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FOREWORD

In this report the authors elaborate the major features of the NSWC ocean tide models, which
are significant in various applications. Simple improvements in coastal waters are suggested. The
harmonic tidal constants are arranged on the NSWC Global Ocean Tide Data (GOTD) tape, which
is described for possible users. The report concludes with the description of the NSWC Random-
Point Tide (RPTIDE) program that computes tidal elevations at given random points and instances.
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ABSTRACT

In the following report, the authors highlight briefly the major qualitative and quantitative
features of the NSWC ocean tide models, which now include the nine components (M, S, N,.
K,), (K, Oy, P, Q,), and Mf with models for Mm and Ssa nearing completion. Special charac -
teristics of those models are pointed out, which require indispensable attention in various appli-
cations particularly in coastal areas with rapidly varying tides. Since the tide models interpolate
hydrodynamically empirical tide data at over 2000 continental and island stations, certain simple
corrections in the numerical procedures are presented. Plans for more extensive local and perhaps
global refinements and improvements of the tide models are mentioned.

In the final part of this report, the authors describe the NSWC Global Ocean Tide Data
(GOTD) tape including the data arrangement and the standard format. The report ends with a
program that computes from the taped harmonic tidal constants instantaneous oceanic and
geocentric tides at specified random points and instances in the Random—Point Tide (RPTIDE)
program.
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1. INTRODUCTION

Although the mathematical modeling of ocean tides enjoyed since Newton a tricentennial
fascinating history (Schwiderski 1980a), due to the measured digital knowledge of the bathymetry
of the real ocean basins, the solution of the problem was destined to await the advent of modern
digital computers. Fortunately, along with the necessary computational tool, significantly im-
proved numerical techniques and hydrodynamical notions of turbulent dissipation processes
became available for the mathematically discrete and realistic definition of the ocean model
(Schwiderski 1980a). Nevertheless, the strictly mathematical formulation of the problem failed to
describe the true tides over some important ocean areas where low tides were predicted for ob-
served high tides. The computed tidal charts conspicuously displayed none of the long-known
strong distortions and retardations of ocean tides by shallow continental shelves (see, e¢.g., Figure 2)
and narrow ocean ridges. ?

To overcome those fundamental shortcomings, the author (Schwiderski 1978a, b, 1979a - d.
and 1980a) introduced a unique hydrodynamical interpolation technique, which incorporates
into the model, empirical tide data collected from harmonically analyzed tide gauge measurements
along shorelines and at some other ocean bottom irregularities. The combined mathematical-
experimental method removed essentially all purely mathematical deficiencies and made the
desired accurate charting of ocean tides possible (Schwiderski 1979e, 1980b, 1981a - h, j. and i
1982a - d).

All earlier investigations started from the basic Laplace tidal equations (LTEs), which in-
cluded only the astronomical equilibrium tide as its sole tide-forcing potential. Following sug-
gestions of Proudman (1928) that there might exist significant interactions between the oceanic
and terrestrial tides, Grace (1930) augmented the LTEs by including simple approximations of the
terrcstrial tide, the terrestrial response to the oceanic tidal load, and the corresponding three
gravity perturbations of the equilibrium tide.

Remarkably, all numerical tidalists disregarded those investigations till Farrell (1972) derived
a more accurate approximation of the same interaction terms, which were then considered by
Hendershott (1972), Zahel (1977), Estes (1979), Parke and Hendershott (1979) and others. In
order to avoid the involved computation of the loading effects, Accad and Pekeris (1978) assumed
a uniform proportionality between the oceanic tide and its loading effects. Though this type of
simplification was earlier suggested by Takahasi (1929) and Grace (1930), Accad and Pekeris
justified this approach by displaying the striking resemblance of the corresponding global maps.
The author (Schwiderski 1978a, 1979¢, d, and 1980a) adopted the same approximation for all
NSWC ocean tide models, and Goad (1980b) computed for the M, ocean tide the corresponding
terrestrial dip, which also resembles closely its cause.

