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INTRODUCTION

Modeling the neutron degradation of 12U inverters has previously been
performed! s2 using specially written computer programs based on closed
form expressions for the various cell current components. Component
parameter expressions were derived in terms of idealized cell geometry,
carrier diffusion coefficients, carrier lifetimes and doping density.

The modeling approach used in this study differs in that the comprehen-
sive one-dimensional device physics PN code is used to obtain the charac-
teristics of the inverter cell elements. The PN code3 performs a numerical
integration of the continuity and Poisson's equations for an arbitrary dif-
fusion profile. Calculated results are then a more exact solution of the
12L transistor and parasitic diode element characteristics over the whole
current range of operation. These characteristics are then used to obtain
the SPICE* bipolar transistor and diode model parameters for use in a cir-
cuit simulation of the I2L inverter cell®. Using this combined approach
the terminal response of the inverter cell can be predicted from a knowl-
edge of cell geometry, doping profiles, and carrier lifetimes. The de-
graded characteristics of the cell elements after neutron irradiation are
determined from degraded carrier lifetimes using known lifetime damage
coefficients. The degraded performance of the inverter cell is then
determined from the degraded component characteristics.

This modeling approach was applied to the second generation 12U tech-
nology at Texas Instruments in order to determine what processing varia-
tions could be made to the standard commercial process in order to increase
the neutron induced failure levels. This effort is part of a Defense
Nuclear Agency program to increase the overall radiation hardness of

bipolar LSI technologies.




PN CODE FREDICTIONS

The PN code is used to determine the current versus voltage charac-
teristics of the I2L inverter components. These components consist of a
lateral pnp injector transistor, a vertical npn switching transistor and a
vertical parasitic diode. These elements are shown in Figure 1 which con-
sists of a top surface and cross-sectional view of a four output inverter
cell representative of the second generation 121 technology used in this
studyG. The process utilizes a thin n type epitaxial layer on an n+ sub-
strate. A deep heavily doped, p diffusion is used for the injector and
extrinsic npn base (also pnp collector). The npn intrinsic base consists
of a p~ implant and the npn collector epitaxial region has a shallow n+
contact diffusion. The cells are surrounded by an oxide sidewall to pre-
vent sidewall injection.

The inputs to the PN code consist of the doping profile (input at up to
30 mesh regions), cross-sectional area, a table of mobility versus doping
density, carrier lifetimes at up to twenty locations in the profile, energy
level of carrier recombination center, avalanche and tunneling parameters
(if desired), exterior resistance, capacitance and inductance, and terminal
voltages versus time.

The doping profiles for the I12L elements of the standard commercial
process were obtained from the manufacturer. These profiles were deter-
mined using the computer code SUPREM which calculates a diffusion and/or
implant profile based on processing schedule parameters such as diffusant
type and concentration, diffusion times and temperatures and implant
energies and fluence. The diffusion and implant depths and epitaxial
thickness were verified with angle lap and stain data taken by NWSC Crane.
The doping profiles for the standard process npn and pnp transistors are
given in Figures 2 and 3 respectively. The npn profile % shown from the
top surface down and the pnp profile is taken from the center of the
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injector contact to the center of the input contact on a horizontal line
half way between the surface and the bottom of the P+ diffusion. The
profiles in Figures 2 and 3 are shown point by point as input to the PN
code. These points define the mesh regions. The user inputs the number of
mesh points within each region and the code performs a linear interpolation
between mesh regions to determine the doping density at each mesh point.

Up to 300 total mesh points were allowed with the version of the PN code
used in this study.

The preirradiation carrier lifetimes were taken from a least squares
fit of transistor lifetimes versus doping density using data from published
and unpublished reports’ 8. A plot of this data is given in Figure 4.

The energy level for the single level SRH recombination model used in the
PN code was taken to be at the center of the silicon band gap.

