slope of the embankment.

7. An unstable right bank of the emergency spillway channel.
SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

Huelin McDaniels Dam impounds water for recreational purposes only and normal procedure is to allow it to remain as full as possible at all times. There is no periodic procedures for operation of the lake and dam.

4.2 Maintenance of Dam

The dam is maintained by the few owners that live in the immediate area. The maintenance of the dam seems to be somewhat lacking. There are some trees growing on the downstream slope. The grass on the slopes and crest is kept low. Some minor rodent activity was detected on the upstream slope, and sloughing due to wave activity was also observed on the upstream slope of the embankment.

The trashrack structure is made up of several heavy gauge close meshed screens which forms a wall around the inlet of the spillway. The trashrack and spillway entrance were slightly plugged on the day of the inspection.

At the outlet end of the spillway pipe and on the adjacent hillside there was a region of erosion. Some remedial measures will be required to repair this area and prevent future problems.
4.3 Maintenance of Operating Facilities

There is no low level outlet facility for this lake and dam, and the service spillway is a self-functioning pipe which requires no operation.

4.4 Description of Any Warning System in Effect

The inspection team is not aware of any warning system in effect.

4.5 Evaluation

It appears that the maintenance of Huelin McDaniels Dam is somewhat lacking. There are several deficiencies which were noticed by the inspection team which should be corrected within a reasonable period of time. The deficiencies are described in Sec. 7.1.
5.1 Evaluation of Features

a. Design

The watershed area of Huelin McDaniels Dam upstream from the dam axis consists of approximately 440 acres. There is a dam located upstream of Huelin McDaniels Dam. The watershed area between the upstream dam and Huelin McDaniels Dam investigated in this report is about 390 acres. Most of the watershed area is wooded and covered with grass. Land gradients in the higher regions of the watershed average roughly 10 percent, and in the lower areas surrounding the reservoir average about 5 percent. Huelin McDaniels Dam is located on the headwaters of Lost Creek. The reservoir is about one mile downstream from the extreme headwaters of Lost Creek. At its longest arm the watershed is approximately one mile long. A drainage map showing the watershed area is presented as Plate 1 in Appendix B.

Evaluation of the hydraulic and hydrologic features of Huelin McDaniels Dam was based on criteria set forth in the Corps of Engineers' "Recommended Guidelines for Safety Inspection of Dams", and additional guidance provided by the St. Louis District of the Corps of Engineers. The Probable Maximum Flood (PMF) was calculated from the Probable Maximum Precipitation (PMP) using the methods outlined in the U.S. Weather Bureau Publication, Hydrometeorological Report No. 33. The probable maximum storm duration was set at 24 hours, and storm rainfall distribution was based on criteria given in EM
1110-2-1411 (Standard Project Storm). The SCS method was used for deriving the unit hydrographs, utilizing the Corps of Engineers' computer program HEC-1 (Dam Safety Version). Two unit hydrographs were derived. One unit hydrograph was for the drainage area above the upstream dam; another unit hydrograph was for the drainage area between the upstream dam and Huelin McDaniels Dam. The parameters of the unit hydrographs are presented in Appendix B. The SCS method was used for determining loss rate. The hydrologic soil group of the watershed was determined by use of published soil maps. The hydrologic soil group of the watershed and the SCS curve number are also presented in Appendix B. The curve number, unit hydrograph parameters, PMP index rainfall and the percentages for various durations were directly input to the HEC-1 (Dam Safety Version) computer program to obtain the PMF hydrograph. The computed peak discharges of the PMF and one-half of the PMF at the upstream reservoir are 1,042 cfs and 521 cfs respectively. The peak discharges of the PMF and one-half of the PMF between the upstream dam and Huelin McDaniels Dam are 5,830 cfs and 2,915 cfs respectively.

Both the PMF and one-half of the PMF inflow hydrographs at the upstream dam were routed through the upstream reservoir by the Modified Puls Method, also utilizing the HEC-1 (Dam Safety Version) computer program. The peak outflow discharges for the PMF and one-half of the PMF at the upstream dam are 864 cfs and 381 cfs, respectively. These outflow hydrographs were combined with the PMF and one-half of the PMF for Huelin McDaniels Dam. The combined hydrographs for both the PMF and one-half of the PMF, were then routed through Huelin McDaniels Dam reservoir. The peak outflow discharges for the PMF and one-half of the PMF at Huelin McDaniels Dam are 4,860 cfs and 2,233 cfs respectively. Both the PMF and one-half of the PMF, when routed through the reservoir re-
sulted in overtopping of the dam.

