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PREFACE

The Lecture Series is intended to provide the basic theories and concepts involved in the
design of advanced guidance and control systems employing state-space and multi-variable
design methods. An intrinsic part of this Lecture Series will be computer-aided and graphical
techniques that can be employed in preliminary design and related analysis methods. This
will provide one document which covers the necessary design background and state-of-the-art
involved in the application of advancing technologies.

Among the main topics to be reviewed are:

Analysis and Synthesis Techniques
Application of Observer and Estimation Principles
Computer-Aided Design and Analysis Methods
System Simulation Techniques
Tests Evaluation and Validation

There will be a round-table discussion at the end of the presentations during which
comments and suggestions will be invited from participants.

Dr R.E.POPE
Lecture Series Director
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The Need for Multivariable
Design and Analysis Techniques

Rhall E. Pope

Honeywell Inc.
Systems and Research Center

2600 Ridgway Parkway P.O. Box 312
Minneapolis, Minnesota USA 55440

Summary

Because of escalating performance demands, modern day warfare systems are becoming
increasingly complex. Demands for higher accuracy, improved reliability/survivability,
and more automation are placing increased emphasis on the control function for
successful operation. Nowhere is this increased emphasis more evident than in the
control functions required in todays and future aircraft weapon systems.

Modifications to airframe designs directed at increased maneuverability and reduced
weight are placing stringent demands on flight control systems. This is particularly
true for advanced fighter aircraft which may possess relaxed static stability,
additional surfaces for direct force control, and active structural control
requirements. Fly-by-wire systems, particularly digital systems, have provided the
flexibility to not only accommodate but influence airframe design modifications and
have led to the control configured vehicle (CCV) concept. These advances in air
vehicle design and flight control system Implementation have begun to overwhelm
traditional design and analysis techniques which are most effective on aircraft
applications with few surfaces, little dynamic coupling, separation between flight
control and other avionic subsystem bandwidths and analog system implementations.

In addition, stability and control design specifications have become inadequate in
dealing with statically unstable vehicles, multiple control loops and high dynamic
coupling. Better control system design and analysis techniques are needed which
address the multi-input closely coupled dynamic nature of today's and tomorrows
aircraft weapon systems.

1.0 Introduction

A multivariable flight control system is one in which there are multiple
interacting control loops. This interaction is dictated by the dynamic coupling
resulting from the aircraft and propulsion system design. Until recently, aircraft
were designed to minimize dynamic coupling. Propulsion systems were designed based
primarily on forward velocity requirements.

For the design of flight control systems with little dynamic coupling, traditional
or so called classical design and analysis techniques are adequate and provide key
Insights into the fundamental design issues of feedback control systems. The design
and analysis techniques discussed in subsequent chapters are directed at systems whose
control loop interaction extend the utility of classical techniques to the point where
they are not only cumbersome to use as design tools but produce flight control system
designs with undesirable performance characteristics. The iradequacies of classical
design techniques are by no means accepted facts. There has been continuous debate
over the last two decades as to the utility of classical techniques versus the utility
of non-classical or modern techniques.

It is useful to view the utility issue from the perspective of the flight control
system application, particularly as flight control systems have evolved over the
years. In depicting that history, the essential items to consider are

a the aircraft application
a the performance requirements
a the control approach

These items determine the utility of the design and analysis techniques.

The first row of Table 1 represents the aircraft application, performance
requirements, control approach, and design and analysis techniques for early aircraft
up through aircraft built in the 1950's. For these applications the airframe was
designed to provide stability and control for the three attitude degrees of freedom and
the propulsion system was designed for speed control. The control approach was open
loop and design and analysis technques were airframe oriented. Feedback control design
techniques representative of classical techniques are shown for systems described by
row 2 of Table 2. In this case also, the airframe was designed to provide 3 DOF
attitude stability and control and the propulsion system provide speed control.
Inadequate airframe designs or the promise of improved performance resulted in feedback

systems which were used to augment stability. The most prevalent example of such a
stability augmentation system is a yaw damper. The introduction of feedback control
required additional design and analysis techniques, particularly those which addressed
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Table 1. Aircraft Control Systems Edrly To
Current Operational Systems

the stability characteristics of feedback control systems. Because the feedback
control design was very simple, involving only one sensor variable and one surface
command, classical techniques were very effective and led to the acceptance of
stability margins as flight control system design specifications.

Additional demands were then placed on flight control systems in the form of
command augmentation systems as shown in row 3 of Table 1. The airframe application
still remained the same with or without a need for stability augmentation. Handling
quality tests determined that command augmentation provided better handling qualities
as exemplified by the acceptance of rate command systems or C* systems. Traditional
design techniques were still adequate for design since despite an increase in the
number of sensor and surface pairs, the design could be performed one pair at a time
because of the loose dynamic coupling.

The introduction of command augmentation, however, initiated the application of
modern multivariable techniques, particularly model following approaches. These
techniques promised to facilitate flight control system design thus producing better
designs. Despite the promise, they were not widely accepted by practical control
system designers.

Fly-by-wire systems, particularly digital FBW systems, as shown in row 4 of Table
1, brought new issues to flight control design. New techniques were developed and
utilized to insure that digital systems performed as closely as possible to their
analog counterparts. In addition the availability of a digital computer and its
associated "unlimited" computational capability on board the aircraft encouraged more
application of modern techniques which promised better performance. Again these
techniques were not widely accepted by practical control designers.

The systems described by row 4 of Table I represent the state of the art of todays
production aircraft. Table 2 presents characterizations for current experimental and
prototype aircraft and projected production systems. The introduction of the control
configured vehicle (CCV) concept has had a dramatic effect on flight control systems.
In a CCV aircraft, the flight control system is not merely augmenting stability or
improving performance, but is providing a flight critical stabilizing and cntrol
function. The criticality of the flight control system in a CCV application has
intensified the need for efficient and reliable design and analyses techniques. CCV
aircraft, in themselves however, do not possess dynamic coupling levels which make
classical design techniques Intractable. In addition, classical techniques directly
address stability Issues and have therefore been much more attractive to a designer for
CCV control design.

Direct force control, made possible by additional surfaces and thrust vectoring of
the propulsion system, as characterized by row 2 of Table 2 introduced a flight control
design application that benefits from multivariable control techniques. In this
application, it is difficult to eliminate closely coupled dynamics in the airframe
design. Interaction with the propulsion system can magnify the coupling. For this
application, the large number of control inputs and the close coupling of dynamics can
easily overwhelm classical "one loop at a time" techniques.
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The problem is projected to worsen with requirements to "integrate" flight control
and other avionics subsystems as shown in Row 3 of Table 2 and conceptually in Figure
I. This integration will dramatically increase the number of inputs the control system
must handle and introduces the potential for interaction among loops never before
encountered in operational systems.

In the sections that follow, we will address the need for multivarlable design and
analysis techniques. In Section 2.0, a statement of the multivariable control problem
will be presented. Section 3.0 will discuss the requirements of multivariable design
and analysis techniques for successfully addressing the multivarlable control problem.
Section 4.0 will present two examples which illustrate the need for better techniques.
Summary and conclusions will be presented in Section 5.0.

2.0 The Multivariable Control Problem

The multivariable control problem is inherently a feedback control problem. As
such, there are two key aspects which will determine the utility of feedback control
design and analysis approaches:

* the control application and its reoresentatlon
* the control design criteria

The elements of each of these aspects will now be discussed.

2.1 The control application and its representations

Before beginning any control system design and analysis, it Is critical to have a
thorough understanding of the nature and requirements of the control application. The
understanding of the application can assume different forms and can be obtained from a
variety of sources. The basic sources are

* observations of the behavior of the application to be controlled or a similar
application

* an analytic understanding of the fundamental behavior of an application
deduced from laws of physics, chemistry, etc.

The information from one or both of these sources can be assembled in a form that
can be used to predict how the application will behave. These forms can vary in
sophistication from "gut feels", to laboratory test beds, to pilot olant or prototypes
to complex mathematical representations. All of these assemblages of information or
information generators can loosely be termed "models." An essential point to remember,
however, is that the model, whatever the form is merely a device to aide in
understanding the behavior of the application. The level of understanding and the
associated fidelity of the model differ with the nature and the requirements of the
application. Over the last twenty-five years, the models used in the aerospace control
community have been much more mathematically oriented than in other communities, e.g.,
process control. The primary reason for this is the lack of a safe, cost effective way
to gather Informatlor on operational systems that can then be used to predict system
behavior. The Space Shuttle is a prime example of the difficulty. Since the Shuttle
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Figure 1. Integrated System Representation

is basically a CCV, the flight control system had to be operational on the very first
flight under consequence of loss of vehicle and crew had it failed. With the Shuttle
and other CCV's depending on their stability characteristics, open loop flight testing
is impossible.