In order to determine the DC input parameters for the Gummel-Poon (GP)
bipolar transistor model used in SPICE, a forward biased base-emitter vol-
tage was applied to the transistor, with Vgc = 0, and the base and col-
lector currents (lIg, Ig) were determined. The Ig and Ic values,
taken in 0.1 V steps from Vgg = 0 to Vgg = 0.9 V, were plotted and the
GP model parameters determined graphically. In a similar manner, the para-
sitic diode I-V characteristic was calculated, and the SPICE diode model
parameters determined.

SPICE CIRCUIT ANALYSIS

The SPICE circuit analysis code was used to determine the fanout per
collector versus the output current for a four output inverter. The cir-
cuit representation of the inverter cell® is shown in Figure 5. The fanout
per collector is determined by applying a voltage to the input terminal
with the injector grounded and measuring the ratio of output current to
input current as was done experimentally.
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The resistance RBl1 is the extrinsic base resistance from the input con-
tact to the first collector. RB2, 3 and 4 are extrinsic base resistances
between collectors and REND is the resistance of the base end section.
These resistances were calculated from a knowledge of the cell geometry and
the sheet p of the P* diffusion. The parasitic diode, DBC, represents
the Pt n n* diode under the input contact. Included in the DBC diode
model are both the recombination under the metal contact and the base input
section around the contact under the oxide. Since it was difficult to
accurately model an oxide p* n n* diode with the PN code the region
under oxide was included by assuming a saturaton current density under
oxide to be 0.1 times the saturation current density under metal. This
estimate is based on the work of Berger? who used special test structures
to measure these current densities. The area of the oxide covered input
region is scaled by 0.1 and added to the contact area to determine the
saturation current of DBC. The parasitic diodes D2, 3 and 4 are also
scaled in area by 0.1 since they are all oxide covered. A parasitic diode
was not included under the injector since the injector is grounded to
determine fanout. The transistors Q1-Q4 are represented by the GP model
for the inverted npn transistor and QI is represented by the GP model for
the lateral pnp transistor. The GP bipolar transistor model reproduces the
gain versus collector current curve with semi-empirical expressions for
Ic and 1g versus Vgg. A graph of I¢ and Ig versus Vgp is used
to determine the maximum gain, BF, the collector knee current, IK, the
collector saturation current, IS, the ratio of Ig to Ig at Vgg = 0,

C2, and the reciprocal slope of the Ig curve at low currents, NE. These
parameters are illustrated in Figure 6 which also shows a comparison
between PN code calculated characteristics and the SPICE simulation for the
standard npn transistor before irradiation. The low current gain is
simulated very well with SPICE up to the maximum gain. However, at
currents above the knee current, IK, the collector current has a reciprocal
slope of 2 and the base current a slope of 1. Therefore at high currents
the gain rolloff is fixed in SPICE. This did not present a major problem

11
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for the present modeling effort since the region of interest for 12L
operation is at or below the current where maximum gain occurs. However,
for modeling photocurrent induced upset due to current overdrive, a more
accurate high injection transistor model would be in order.

PREDICTION OF NEUTRON DEGRADED PERFORMANCE

The prediction of fanout versus output current after neutron irradia-
tion is a simple extension of the previously described techniques. In
bipolar devices the predominant effect of neutrons is a reduction in
carrier lifetime according to the relation

11 _ ¢
r¢ T, Kn,p

where ty is the lifetime after a neutron fluence ¢, 1y the initial
lifetimeand Kn’p the minority lifetime damage coefficients for n type and

p type silicon. In this study the effect of neutrons was determined for
each profile by rerunning the code with calculated values of degraded 1ife-
time. The values of K, and K, used to calculate the degraded lifetimes
were 2.5 x 105 and 5 x 105 sec/cm2 respectively.

PROCESS VARIATIONS FOR NEUTRON HARDENING

As suggested in previous studies!®, one of the major means of improving
the neutron failure level of I2L logic arrays is to increase the initial
fanout per output. The logic array will fail when the fanout per output
degrades to the maximum circuit design fanout (number of inputs that an
output must sink). In the commercial designs for the 12 technology used
in this study the maximum circuit design fanout is two. This can be
reduced to one in order to increase neutron tolerance by circuit design.