The stage-outflow relations for the spillways were prepared from field notes, and sketches, prepared during the field inspection. The reservoir stage-capacity data was based on the U.S.G.S. Warrenton Quadrangle topographic map (7.5 minutes series). The spillway and overtop rating curve and the reservoir capacity curve for Huelin McDaniels Dam are presented in Plates 2 & 3 respectively in Appendix B.

From the standpoint of dam safety, the hydrologic design of a dam aims at avoiding overtopping. Overtopping is especially dangerous for an earth dam because the downrush of waters over the crest can erode the dam embankment and release all the stored water into the downstream floodplain. The safe hydrologic design of a dam calls for a spillway discharge capability in combination with an embankment crest height that can handle a very large and exceedingly rare flood without overtopping.

The Corps of Engineers designs its dams to safely pass the Probable Maximum Flood that is estimated could be generated from the upstream watershed. This is the generally accepted criterion for major dams throughout the world, and is the standard for dam safety where overtopping would pose any threat to human life. According to the Corps criteria, the hydrologic requirement for safety for this dam is the capability to pass from one-half of the Probable Maximum Flood to the Probable Maximum Flood without overtopping.
b. Experience Data

It is believed that no records of reservoir stage or spillway discharge are maintained for this site.

c. Visual Observations

Observations made of the spillway during the visual inspection are discussed in Section 3.1c(1) and evaluated in Section 3.2.

d. Overtopping Potential

As indicated in Section 5.1-a, both the Probable Maximum Flood and one-half of the Probable Maximum Flood, when routed through the reservoir, resulted in overtopping of the dam. The peak outflow discharges for the PMF and one-half of the PMF at Huelin McDaniels are 4,860 cfs and 2,233 cfs respectively. The PMF overtopped the dam crest by 2.42 feet, and one-half of the PMF overtopped the dam crest by 1.39 feet. The total duration of embankment overflow is 8.83 hours during the PMF, and 5.67 hours during one-half of the PMF. The spillways for Huelin McDaniels Dam are capable of passing approximately 15 percent of the PMF just before overtopping the dam.

The computed one percent and ten percent chance floods using 100-year and 10-year, 24 hour rainfall data, respectively, were routed through the reservoir. The routing results indicate the spillway/reservoir system will accommodate the 10-year flood without overtopping the dam and the dam will be overtopped by 0.28 feet during the occurrence of the 100-year flood.

-24-
The failure of the dam could cause extensive damage to the property downstream of the dam and possible loss of life. The estimated damage zone extends approximately 5 miles downstream of the dam. Within the damage zone are six houses, seven buildings and one road crossing.
6.1 Evaluation of Structural Stability

a. Visual Observations

There were no signs of settlement observed on the embankment or foundation during the visual inspection. The erosion and sloughing of embankment materials on the upstream slope of the embankment is fairly significant. However, the wide crest of the embankment reduces the seriousness of the erosion. The condition should be watched and the slope stabilized if the erosion continues. The trees on the downstream slope of the embankment present a hazard to the structural stability of the embankment, and should be cut in the near future. The rodents should be eliminated from the embankment.

The seepage exiting near the service spillway pipe should be investigated. The rust color of the seepage indicates the water is flowing near the spillway pipe, which is an undesirable condition. The recommended seepage and stability study should address in detail this condition.

The eroded embankment material around the service spillway pipe and on the hillside adjacent to this pipe will decrease the structural stability of the embankment.
The emergency spillway channel should be reworked to force discharges to flow to the downstream edge of the ledge above the streambed prior to flowing into the streambed. This will prevent further erosion to the embankment material and the adjacent hillside. The eroded areas will have to be repaired by compacting earthfill into the void areas. A headwall may be required to properly stabilize the embankment material surrounding the service spillway pipe.

The right bank of the spillway channel appears to be unstable as well. Prolonged flows through the spillway may cause a failure of this slope, which would block the spillway channel. This slope should be stabilized to prevent a failure from occurring.

b. Design and Construction Data

No design or construction data relating to the structural stability of the dam or appurtenant structures were found. No seepage and stability analyses were available for review.

c. Operating Records

No operating records are available relating to the stability of the dam or appurtenant structures. Water levels have not been recorded, however, the reservoir was full on the day of inspection, and is assumed to be close to full at all times.
d. Post Construction Changes

No post construction changes are known to exist which will effect the structural stability of the dam.

e. Seismic Stability

According to the Seismic Zone Map of Contiguous States, Form TM 5-809-10/NAVFAC P-355/AFM 88-3 Chapter 13; April 1973 the portion of Missouri in which Huelin McDaniels Dam is located is in Seismic Zone 2. This means there is only moderate damage probability. A detailed seismic analysis is not felt to be necessary for this embankment under present conditions.
7.1 Dam Assessment

The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

It should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team.