What consitutes a good model? The following rules can be used as guidelines for
model development.

i. The fidelity of the model should be tailored to the stage of control system
design. For example, in the preliminary design stage, the thrust of the modeling
effort should be on major control design drivers leading to a simple but accurate,
Rithin limits, model upon which numerous control design tradeoffs can be
performed. At the acceptance stage, of course, the model would be of higher
fidelity with less tradeoff analysis expected.

2. Modeling approximations should be clearly recognized. Any model is an
approximation to an actual system. Every attempt should be made to recognize the
impact of the approximations made. The standard mathematical approximations made
for flight control system design are
a linearization of non linear dynamics about selected operating points
a neglect of some non linearities (e.g., control saturation)
I neglect of high frequency dynamics.
T hese approximations are well understood and in general their impact can be
Quantified. The number of approximations are reduced as the design proceeds
through each developrent phase.

3. Modeling uncertainties should be recognized. A model uncertainty is different than
a modeling approximation. Modeling approximations refer to those actions knowingly
taken by a control designer to expedite the control design task. For example,
linearizing a non--linear model about an operating point is a modeling
approximation. Many times, however, the best mathematical models that can be
constructed to represent the behavior of a system still contain a great deal of
uncertainty. The uncertainty may arise from the lack of similar systems which

could be used for behavioral comparisons or from deficiencies in the understanding
of the physical or chemical phenomena involved. As discussed in Section 4.2, the
eodels used for the Space Shuttle Flight Control design had a great deal of model
uncertainty. To deal with these uncertainties, the potential variations in
uncertain modeling variables should be specified.

4. The consequen/ces of modeling approximations and uncertainties should be
recognized. Whether a model of system behavior is approximated or whether there is
uncertainty in the model, the consequences of the model limitations as they impact
control system design must be recognized. For example, truncating high frequency
structural dynamic modes at a particular frequency is acceptable if it is
recognized that the control system must also attenuate these high frequency
dynamics above that frequency or be insensitive to them.

5. The model should cuver the operating range of the application. This requires that

the design points be chosen so as to uncover and exercise all of the control system
design drivers. The number of design points chosen should be sufficient such that
the assemblage of the operating ranges of the control systems at each design point
cover the total operating range.

Since control system design and analysis techniques generally begin with an
understanding of the control prcblem, which Is represented in model form, the model
form and characteristics can become an intimate part of design and analysis techniques.
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2.2 The Control Design Criteria

Design criteria for feedback control systems can be lumped !nto three broad
categories: Performance, Stability, and Sensitivity. In order to set the stage for
defining requirements for multivariable design and analysis techniques, a brief review
of these criteria Is appropriate.

Performance. Performance criteria are generally specified as a requirement for the
control system to follow commands or reject disturbances. An example of a command
following specification is shown in Figure 2. This Lype of performance criteria which
is used in the Space Shuttle program requires that the vehicle response (in the case
shown, roll rate) to a step input (full roll stick command) must fall within a
specified envelope. Disturbance rejection criteria can take a number of forms.
Disturbances are considered to be externally applied, as in the case of turbulence. A
typical criteria for turbulence rejection would be to not exceed a specified vehicle
acceleration level during turbulence.

K4

K3

1.0.

K2

Z K,

0 T, T2 T3  T4  T5  T6

TIME
Figure 2. Space Shuttle Entry Step Command Following Response Specifications

Stability. The most commonly used stability criteria are stability margins.
Stability margins generally refer to the amount of gain or phase variation from a
design condition a system employing feedback control can experience before becoming
unstable. The gain and phase margin type of stability margin formulation is a
consequence of the original techniques (i.e., Bode, Nyquist, Nichols) that were used to
analyze feedback control systems. 1he source of the gain or phase variation, be it
modeling approximations, model uncertainty, change in operating conditions or
combinations, influences the magnitude of the margins desired. The Space Shuttle
stability margin inertia which are fairly typical for flight control systems are shown
in Table 3. As will be discussed in subsequent papers, there are limitations
associated with using this type of stability criteria.

Sensitivity. In early feedback control applications, reducing sensitivity was the
only control design criteria, particularly reducing sensitivity to noise. Over the
last several years, sensitivity issues have attracted new attention and have generated
a new requirement - robustness. A control system is robust (insensitive) if
performance is maintained in the presence of variations in the plant from the design
model. These variations can be modeling approximations, modeling uncertainties,
failures of control elements (sensors, actuators), noise, non-linearities, etc. with
the exception of noise, there are no well accepted criteria for dealing with these
sensitivity issues at the present time.

These criterip are not mutually exclusive. Good stability characteristics in well
designed systems usually are accompanied by good performance. Sensitivity or
robustness must be considered relative to the variations from the design model that the
control system will experience. The criteria may also be formally or informally
applied. For example, satisfying the Shuttle specs shown in Figure 2, was a reqirement
for control system acceptance. The sensitivity issues, of which there were many in
Shuttle, had less rigidly applied criteria associated with them.

Gain Margin Phase Margin
Pitch Axis + 6 db 30 0

Lateral Directional + 6 db 300

Axis -12 db

Table 3. Space Shuttle Entry Stability Margin Specifications



3.0 Requirements for Multivariable Design and Analysis Techniques

Multivariable deign and analysis techniques have no unique requirements over those
classical techniques that have been successfully applied to single input-single output
'SISO) feedback control system designs. It may be instructive, however, to review the
characteristics of SISO techniques that contributed to their utility and widespread
acceptance. SISO oriented techniques have the following qual'ties:

* Provide insight into key feedback control issues
* Easy to use with experience
* Detailed models not required

Techniques with these qualities produced control systems which would satisfy
performance specifications with a high degree of confidence and with very little design
effort. Probably the most important for these qualities is the amount of insight the
technique provides of understanding control system drivers. If the technique directly
addresses a design criteria, then it is much easier and quicker to make intelligent
design decisions. Techniques that do not provide such insights can be frustrating in
their lack of guidance as to what can be done to improve the design. As we stated
earlier, control applications have become more complex. Because of this, the same
characteristics that provided utility for designing and analyzing SISO systems become
less useful for multivariable systems. In fact they become difficult to use and can be
misleading in their analysis of key feedback control issues. It is important to
inderstand, however, why they were originally so attractive, because the same qualities
should be striven for in multivariable design and analysis technques.

4.0 Illustrative Examples

Two examples illustrate the need for multivariable design and analysis techniques.
The first example illustrates the multi-input design and analysis problem associated
with an integrated flight and prc.)ulsion control system. The second example deals with
the inadequacies of current techniques for measuring the stability characteristics of
systems with interacting control loop.

4.1 Integrated Flight and Propulsion Control

Air warfare systems are becoming increasingly complex. Figure 3 presents
dramatically the increase in control variables that will accompany integration of air
warfare functions in future systems. The most significant incremental increase in
control variables will occur with the integration of the flight control system and the
propulsion control system (engine, inlet, nozzle). This integration promises to
improve aircraft maneuvering capability, reduce fuel expenditure, and extend engine
lifetimes. The control modes that have been proposed to achieve the advantages of
coupling the propulsion and flight control system are

* Energy Management
* 4D Navigation
* Minimum Drag
* Maximum Thrust
* Maneuver Enhancement

A Automatic Envelope Limiting

The fundamental issue in integrating the flight and propulsion control systems is
the strong interactions that may be expected between the engines, inlets, and airframe
in high performance aircraft, particularly in the supersonic flight regime. Such
interaction has been demonstrated in the YF-12 and XB-70 aircraft which experience
larger pitch, roll and yaw moments due to airframe/inlet interaction. In the YF-12,
for example, the rolling moment produced by the inlet bypass doors is equivalent to
that produced by the primary rolling momment generators, the ailerions. The typical
maneuvering of higher performance fighters will subject the inlet to large variations
in local flow angle, local mach number and pressure all of which will impact engine
performance.

In addition to the standard throttle demands placed by the airframe on the engine,
fuel consumption will alter the airframe center of gravity requiring retrim. These
problems are insignificant, however, when placed in comparison to vectored thrust
aircraft like the Harrier and AV-8. Designers forced with integrating complex highly
interacting engine inlet and flight control requirements have a formidable task.

In today's turbofan engines, e.g., Pratt and Whitney (P&W) F-100, the fan and
compressor margins are defined to accommodate large vehicle maneuvers. In cruise
situations improvements in engine efficiency cculd be realized if the operating points
were moved (i.e., uptrimmed). The operating point could then be moved prior to the
onset of large maneuvers to maintain margins. light control of the engines' operating
points and margins requires close cooperation among the various subsystems. This
coordination requires the use of multivariable control strategies.