To further increase neutron hardness by process design, several processing

13




variations were investigated which would increase the initial fanout
margin. The variations that were considered were restricted to a) changes
that would not severely degrade switching speed, and b) changes that would
not substantially increase processing complexity. With these restrictions
the variables considered were p~ base implant concentration, epitaxial
thickness and resistivity and pnp transistor base width. Each of these
variations resulted in minor modifications to the standard commercial
doping density profiles for the various inverter cell components. Table 1
is a list of the variations considered and the components affected in the
modeling technique.

TABLE 1
Process Variation Components Affected
1. Reduced p~ implant npn transistor only
(0.75, 0.5 and 0.25 times
standard)
2. Thinner epitaxial layer npn transistor and
(n* substrate up against P*) parasitic diode
3. Lower resistivity epitaxial all three
(0.5 times standard)
4. Base Width of pnp pnp transistor only
(1.5, 0.5 times standard
5. Combined process variation npn transistor and
(0.5 times standard p~ implant parasitic diode

and thin epitaxial)

The reduced base implant concentration is expected to yield higher up
gains for the npn transistor. The thinner epitaxial layer should also
improve the npn gain by increasing emitter efficiency. Both the epitaxial
resistivity and the pnp base width will affect the gain and saturation
current of the pnp injector. A lower saturation current for the pnp will
result in less current back injected into the pnp base and hence more base

drive for the npn.

o= 10

2T b QA i




PREIRRADIATION CHARACTERISTICS

The results of the model predictions for preirradiation fanout per col-
lector versus output current are given in Figure 7. The current range of 1
uA to 100 mA encompasses the range of operation for most I2L applica-
tions. In order to illustrate the high current debiasing effect of the
extrinsic base resistance, results are shown for the collector nearest to
and farthest from the base contact for the standard process. Compared to
the standard process, the highest fanouts were predicted for the combined
process variation. The reduction in p~ implant concentration resulted in
increasing fanout as the concentration was reduced. The thinner epitaxial
layer variation resulted in slightly higher fanout with substantial
improvement at higher currents. A reduction in the epitaxial resistivity
by a factor of two resulted in peak fanouts comparable to the 0.5 p-
implant but more rapid falloff at high and low currents. The variation in
pnp base width indicated that increasing the base width would improve fan-
out while reducing it would decrease fanout.

The results of the SPICE simulations indicated that the primary vari-
ables in achieving high fanout are the saturation currents of the pnp
(Isp) and npn transistors (Igy). Optimization of fanout is obtained
with a high ratic of Igy to Igp. The intrinsic pnp and npn current
gains are of primary importance only when the ratio of Igy to Igp is on
the order of 10 or greater. The saturation current is proportional to
cross-sectional area and diffusion constant and inversely proportional to
base width and doping density. Of these variables the ones most affected
by the two dimensional aspects of the 12 inverter cell are the effective
cross sectional areas of the npn and pnp transistors and the affective base
width of the pnp transistors. For the npn transistor the cross sectional
area was assumed to be the area of the n epitaxial above the p~ base
implant. For the pnp transistor the area was taken to be the length of the
pt injector diffusion times the diffusion depth. The base of the pnp was

15
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determined at a point halfway between the surface and the bottom of the p*
diffusion. Since there is an uncertainty in the effective values of these
parameters for current collection, the ratio of Igy to Igp was adjusted

to give fanouts for the standard process which correlated with experimental
data taken on test cell, by NWSC Crane. In order to fit the data on the
standard process, the Igy to Igp ratio was increased by a factor of

2.5. This factor was used consistantly for all process variations both
with and without neutron degradation. Such a factor is not unreasonable
since the "effective" npn collector area is probably much larger than the
actual area due to injection of carriers across the entire npn emitter base
area. The ratio of total emitter-base area to total collector area is 2.8.