It is also important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that an unsafe condition could be detected.

a. Safety

The spillway capacity of Huelin McDaniels Dam was found to be "Seriously Inadequate". The spillway/reservoir system will accommodate only 15 percent of the PMF without overtopping the dam.
The surface soils on the embankment are silty soils. The dam is overtopped by over 2 feet during the PMF and the duration of embankment overflow is about 9 hours. If the body of the dam is made up of silty soils, the dam would be susceptible to erosion and failure during overtopping.

The embankment is in need of some maintenance to improve its safety. The erosion of embankment materials on the upstream slope of the dam is not serious at this time, but should be monitored, and repairs made as required. The trees growing on the downstream embankment slope should be cut, and future growth prevented. The rodents should be eliminated from the embankment.

The embankment in the vicinity of the service spillway discharge pipe is in questionable condition. The rust colored seepage exiting from the embankment near the steel spillway pipe indicates a potentially hazardous condition and should be investigated. The substantial erosion from flows through the emergency spillway should be repaired, and the spillway channel reworked to prevent discharges from continuing to erode the embankment and adjacent hillside. The right bank of the emergency spillway should be stabilized to prevent a slope failure which would block the spillway channel.

No seepage and stability analyses were available for review. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" should be performed.
b. Adequacy of Information

Adequate information concerning the dam and appurtenant structures is not available. No seepage and stability analyses were available for review.

c. Urgency

The remedial measures recommended in Paragraph 7.2 should be accomplished in the near future. The items recommended in paragraph 7.2a should be pursued on a high priority basis.

d. Necessity for Phase II Inspection

Based on results of the Phase I inspection, and if the remedial measures recommended in Paragraph 7.2 are undertaken as specified in Sec. 7.1c, a Phase II inspection is not felt to be necessary.

7.2 Remedial Measures

a. Alternatives:

Spillway capacity and/or height of dam should be increased to pass the PMF without overtopping the dam.

b. O & M Procedures:

1. Reroute discharges through the emergency spillway channel to prevent further erosion of the embankment near the service spillway pipe and to the adjacent hillside.
2. Seepage and stability analyses should be performed by a professional engineer experienced in the design and construction of dams. This study should concentrate on the area exhibiting seepage on the downstream slope near the service spillway pipe.

3. Remove all trees and brush from the embankment slopes under guidance of an engineer experienced in the design and construction of earthen dams.

4. Eliminate rodents from the embankment.

5. Stabilize the right cut bank of the emergency spillway channel.

6. Monitor the condition of the upstream slope which is sloughing and eroding due to wave action, and make required repairs.

7. The owner should initiate the following programs.

 (a) Periodic inspection of the dam by a professional engineer experienced in the design and construction of earthen dams.

 (b) Set up a maintenance schedule and log all visits to the dam for operation, repairs and maintenance.
QUATERNARY
{ Qal - ALLUVIUM

PENNSylvANIAN
{ Pm - MARMATON GROUP
{ Pcc - CHEROKEE GROUP

MISSISSIPPIAN
{ Mm - ST. LOUIS LIMESTONE
SALEM FORMATION
WARSAW FORMATION

Mo - BURLINGTON-KEOKUK
FORMATION

Mk - CHOTEAU GROUP

X LOCATION OF DAM MO 30508

REFERENCE:
GEOLOGIC MAP OF MISSOURI,
MISSOURI GEOLOGIC SURVEY,
1979.