These interactive propulsion and flight control modes listed above will require
both inner and outer loop design to fully realize the advantages. Outer loop
trajectory commands or optimum set points can be generated using optimization
tec:hniques. The multivariable control problem becomes one of shaping command responses
to those outer loop commands in a confidently stable control configuration. The type
of control and measurements that are available for the problem are shown in Figure 4.
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The primary design issues associated with the integrated flight and propulsion system
problem reside in the following areas:

Design Criteria - Because flight and propulsion systems have traditionally been
designed, and operated relatively independently, no design criteria exist for how they
should be integrated.

Design Models - Again because of the automony of the sytems, interactive effects are
generally only crudely approximated. In addition, the engine control problem is
extremely non linear. The flight conditions, of interest, e.g., high angle of attack
maneuvering, further complicate the non linear problem.

Failure Sensitivity - Because flight and propulsion are more integrated, a failure in a
sensor or a controller in either system now has a more significant impact on the total
system. Design and verification of integrated flight and propulsion control systems
that tolerate failures is a major challenge.

Past Air Force and NASA programs such as the F-111 Integrated Propulsion Control
System (IPCS), the YF-12 Cooperative Control (CAPCS) and Various Flight Propulsion and
Control Coupling studies have examined some of the issues. The NASA integrated
Research Aircraft Control Technology (INTERACT) currently is taking a new look in an
attempt to exploit some of the new results in multivariable control.

4.2 The Space Shuttle Flight Control System

Control of the Space Shuttle Orbiter during the entry flight phase is the most
oemanding flight control problem control designers have ever faced. The major
contributors to the problem are a statically unstable vehicle, a vast operating
envelope, a large degree of uncertainty in modeling the vehicle behavior, and a control
system comprised of a combination of linear (aerodynamic surfaces) and non-linear
(reaction control jets) devices.

The large operating envelope is shown in Figure 5. The orbiter control system must
operate over velocities from 26,000 FPS to 0 FPS, dynamic pressures of 0 PSF to 400
PSF, and angles of attack from 0O to 500, all of which directly determine vehicle
dynamic response. At the low dynamic pressure portion of the flight, only reaction
control jets are employed. However, during the majority of the entry, reaction jets
are used in combination with the aerodynamics surfaces for lateral directional control.

The problem that most plagued shuttle control design was uncertainty in modeling
the vehicles projected behavior coupled with potential large deviations from a nominal
trajectory. The modeling uncertainties were related to aerodynamics, structural
flexibility, and flow interaction with reaction jets. The deviations from nominal
trajectory were produced by atmospheric conditions (e.g., winds) and potential
variations in vehicle drag. These deviations resulted in large variations in dynamic
pressure which is a key flight control design element.
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The approach taken to determine the impact of uncertainty involved a number of
steps. First, statistical bounds were placed on all uncertain parameters. Statistical
bounds were also placed on potential deviations from the nominal trajectory. Second,
design criteria were established which required that the control system operate over
the statistically defined flight envelope which included not only deviations from a
nominal trajectory but variations in vehicles aerodynamics and reaction jet
characteristics. Third, the impact of these statistical uncertainties was then
analyzed with respect to the command response and stability margin criteria presented
in Section 2.0. The analysis approaches employed were

* linear transient response and stability analysis
* primarily linear with selected non linearities transient response analysis
• 6 DOF non linear transient response analysis at fixed flight conditions
* 6 DOF non linear transient response analysis over entry trajectories
* full up simulations

- automatic
- man in the loop

As demonstrated by the successful first flight, this exhaustive approach did produce a
successful control design.

Because of the uncertainty issue, the Shuttle is a good example to illustrate the
inadequacies that currently exist In analyzing the stability characteristics of systems
with a large degree of uncertainty. The first inadequacy was the lack of analysis
tools that gave the same idea of a "stability margin" for analyzing the effect of the
statistically represented uncertainties described above. Because these statistical
uncertainties appeared in only parts of the model and in different combinations,
standard gain and phase margin analysis techniques did not apply. Analysis required
exhaustive, time consuming, costly simulations to investigate all the possible
combinations.

A technique which would map an envelope of uncertainty to a stability margin
representation would have been extremely useful on the Shuttle control system design.
An example is shown in Figure 6 where a two parameter (e.g., CN8 vs CLS )
envelope of uncertainty is mapped to a representation of closed loop eignevlues, for
both open and closed loop behavior. A stability margin type measure might be the curve
P1 ' P2 ' which represents the stability boundaries on the allowable parameter
variations. This of course, only represents a two parameter case. For Shuttle control
system analysis, the effect of ten to fifteen parameters and all the possible
combinations had to be determined.

Another area of concern is the inadequacy of current stability analysis techniques
to address the direction of an uncertainty. Classical techniques basically only
address magnitude variations in one direction. Preliminary analysis of the first
flight Shuttle data indicates that the vehicle roll response at low dynamic pressure to
a yaw jet firing was adverse rather than proverse as was expected. If this effect is
taken into account, the stability margins deteriorate from satisfying specs to a -1 dB
low frequency margin.

These two examples indicate a need for new techniques for designing and analyzing
control systems with a large number of interacting control loops and levels of
uncertainty in predicting system behavior.

P-PLANE S-PLANE

P2  iW

P 2, P2'

,!Pl' p2 PERUNIT PARAMETER (a) NO CONTROLLER
CHANGE VECTOR COMPONENTS (b ( WITH CONTROLLER

Figure 6. Uncertainty Mapping for Stablity Analysis
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5.0 Summary and Conclusions

A case for the need for new multivariable design and analysis techniques has been
presented. Modern air warfare systems demand these techniques in order to satisfy
increasingly stringent and complex performance requirements. As we progress into the
space environment, the control of large flexible space structures will pose even more
severe design challenges particularly in the area of model testing ind uncertainty.

Our current established techniques are becoming over-taxed and are forcing us to rely
more heavily on costly and time consuming simulation for design. Computer aided design

approaches are required to assimilate and display the information required for control

system design that are easy to use and provide insight into key control design issues.

As exemplified by the existence of the lecture series, there has been considerable

interest over the last twenty years in developing new design techniques that address
these needs. In the papers that follow, a broad spectrum of techniques will be

described that differ widely in design philosophy and approach. It is our hope that

the descriptions will provide the essential information for understanding the
advantages of one technique over another for particular design problems.

As is the case in the use of any tool, there is generally no one tool which will

solve all problems with optimal efficiency. The most efficient tool for a particular

application is the one that has been tailored specifically for that application. At

the conclusion of this lecture series, we hope to have provided to you a tool box from

which you can select the appropriate tool for your control design application.
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CHARACTERISTIC AND PRINCIPAL GAINS
AND PHASES AND THEIR USE AS
MULTIVARIABLE CONTROL DESIGN TOOLS

by

Alistair G. J. MacFarlane
Enginee~ring Department

University of Cambridge
Mill Lane

Cambridge, England
CB2 lRX

SUMMARY

The key to the generalisation of classical frequency-response design techniques to
the multivariable case lies in the development of ways of suitably extending the concepts
of gain and phase. It is shown how algebraic function theory can be used to generalise
Nyquist diagram and Root-Locus diagram techniques for use with systems having many in-
puts and outputs. This is done in such a way that the main structural features of such
diagrams can be related to state-space model parameters. The shortcomings of character-
istic gains and phases (used in a generalised Nyquist approach) are then noted. An
alternative way of introducing amplitude and phase information, via the polar decomposi-
tion of an operator, leads to the introduction of principal gains and principal phases.
Their properties are examined and, in particular, it is shown how they may be used to
characterise robustness.

Finally a discussion, with an example, is given of the use of these techniques for
design purposes.

1. INTRODUCTION

In developing a design technique, one seeks to give practising and experienced
engineers a set of manipulative and interpretative tools which will enable them to build
up, modify and assess a design put together on the basis of physical reasoning within
the guidelines laid down by their engineering experience. Thus, in the development of
design techniques, consideration of the way in which a designer interacts with a computer
is vitally important. It is imperative to share the burden of work between computer and
designer in such a way that each does what they can do best. The development of
techniques which lead to a fruitful and effective symbiotic relationship between computer
and designer is of great importance in the future development of control engineering
practice since it is the only conceivable way in which

(i) the designer can deploy his intuitive skill and experience while still making
an effective use of advanced theoretical tools; and

(ii) the immense and ever-increasing computational power of computers can be
harnessed in a design context.

A developer of new engineering design techniques has two harsh, and quite different,
criteria to satisfy :

(1) he must provide tools which are acceptable to practising engineers and which
are demonstrably useful and effective;

(1i) he must show that his techniques are based on rigorous and indisputably
correct mathematical foundations.