Since the first publication of the author’s NSWC ocean tide model about three years ago,
an unexpected wide range of applications to various problems in oceanography, geophysics,
astronomy, and space technology has been conducted. Fortunately, most of those applications
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were very gratifying as they confirmed pointwise and/or globally the high accuracy and usefulness
of the computed partial tides (see, ¢.g., Goad 1980a, b, Melchior et al. 1980, and Wahr and Sasao
1980). Since numerical global tide models are naturally limited in detailed accuracy in certain local
ocean areas, some foreseceable difficulties emerged particularly in applications to compute loading
effects of ocean tides on the earth gravity field.

In order to avoid unnecessary complications in such applications, relevant qualifying and
limiting features of the NSWC ocean tide models will be pointed out in Section 2. Simple immedi-
ate and future improvements of the models will be mentioned and discussed in Section 3. The
arrangement of the gridded ocean tide data on the NSWC magnetic tape is described in Section 4.
Finally Section 5 describes a program to compute from the taped harmonic ocean tide constants
intantaneous ocean and geocentric tidal heights at a given set of random geographical points and
specified instances. The corresponding user’s guide and program listing are presented in Appen-
dixes A and B.




2. MAJOR FEATURES OF T.4E NSWC OCEAN TIDE MODELS

In applications, the tfollowing special characteristics of the NSWC ocean tide models require
scrupulous attention and evaluation. All these features are directly discernible trom the guthor's
various publications listed in the Reterences.

(@)  Modes of the NSWC Ocean Tide Models: The NSWC ocean tide model includes now
(see Table 1) nine compieted harmonic partiai tides of the semidiurnal (M, .S, N, K, diarnial
(K,. O,. P;. Q) and long-period (M) species with models of the additional long-period com
ponents (Mm, Ssa) nearing completion. All partial tides are represented by their harmonic cone
stants, that is, amplitudes and phases which are recorded gridwise on magnetic tape (Schwiderski
1980d, and 1981)). Also, gridwise tabulated data charts and corange and cotidal maps ot all
eleven constituents are presented in NSWC technical reports (Schwiderski 1979¢, 198 1u - g and
1982a -¢).

(b) The Gridded Ocean Basins: For the recording of the harmonic tidal constants, the
simply connected glioiuil' ocean basins are divided by integral-degree longitudes and colatitudes
into uniferm '° x 1° grid cells. Naturally, the model excludes all inland waters such as the Great
Lakes and the Black and Dead Seas, as well as the tollowing gridwise disconnected bordering
waters: the Baitic, Kattegat, Irish, Mediterranean, Red, Ceram, Sulu, and Japan Scas; the Gults
of California, Persia, Chihli, and Huraki; and the Hudson and Korean Bays. Similarly. many
shallow (less than 5-m depth) and/or narrow waters suci as the entire Barrier Reef arca, the
Gironde Estuary. and the Fjords of Norway could not be modeled.

(¢)  Computed and Empirical Tide Data: The recorded harmonic constants include all
computed ziﬁ{l--lwl')}:l‘fcr)dy-ha/lﬂizufly il{ie;ﬁolaaa—éxl1pirical tide data. The latter values are specially
labeled in the printed charts (Schwiderski 1979¢, 1981a - g and 1982a - ¢) for accuracy veriti-
cation and for proper applications (sce Section 3). All data are tabulated as representative tor the
centers of the corresponding grid cells; which is strictly realistic only for all open occun areas
where the tides vary negligibly over the mesh area. In fact. the computed data are rigorous!
defined as cell averages, which may deviate somewhat from the true point values where the tides

suffer strong distortions and/or retardations over short distances.