10 0 10
SCALE OF MILES

GEOLOGIC MAP
OF WARREN COUNTY
AND ADJACENT AREA
APPENDIX A

PHOTOGRAPHS TAKEN DURING INSPECTION
PHOTO INDEX
FOR
HUELIN McDANIELS DAM
Huelin McDaniels Dam

D1 - Upstream embankment slope
D2 - Downstream embankment slope
D3 - Sloughing on upstream embankment slope
D4 - Service spillway intake
D5 - Service spillway discharge
D6 - Sloughed material near service spillway pipe
D7 - Rust-colored seepage near service spillway pipe
D8 - Emergency spillway
D9 - Emergency spillway channel
D10 - Eroded hillside near spillway channel
D11 - Eroded hillside near spillway channel
D12 - Unstable bank in reservoir rim
APPENDIX B

HYDROLOGIC COMPUTATIONS
WARRENTON QUADRANGLE

LOCATION OF DAM

HUELIN McDANIELS DAM (MO. 30508)
DRAINAGE BASIN

CONTOUR INTERVAL 20 FEET
DATUM IS MEAN SEA LEVEL
DRAINAGE BOUNDARY — — — —
<table>
<thead>
<tr>
<th>Time (h)</th>
<th>T (°C)</th>
<th>W (kW)</th>
<th>Q (L/h)</th>
<th>H (m)</th>
<th>N (rpm)</th>
<th>R (m)</th>
<th>W (kg)</th>
<th>S (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>2.4</td>
<td>3.9</td>
<td>1.6</td>
<td>1.5</td>
<td>0.5</td>
<td>0.8</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>2.7</td>
<td>3.4</td>
<td>1.3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>2.0</td>
<td>3.8</td>
<td>1.6</td>
<td>1.5</td>
<td>0.5</td>
<td>0.9</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>1.5</td>
<td>3.5</td>
<td>1.8</td>
<td>0.5</td>
<td>0.5</td>
<td>0.8</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>1.7</td>
<td>3.7</td>
<td>1.5</td>
<td>1.5</td>
<td>0.5</td>
<td>0.8</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>2.0</td>
<td>3.3</td>
<td>1.8</td>
<td>0.5</td>
<td>0.5</td>
<td>0.9</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>2.2</td>
<td>3.0</td>
<td>1.6</td>
<td>1.5</td>
<td>0.5</td>
<td>0.8</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td>2.4</td>
<td>2.8</td>
<td>1.3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>2</td>
</tr>
</tbody>
</table>

Service supremacy

Ft = 888.2

Emergency spillway and overtop discharge rating curve.

Water level = 52

Date: 5-21
Spillway Rating Curve

Assume no tail water effects and pressure flow control above ELEV. 937.

El = 835 (assumed)

22" Iron Pipe

Assume \(E = 0.00085' \) \(\frac{b}{d} = 0.00085 = 0.00046 \)

Assume \(K = 0.5 \)

\[
H_1 = \left(1 + Ke + \frac{f}{d} \right) \frac{V^2}{2g}
\]

\[
H_1 = \left(1.5 + 0.0053 \frac{100}{183} \right) \frac{V^2}{2g}
\]

\[
H_1 = 2.87 \frac{V^2}{2g}
\]

\[
V = \sqrt{\frac{2g H_1}{2.87}} = 4.74 \sqrt{H_1}
\]

\[
Q = A \cdot V = \frac{\pi}{4} (1.88)^2 \cdot 4.74 \sqrt{H_1} = 412.96 \sqrt{H_1}
\]
<table>
<thead>
<tr>
<th>Reservoir Water Surface Elev.</th>
<th>Head on Spillway (ft)</th>
<th>Spillway Discharge (cfs)</th>
<th>Emergency Spillway Discharge (cfs)</th>
<th>Overtop Discharge (cfs)</th>
<th>Combined Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>835.0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>837.0</td>
<td>20.4</td>
<td>56</td>
<td>-</td>
<td>-</td>
<td>56</td>
</tr>
<tr>
<td>838.7</td>
<td>22.1</td>
<td>59</td>
<td>0</td>
<td>-</td>
<td>59</td>
</tr>
<tr>
<td>839.0</td>
<td>22.77</td>
<td>60</td>
<td>39.79</td>
<td>-</td>
<td>39.79</td>
</tr>
<tr>
<td>837.79</td>
<td>23.19</td>
<td>60</td>
<td>168.0</td>
<td>167.40</td>
<td>335.40</td>
</tr>
<tr>
<td>840.04</td>
<td>23.94</td>
<td>60</td>
<td>165.85</td>
<td>428.56</td>
<td>654.41</td>
</tr>
<tr>
<td>840.79</td>
<td>24.19</td>
<td>61</td>
<td>328.50</td>
<td>1547.2</td>
<td>1875.72</td>
</tr>
<tr>
<td>841.59</td>
<td>24.94</td>
<td>62</td>
<td>642.60</td>
<td>3065.2</td>
<td>3707.81</td>
</tr>
<tr>
<td>842.29</td>
<td>25.69</td>
<td>63</td>
<td>949.16</td>
<td>4902.5</td>
<td>5951.65</td>
</tr>
<tr>
<td>843.09</td>
<td>26.49</td>
<td>64</td>
<td>1293.69</td>
<td>7058.9</td>
<td>8352.64</td>
</tr>
</tbody>
</table>
HUELIN McDANIELS DAM (MO. 30508)
SPILLWAY & OVERTOP RATING CURVE
ASSUME PRESSURE FLOW CONTROLS.