To be effective for an engineering designer, a design technique must make the maximum
use of his intuition and experience. The need to provide him with an intuitively
appealing medium for communication and visualisation, together with recent developments
in computer terminals, places a high premium on techniques using graphics and those
which are based on geometrical concepts. What we are concerned with here is the
development of an appropriate concetul framework within which a designer can work.
This is based on fairly straight orwar concepts in algebraic geometry (the theory of
curves) and linear geometry. It is shown how the generalisation of the classical
frequency-response tools of Nyquist and Root-Locus diagrams are algebraic curves derived
from the spectral analysis of appropriate matrix-valued functions of a complex variable.
Many of their key properties can be comprehensively analysed in terms of a state-space
model of the vector feedback loop which is being studied. This analysis involves simple
linear geometry and is essentially concerned with the way in which certain subspaces,
defined via the various operators involved, sit with respect to one another, and with
ways of assigning complex frequencies to those subspaces. Finally, the techniques out-
lined are illustrated by an example of their use in design.
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2. GENERALISED NYQUIST AND ROOT LOCUS DIAGRAMS: CHARACTERISTIC GAINS AND
CHARACTERISTIC PHASES.

The original Nyquist stability criterion owed its central importance in classical
feedback control work to the fact that it tested the stability of a proposed feedback
loop in terms of a directly measured transmission characteristic [1]. This radical
departure of inferring stability from measured signal characteristics instead of from
computed dynamical-model characteristics placed complex-function methods in a centrally-
important position in the development of control analysis and design techniques up to
the late 1940s. The root-locus technique developed in the 1950s [1) added further
weight to the arguments for using complex-variable approaches in the analysis and design
of feedback systems. At the time of the introduction of the roo#-locus method, the
close link with the Nyquist technique was not appreciated; one of the virtues of the
algebraic function approach used here to generalise these techniques to the multivariable
case [21 is that it shows how both these classical techniques are essentially different
ways of representing curves derived from a single algebraic function relating complex
frequency and complex gain.

The dual role of complex numbers is familiar from elementary complex number theory:
they can be used to represent both objects )r quantities (e.g. vectors in a plane) and
operations on objects (e.g. rotation and stretching of vectors in a plane). This dual
role is important in classical (i.e. single-input single-output) frequency-response
methods where complex numbers are used to represent frequencies (complex numbers) and
gains (operations on complex vectors). The two classical approaches to the complex-
variable-based analysis of feedback systems

(i) study (open-loop) gain as a function of frequency (the Nyquist-Bode approach);
or

(ii) study (closed-loop) frequency as a function of gain (the Evans Root-Locus
approach).

Our first objective is to show that there is an intimate relationship between the
generalisation of these two approaches to the multivariable (many-input many-output)case
and the standard state-space model

: x= Ax + Bu (2.1)
y = Cx + Du

In much of what follows the matrix D will be taken to be zero for simplicity of
exposition. However its inclusion at this point gives completeness and symmetry
to the development of the general case. [A is nxn; B is nxZ; C is mxn; D is m×.
When vector feedback loops are being discussed k= m] . Suppose we sever m feedback
connections to an arbitrary linear dynamical system as shown in Fig.l, and that the
transmittance between the injection point a and the return ' is given by a state-space
model of the form shown in equation (2.1).

LINEAR rm INPUTS
DYNAMICAL AND
SYSTEM ,m OUTPUTS

SIGNAL SIGNAL
VECTOR VECTOR
INJECTION INJECTION

+ a'

A

Figure 1

Then, on remaking the feedback connections, we see that the closed-loop characteristic
frequencies of this system will be given by the spectrum (set of eigenvalues) of the
matrix

S = A + B(I m -D)-I c (2.2)
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and that the open-loop transfer function matrix relating vector exponential signals
injected at a to the vector exponential signals returned at d is

G(s) = D + C(sIn-A)-IB (2.3j

(I and I are unit matrices of orders m and n respectively.) If one compares the
ri~ht-hang sides of (2.2) and (2.3) they are seen to have a suggestive structural
similarity. This becomes an exact structural equivalence if we introduce a variable g
and change (2.2) to the form

S(g) = A + B(gIm-D) 1C (2.4)

where the role of the variable g will emerge shortly. Our aim is to put, in a state-
space-model context, the roles of open-loop gain (the key Nyquist-Bode concept) and
closed-loop frequency (the key Evans Root-Locus concept) on an exactly equal footing.
With this in view we look for a system giving the closed-loop frequency matrix of
equation (2.4) and find that it is as shown in Fig.2, where g is now interpreted as a
gain parameter. On redrawing Fig.2 in the form shown in Fig.3 we see that the variables
s and g have indeed been placed in a strikingly symmetrical relationship.

D

0C 1 -~ C X oe

A

Figure 2

B

Figure 3

In Fig.3 s is to be interpreted as a complex frequency variable and g as a
complex gain variable. For the related vector feedback loop (with m inputs and m
outputs) the open-loop gain matrix

G(s) = D + C(s~n-A) B

describes open-loop gain as a function of imposed frequency s ; and the closed-loop
frequency matrix

S(g) = A + B(gIm-D) -1C

describes closed-loop frequency as a function of the imposed gain parameter g.

Figure 1

m _ _ _,__ _ _ _ _ _ _ _ _ _
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For the negative feedback arrangement of Fig.4 if

F(s) = Im + g-IG(s) (2.5)

is the return-difference matrix for the set of feedback loops broken at a-a' then one can
show that [31

det[sIn-S(g) I detgIm -G(s) ] detF(s)

det[SIn-S( )I det[gIm-G( ) M e-tF()sl - ( )(2.6)

_ CLCP (s)
OLCP (s)

where CLCP(s) and OLCP(s) are the system's closed-loop and open-loop characteristic
polynomials respectively. The importance of equation (2.6) is that it tells us that in
this archetypal negative feedback situation we may equally well study the effect of
closing feedback loops on stability in terms of an open-loop gain description or a closed-
loop frequency description. Specifically it shows that, for values of s not in the
spectrum of A and values of g not in the spectrum of D

det [sI n-S(g) m =  PdetIg Im-G(s) ) - 0 (2.7)

This in effect says that a knowledge of how the characteristic values of G(s) vary as a
function of the frequency parameter s is equivalent (for the purposes of making
inferences about closed-loop stability) to a knowledge of how the characteristic values
of S(g) vary as a function of the gain parameter g.

2.1 Characteristic frequencies and characteristic gains.

For a given value of the gain parameter g the eigenvalues {s. i = 1,2,...,n)
of S(g) are the corresponding set of closed-loop characteristic frequencies, obtained
from

detisl n - S()] = 0 (2.8)

For a given value of the frequency parameter s the eigenvalues {g, : i = 1,2,...,m) of
G(s) may be called the corresponding set of open-loop characteristic gains, obtained from

det[glm - G(s)] = 0 (2.9)

The closed-loop characteristic frequencies (s.) for a given value of g are, as is well
known, associated with invariant subspaces in the state space X. The open-loop
characteristic gains (g.) for a given value of s are associated with invariant sub-
spaces in the input spa6e U (see Fig.3), whose physical interpretation will be discussed
after stating the Generalized Nyquist Stability Criterion.

From the characteristic equations for G(s) and S(g), namely

A(g,s) = det IgI m - G(s)] 
= 0 (2.10)andn

V(s,g) det [sI n - S(g)] = 0 (2.11)

one obtains a pair of algebraic equations relating the complex variables s and g.
These define a pair of algebraic functions [3]

(i a characteristic gain function g(s) which gives open-loop characteristic
gain as a function of frequency; and

(ii) a characteristic frequency function s(g) which gives a closed-loop character-
istic frequency as a function of gain.

The importance of these two algebraic functions lies in the fact that they are the
natural means of generalising the concepts of Nyquist diagram and Root-Locus diagram to
the multivariable case [3).

2.2 Generalised Nyquist Diagrams and the Generalised Nyquist Stability Criterion

The characteristic gain loci (generalised Nyquist diagrams) for the m-vector
feedback loop with transmittance matrix G(s) are the loci in the complex gain plane
which are traced out by the eigenvalues of G(s) as s traverses the so-called Nyquist
D-contour in the complex frequency plane (s-plane). They can also be defined as the
+900 constant-phase contours on the g-plane of the algebraic function s(g). Their
utility lies in their role in the following sort of generalisation of the Nyquist
Stability Criterion [ 31 , [4 I

_ _ _ _ _ _
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Multivariable Nyquist Stability Criterion

The multivariable Nyquist stability criterion relates the closed-loop stability
of the congiguration of Fig.5 to the characteristic gain loci for the loop-gain matrix
G(s)H(s)

Figure 5

Suppose the system of Fig. 5 has no uncontrollable and/or unobservable modes whose
corresponding characteristic frequencies lie in the right-half s-plane. Then this
feedback configuration will be closed-loop stable if and only if the net sum of anti-
clockwise encirclements of the critical point (-l+jO) by the set of characteristic gain
loci of G(s)H(s) is equal to the total number of right-half-plane poles of G(s) and H(s).