The empirical data are by definition (Schwiderski 1978a, 1979d, and [980a) aligned
boundary values at continental or island shore stations or point values at some bottom irregu-
larities. In addition to thcir nbvious displacement (see Figure 1 below), many ot those data must
be viewed as crude averages of drastically va‘rying high tides. This applies, for instance, to the
Skagerak; the English Channel; the Bays of Fundy, Baffin, and Bristol; the Gulfs of St. Lawrence,
Aden, Oman, Thailand, Tonkin, and Carpentaria; the Straits of Florida, Hudson, Formosa. Bass.
and Cook; as well as most Scas of the Indonesian Archipelago, where mostly empirical input
data are listed.
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Table 1. Constants of Major Tidal Modes
Tidal Mode A (m)

o (1074 /sec) X (deg)

Semidiurnal Species

M, = Principal Lunar 0.242 334 1.405 19 2hy — 259

S, = Principal Solar 0.112 841 1.454 44 0

N, = Elliptical Lunar 0.046 398 1.378 80 2hg - 3s¢ + Po
K, = Declination Luni-Solar 0.030 704 1.458 42 2h,

Dirnal Species

K, = Declination Luni-Solar 0.141 565 0.729 21 hy +90

O, = Principal Lunar 0.100 574 0.67598 hg — 2s¢ — 90
P, = Principal Solar 0.046 843 0.725 23 —hy — 90

Q, = Elliptical Lunar 0.019 256 0.649 59 hg — 3s0 — 90

Long-Period Species

Mt = Fortnightly Lunar 0.041 742 0.053 234 280
Mm = Monthly Lunar 0.022 026 0.026 392 So — Po
Ssa = Semiannual Solar 0.019 446 0.003 8921 2h,

K = amplitude of the partial tide

o = frequency of the partial tide

x = astronomical argument of the partial tide.

(hg., Sq . Po) = mean longitudes of sun, moon, and lunar perigee at Greenwich midnight
he = 279.696 68 + 36 000. 768 930 485T + 3.03 - 10-4T?2

so = 270.434 358 + 481 267.883 141 37T --0.001 133T2 +1.9 - 107613

Po = 334.329 653 +4 069.034 032957 5T — 0.010325T? — 1.2 - 10-5 T3

where

T=1[27 392,500 528 + 1.000 000 035 6D]/36 525
D=d +365(y — 1975, + Int [(y - 1973)/4]

d = day number of year (d = 1 for January 1)

y 2 1975 = year number

and

Int {x] = integral part of x
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() Accuracy in Open Oceans:  In the publications (Schwiderski (1978a, b, 19794 - .
1980a, 1981a - h, and 19824 - d) a tide prediction accuracy of better than S cm anywhere in the
open oceans has been claimed tor the dominant M, tide. This accepted estimate is based on the
worldwide agreement of the computed tide data with empirical data which carry the samce
accuracy. Indeed, due to the somewhat controversial harmonic analysis of tide gauge measure-
ments, no higher accuracy can be claimed even by the most recent deep-sea tide data (see. cp .
Schwiderski 1981b). All lesser computed partial tides (see Table 1) carry relatively the same
component accuracy as M., Thus, in superposition a total tide prediction accuriacy of better thar

10 ¢m can now be assumed over all open oceans.

(¢} Accuracy in Coastal Waters: Duce to the a priori resolution limits of the 1% x 17 grid
system mentioned under (b) and (¢) above, the NSWC tide models may lose some of their open
ocean accuracy (d) in coastal waters of rapidly varying tides. Of course, a similar foss of accuracy
may be encountered in shore arcas where the available empirical data are marginal in quantity
and/or quality. This applies particularly to the Arctic and Antarctic coastlines, where lurge ice
sheets may also cause some tidal distortions and retardations which have been assumed as

negligible.

() Interactions of Oceanic and Terrestrial Tides: Al NSWC partial tide models include
eftects of tidc-gcncnitcd terrestrial and oceanic mass perturbations in the simplificd forms des-
cribed  in Section 1. In agreement with other investigitions. the inclusion of the carth tides
produced significant first-order effects on the tidal amplitudes. As expected useful second-order
corrections of amplitudes and phases were registered when oceanic load effects were introduced.
which is also in agreement with other numerical experiments conducted for instance by Zuhel
(1977, Accad and Pekeris (1978). Estes (1979), and Parke and Hendershott (1979,