CULVERT FLOWS

\[L = 20' \text{ (assumed)} \]

\[U/3 \]

\[D/3' \text{ CMP} \]

\[EL 855 \text{ (assumed)} \]

\[EL 855.5 \]

\[H_1 = (1 + K_e + f \frac{L}{D}) \frac{V^2}{2g} \]

\[H_4 = (1.1 + 0.021 \frac{20}{1}) \frac{V^2}{2g} \]

\[H_6 = 1.52 \frac{V^2}{2g} \]

\[V = \sqrt{\frac{2g H_7}{1.52}} = 6.51 \sqrt{H_7} \]

\[Q = A \cdot V = \frac{\pi}{4} (1')^2 \times 6.51 \sqrt{H_7} \]

\[Q = 5.11 \sqrt{H_7} \]
Reservoir Area Capacity

<table>
<thead>
<tr>
<th>Elev. M.S.L. (Ft)</th>
<th>Reservoir Surface Area (Acres)</th>
<th>Incremental Volume (Ac.-A)</th>
<th>Total Volume (Ac.-A)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>815</td>
<td>0</td>
<td></td>
<td>0</td>
<td>East Streambed at Center of Dam</td>
</tr>
<tr>
<td>835</td>
<td>16</td>
<td>107</td>
<td>107</td>
<td>Water Surface as shown on Quadrangle Elev. Elevation</td>
</tr>
<tr>
<td>838.7</td>
<td>30</td>
<td>84</td>
<td>191</td>
<td>Emergency Spillway Crest Elevation</td>
</tr>
<tr>
<td>839.5</td>
<td>33.5</td>
<td>25</td>
<td>216</td>
<td>Top of Dam Elevation</td>
</tr>
<tr>
<td>840</td>
<td>36</td>
<td>17</td>
<td>233</td>
<td>Area measured on USGS. Map.</td>
</tr>
<tr>
<td>860</td>
<td>83</td>
<td>1158</td>
<td>1391</td>
<td>Area measured on USGS Map.</td>
</tr>
<tr>
<td>ELEV. M.S.L. (FE)</td>
<td>RESERVOIR SURFACE AREA (ACRES)</td>
<td>INCREMENTAL VOLUME (AC-FT)</td>
<td>TOTAL VOLUME (AC-FT)</td>
<td>REMARKS</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>837</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>855</td>
<td>4.35</td>
<td>26.1</td>
<td>26.1</td>
<td></td>
</tr>
<tr>
<td>857</td>
<td>5.25</td>
<td>9.6</td>
<td>35.7</td>
<td></td>
</tr>
<tr>
<td>860</td>
<td>6.14</td>
<td>17.1</td>
<td>52.8</td>
<td></td>
</tr>
<tr>
<td>880</td>
<td>13.57</td>
<td>183.3</td>
<td>236.1</td>
<td></td>
</tr>
</tbody>
</table>
DAM NO. MO 30508

DETERMINATION OF JMP

1. Determine drainage area of the basin
 \[D.A. = 440 \text{ (390+50) Acres} \]

2. Determine JMP Index Rainfall
 - Location of centroid of basin
 \[\text{Long.} = 91°34'46" \quad \text{Lat.} = 38°49'24" \Rightarrow \text{JMP} = 24" \]

3. Determine basin rainfall indices of percentage of JMP Index Rainfall for various durations
 - Location: \[\text{Long.} = 91°34'46" \quad \text{Lat.} = 38°49'24" \]
 \[\Rightarrow \text{Zone 7} \]

