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I. INTRODUCTION 

Recent trends in projectile design have led to shapes with greater length 
and more slender ogives. Unexpected flight stability problems have been 
encountered due to decreased aerodynamic stability of these new shapes. 
Clearly, conventional aerodynamic predictive capabilities were not adquate. 
In an effort to avoid these problems in the future, the Ballistic Research 
Laboratory has been developing advanced numerical computational techniques for 
computing projectile aerodynamic characteristics to improve shell design 
technology. 

Substantial progress has been made in the past 10 years in the develop- 
ment of aerodynamic computational techniques and in the availability of high 
speed digital computers. This progress has made it possible to begin to use 
advanced finite-difference computational techniques to perform parametric 
aerodynamic studies for evaluation of proposed design concepts. 

The use of advanced numerical computational techniques for a parametric 
study is difficult to justify to compute only static aerodynamic parameters 
since cheaper, less complex techniques such as Ref. (1), (2) and (3) are 
available. However, if dynamic derivatives such as Magnus and pitch damping 
are considered important and if viscous drag is of interest, then the advanced 
computational techniques are justified and, in fact, must be used. This paper 
reports the initial results of an ongoing research effort at BRL to form an 
advanced aerodynamic computation capability that will provide the shell de- 
signer with a complete package of static and dynamic aerodynamic coefficients 
for use in design studies. 

II. COMPUTATIONAL TECHNIQUES 

A. Scope of Effort 

Three dimensional finite-difference flow field computational techniques 
for inviscid and turbulent viscous flow have been applied to generate a com- 
prehensive set of aerodynamic coefficients for cone-cylinder (CC), tangent- 
ogive-cylinder (TOC), and secant-ogive-cylinder (SOC) body configurations. 
The model geometries considered in this study are shown in Figure 1. Body 
lengths up to seven calibers and ogive lengths of two, three, and four cali- 
bers have been considered. The aerodynamic coefficients computed are pitching 

1. Whyte,  R.,   "SPIN-73,  An Updated Version of the Spinner Computer Program," 
Piaatinny Arsenal  Teehnical Report 4588,   November 1973. 

2. Moore,   E.G.  and MaKerley,   C.W.,   "Aerodyncmias of Guided and Unguided 
Weapons;  Part II - Computer Program and Usage",   NWL TR-3036,  1974. 

3. Moore,   F.G.  and Swanson,  R.C.,   "Aerodynamics of Tactical Weapons to Maah 
Number 3 and Angle of Attack 15°,  Part I -  Theory and Application", 
NSWC/DL TR-3584,   February 1977. 



moment, normal force, center of pressure, Magnus moment, Magnus force, Magnus 
center of pressure, form and viscous drag, roll damping and pitch damping. 
The sign convention for the pitch plane and Magnus forces is shown in Figure 
2. All aerodynamic coefficients are computed in a conceptually exact 
manner. The only empirical input is that required for the modeling of turbu- 
lent eddy viscosity. 

The computations have been carried out for a Mach number range of 
1.75 < M < 5. These computations were all performed for an angle of attack of 
1°, a nondimensional spin rate (PD/V) of 0.19, and for sea level atmospheric 
free-stream conditions.  Specific comparisons to wind tunnel data were made 
for the tunnel operating conditions. 

B. Coupled Inviscid-Viscous Computations 

The sequence of computations which are run in order to compute the static 
aerodynamic parameters, including turbulent viscous effects, is shown in 
Figure 3. Each block represents a separate computer code. These codes have 
been combined using the overlay technique on the BRL Cyber computer. The two 
main codes are those which compute three dimensional turbulent boundary layer 
development and three dimensional inviscid flow. 

The computation of the effects of viscosity is of crucial importance when 
such parameters as roll damping, Magnus, and drag are of interest. The tech- 
nique employed here is a fully implicit, finite difference numerical scheme 
developed by Dwyer4 . This technique takes into consideration the changes in 
direction of the cross-flow velocity that occur on the side of the shell where 
the inviscid cross-flow opposes the surface spin. 

The equations of motion solved are the basic equations defining the 
three-dimensional compressible, turbulent boundary-layer flow over a body of 
revolution described by the relation r = r(x). The coordinate system is shown 
in Figure 4. 