The improvement in initial fanouts for the reduced p~ implant was due
both to an increase of npn gain and Igy. For the thinner epitaxial
device, the increase in fanout was due solely to an increase in npn gain
since Igy did not increase. The lower resistivity epitaxial resulted in
a much smaller Igp with essentially no change in the npn charac-
teristics. The higher fanouts for the wider base pnp were a result of
lower Isp and the lower fanout of the narrow base pnp was due to a higher
Igp. The combined process benefited both from the increase in Igy from
the lower base implant and the increase in gain from both the lower implant
and thinner epitaxial.

The only process variations which were available for comparison
to predicted results were the 0.5 x standard p~ implant, the thinner
epitaxial and the combination of the two. As mentioned previously the
ratio Igy/Isp was adjusted to fit the experimental data for the
standard process. A comparison between predicted and experimental fanout
for the standard process and the process variations is given in Figure 8
for the collector nearest the base contact. The experimental data was
taken on a two output inverter cell test structure which also included a
metal gate over the pnp base.

17




The experimental devices used for this study were included on chips
that contained a large gate array. Processing difficulties were encoun-
tered during fabrication of these devices and consequently the yield on
gate arrays was minimal. Although many of the test structures were func-
tional, the devices tested by NWSC Crane showed a wide variation in pre-
irradiation response. The data shown in Figure 8 is an average of two
inverter cells preselected from a sample of 10 for optimimum fanout.
Although it was intended that the thin epitaxial devices have the n*
substrate up against the p~ implant, angle lap measurements indicated
that this was not achieved. Therefore, while the amount of n epitaxial
under the p~ base was reduced in the thin epitaxial devices, it was not
eliminated. Because of the difficulties encountered with the processing of
the test devices, a detailed comparison to predictions is not warranted.
However, a general comparison does indicate that thinning the epitaxial
layer results in minimal improvement of fanout and reducing the base
implant concentration yields substantial improvement in fanout as
predicted. Combining the process variations gave the best results. The
high current roll off of fanout in the experimental devices occurred at
much lower values of output current than predicted. This can be attributed
to the use of a one dimensional model for the intrinsic transistors which
does not account for lateral debiasing along the emitter-base junction,
especially in the npn transistor.

POST IRRADIATION CHARACTERISTICS

Each of the process variations were modeled for neutron degradation of
fanout per collector versus output current at 1013 n/cm2. A comparison
of these predictions to the experimental results on the standard, one half
base implant, thin epitaxial layer and combined process is shown in Figure
9. The predicted results for the standard process agree reasonably well
except at high currents, The predictions for the 0.5 base implant concen-
tration agree at peak fanout, however the predicted results at low currents

18

..‘.lI-I...."l....I-l.I.-IIilll.illlllllliliﬁh-.—* J— .I“ . —




o orwdenca

‘suoljelder ssado4d pue $$3204d paepuels 404

Ju34U4Nd INdIN0 SNSUIA 40329 |00 J49d 3nouey _.MHCWE_.LUQXQ pue vw&u_.vw&n 30 :Om_.LOQEOU ] w.»:m_.u
+ (sduie) Juadun) Inding
N-oﬁ m-oﬂ c-cﬁ m-o~ w-cﬁ
LA 2 LA AR SRS | rryrvo 1 | MAARALELEL pyryr vt | AL B |
” WMWUOLQ uw:—.nsou - mzu sesssesenee “
X 13 UpYY - JHL === 3 -
- jue|du} aseq G'Q - GHQ —=--- . P
— Ssajcoud paepueis - QIS - <
c*
b
= [1]
-
B \ \ mu
L \ ) =
Y “\dx3) aLs o
R A o
SN (dX3) HLI™ g
o
N, . D — — 3
= * — S . - e + o S A RSV A S
... dlll.lj....uz// Taad) 3L (dx3) 8HO -] '
-.o...... s — o e lulll-llll"lllll”-c.oo.oo.
i c:.oaoo..-.ﬁ.&-ox-MHog‘uu:-o:"ll'l‘ =TT .oooﬂ@oﬁom‘&bao:--.:-oooonooco -
| Aczﬁv mzu LI TTTYI e .soooassrcouwwnybouro.d.w..h-.*.ﬁ.ﬁ”’,’
[ :
t....b A ' hb-b»- I\ A —bbb_p- I 1 —--bbp A ' —:--L .y 3