<table>
<thead>
<tr>
<th>Duration (Hrs)</th>
<th>Percent of Index Rainfall (%)</th>
<th>Total Rainfall (Inches)</th>
<th>Rainfall Movement (Inches)</th>
<th>Duration of Movement (Hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>100</td>
<td>2.4</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>120</td>
<td>20.8</td>
<td>4.8</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>130</td>
<td>31.2</td>
<td>2.4</td>
<td>12</td>
</tr>
</tbody>
</table>
1. Drainage Area, \(A = 290 \text{ sq mi} \)
2. Length of Stream = \((2.25 \times 2000) / 5280 = 0.85 \text{ mi}\)
3. Elevation at drainage divide along the longest stream, \(H_1 = 950 \text{ ft} \)
4. Reservoir elevation at spillway crest, \(H_2 = 835 \text{ ft} \)
5. Difference in Elevation, \(\Delta H = 950 - 835 = 115 \text{ ft} \)
6. Average slope of stream = \(\frac{\Delta H}{L} = \frac{115}{0.85 \times 5280} = 2.6\% \)
7. Time of concentration:
 a) By Kirpich formula:
 \[
 T_c = \left(\frac{11.9 \times L^3}{\Delta H} \right)^{0.365} = \left(\frac{11.9 \times 85^3}{115} \right)^{0.365} = 0.36 \text{ hr.}
 \]
 b) By velocity estimate:
 Slope = 2.6\% \Rightarrow \text{ Avg. Velocity} = 3.68 \text{ ft/sec}
 \[
 T_c = \frac{0.85 \times 5280}{3 \times 60 \times 60} = 0.42 \text{ hr or} \frac{0.42}{60} = 0.007 \text{ hr.}
 \]
 Say \(T_c = 0.40 \text{ hr.} \)
8. Lag time, \(L_t = 0.6 \times 0.40 = 0.24 \text{ hr.} \)
9. Unit duration \(D = \frac{L_t}{3} = \frac{0.24}{3} = 0.08 < 0.083 \text{ hr} \)
 \[\text{Use } D = 0.083 \text{ hr} = 5 \text{ min.} \]
10. Time to Peak, \(T_p = D + L_t = 0.083 + 0.24 = 0.32 \text{ hr.} \)
11. Peak Discharge, \(q_p = \frac{484 \times A}{T_p} = \frac{484 \times 0.61}{0.32} = 1054 \text{ ft}^3/\text{sec} \)
1. DRAINAGE AREA, A = 50 AC = 0.08 SQ mi

2. LENGTH OF STREAM = (1.0" x 2000' / 5280) = 0.38 mi

3. ELEVATION OF DRAINAGE DIVIDEND ALONG THE LONGEST STREAM, Hi = 914'

4. RESERVOIR ELEVATION AT SPILLWAY CREST, H2 = 850'

5. DIFFERENCE IN ELEVATION, ΔH = 914' - 850' = 64'

6. AVERAGE SLOPE OF STREAM = ΔH / L = 0.38

7. TIME OF CONCENTRATION:

a) BY KIRCH FORMULA

\[T_c = \left(\frac{11.9 \times 2.3}{0.385} \right) \frac{0.385}{64} = 0.17 \text{ hr} \]

b) BY VELOCITY ESTIMATE

SLOPE = 3.2% ⇒ AVG VELOCITY = 3.4 ft/s

\[T_c = \frac{0.38 \times 5280}{3 \times 30 \times 60} = 0.19 \text{ hr} \]

USG: Tc = 0.18 hr.

8. LAG TIME, \(C_l = 0.4 \times 0.18 = 0.11 \text{ hr} \)

9. UNIT DURATION, \(D = \frac{L}{3} = 0.44 \text{ hr} = 0.04 \text{ min} \)

USG: \(D = 0.0834 \text{ min} \)

10. TIME TO PEAK, \(T_p = \frac{C_l}{2} + \frac{L}{3} = 0.0834 + 0.11 \text{ hr} = 0.15 \text{ hr} \)

11. PEAK DISCHARGE, \(Q_p = \frac{484 \times 0.08}{0.15} = 218 \text{ CFS} \)
1. The soils in the watershed consist of B, C, and D group soils. The predominant
soil group seems to be 'C.' Assume soil group 'C' for the
entire watershed.