(g)  Hydrodynamical Properties: The ocean tidal equations are the basic LTEs augmented
by physically meaningtul laterat cddy dissipation and linear bottom friction terms with novel
eddy and ftriction coefticients depending lincarly on the respective vertical and horizontal celf
wall areas. Accordingly, eddy dissipation was found significant in deep oceans while bottom
friction dominated in shallow waters. It may be emphasized that both terms were necded to
achieve realistic decay and dispersion features and to bring the computed data in good agreement
with empirical data. They were not necessary to entorce stability ot the numerical procedure, In
particular, the friction coctticients were meshwise modified by the unique hydrody namical inter-
polation in order to achieve g realistically smooth acceptance of over 2000 empirical tide data

pairs,

() Mathematical Features: The finite difterence analogue of the ocean tidal equations
uses the Hansen-Zahel (Zahel 1970) staggered difference scheme in space and improved differences
in time. At boundaries, the free-slip condition is strictly imposed while the no-crosstlow condition
is acceptably violated by the hydrodynamical interpofation of empirical boundary data. To avoid
the polar singularity of the tidal equations, a new serics expansion is incorporated. which will be
described in a forthcoming paper (Schwiderski 19811).
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3. APPLICATIONS Of THE NSWC OCEAN TIDE DATA

Various applications ot the NSWC ocean tide models require indispensable consideration of
the major features summarized in Scetion 2. This s particularly true in applications to compute
interactions ot oceanic and terrestrial tides, which manifest themselves as anomalies in the carth’s
gravity field. Though such perturbations amount to only a tfew microgals. they can now be de-
termined by precision measurcients such as those carried out by Kuo et al. (1970) and more
recently on a global scale by Melchior et al. (1980). On the other hand. gravity anomalics caused
by ocean tidal loading can be computed from accurate ocean tide (e.g.. Schwiderski 1980b and
198 1) and solid carth (e.g.. Furrell 1972y models (see, tor instance. Goad 19804, b und Melchior
et al. 1980). Unfortunately, both the experimentally derived and computed gravity perturbations
of ocean tidal loads are subject to the tollowing difticultics.

(a)  Empirical Gravity Anomalies of Ocean Tidal Loads: The measured gravity anomalies
include dominant perturbations caused by the direcet terrestrial tides, which are usually modeled
by neglecting all lateral density and clasticity variations of the solid carth. Yet, those heteroge-
neities exist and may not be negligible especially in tectonically active areas. Furthermore, after
subtraction of the modeled terrestrial tide effects, the remaining gravity anomalics must be sub-
jected to the same harmonic analysis as the measured ocean tide, which is particularly controversial
tor short-time observations.

(b)  Computed Gravity Anomalies of Ocean Tidal Loads: The computation of the yielding
of the solid earth under the oceanic tide is also based on a highl_v simplified lateral homogeneous
carth model as the terrestrial tide model (a) above. Moreover, as has been pointed out by'various
investigators (e.g.. Pekeris 1978, Accad and Pekeris 1978, Goad 1980a. b, and Schwiderski 1980a).
the purely numerical computation of gravity anomalics from ocean tidal loads poses considerable
difficulties and may be the cause of significant errors. This is particularly true at coastal and
oceanic stations where the convolution of the numerical ocean tide with a singular Green's
function must be computed. Indeed, depending on the actual numerical procedure chosen, the
singularity may amplity in various ways any or all of the deficiencics of the NSWC ocean tide
models discussed in Section 2.