Proofs of multivariable versions of the Nyquist Stability Criterion have been
given by Barman and Katzenelson [5] and MacFarlane and Postlethwaite [4] , and Postle-
thwaite and MacFarlane [3] following earlier heuristic approaches by Bohn and Kasvand
[6] and MacFarlane [7] .

2.3 Physical Interpretation of Characteristic Gains

The idea of a characteristic frequency plays a fundamental role in applied
dynamics. It is associated with an invariant subspace in a dynamical system's state
space. This invariant subspace is associated in turn with a characteristic pattern of
dynamical behaviour (a mode) and with an eigenvalue of a matrix mapping the state space
into itself; this eigenvaiue is the characteristic frequency associated with the mode.

A characteristic gain is associated with an invariant subspace in the input space
to a feedback loop. This input space is a space of complex vectors. In physical terms
one can set up a correspondence between the set of all complex vectors and the set of
exponential vector waveforms of a given complex frequency. With reference to datum
values of amplitude and phase for a given reference time, the components of a complex
signal vector then define the relative amplitudes and phases of the various signal compon-
ents which it represents. Now consider the situation shown in Fig. 6.

G (s)

Wi(S) gi(s) w, ls)

Figure 6

If the loop gain transmittance is G(s) and if the injected signal vector w (s) is an
eigenvector of G(s) for the complex frequency s, then the returned signal will be
g(s)wi(s) where g (s) is the appropriate characteristic gain of G(s). Hence in signal
stace this returAed signal vector will lie in the same one-dimensional linear manifold
as the input signal vector. Therefore one would expect, as stated in the Generalized
Nyquist Stability Criterion, that characteristic frequencies associated with closing the
loop through a unit negative gain must be such that the characteristic gain function
satisfies the condition

g(s) =-I.

p. 4
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So both characteristic frequencies and characteristic gains are associated with
invariant subspaces. In the case of characteristic frequency this is a linear manifold
along which state evolves in a state space. In the case of characteristic gain it is a
linear manifold of signal vectors along which injected and returned signal vectors both
lie in an input space.

2.4 Multivariable Root Loci

The loci of open-loop characteristic gain with frequency are generalisations of
classical Nyquist diagrams in the complex gain plane; there is a corresponding general-
isation of the classical Evans' Root Locus diagram in the frequency plane. These are
the characteristic frequency loci which are traced out by the eigenvalues of S(g) as g
traverses the negative real axis in the gain plane. They can also oe regarded as the
1800 phase contours of g(s) on the frequency plane. The theory behind the multivariable
root locus has been given by Postlethwaite and MacFarlane [31 and their use discussed by
Retallack £81 , Kouvaritakis and Shaked [9] , MacFarlane, Kouvaritakis and Edmunds [10],
Kouvaritakis and Edmunds [11] , Kouvaritakis [12] , and Owens [13] . Many examples of
generalised Nyquist and Root-Locus diagrams are given in [21 ; a complete review of the
development of frequency-response methods is given in [I] .

2.5 Conformal Nature of Mapping Between Frequency and Gain

The algebraic functions g(s), giving characteristic gain as a function of
frequency, and s(g), giving characteristic frequency as a function of gain contain
essentially the same information. One is simply a "re-packaged" version of the other.
One would thus expect there to be an exact structural relationship between the (generalised)
Nyquist and (generalised) Root Locus diagrams for a given feedback loop. These structural
relationships also reflect the fact that the mappings between s-plane and g-plane and vice-
versa are conformal, so that appropriate angular relationships are preserved. In cor-
relating the main features of the two forms of diagram, the following rule has been found
useful.

Locus-Crossing Rule : Let D be a path in the s-plane and let D be its image
under g(s) in the g-plane. Also let E be a path in the g-plane and let E1 be its
image under s(g) in the s-plane. Then the following relationships hold.

(i) Each crossing of E by D1 corresponds to a related crossing of D by E
and vice versa.

(ii) If E1 crosses D from left to right, with respect to a given orientation
for D, then E will cross D1 from left to right with respect to the induced orienta-
tion for Dl, and vice versa. (The given orientations for D and E are taken to
induce appropriate orientations in D1 and i : that is a traversal of D by s in a
positive orientation makes g(s) traverse D in a positive orientation, with a similar
convention for E and El.)

(iii) The angle at which E1 crosses D is the same as the angle at which Dl
crosses E.

This rule is illustrated in Fig.7, taking D as the positive imaginary axis in
the s-plane and E as the negative real axis in the g-plane.

0 ' E, PORTION OF
s-PLANE >- ROOT LOCUS

D. traced from w=O to W=oo

g-PLAN D'

E D' PORTION OF
edNYQUIST LOCUS

E traced from _, US OU

g=00 to g=O

Figure 7

This shows that a crossing of the negative real axis in the gain plane (at gl say) by a
portion of the generalised Nyquist diagram corresponds to the migration of a closed- oop
characteristic frequency from left to right (under negative feedback of amount (gl)
applied equally in all loops).

____ ___ __ ___ ___ ___ ____ ___ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___
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3. PRINCIPAL GAINS AND PRINCIPAL PHASES

A natural way to look at the gain of an operator representing a multivariable
system transmittance is in terms of the ratio of the norm of an output vector to the
norm of a corresponding input vector. Thus if

y(s) = G(s) u(s) (3.1)

one may define the vector gain (or simply the gain) of G(s) for input u(s) as

gain Glu = - (3.2)

where I .1 denotes the standard Euclidean vector norm. In these terms one can see that
the characteristic gains of G(s), despite their useful role in closed-loop stability
analysis, do not give an adequate description of the gain behaviour of an operator. For
example the matrix transfer function

G 01
G(s) = [i-2

has characteristic gains which are identically zero for all values of s, yet it obviously
does not have zero gain for all non-zero inputs. For this reason characteristic de-
compositions of an operator are not well suited to the discussion of the performance of
feedback systems, and another form of operator decomposition is needed which is more
suited to the accurate discussion of gain behaviour. Such a decomposition is found in
terms of the singular values of an operator, and there is currently widespread interest
in investigating the role of singular values in the analysis and design of multivariable
feedback systems [14],[15] , [161 , [17] , and [18]

It is natural to view the discarding of phase information which accompanies a
singular value decompostion with some regret and thus to seek some way of retaining a
measure of phase information. This can be done by making use of the polar decomposition
of an operator using one half of the polar decomposition to provide gain information (as
in the singular value decomposition) and the remaining part to give phase information.
Since the term "singular phase" falls strangely on the ear, and since the term gain
is more immediately relevant to physical concepts than the (admittedly well-established)
mathematical term singular, one can adopt the terms principal gain and principal phase
in this characterization of operators [17] , [18] .

Any square complex matrix G can be represented in the forms

G = UHR (3.3)

G = HLU (3.4)

where U is unitary and H ,HL are positive semi-definite Hermitian matrices. HR and
HL are often called the right and left moduli of G and are given by

H R = /G.G (3.5)

H L = GG* (3.6)

where G* is the complex conjugate transpose of G. U is then uniquely defined by (3.3)
or (3.4) in case G is non-singular. Using these polar decompositions one can make
the following definitions:

(I) the principal gains of G are the eigenvalues of the Hermitian part of
its polar decomposition; and

(ii) the principal phases of G are the arguments of the eigenvalues of the
unitary part of its polar decomposition [18] .

Since the non-zero eigenvalues of G*G and GG* are the same either the left or
right Hermitian factor may be used in determining the principal gains. Furthermore the
principal gains are the same as the singular values of G. These principal gains and
principal phases are related to the characteristic gains in the following way [18]

(i) The magnitudes of the characteristic gains of a complex matrix G are
bounded above and below by the corresponding maximum and minimum principal gains.

(ii) If the principal phases of a complex matrix G have a spread of less than
w radians then the arguments of the characteristic gains of G are bounded above and
below by the maximum and minimum principal phases.

If the zeros of G(s) are defined in the usual way in terms of its Smith-McMillan
decomposition (19]then one can show that the vector gain of G(s) vanishes for s = z if
and only if z is a zero of G(s) [17]
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Principal gain decompositions are useful in analysing the performance of
feedback systems. For example Daniel [201 has used them to show how in a regulator
the use of rank-deficient feedback can lead to disturbance amplification.

Using a combination of principal gains and principal phases one can develop a
Nyquist-type sufficient stability criterion which can be used to characterize the
robustness of closed-loop stability when the system model is subjected to a linear
perturbation (of either multiplicative or additive form) at any point in the feedback
loop [18] . Such an approach gives results which are much less conservative than those
obtainable using the Small Gain Theorem (since this neglects phase aspects of the
problem).