2. The watershed is mostly wooded and covered with grass. Assume 'Fair'
hydrologic condition for infiltration
Thus, CN = 73 for soil group C & AMC-II

⇒ CN = 87 for AMC-III
INFLOW PMF AND ONE-HALF PMF HYDROGRAPHS
HYDROGRAPH PACKAGE

File: FLOOD
Version: 3.6
Date: JULY 1979
Last Modification: 24 FEB 79

###/base of file

SWAMPED INLET MODEL

MUSKELLUNGIN DAM ORGANIC

DRAINAGE AREA: 850.0

INLET PRECAUTIONS:

INPUT HYDROGRAPH PARAMETERS:

<table>
<thead>
<tr>
<th>INPUT</th>
<th>LOCATION</th>
<th>TIME</th>
<th>METRIC</th>
<th>SIPHT</th>
<th>IRRIT</th>
<th>NISTAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

MULTI-POLY ANALYSIS TO BE PERFORMED

OUTPUT:

RUN: 1

AVERAGE:

AVERAGE:

AREA:

AREA:

HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>INTDG</th>
<th>LUNO</th>
<th>TARC</th>
<th>SVAP</th>
<th>TESN</th>
<th>TSIPH</th>
<th>SITAE</th>
<th>ITAKE</th>
<th>ITAMP</th>
<th>IAUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>

PRECIP DATA

<table>
<thead>
<tr>
<th>SPEC</th>
<th>PER</th>
<th>PRE</th>
<th>R12</th>
<th>R14</th>
<th>R20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

LOSS DATA

<table>
<thead>
<tr>
<th>IRRIP</th>
<th>SLPF</th>
<th>DTAF</th>
<th>R0O1</th>
<th>ERTA</th>
<th>DRAF</th>
<th>ORP</th>
<th>SRTF</th>
<th>CILL</th>
<th>ALTIF</th>
<th>RTIFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

CURVE NO: 0.07
WEIGHT: 0.01
EFFECT: 0.01

UNIT HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>TC</th>
<th>LDAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

RECESSION DATA

<table>
<thead>
<tr>
<th>START</th>
<th>DREDO</th>
<th>PREDO</th>
<th>RTID</th>
<th>R102</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

TIME INCREMENT: 0.01
INCOMPLETE EQUATIONS:

UNIT HYDROGRAPH: END OF PERIOD ORDINATES.

LEAD: 0.00 HOURS
LAG: +1 VOL = 1.00
Table: Hydrograph Data

<table>
<thead>
<tr>
<th>Hydrograph Data</th>
<th>Hydrograph Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrograph Data</td>
<td>Hydrograph Data</td>
</tr>
</tbody>
</table>

Table: Precip Data

<table>
<thead>
<tr>
<th>Precip Data</th>
<th>Precip Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precip Data</td>
<td>Precip Data</td>
</tr>
</tbody>
</table>

Table: Loss Data

<table>
<thead>
<tr>
<th>Loss Data</th>
<th>Loss Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss Data</td>
<td>Loss Data</td>
</tr>
</tbody>
</table>

Table: Unit Hydrograph Data

<table>
<thead>
<tr>
<th>Unit Hydrograph Data</th>
<th>Unit Hydrograph Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Hydrograph Data</td>
<td>Unit Hydrograph Data</td>
</tr>
</tbody>
</table>

Table: Recession Data

<table>
<thead>
<tr>
<th>Recession Data</th>
<th>Recession Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recession Data</td>
<td>Recession Data</td>
</tr>
<tr>
<td>PEAK</td>
<td>3-HOUR</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>CMG</td>
<td>295.0</td>
</tr>
<tr>
<td>CMG</td>
<td>940.4</td>
</tr>
<tr>
<td>INCHES</td>
<td>11.74</td>
</tr>
<tr>
<td>FT</td>
<td>29.12</td>
</tr>
<tr>
<td>THOUS CUM</td>
<td>4.71</td>
</tr>
</tbody>
</table>

CONEINE HYDROGRAPHS BEFORE RAIN

<table>
<thead>
<tr>
<th>SEAS</th>
<th>IODA</th>
<th>IDORG</th>
<th>IODG</th>
<th>IOP</th>
<th>JURL</th>
<th>IOP</th>
<th>IOD</th>
<th>IOD</th>
<th>IOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1969</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1971</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1973</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1975</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1977</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1979</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1981</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1983</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1985</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SUM OF HYDROGRAPHS AT 24.3 MPH DEGN 1 WITH 1