In spite of all the possible error sources, Goad (1980a. b) and Meclchior et al. (1980) arrive
at excellent agreements for the bulk of their compared empirical and computed gravity anomalies.
These results lend convincing support to the accuracy claim of Melchior et al. concerning their
worldwide gravity measurcements. Vice versa, these investigations verity indircctly the oceanwide
accuracy and usefulness of the NSWC tide models. In fact. a detailed analysis of the massive
Melchior et al. data indicates that all of the remaining discrepancies between the empirical and
computed data can probably be traced to one or more of the modeling and computing difficultics
claborated above.




to)  lmmediate Improvements:  In coastal and oceanic arcas some of the deficiencies of the
NSWC tide models (Section 2, b.o¢. ) can be immediately removed by preparing more detailed
limited-area tide models on a locully refined grid system. Models of this sort have already Becy
constructed by various researchers especially for excluded or insufficiently resolved borderingy

waters. Where no refined models are available, the refinement may be accomplished by lincar o
higher-order interpolation of the listed 1° x 1° data and by using additional empirical Jata. sy
from the huge collections of the British Admiralty (1977) and the International Hydrographi.
Bureau (1978), which are in possession of the author. In such a refining process the Iivdrods
namically interpolated empirical tide data, which have been displaced to the centers of the grid
cells (Section 2. <), should be first returned as closely as possible to the original tide wange
locations. Specifically, in boundary cells the empirial data should be moved from the cell centers
to the centers of the boundary segments (Figure 1a). For small oceanic (unresolved) islands. the
tabulated empirical data should be moved from the cell centers to the original stations (Figure 1h).
This relatively simple locul procedure is strongly recommended where the ocean tides sutter
drastic distortions and retardations from the deep oceans to the shallow areas.

ISLAND- ‘.@
X

LAND

a. In Boundary Cells b. Near Unresolved Islands

Figure 1. Replacing of Empirical Tide Data

The important effect of the replacement of empirical data may be illustrated by the incredibly
sharp decay of the tidal ranges (= double amplitudes) across the continental shelf of the New York
Bight. As can be seen in Figure 2, the tidal ranges measured by Gill and Porter (1980) drop trom
4.6 ft at the coast over a shelf width of less than 200 km to an almost constant height of about
3 ft in the deep ocean. The global NSWC ocean tide model approximates this distortion very
closely, but only when the empirical boundary datum X is returned to the original boundary
position x. Obviously, simple linear interpolations between the adjusted model data x and x'
could significantly improve computations of corresponding gravity anomalics in that neighbor-
hood.
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Figure 2. Sharp Decay of Tidal Ranges Across the Continental
Shelf of New York Bight: © Gill-Porter Measurements, (x, x')
NSWC Tide Model. x Replaced Empirical Boundary Datum x)

(d)  Future Improvements: Refined local tide models are presently under consideration by
the author. The results of those models will subsequently be used in connection with forthcoming
new and better empirical data to improve the global NSWC tide models. An crror reduction from
10 ¢m to 3 c¢m is already being called for in various applications. Of course, a model of this
accuracy will require more and better measured and analyzed empirical data especially in critical

areas,




4. NSWC GLOBAL OCEAN TIDE DATA (GOTD) TAPE

The NSWC GOTD-1981 tape contains the amplitudes E:“ o (in meters) and Greenwich phases
8., o (in degrees, 0° = 360°) of the leading harmonic ocean tidal modes (M3, S, K. O, . N, . I,
K,.Q,;. Mf. Mm, Ssa) on a 1° x 1° spherical grid system. This GOTD-1981 tape is identical to the
carlicr GOTD -1980 tape, which did not contain the Mm and Ssa data.

The cntm data set (5 h o ne 6:" ) is arranged by modes according to the mode numbe
i=1.2, L as ddmul in Table 3 which also lists the corresponding species number 1 (com-

pare also l.lhlc 1).

Table 2. Entire Data Set (see Table 1)

Tidal Symbol M, S, K, 0, N, P, K, Q, Mt Mm Ssi

Mode Number: i ol 2 3 4 S 6 7 8 9 10 11
o -

Species Number: v | 2 2 I 1 2 1 2 1 0 0 0

In cach mode (i =1, 2, ..., 11), the data are arranged by colatitude numbersn=1,2, ..., 168

(see Equation ) in consecutive pairs of blocks ¢ach of which contain 361 words of amplitudes
or phases arranged by longitude numbers m =1, 2, ..., 360 (sce Equation 1) with the last (361-st)
word indicating the colatitude number n. The first block in cach pair contains the amplitudes
E:“ o in Format F5.3 and the sccond one the phases 6' o in Format FS.1. The data have been
blockwise generated by the BUFFER-OUT statement on thc CDC 6700 computer. The magnetic
tape has the following propertics: seven track, BCD form, even parity, 556 bpi, and unlabeled.