For an open-loop m xm gain matrix G(s) it is clear fromrproperties (i) and (ii)
above that for any complex frequency s = jw a curvilinear rectangle can be drawn from
the maximum and minimum principal values, within which the corresponding m values of
the characteristic gain loci must lie. Should the principal phases have a spread
greater than n then the characteristic gains lie inside an annular region determined
by the maximum and minimum principal gains. If these rectangles or annular regions
are constructed for values of s around the Nyquist D-contour then a region will be
outlined in the gain plane, which we shall call the principal region, within which the
characteristic gain loci must lie as shown in Fig.8. Application of the generalized
Nyquist stability criterion to this region leads to the stability criterion of section 4
below.

iim

Re

characteristic x
gains _,

Figure 8 Principal region

3.1 Relationships between the characteristic gains and the principal gains and
phases of a complex matrix.

In this sub-section two important theorems are presented which relate the
characteristic gains to the principal gains and phases of a complex matrix, T. The
theorems are crucial to the stability criterion of the next section.

Theorem I The magnitudes of the characteristic gains of a complex matrix T are
bounded above and below by the corresponding maximum and minimum principal gains.
Although this theorem is well known (see for example 1171 or [211) it is included in
the main text because of its importance in the development of the major results of this
paper and also to complement theorem 2 which is unfamiliar.
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Proof

Let T*Tmi yimi i = 1,2,. (3.7)
ii

where T is a complex m ×m matrix, the (m are an orthonormal set of eigenvectors for
T'T, and the (yi

) 
are the principal gains Af T, numbered so that 1

Also let Tv i = Aivi i = 1,2,...,m (3.8)

where the 1v. } are a set of eigenvectors for T and the {X } are the corresponding
eigenvalues.1

Any "input" vector u can be represented in the form
m

U = [cim i  ci C C (3.9)
i=l

and therefore
2 2 m

uTul 2 u*T*Tu [ Ic12i f 2I~l2  i 2 f~-1 U11 - i=l (3.10)

i=1
2

Ici! m
where f c 2 f. 0, and f 1

[ Icjl i=1

j=l 2

'ITujl 2  2
That is, the ratio 2 is a convex combination 1211 of the {y.} whichI IuI 2 1

implies that JiTull 2Y u11 112 Y for all u. (3.11)

l ul K
In particular for u v, ITul12 = li , and therefore

lull12

S Xi I -Ym (3.12)

Theorem 2. If the principal phases of a complex matrix T have a spread of less than
180 degrees then the arguments of the characteristic gains of T are bounded above and
below by the maximum and minimum principal phases.

This theorem is a special case of a more general result by All R.Amir-Mo~z and
Alfred Horn f22 , theorem 4, page 7451.

Proof
Let T have the polar decomposition

T = UH (3.13a)

let Tv = Xv (3.13b)

where v is an eigenvector of T and X a corresponding eigenvalue, and let

UZ i =Q zi i=1,2,...,m (3.14)

where the {zi) are an orthonormal set of eigenvectors for U and the { rI are the corres-
ponding eigenvalues, the arguments of which are the principal phases of T. Then

-Hav, v-, = HRV, Tv = v*H R* UHRV

R L Z= iZ * HRV

m
m 2
i=1

m i lfV, zi" 2 (3.15)
i=l
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H t has implicitly been assumed nonsingular and consequently so has H which is
also Hermitian by definition. It follows therefore that H v, v:, is both real and
greater than zero which, with (3.15), implies that X lies in he convex cone generated
by the {". } . If the cone is not convex, that is th- principal phases have a spread
greater t an 180 degrees, we cannot say anything about the argument of X . A convex cone
1151 is a set of numbers in the complex plane which are closed under linear combinations
with nonnegative coefficients. If we consider drawing an arc in the complex plane,
centre the origin, in an anti-clockwise direction, then the angle at which the arc enters
the convex cone is referred to as the minimum principal phase and the angle at which the
arc leaves the cone is the maximum principal phase. We have therefore shown that the
arguments of the characteristic gains of T are bounded above and below by the corres-
ponding maximum and minimum principal phases.

4. A SUFFICIENT STABILITY CRITERION

In the generalised Nyquist stability criterion 151, 141 and [231 , the stability
of a linear multivariable feedback configuration, see Fig.9, is determined from the char-
acteristic gain loci which are a polar plot of the eigenvalues of the open-loop gain
matrix G(s) , evaluated as s traverses the standard Nyquist D-contour. This criterion
can be stated as follows :

the closed-loop system is stable if and only if the number of anti-clockwise
encirclements of the critical point (-1 + jO) by the characteristic gain loci

is equal to the number of open-loop unstable poles.

r = (s) YS

E~) kim G (s) ~ )I

Figure 9 Multivariable feedback configuration

It is now shown how, using theorems 1 and 2, a sufficient Nyquist-type stability
criterion can be obtained in terms of the principal gains and phases of G(jw).

For an open-loop gain matrix G(s) it is clear from theorems 1 and 2 that for
any complex frequency s=jw a curvilinear rectangle can be drawn from the maximum and
minimum principal values, within which the corresponding m values of the characteristic
gain loci (generalised Nyquist diagrams) lie. Should the principal phases not form a
convex cone then the characteristic gains lie inside an annular region determined by the
maximum and minimum principal gains. If these rectangles or annular regions are con-
structed for values of s around the Nyquist D-contour then a region will be outlined
in the gain plane, which we shall call the principal region, within which the character-
istic gain loci must lie; see Fig. 8. Application of the generalised Nyquist stability
criterion to this region now leads to the following stability criterion:

the closed-loop system is stable if m times the number of anti-clockwise

encirclements of the critical point (-! + jO) by the principal region is equal

to the number of open-loop unstable poles.

It also follows that:

the closed-loop system is unstable if m times the number of anti-clockwise

encirclements of the critical point 1- jO) by the principal region is not

equal to the number of open-loop unstable poles.

When the critical point lies inside the principal region neither stability nor instability
can be inferred.
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Since the above are only sufficient conditions for stability or instability, as
straightforward stability tests they are inferior to the generalised Nyquist stability
criterion. However, the generalised Nyquist stability criterion only determines
stability with respect to a single gain common to all the loops and as such does not
reliably characterize the robustness of the stability property when the system is
subjected to arbitrary perturbations. In the next section it is shown how a new
sufficient Nyquist-type stability criterion can be used to characterize the robustness
of a linear multivariable design when it is subjected to linear perturbations.

5. ROBUST STABILITY

One of the major reasons for using feedback control as opposed to open-loop is
the presence of model uncertainties and hence the desire to keep the system stable under
large parameter variations. However, the mere presence of feedback is not sufficient
to goarantee the robust stability of a system [241 . Research in this area has
recently [251, [26al , and [271 centred around finding conditions for which a feedback
system will remain stable when the open-loop gain matrix G(s) is subjected to a multi-
plicative or additive perturbation AG(s). It has been shown that the feedback con-
figurations of figures 10 and 11 remain stable when G(s) is stable and

IJAG(jw) < I for all w (5.1)
I I[I + G(j)-'J-I I

in the multiplicative case, and

IIAG(j w I1 1T for all w (5.2)

in the additive case. These relationships are most easily derived from a simple
application of the small gain theorem,[27], [28] and [53] , after first rearranging the
block diagrams. If the spectral norm 1j11 is taken, then the robustness of each con-
figuration is characterized by the maximum principal gain (singular value) of the appro-
priate frequency response matrix.

Figure 10 Feedback configuration with multiplicative pertubation

AG (s)

G3(s) E

Figure 11 Feedback configuration with additive pertubation

We shall now examine how the new stability criterion of section 4 might be used
to characterize robustness. Motivated by the inclusion of phase information, the aim
is to obtain less conservative bounds on a linear perturbation than those furnished by
the small gain theorem.

5.1 Gain and phase margins

To use the new stability criterion in the context of robustness we firstly re-
arrange figures 10 and 11 to those in figures 12 and 13 respectively, and make the
observation that the system in figure 10 is stable if and only if the system of figure
12 is stable, and likewise for figures 11 and 13. The arguments that follow are
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essentially the same for both the multiplicative and additive case and so for simplicity
we will consider only the multiplicative case.

AG(s) E G(s)

Figure 12 Rearranged feedback configuration with
mu(tipticative pertubation

Figure 13 Rearranged feedback configuration with
additive pertubation

We now construct the principal region for [I + G(jw)- I and ask the question:
Can we deduce from the principal gains and phases of AG(jw) a deformed principal region
within which the eigenloci (characteristic gain loci) of AG(jw)[I + G(jw)-1]-1 must lie?
If this is so then we will be able to specify conditions on AG(jw) for which the perturbed
system will remain stable. The answer is yes, and the conditions on AG(jw) for which the
system remai - stable are summarised in the following theorems, after first intro-
ducing some notation.