Continuity 

H (r^ +^ ^ + ^ W  =  0 (1) 

Xm0mentUrT,
 -r-   311 3U  +  W   3U       w2   9^ 

9P. 
(2) 

3u        —7—xi 
9x      3y  LH9y 

4.    Dwyer,  H.A.  and Sanders,   B.R.,   "Magnus Forces on Spinning Supersonic 
Cones.    Part I:     The Boundary Layer",  AIAA Journal.   Vol.   14,  April    1976, 
pp.  498-504. 
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^ momentum 

Energy 

-n[r, iw , ^ 3w , w 3w , uw Br-i .   1 3pe , 3 r 3w   . yi     #,» p^ 3x + ^ + 7 i* + ~ ^J ' " 7 ~3* + ^ t^ " pv w ]    (3) 

- 3h , . 3Ti , w shn  - ^e , w 8Pe "rr; JLLL ■ .on . w orn + — 
3x   3y  r 3(j)J    3w r    H 

^[#2Mfj2]-S^f-5^1 (4) 

where v = v + P'V'/P  and the bar indicates a time-averaged quantity. 

In order to obtain closure of this system of equations, the following 
models of the turbulence terms have been introduced: 

Turbulent shear stress 

Su^o , r3W' -pu-v- - - pv-W - 5*2 [^  + (|2)2] 

^Itf^Mf)2]1* 

where e is introduced as the turbulent viscosity and the mixing length, 
a = 0.09 6 tanh [(0.4/0.09)(y/6)]. Van Driest damping is used to account for 
the effect of the laminar sublayer. 

Turbulent heat transfer 
k 
t 3h 

" ^h' = c 3y 

The turbulent Prandtl number is introduced as 

Pr = c e/k = 0.90 
t   p  t 

The three-dimensional displacement surface is not merely the vector sum 
of the longitudinal and circumferential components of the boundary-layer 
displacement thickness. Instead, the differential equation derived by Moore5: 

5. Moore,   F.N.,   "Displaaement Effect of a Thvee-Dimensional Boundary    Layer", 
NACA TN 2722.    June 1952. 



^[peuer(63V^)]+^[Pewe(63V^)] = 0 (5) 

must    be   solved   for 6*       the   three-dimensional    boundary-layer   displacement 
thickness where 

6* = /    [i  . -^-)dy 
x     J

0 Peue
J 

6 
6* = /    ( i  . -£^L)dy 

pewe 0 

With a body fixed coordinate system, the gas dynamic equations for invis- 
cid flow can be written as 

E    +F    +G    +H = 0 
z        r       ()) (6) 

where the flux vectors E, F, G, and H are 

'pu 
m 

pu2+ p 
PUV 
PUW 

PV 
PUV 
pv2+p 
PVW 

G = - 

"pw 
PUW 
PVW 
pw2+p 

H = 
I 
r 

PV 
puv 
p(v2-w2) 
2pvw 

These equations are solved using MacCormack's6 two-step, predictor-cor- 
rector finite difference scheme. The unique feature of the program used here, 
which was developed by Sanders7, for the Magnus problem, is that the flow 
field is computed about an axisymmetric model plus displacement surface. Due 
to the distortion of the viscous layer caused by interaction of the surface 
spin, the effective aerodynamic shape has no plane of symmetry. 

6. 

7. 

MacCormack,  R.W.,   "The Effect of Viscosity in Hypervelocity Impact 
Cvatering",  AIAA Paper No.  69-364,  1969. 

Sanders,  B.R. and Dwyer,  H.A.,   "Magnus Forces on Spinning Supersonic 
Cones.    Part II:     The Inviscid Flow",  AIAA Journal.   Vol.  14,  May 1976, 
pp.  576-582. 
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The flow field variables resulting from these computation steps have been 
developed to yield the following aerodynamic coefficients—pitching moment, 
normal force, center of pressure, Magnus force, Magnus moment, Magnus center 
of pressure, form drag, viscous drag, and roll damping. The computational 
time for a single body configuration and flow field condition is approximately 
ten minutes on a CDC 7600 computer. 

C Coning Motion Computations 

In order to compute the effective pitch damping, the technique developed 
by Schiff8 is used. This computational technique relates the side moment on a 
body undergoing a steady coning motion about the CG location to the pitch 
damping (C  + C ), see Figure 5. M JM 

The numerical technique is MacCormack's 
marching scheme.  This computation involves the solution of the 
tions including terms for Coriolis [2p(axv)] and centrifugal 
forces in a body fixed coordinate system.  For this case, 
equation 6 becomes 

predictor-corrector, explicit 
Euler_egua- 
[p^x(nxr)l 

For this case, the H vector in 

H = - 

pv 

puV+pr[2(a)2W-a)3v)+a)1a)2r-z(w^+a)§) ] 

p(v2-W2) + pr[2(aj3U-a)1w)+a)1a)2z-r{a)f+co§)] 

2pvw+pr[2(u1v-a)2u)+u)3(a)2r+a)1z) ] 

where ui, u>2, and ui3  are the components of the angular velocity vector 

(6) resolved in the z, r, and ^ directions, respectively. 