The tidal constants (E‘“ e 8, ) arc representative for the 1° x 1° square with the geo-

graphical center point (7\m ()n ). where
L, = (m - 0.5)° =longitude cast (m =1, 2, ..., 360) (1
f,=(n- 0.5)° = colatitude (n= 1.2, ... . 168) (2)
On land (continental or large islands; sce Schwiderski 1978¢) all tidal constants have been set (o

. . -
£y n =9.999. 8 | =999.9 for land o

9




The precise definition of those data, their accuracy and limitation, and their proper applica-
tion and improvement has been discussed in Sections 2 and 3. To avoid possible misleading con-
clusions any application of those data st evaluate realistically the listed features and suggestions,

The instantaneous ocean tide §, (in meters) of any model i (= 1, 2, .., 11) can be found at
any given instant (y = year, d = day number of year y, and t = universal time of day d in seconds)
and any given ocean point (A, ) by linearly interpolating the amplitude £, and phase 8, belonging
to the point (A, ) in the corresponding partial tide tables and computing

(=8 0. 0= coslo t+m(x - 8,)/180) (4)

In this formula o, and x; denote, respectively, the frequency and the astronomical argument of
the partial tide listed in Table 1.

The corresponding instantaneous astronomical partial equilibrium tide n, (or tide-generating
potential G;: sce Schwiderski 1978a, 1979c¢, d. or 1980a) is determined by

n =m N0, =K, (0) cos [ai t+m(x; +v, N)/1801] (5)

where l(i = K and v, = denote, respectively, the tidal amplitude and species number listed in
Table 1. The species function of colatitude 8 is defined by

sin® 0 fory =2
f, )= sin2 0 forv =1 6)

1
Q3 sin? §- 2)yforv=0
In a simple second-order Love-number approximation, the corresponding solid-earth tide
¢ is given by (see Schwiderski 1978a, 1979¢, d, or 1980a)
=8 (0. =00612n7 (7)
Similarly, in a simple Accad-Pekeris approximation (see Schwiderski 1978a, 1979¢, d, or 19804},
the corresponding dip (yielding) of the solid carth {i"“ in response to the oceanic tidal load g‘l is
given by

§O=8 (N 0.0 > - 0.0667 ¢, (8)

Thus, the corresponding instantaneous geocentric partial tide {ic (relative to the geoidal sea
surface at rest) is determined by linear superposition to

CEH O =g 9)
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Finally, by linear superposition of all corresponding partial tides, one finds the instantancous
local tides:

(=¢(\,0,t)=X §i = total oceanic tide (10a)
i
=8 (N0, 0)=X { = total geocentric tide (10b)
1

Note to Users: Copies of the NSWC GOTD tape in its discribed standard format (or any other

desired format) may be requested from the authors:

E. W. Schwiderski, Code K104, Tel. (703) 663-8406
L. T. Szeto, Code K14, Tel. (703) 663-7741
NSWC, Dahlgren, Virginia 22448

A el
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§. NSWC RANDOM-POINT TIDE PROGRAM (RPTIDE)

The following NSWC RPTIDE computes from the harmonic tidal constants listed on the
NSWC GOTD 1981 (or GOTD 1980) tape (Section 4) the instaneous oceanic and/or geocentric
tides at given random points and instances. The corresponding Users’ Guide and Program Listing
are given in Appendixes A and B. A fast program to compute geocentric tides along satellite tracks
is described in Schwiderski, E. W. and Szeto, L. T. 1981.