Let II + G(jw)
- 

I have principal gains and phases

< l( ) a ( }  .. :m(W)(5.3)

and
0 1 (w') - 2 00. " O" 0M( (5.4)

respectively, where the numbering of the (0. (iO)} is such that the notions of maximum and
minimum phases are as defined at the end of section 3; it is assumed that the [i( i)
have a spread of less than P. Similarly let the principal gains and phases of
,G(j,w) be (w) 2(M . 6m(w) (5.5)

and
l(") 2( 

- 
. . m(, (5.6)

respectively, where the phases (f. }()can be thought of as negative or positive arguments
corresponding to unmodelled phase lag or advance characteristics. Also let the condition
numbers 126b] for II + G(j,)- ]

- I and AG(j,), using the Z2 -induced norm, be cl(w)and c.,(w)
respectively, so that

Sm and c2(00) - 61(w) (5.7)
U1w c2 ()

and also define

A - IC( 1 )-ic 2)w) MIp ) tan c j (5.8)
-1-[c 1 (h0 -1l I 2 (W)J

which will be referred to as a phase modifier.
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We can now state and prove the following theorems.

Theorem 3 (Small Gain Theorem): The closed-loop system remains stable under a
multiplicative perturbation AG(s) if

a) AG(s) is stable and
b) 6m(w)am(w) < 1 for allw.

This is exactly the small gain theorem introduced by Sandberg 1271 and Zames 128] for a
more general class of systems. The result is often conservative, especially in our
case where we are considering linear systems, but the conservativeness can be reduced if
we consider the principal phases as described in the next theorem.

Theorem 4 (Small Phase Theorem): The closed-loop system remains stable under a
multiplicative perturbation AG(s) if

a) AG(s) is stable,
b) {6i(w) + Ec(w): i, j=l,....ml have a spread of less than n for all w,

c) Icl (w ) - 11c 2 ()< 1 for all w,

d) kl(W) + )1 (W) - Pm(M)> - TT for all w, and

e) tm(W) + tim () + 4m(M< n for all .

Note that conditions d) and e) are analogous to the phase margin concept used in the
analysis of single-input-single-output systems modulo the phase modification m(w).

In general, Theorem 4 is more applicable at low frequencies when 0 1 (w) is a small
lag. At higher frequencies, when t)(I) approaches -i iand the principal region is in
the vicinity of the "-I" point, then Theorem 3 is more useful. Consequently, for a more
practical characterization of the robustness of the stability property over the whole
frequency range, Theorems 3 and 4 are combined, as in Theorem 5 below.

Theorem 5: The closed-loop system remains stable under a multiplicative perturba-
tion AG(s) if, for some frequency Wb,

a) the conditions of Theorem 4 are satisfied in the frequency range [O,wb] and

b) the conditions of Theorem 3 are satisfied in the frequency range 1wb, 1.

The proofs of Theorems 3 and 4 are given in [18]; essentially they are based on
the following ideas. In Theorem 3 we restrict the moduli of the characteristic gain
loci (generalised Nyquist diagrams) to values less than 1, so we can have no encircle-
ments of the critical point - 1, and hence closed-loop stability regardless of the phases
involved. In Theorem 4 we prevent the characteristic gain loci from crossing the negative
real axis by restricting their arguments, so again we can have no encirclements of the
critical point, and hence closed-loop stability regardless of the associated moduli.

In Theorem 5 we prevent the characteristic gain loci from encircling the critical
point by restricting their arguments in the frequency range [O,w I and restricting their
moduli in the frequency range [abb _. The proofs of Theorems h*and 4 therefore show
that Theorem 5 holds, and hence no formal proof of Theorem 5 is given.

Interpretation of Theorems 3, 4 and 5: Theorem 3 tells us that stability is
maintained for a stable linear perturbation AG(s) if the spectral norm of the perturba-
tion frequency response is always less than a value determined from the system model.
Therefore, in the polar decomposition for AG(jw) there is an upper limit on the maximum
principal gain at each frequency, but no restriction at all on the principal phases.

Theorem 4 shows us how extra gain can be accommodated in the perturbation
providing certain phase requirements are satisfied. Conditions b) and c) are mathematic-
al requirements for the definition of the phase modifier 0m (w) and the development of
the phase conditions d) and e); see 1181 . More precisely, condition b) implies that
at any frequeny, the two sets of principal phases, one for AG(jw) and the other for
II + G(jw)-l , each lie in a convex cone, that is, have a spread less than s , and also
that the "sum" of these convex cones is convex. The sum of two cones is here defined
as the cone formed from the products of all complex numbers in one cone with thos in
the other. The term "sum" is used because the sum of two convex cones is clearly
defined by summing the principal phases of one cone with those of the other. Condition c)
restricts the condition numbers of cl(I) and c2(0); cl(w) is required to be less than 2

and c (w) less than l:1c () - 1] . In practice, for a design which aims at accurate
tracking through approximate diagonalization, c (M) will be about 1, allowing a large
value for c2 (w), the condition number of the peiturbation. Note, however, that a
large value of c2 (w) corresponds to a large value of ' (w) which from condition d)
imposes a greater restriction on [z(w) as a phase lag Tn the perturbation. As c (w) is
reduced, the phase lag in the pert rbation can be increased, that is, condition n&mber
can be traded for phase and vice versa. It should be noted that c2 ( )< -implies that
AG(j,) is nonsingular.

'-
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5.2 Automatic Scaling

Mees and Edmunds [291 have recently developed and implemented on the Cambridge
multivariable design package an algorithm which effectively finds a real diagonal matrix
S such that S- T(jw)S is as near diagonal as possible over the whole frequency range.
This automatic scaling technique can be used in the study of stability with respect to a
perturbation AG(s), as is now explained for the "multiplicative" case.

Instead of constructing the priyciyal region for [+ G(j )- I 
-

, let us consider
the principal region for S-1[I + G(jw)- I] S. This principal region will, in general,
have a narrower band, and since Fig 12 can be redrawn as shown in Fig.14 we see that it
predicts stability with respect to the perturbation S-IAG(s)S. The scaling matrix S
therefore tells us which elements of AG(s) are, relatively speaking, the most sensitive.

Figure 14 Feedback configuration with scaling

5.3 Additive Perturbations

As stated earlier, one can just as easily consider the "additive" case, the only
essential difference being that the principal region for [I + G(jw) ]

- I
, assuming integral

action, is in the neighbourhood of the origin at low frequencies and in the neighbour-
hood of one at high frequencies. In the additive case, therefore, the small gain theo-
rem is more applicable at low frequencies and the small phase theorem is more applicable
at high frequencies, in contrast to the multiplicative case. In general, a linear per-
turbation, multiplicative or additive, can be considered at any point in a feedback
system by constructing the appropriate principal region.

6. ZEROS

The characteristic gain function g(s) has a set of poles and zeros, and its
related generalised Nyquist and Root-Locus diagrams have distinctive patterns of asymptot-
ic behaviour. It is of great value to relate all these to the state-space model para-
meters of the feedback loop dynamics. The poles are simply a subset of the eigenvaluesof an appropriate A-matrix if the state-space model involved is not fully controllablef
normally they will be the full set of A-matrix eigenvalues. This section looks at the
relationship between the zeros of g(s) and the state-space structure, and Section 8 looks
at asymptote behaviour.

In physical terms zeros are associated with the vanishing of vector gain; that
is with the existence of non-zero input exponential signal vectors which result in zero
output [301. The discussion of zeros in the literature is confusing because one can
talk about zeros in connection with various objects : E(A,B,C,D), or G(s) , or g(s) for
example. The object "(A,B,C,D) has associated with it a larger set of zeros than the
object G(s) because in passing from the representation X(A,B,C,D) to the representation
G(s) one discards phenomena (uncontrollability and unobservability) which can be discussed
in terms of zeros (the so-called decoupling zeros [31]). In turn the object G(s) has a
larger set of zeros than the object g(s) because vanishing of all characteristic gains
does not necessarily imply the vanishing of the vector gain for G(s). For the purposes
of this summary we will take the system representations being discussed to be completely
controllable and completely observable, and the feedback loop transmission zeros to be
those values of s obtained by considering the consequences of putting g = 0 in a
specific way. A useful physical interpretation of a zero then comes from the following
result 1191

Transmission-blocking theorem: For a system 1(A,B,C,D) having a number of in-
put3 less than or equal to the number of outputs, necessary and sufficient conditions for
an input of the form

u(t) = l(t)etuz (6.1)

to result in a state-space trajectory

x(t) = l(t)eztxz for t >O (6.2)
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and an output

y(t)- 0 for t >O (6.3)

are that a complex frequency z and a complex vector uz exist such that

C -D (6.4

(Here l(t) 0 for t s 0 and l(t) = 1 for t >0.)