For the case of a steady coning motion, the flow field is time-invariant 
in the body-fixed coordinate system. The effective pitch damping 
(C  + C ) is determined using the relation 

q   a 

:  ■ sina(C.. + Cu ) 
nx    x M   M*' 
6        q    a 

(7) 

moment at coning rate e and effective angle of attack a, where C  = side 
ne 

which is valid for small values of a and 0 .  Thus a dynamic aerodynamic 
parameter is determined using a steady flow field computation. This is a 
potentially very useful tool for the exterior ballistician. The computation 
time is approximately 90 seconds on a CDC 7600 computer for the body configu- 
rations in this study. 

1 i 

8.    Schiff,   L.B., 
Journal.   Vol. 

"Honlineav Aerodynamics of Bodies of Coning Motion", 
10,  No.  11,  November 1972,   pp. 1517-1522. 

ATAA 
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III. RESULTS 

A. Comparisons to Experiment 

Detailed comparisons of the computations to experimental data for turbu- 
lent boundary layer profile characteristics, wall pressure measurements and 
Magnus force are reported in Ref. 9. Comparisons shown here will be limited 
to the aerodynamic coefficients of interest. 

Charters and Kent10 have shown that roll damping can be related to the 
skin friction drag for a cylinder according to the relation 

C.p -  -0-25 CDBL ^ 

Murphy11 has shown good agreement with this relation in a series of free 
flight range tests firings of two caliber tangent ogive cylinder models with 
total lengths of 5, 7, and 9 calibers. 

The results of this computational study confirm that equation (8) is a 
good engineering relation for estimating the roll damping coefficient. A 
summary of the computed results are compared to the Charters-Kent relation in 
Figure 6. The computational results show a spread which is due to the effect 
of ogive configuration. This effect is better illustrated in Figure 7 where 
roll damping is plotted versus projectile length for four ogive configurations 
at Mach 2.75. In general, this computational study shows that roll damping is 
linear with respect to body length for a particular flight velocity and that 
the zero offset is a function of ogive configuration. 

Examples of comparisons of the computed results to experimental data are 
presented in Figures 8 through 12. The comparisons for pitch plane static 
parameters shown in Figures 8, 9 and 10 indicate excellent agreement for 
M > 2.5. The results for the supersonic marching computational technique used 
here have indicated a reduced accuracy for flow over shell with short ogives 
at low supersonic velocities. The limited comparison for Magnus in Figure 11 

9. Stureky   W.B.,   Dwyer,   H. A.,  Kaysev,  L. D.}   Nietubiaz,   C. J.,  Reklis,  R. 
P.  and Opatka,  K.  0.,   "Computations of Magnus Effects for a Yawed,  Spin- 
ning Body of Revolution",  AIAA Journal,   Vol.  16,  No.   7,  July 1978,   . 
pp.   687-692. 

10. Charters,  A.C.  and Kent,  R.H.,   "The Relation Between the Skin    Friatzon 
Drag and the Spin Reducing Torque",   BRL Report No.  287,   US Army Ballistic 
Research Laboratory/ARRADCOM, Aberdeen Proving Ground,  Maryland   210C5, 
1942.    AD 491854. 

11. Murphy, C.H. and Schmidt, L.E., "The Effect of Length on the Aerodyr.amic 
Characteristics of Bodies of Revolution in Supersonic Flight", BRL Report 
No. 876, US Army Ballistic Research Laboratory/ARRADCOM, Aberdeen Proving 
Ground,  Maryland    21005,  August 1973.    AD 23468. 
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indicates acceptable agreement if allowance is made for the small magnitude of 
the Magnus effect and the variance between the wind tunnel and range experi- 
mental measurements. A comparson between computation and experiment for pitch 
damping is shown in Figure 12. The experimental point, which is for an L/D of 
5.12 and cone angle of 9.52°, shows excellent agreement with the trend of the 
computed results. A similar comparison for pitch damping is shown in Figure 
13 for a 10° cone. This comparison includes both wind tunnel and free flight 
range data. The pitch damping is very small for a cone; but the agreement 
shown is considered to be very good. In general, it is felt that the numer- 
ical computations do provide an accuracy for the aerodynamic coefficients that 
is within the uncertainty of our ability to determine these coefficients 
experimentally. However, it is felt that a broader scope of comparison for 
the aerodynamic coefficients between experiment and computation is of interest 
and increased effort to accomplish this is underway. 