1) Input Data

ocecan tide amplitudes (in m) and Greenwich phases (in deg) from

(l) (Eim,n’aim,n)
GOTD 1981 (or 1980) tape, where

= mode numbers for GOTD 1981
(0 <i<10 for GOTD 1980)

—
[
—
2
W
—
—
|

m=1,2,..,360 (=0) = longitude numbers
n=12, .., 68 = colatitude numbers
Note: Sim'n =9.999, 8! n = 9999 on land
Sin n = 360° = 0° (phase jump)
(2) y = year 2 1975 (fixed for one run!)
{3) d =day of year y (d = | for January Ist, also fixed for one run!)

4) t’. = specified instances (in sec after Greenwich midnight of day d, where j = 1, 2, 3,... )

5 ()\j, 0].) = longitudes (East) and latitudes (+ North, - South) in deg. of random points
corresponding to instances tj

(6) J = number of random points

(7) I = number of superposed tidal modes if 1 << 11 with option
~ 1 <1<- 11 for computation of single tidal mode i = |1}, |1l < 10

for GOTD 1980 tape)

(8) a = G or = | = earth tide parameter (@ = 1 earth tide included, a = 0 earth tide excluded)

12




4
!
{

!
5
§
]

(9) B=0or =1 =ocean load parameter {§ = | ocean load included, 8 = 0 ocean load excluded)
(10) v = 0 or = 1 = ocean tide parameter (Y = | ocean tide included, y = 0 ocean tide excluded)

I1) Preliminary Computations

With the tidal parameters » = »,, 0 = o, K=K, h s, p, specified in Tables 1 and 2 compute:

Q
h==h_ /180, s=ms,/180, p=wmp,/180
X=X fori=1,2,3, ..,11

and set (E, = 0.612 Ki)

E; =0.148 308, E, =0.069 059, E, =0.086 638,
E, =0.061 515, Es; =0.028 396, E, =0.028 668,
E, =0.018 791, Es = 0.011 785, E, =0.025 546,
E,o =0.013 480, Ey, =0.011 901,
also
y=7v-0.06678

III) Main Computation
(1) Setj=1
(2) Set §‘j =0and
=1 forl >0,
= |1} for I P O (single mode!)
(3) Compute:
m = Int [7\J. +051+1,y=m- (}\j +0.5)
n=Int[90.5-¢)+1,0=0=n-(905-9¢)
and transfer‘ to core memory

(sim—l.n—l’aim—l.n—l):(zim,n—l’y'm.n—l)
*)
(E:n—l.n’ali“~l.n); (S:n,n“s:n.n)
13
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wherem - | =0 — 360
Check for land points and replace

(a) if &

1
m, n-1

=9.999, replace 0 -0

(b) if gin, L =9.999, replace 6 > |

(¢) if (a)and (b) hold, replace ¢ = |

) ifg,_, ., =9.999.replacc 6 -0

() ifg_, = 9.999, replace 01

() it (d) and (e) hold, replace y > 0

(4) Interpolate E} or the ruled second-order surface in y and 6.

g=0-ylog, ., +A-0g ]
FYIOE, )y vUA-0E ]

Test for 360° phase jumps and replace

. i > 180, replace 8! |, =8 |, - 360
lf5m,x\—l_5m,n ; ;

< - 180, replace 6m‘n —>5m‘n - 360
. i >180,replace6im_l‘n_]—>6:“_l,n_1—360
lt6m—-l,n-l~6m,n ; ;

< - 180, replace 6m‘ n —*Bm_ . - 360
. i >lSO,replaceS:“_“n—>6‘m_““~360
lf(sm-l.n—tsm,n ; ;

< -l80,replace6m‘n-*45,"‘"—360
- i > 180, replace & |, 8 | - 360
116m—).n—]_(sm.n—-l i i

< -180.replace b, —>&_ - 360
- i > 180, replace 8} _, & _ - 360
lt5m-|,n_8m.n—l . .