19




*3JuaNn|j uouIN3uU
® 42340 $53204d pARPUR]S BYJ JO SUOLIBLUBA pue S$53204d PJBPUR)S J40j JUBUUND

INdIN0 SNSUBA 4032302 43d Inouey [ejudwiuadxd pue pajdoLpadd jo uosldedwoy ‘g 34nbi4
+ (sdwe) juaddn) 3IndinQ
N-o~ m-oﬁ \mwoﬁ m-oﬁ m-oﬁ
TV 1T 1 ¥V 1 1-..- v —-_d_d 1 1 3 _:-]J | —--q_q T T
ﬁ -
- -
” meUOLQ UUCPDEOU - mzu eso s v U
- 1da uLyy - IHL - -
1 jue|dwt 8seq G°0 - GHQ ~==-—- 3
- $5390u4d pURPURES = (IS m—m—e o1
[ (dX3) 3HL
\ 3 dlS o
SN (7, e = ST
= *, N, uu// — e —— “0
C . g ds AT e \\A@ﬂ
_Ilu Ioo-o ."’.”-l.'-'-.ﬂ-lo-’ﬂl’.l-ll.‘-'o‘.\ﬂoxmﬂumh-‘““\ oo..ooo.‘o-.- Oﬁ
.......... ’l""“.’.“"“"l"‘l\“\ QXMV gHO ..l...nl...hmv.h..u.d.‘“.ﬂl.‘..
- .............ﬂﬂﬂ.ﬂ..l\.l.ﬂHu.l.ﬂﬂus...a.c...n......."...... éx3)
i (0ud]" 83
N
Aid b b 4 L L-P- | N 1 _—-- L1 1 —--b— | - | [l —--PL A A ﬂ

adls . —itt o

«+ 403930 43d 3nouey




show a much greater roll off than observed experimentally. For the thin
epi process the predicted degradation is much less than that observed
experimentally. This is probably due to the fact that the experimental
devices did not have the n* substrate up against the p~ base as it was

in the modeled device. Therefore the experimental thin epitaxial layer
device would be expected to perform only slightly different from the
standard device. The predicted results for the combined process agreed
reasonably well with experimental measurements, again with the exception of
high current roll off. The results of the predictions are best compared
to the experimental results through equation

1 1
Fo(p) -~ Fo(0) ~ Krot

where FO(¢) is the degraded fanout per collector, FO(0) is the initial fan-

out per collector, Kpg the fanout damage coefficient and ¢ the neutron
fluence in n/cml. The damage coefficient, which is a measure of the rate
of degradation, is a good measure of relative hardness. In Table 2 the
initial and degraded fanouts are given at 100 pA collector current along
with the damage coefficient both for the predicted and experimental
results.

A comparison of the damage coefficients for the process variations as
compared to the standard process indicate the following:

a. A reduction in the p~ implant concentration not only increases
initial fanout but results in a reduced damage coefficient. These
results are supported by the experimental data.

b. While the thinner epitaxial layer results in only a minor increase
in fanout, the predicted damage coefficient is half that of the
standard process. This result was not verified experimentally.
However, as previously pointed out, the experimental device did not
have the epi under the p- base eliminated.




The lower epitaxial resistivity gave higher initial fanout but did
not result in a substantial reduction in damage.

Variations in pnp base width resulted in moderate changes in fanout
not very minor changes in damage coefficient. The results
indicated that higher fanouts could be achieved with a wider base.

The best results are obtained using a combination of thinner epi
and reduced p- implant concentration. The predicted results
correlated very well with experimental data. Since the damage
coefficient for the combined process was less than for the 0.5 base
implant along, it is clear that the thin epi does improve hardness
as predicted.
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Table 2. Comparison of Predicted and Experimental Damage Coefficients.