B. Parametric Comparisons 

Examples illustrating the parametric results are shown in Figures 14 
through 30. The series of comparisons shown in Figures 14 through 23 illus- 
trates an example for each aerodynamic coefficient computed in this study. 
The case chosen is the SOC model for a total length of six calibers and for 
ogive lengths of two, three, and four calibers. The aerodynamic coefficients 
are plotted versus Mach number for atmospheric free stream launch conditions 
assuming an adiabatic wall temperature boundary condition. These comparisons 
show, for a fixed body length, that configurations with long slender ogives 
have reduced pitch damping, less drag, and a reduced Magnus moment compared to 
bodies with shorter ogive lengths. The development of the Magnus force over 
the full length of the shell is shown in Figure 24 for two ogive configur- 
ations and a total length of six calibers. This figure shows that the Magnus 
effect is strongly dependent on the length of the cylindrical afterbody. Only 
a small portion of the Magnus force is generated on the ogive. Examples are 
shown in Figures 25 through 27 illustrating the effects of variations in ogive 
shape for fixed forebody and total projectile lengths. These comparisons show 
that pitching moment, Magnus moment, and pitch damping are increased as ogive 
bluntness is increased. The final sequence of parametric comparisons is shown 
in Figures 28 through 30 where the effect of varying the body length is shown 
for a fixed ogive shape. These figures show that pitching moment, Magnus 
moment, and pitch damping are all increased as the body length is increased. 

The comparisons shown represent a small fraction of the potential compar- 
isons possible from the total data base generated. The intent here has been 
to illustrate the capability of the computation techniques rather than develop 
any conclusion as to the relative superiority of any particular configuration. 
This study is part of a continuing effort that is being expanded to include 
boattail configurations and a wider Mach number range--transonic velocities 
are of particular interest. 

IV. SUMMARY 

A computational aerodynamics parametric study has been described in which 
advanced numerical techniques for computing three-dimensional inviscid and 
turbulent viscous supersonic flow fields have been used. A comprehensive data 

13 



base has been generated for cone-cylinder, tangent-ogive-cylinder, and secant- 
ogive-cylinder configurations. Of particular interest are the computatiors of 
Magnus effects, which are accomplished in a conceptually exact manner, anc the 
computations of pitch damping. Comparisons between the computed results and 
experiment have provided verification of the computational techniques. Com- 
parisons of the computed results for differing body configurations have estab- 
lished the ability of the computational techniques to distinguish the effects 
of body configuration on the aerodynamic coefficients. 

14 
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SOC CONFIGURATION 
1=2,3,4,5,6,7 

D?00L1=2'   R»=   8-50 

r L1= 3,   R, = 18.50 
I      1.1 = 4,   Rs=32.50 

Y     DIMENSION AS 
7.94*   REQUIRED AT OTHER 

NOSE  LENGTHS 

SHOWN:5L/D SECANT-OGIVE  CYLINDER 
TOC CONFIGURATION 

L = 2,3,4,5,6,7 

Ll = 2, RT= 4.25 
25 
25 

■•p     LI = ^,    KT=    4. 
]       LI =3,    RT=   9. 
"*-    L1=4,    RT = 16. 

SHOWN:5L/D TANGENT-OGIVE  CYLINDER 

CC CONFIGURATION 
T      L = 2.84,3,4,5,6,7 

_D=1.00   LI = 2.84 (CONSTANT) 

SHOWN: 5L/D   10DEGREE  CONE  CYLINDER 
ALL   DIMENSIONS IN CALIBERS 

ARBITRARY CENTER OF GRAVITY LOCATION ALWAYS 060L BEHIND NOSE TIP 

Figure 1. Model Geometries 
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Figure 2. Magnus and Normal Forces on Spinning Projectile 
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Figure 4. Coordinate System 