< -180,replace 8] |, =8 || - 360

14
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- i > 180.replace 8, 6 - 360
it 5m—-l, n - & m-1.n-1

< -180, replace 5:“_1_ nel —’5:1;-1, aoy - 360
Use adjusted &8s to interpolate 6} by tormula (**) with & replaced by §.
Now, compute and replace
{J. —>§‘j + v 5; cos [0, tj tx, - T 8}/180]
+« Ei (¢j) cos [o, tj +x; Ty, )xj/180]

where

E, cos® ¢, forv, = 2
Ei (¢j) = Ei sin 2 ¢J. for v, = 1

lE ‘el Al y =
N i(3&05 ¢j—-) torvi—O

If i< (1], replace i = i+ 1, transter to core memory new data (*), and repeat routine (4).
If i €I, print A, ¢,. t,. and §r

If j <J, replace j = j + | and repeat (2) through (4).

It j € J stop program.

Note: This program does not consider any special features or suggestions made in Scctions 2

and 3. Hence, if a higher accuracy near coastal boundaries is needed, an appropriate local compu-
tation should be used following the suggestions ot Section 2.

15
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APPENDIX A

RPTIDE PROGRAM USER'S GUIDE

The Random-Point Tide (RPTIDE) program  computes instantancous occanic and,or
geocentric tides at randomly given geographical points and specified instunces as described in
Section 3. The program listing in Appendix B shows RPTIDLE written in FORTRAN 1V extended
tor the CDC 6700 computer under the SCOPE 3.4 operating system. The BUFFER IN statement
butters in GOTD 1980 or 1981 tide constants (Section 4), which are in binary mode. The GOTD
magnetic tape s in coded mode: its files are attached as follows tor the example 1 = 0. L = 1T}
(see Sections 4 and 5):

ATTACH, TAPE L El‘" _

ATTACH. TAPEL+1, 8!

m.n

.

ATTACH. TAPE L +2. g

ATTACH.TAPE L+ 3. & GOTD files

m.n
ATTACH.TAPE L +10. &
ATTACH. TAPE L+ 11, &

m.n
All other input data are entered using data cards consisting of one type A data card onc or more
type B data cards. The type A card contains 8 right-justified integers with the format of 8IS,
The integers represent the tollowing ordered variables (Section 5 symbols in parentheses):

YEAR = (y) = year >> 1975 (fixed tor one run!)

DAY = (d) = day of YEAR (d = | for Junuary Ist, also fixed for one run!)

JPTS = (J) = total number of random points or instances with same YEAR and DAY

MTIDE = (1) = total number of tidal modes to be superposed (1 < i <1 where I <10 for GOTD

1980 and 1 < 12 for GOTD 1981). Option it MTIDE = - N with 0 < N < 10 or
12, the computed tide is the single partial tide i= N

ETINC = (a) = earth tide parameter (ETINC = 0 excludes and ETINC = 1 includes carth tide)

LOAD = (8) = ocean load parameter (LOAD

0 excludes and LOAD = 1 includes ocean load)




r"' - e eareesampm——

OCEAN = (y) = ocean tide parameter (OCEAN = 0 excludes and OCEAN = | includes ocean tide)

(T1 = veginning unit number of 2 * MTIDE| consecutive unit numbers to which GOTD files
are attached (sce examplie above)

Each type B data card contains three numbers with the tormat 3F20.8. These numbers are,
respectively:

TIME = (1) = time {in sco) of given instant after Greenwich midnight of day DAY (may be several
days later)

LONG = (X)) = Longitude (East: in degrees)

LAT = (¢) = Latitude (+ North, - South: in degrees)
Other major notations corresponding to Section 5 are:
D = (6) = Oceanic tidal phase

X = (&) = Oceanic tidal amplitude

T = () = instantancous tidal height

NU = (v) = tidal species number

FREQ = (g = tidal frequeancy

ASTRO = (x) = astronomical argument

ETIDE = (k) = ¢carth tide constant amplitude

ET = (E(¢)) = carth tide geographical amplitude

Note: For land points in squares with 9.999 vertex amplitudes only the earth tide is meaningful
it ETINC = 1, LOAD = OCEAN = 0. For improved accuracy in coastal waters, special
computations should incorporate the suggestions of Section 3 ¢ and d.
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