Predicted Response at 100 pA Output Current

Keolx 1071)
Symbol (FO(0) FO(y) _ (em )
STD Standard commercial 8.85 6.14 4.99
TFB 0.75 x STD p- implant 11.9 7.94 4,19
048 0.5 x STD p- implant 19.1 12.1 3.03
OFB 0.25 x STD p- implant 45,6 23.3 2.10
THE Thin Epitaxial 10.2 8.23 2.35
CMB 0.5 x STD p- implant + thin epi 25.4 19.0 1,33
LRO 0.5 x STD epi p 16.8 9.93 4,12
WIB 1.5 x STD pnp base width 11.4 7.37 4,80
NAB 0.5 x STD pnp base width 4,1 3.34 5.55

Experimental Response at 100 pA Collector Current

STD Standard 8.9 6.05 5.29
OHB 0.5 x STD p- implant 27.2 17.0 2.21
THE Thin epitaxial 9.8 6.05 6. 32
CMB 0.5 x STD p- + thin epi 28,6 19.3 1.68

Using the predicted damage coefficients for the various process modi-
fications, fluence of failure calculations were made for circuit design
fanouts of 2 and 1. For the I2L technology used in this study a design
fanout of 2 would correspond to a commercial design and a fanout of 1 to a
hard design. Table 3 is a list of the calculated fluence of failure as
determined from the predicted Kfgs.
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TABLE 3. Predicted Fluence of Failure for Process Variations.

oF* oF*

Design FO = 2 Design FO =1 ¢F(F0) = 1) ‘

Process (x 10t n/c% ) 15_1014 n/cmZ) ¢p(F0 = 2) (STD i

1
STD 0.775 1,78 2.30
TFB 0.992 2.19 2.83
OHB 1.48 3.13 4.04
OFB 2.28 4,66 6.01
THE 1.71 3.84 4.95
CMB 3.46 7.22 9.32
LRO 1.07 2.28 2.94
WIB 0. 859 1.90 2.45
NAB 0.461 1.36 1.75

*Based on damage coefficient at 100 yA collector current.

The predicted failure levels given in Table 3 are based on nominal
predicted response using damage coefficients calculated at 100 yA collector
current. Since the damage coefficient is a strong function of current, the
failure level would be lower at lower operating currents. The last column
in Table 3 is the ratio of failure fluence for a radiation hard design to

the failure fluence of the standard process using a commercial design.
Thus it is a measure of the predicted increase of failure level expected
when the process variation is combined with a radiation hard design. The
change in design alone would yield a factor of 2.3 increase in failure

level. The best results would be for the combined process which would give
a factor of 9.3 increase over the commercial part.

The process variations were chosen to have minimal impact on the
commercial process. However, some difficulties may arise in implementing
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necessary to maintain sufficient breakdown on the outputs. The thinner
epitaxial is harder to control and may result in-wider variation in
inverter characteristics due to epitaxial thickness variations. Also the
thinner epi will cause a higher emitter-base capacitance on the npn tran-
sistors which would reduce the switching speed. The lower resistivity epi
will also increase the emmitter-base capacitance and hence reduce speed.

SUMMARY

A modeling technique has been developed and applied to 121 inverters
to predict the neutron degradation of fanout versus output current for a
standard commercial I2L process and variations of the process to increase
neutron hardness. The technique is equally applicable to arbitrary geo-
metries and processes. Good agreement was obtained in comparing predicted
response to experimental data on test devices fabricated with the standard
process and three variations of the process. The results of the predic-
tions indicate that for the process variations considered, maximum failure
fluence is achieved by reducing the p~ base implant concentration and
eliminating the n epitaxial region under the npn base. WNot all process
variations which gave predicted fanouts higher than the standard process
resulted in a substantial increase in hardness. Both wider base pnp and
the lower o epitaxial gave significantly higher initial fanouts with very
little improvement in hardness, while the thin epitaxial process predic-
tions yielded only a modest improvement in initial fanout with a substan-
tial increase in hardness.
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