1960	0	0	0	0	0	0	0	0	0
1969	0	0	0	0	0	0	0	0	0
1971	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0
1979	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0	0
1983	0	0	0	0	0	0	0	0	0
1985	0	0	0	0	0	0	0	0	0
SUMMARY OF PMF AND ONE-HALF PMF FLOOD ROUTING
<table>
<thead>
<tr>
<th>ELEVATION</th>
<th>INITIAL VALUE</th>
<th>SPILLWAY GROSS</th>
<th>TOP OF DAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUTFLOW</td>
<td>655.00</td>
<td>885.00</td>
<td>857.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAXIMUM</th>
<th>RESERVOIR</th>
<th>MAXIMUM</th>
<th>STORAGETOP</th>
<th>OVER GROSS</th>
<th>CUTFLOW</th>
<th>MAX</th>
<th>OVER</th>
<th>DURATION</th>
<th>MAX</th>
<th>DURATION</th>
<th>FAILURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>680</td>
<td>602.57</td>
<td>452.7</td>
<td>864.0</td>
<td>14.50</td>
<td>15.75</td>
<td>840</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERCENT OF PMF FLOOD ROUTING
EQUAL TO SPILLWAY CAPACITY
RUN-AREA RUNOFF COMPUTATION

INPUT PRECIPITATION RATIOS:
- Unit Hydrograph Parameters for No. 10508 Dam

<table>
<thead>
<tr>
<th>STAG</th>
<th>ICOMP</th>
<th>IECQ</th>
<th>TAPP</th>
<th>UPLT</th>
<th>JUPT</th>
<th>INAME</th>
<th>ISTAG</th>
<th>IAUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

HYDROGRAPH DATA
- HYDRO TUCK TUSC SNAP TAPD TAPC RATIO TENDU IESAME LOCAL

<table>
<thead>
<tr>
<th>SPFF</th>
<th>PMS</th>
<th>PRECIP DATA</th>
<th>ADJ</th>
<th>RRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>26.00 117.00 128.00 130.00</td>
<td>0.00 0.00 0.00</td>
<td></td>
</tr>
</tbody>
</table>

LOSS DATA
- LIGHT STARK DLTH RYPL CRAIN THDS RYDOK STPTL CVSTL ALBNK ALHM RYM

<table>
<thead>
<tr>
<th>CURV NO</th>
<th>M7.00</th>
<th>WETNESS</th>
<th>0.00</th>
<th>EFFECT CD</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

UNIT HYDROGRAPH DATA
- TCH 0.00 EALH 0.00

RECESSION DATA
- STRIG 0.00 ORCH 0.00 4TILLS 1.00

END-OF-PERIOD FLOW
- HOA HDN PERIOD RAIN EXCS LOSS COMP Q

<table>
<thead>
<tr>
<th>SUM</th>
<th>31.00</th>
<th>35.00</th>
</tr>
</thead>
</table>

CONSTANT HYDROGRAPHS

CONVENE HYDROGRAPHS BEFORE ROUTING

<table>
<thead>
<tr>
<th>ETAG</th>
<th>ICOP</th>
<th>FECON</th>
<th>IETAG</th>
<th>ICOMP</th>
<th>JUFE</th>
<th>JUPT</th>
<th>INAME</th>
<th>ISTAG</th>
<th>IAUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

HYDROGRAPH ROUTING

ROUTE CONVENE HYDROGRAPHS THROUGH

| 80.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |

<table>
<thead>
<tr>
<th>Operation</th>
<th>Operation</th>
<th>Operation</th>
<th>Operation</th>
<th>Operation</th>
<th>Operation</th>
<th>Operation</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
</tr>
<tr>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
<td>345</td>
<td>678</td>
</tr>
<tr>
<td>901</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
</tr>
<tr>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
</tr>
<tr>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
<td>345</td>
<td>678</td>
<td>901</td>
</tr>
<tr>
<td>234</td>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
<td>345</td>
</tr>
<tr>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
<td>345</td>
<td>678</td>
</tr>
<tr>
<td>901</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
</tr>
<tr>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
</tr>
<tr>
<td>678</td>
<td>901</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
</tr>
<tr>
<td>901</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
</tr>
<tr>
<td>234</td>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
<td>345</td>
</tr>
<tr>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
<td>345</td>
<td>678</td>
</tr>
<tr>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
<td>345</td>
<td>678</td>
<td>901</td>
</tr>
<tr>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
</tr>
<tr>
<td>456</td>
<td>789</td>
<td>012</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td>567</td>
</tr>
<tr>
<td>789</td>
<td>012</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td>567</td>
<td>890</td>
</tr>
<tr>
<td>012</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>123</td>
</tr>
<tr>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
</tr>
<tr>
<td>678</td>
<td>901</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
</tr>
<tr>
<td>901</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>123</td>
<td>456</td>
<td>789</td>
<td>012</td>
</tr>
</tbody>
</table>