Figure 5. Coning Motion About Center of Gravity 
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Figure 9. Center of Pressure, Comparison with Experiment, 
SOC Model , LN = 2 
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Figure 10.    Normal  Force, Comparison with Experiment, 
SOC Model,  LN = 2 
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Figure 11. Magnus Moment, Comparison with Experiment, SOC 
Model, L/D = 5, C.G. at 0.6L Behind Nose 
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Figure 12. Pitch Damping, Comparison with Experiment, Cone-Cylinder 
Model, C.G. at 0.6L Behind Nose 
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Figure 13. Pitch Damping, Comparison with Experiment, 
10° Cone Model, C.G. at 0.6L Behind Nose 
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Figure 14.     Pitching Moment,  Parametric Comparison, SOC. 
L/D = 6, C.G.  at 0.6L Behind Nose 
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Figure 15. Center of Pressure, Parametric Comparison, SOC, L/D = 6 
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Figure 16. Normal Force, Parametric Comparison, SOC, L/D = 6, a = 1" 
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Figure 17. Magnus Moment, Parametric Comparison, SOC, 
L/D = 6, C.G. at 0.6L Behind Nose 
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Figure 18. Magnus Force, Parametric Comparison, SOC, 
L/D = 6, a = 1°, PD/V = 0.19 
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Figure 19. Magnus Center of Pressure, Parametric Comparison, 
SOC, L/D = 6, a = 1°, PD/V = 0.19 
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Figure 20. Viscous Drag, Parametric Comoarison, SOC, L/D = 6 
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Figure 21. Form Drag Plus Viscous Drag, Parametric 
Comparison, SOC, L/D = 6 

28 



.004 

a. 

U 

.008 

-.0121 
2       3 
MACH 

Figure 22. Roll Damping, Parametric Comparison, SOC, L/D = 6 
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Figure 23. Pitch Damping, Parametric Comparison, SOC, 
L/D = 6, C.G. at 0.6L Behind Nose 
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Figure 24. Development of Magnus Force Versus Axial Position 
SOC Model, M = 2.75, a = 1°, PD/V = 0.19 
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Figure 26.    Magnus Moment,  Parametric Comparison, L/D = 6, 
LN = 3, C.G.  at 0.6L Behind Nose 
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Figure 27. Pitch Damping, Parametric Comparison, L/D = 6, 
LN = 3, C.G. at 0.6L Behind Nose 
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Figure 28.    Pitching Moment, Parametric Comparison, 
SOC,  LN = 3,  C.G.   at 0.6L Behind ftose 
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Figure 29. Magnus Moment, Parametric Comparison, SOC, 
LN = 3, C.G. at 0.6L Behind Nose 
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Figure 30. Pitch Damping, Parametric Comparison, SOC, 
LN = 3, C.G. at 0.6L Behind Nose 
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LIST OF SYMBOLS 

q free stream dynamic pressure =  (PJ^/Z 

r local   radius  of model 

u,  v, w velocities  in boundary-layer coordinates 

x surface coordinate in  longitudinal   direction 

y,  Y coordinate perpendicular to local   surface 

z cylindrical  coordinate along model  axis 

2 
A reference area = nD /4 

CQBL viscous  drag =   (;/Txcos6BdS)/qA 

Cop total   drag =   (//pwsin0BdS)/qA + CDBL 

C0 roll   damping =   (//n  dS)/(qAD PD/V) xp r     - <p 

Cm       pitching moment =   (//zp cos4)COs6BdS)/qAD 

C..       slope of pitching moment coefficient = dC /da 
Ma r 3 m 

CM slope of Magnus moment coefficient =   (dC  /da)/{PD/V) 
pa 

^M    + ^M.      pitch damping =  C  -/sino 
^ a 

CN normal   force =   (//p cos<j)COs8 dS)/qA 

Cn Magnus moment =  [//(zp  sin^cose 

+ ZT cos<|)CoseD + zApsin^cose 
<p D D 

+  ZT  sin^sine  )dS]/(qAD) 

C •       side moment in coning motion = 
(j7(z-zcg)pwsin4)COseBdS)/(qA0) 

CPN      center of pressure = Cm/CN 

CPy       Magnus center of pressure = ^/Cy 

Cy Magnus  force =  [j7(pwsin<j)COseB 

+ T cos(?cose    + Apsin^cose 

+ x sin^sine  )dS]/qA 

D diameter of model 
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LN 

LIST OF SYMBOLS 
(CONTINUED) 

length of nose in calibers (shown as LI in Figure 1) 

P spin rate, rad/s 

Re
£ Reynolds number based on model length 

S surface area 

V velocity along model trajectory 

AP centrifugal pressure gradient contribution to side force 

o effective angle of attack for coning motion 

T
x longitudinal velocity wall shear 

"^ circumferential velocity wall shear 

e3 local slope of body surface 
• 
9 magnitude of the angular velocity of the shell 

" angular velocity of the body-fixed coordinates measured with 
respect to an inertial system 
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