Hence the zeros defined in this way are the roots of the invariant factors of an
appropriate pencil. The corresponaing vectors uz and x are called the zero
directions in the input and state spaces respectively [191

Zero Pencil: From (6.4) we have that, for the case when D = 0,

(zI - A)x z = Bu z  (6.5)

Cx = 0 (6.6)z

Zero directions in the state space naturally lie in the kernel of C so that

x = Mv (6.7)
z

where M is a basis matrix representation of Ker C and v is an appropriate vector of
constants. Substitution of (6.7) into (6.5) and premult~plication by the full-rank
transformation matrix N ] where N is a full-rank left annihilator of B(i.e.NB=O) and
ti: ~-a left inverse _%_ of B (i.e. BtB=I, yields

(z NM-NAM)vz = 0 (6.8)

u = B(zI-A)Mv (6.9)

The object (sNM-NAM) is called the zero pencil p321 , t331 for the system L(A,B,C).
The zeros are the roots of the invariant factors of the zero pencil, and this fact can be
used to exhibit the geometric characterization of zeros in a very succinct way. To do
this it is useful to use Sastry and Desoer's notion of restricting an operator in domain
and range 34] .

6.1 Restriction of an operator in domain and range

Given a linear map A from Cn t. Cn and two subspaces ' i of 4 n ,here
n is the spacq of n-dimensional complex vectors, then the restric ion of A to ,ihin

the lomain and '2 in the range is defined to be he linear map which associates witA
X1 l the orthogonal projection of Ax1 on to A2. This restricted linear map (and

also its matrix representation) will be denoted y

A ~ 1 2 A (6.10)

If the columns of Sl and S2 respectively form orthonormal bases for l and Y2 then the
matrix representation of the restricted operator is given by

V *
A = S 2A S 1  (6.11)

where * denotes complex conjugate transposition. With a mild abuse of language one
then calls the roots of

det S SI - S2 A S1  = 0 (6.12)
v

the spectrum of the restricted operator A.

6.2 Spectral characterization of zeros

Suppose we choose N and M so that their columns are orthonormal bases for

Ker B and Ker C respectively. Then

NM = In
N Ker C-Ker B (6.13)

and

NAM A Ler C-Ker B (6.14)

and one may say that :

the finite zeros of E(A,B,C) are the spectrum of the restriction of A to Ker C
in domain and Ker B* in range.

Ft1 |-
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6.3 Interpretation of zeros and zero directions in terms of intersectingmanifolds.

Let J(s) A (sI-A)-IB (6.15)

and for a given value of complex frequency s consider the subspace ImJ(s)c I . If B is
of full rank then any vector xc ImJ(s) can be made a closed-loop eigenvector of
F(A,B,C) under state-feedback; s also if xs is a closed-loop eigenvector of E(A,B,C)
under state-feedback it must lie in ImJ(s). Now it is a known property of closed-loop
characteristic frequencies that, under feedback of unbounded norm, an appropriate number
of closed-loop characteristic frequencies migrate to the finite zeros of the loop trans-
mission matrix [35) . Since for arbitrarily high feedback gain, the relevant closed-
loop poles will coincide with the zeros, an appropriate number of closed-loop modes will
have become unobservable and their corresponding closed-loop eigenvectors will thus lie
in Ker C. Hence one would expect that the zero direction for a finite zero z would be
associated with the intersection of ImJ(z) with Ker C. (Here Im denotes image.)

6.4 Finite zeros when D is non-zero.

Suppose the direct-coupling operator D for E(A,B,C,D) having m inputs and m
outputs has nullity do . Then Z(A,B,C,D) has at most (n-d0 ) finite zeros and at least do
root-locus asymptotes going to infinity (to infinite zeros) [11] . Let D have a
characteristic decom~osition [V

D = [U M (6.16)

d

where [U0  Mo] and [VO Not are the eigenvector and dual eigenvector matrices for D and
J is the Jordan block associated with the non-zero eigenvalues of D. Further suppose

that there is a complete set of eigenvectors spanning the null space of D. Define
Ao,Bo,CO by

Ao = A - BUoJ VoC (6.17)

Bo = BM. (6.18)

Co = NoC (6.19)
0

Then the finite zeros and root locus asymptotes of E(A,B,C,D) are those of E(A ,B ,Co).

In case D has full rank one has that there are n finite zeros of E(A,B,C,D)
which are given by o(A-BD-IC), the spectrum of the matrix (A-BD-IC).

7. BILINEAR TRANSFORMATION OF FREQUENCY AND GAIN VARIABLES

If E(A,B,C,D) having m inputs and m outputs has a D which is non-singular
then, as noted in Section 6.4, it will have n finite zeros given by a[A-BD-IC]

Given a bilinear transformation

a s + b (7.1)

s - dp - (7.2)cp - a

on the complex frequency it has been shown by Edmunds [36] that it is possible to find
a correspondingly transformed system E(A,B,C,D) such that

G(p) = G(s) (7.3)

Thus if the original system has a zero at z the transformed system will have
a zero at a location given by substituting z in (7.1). One can therefore choose an
appropriaie bilinear transformation to get a 6 of full rank, calculate the zeros as
o[A -B D- C and transform back to find the complete set of zeros (finite and
infinite) of the original system. The bilinear mapping is a conformal map between the
s-plane and the p-plane for all points except p = a/c which gets sent to infinity on
the s-plane and s = -d/c which gets sent to infinity on the p-plane. It is assumed
that (ab - bc) # 0 and that the original system has no pole at - d/c. The set of trans-
formed system matrices is given by

A (cA + dI) -I  {aA + bI) (7.4)

= (cA + d1) IB (7.5)

C = (ad - bc)C(cA + dI)
-  (7.6)

D - cC(cA + dI)- B (7.7)

A similar bilinear transformation can be carried out on the complex gain variable
9
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q a g+b (7.8)c q + d

g d q + b (79)

The correspondingly transformed system E(ABC,D,) is such that

S (q) = S(g) 7.10)

and has state-space parameters given by

A1 = A - cB(cD + dI)I C (7.1i)

B = (ab - bc)B(cD +dI)
-1  

(7.12)

C = (ac D + dI) C 7.13)

D = (cD + dI) -l (aA +bI) (7.14)

8. GEOMETRIC THEORY OF ROOT LOCUS AND NYQUIST DIAGRAMS

It has been noted that the finite zeros of a vector feedback loop transmittance
can be characterized in terms of the spectrum of the restriction of its A-matrix in
domain and range. The idea of using the spectrum of a restricted operator in connection
with the Markov Parameters of a loop transfer function matrix leads to a geometric treat-
ment of the high-gain asymptotic behaviour of generalised Root-Locus diagrams and the
high-frequency asymptotic behaviour of generalised Nyquist diagrams.

Let the transfer function matrix for a strictly proper (i.e D = 0) feedback loop
be expanded in a Taylor series about s as

G1  G 2

G(s) = GI + 2 ...... (8.1)s 2

where {Gi : i=1,2 ..... } are the Markov Parameters

G1 =CB Gk = CA k-B k = 2,3 .... (8.2)

The use of Markov Parameters to relate the main features of generalised Root-
Locus diagrams to state-space model parameters has been discussed by a number of in-
vestigators [37) , [381 , [39], [40][34].The approach and notation used here follows
Sastry and Desoer [34] , who give a good discussion of the assumptions involved in a
detailed analysis of this sort.

Let a sequence of restricted operators be defined as follows

V v
Gk = Gk Ker G kl*Ker k- (8.3)

and take v G
G l 11-

V

Let di be the nullity (rank defect) of Gi
Then the high-gain asymptotic behaviour of the various branches of the generalised root-
locus diagram can be determined as follows.

1st order branches: si,~ - i, 2g~ 2.,(m-di)

where 1,[
V ]\{O}
G 1  (8.4)

and g'0
v

The collection of symbols kc[Glj\{o}is to be read as "belongs to the non-zero spectrum
V

of G,

2nd order branches: s 2 -i,2 i=1,2,..4d-d
g

where A ,2 [V1\(O) (8.5)

and g'O

and for the k th order branchesA

- ik k I = 1,2,... (d
i,k g k -

where Ai,k o[v] \(o} (8.6)

and gO
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On invoking the correspondence between the high-frequency asymptotes

for the generalised Nyquist diagrams and the high-gain asymptotes for the generalised
Root-Locus diagrams one then gets the following description of the high-frequency branches
of the generalised Nyquist diagrams.

Xi,1
ist order branches.- gi - -- (8.7)

Xi,2

2nd order branches: gi,2 - 2 (8.8)
Oju)

kth order branches: g -k ik (8.9)
gi,k -(jw) k

where X CE O
wi,kco[Gkk\{O} as before,

and W .

For example if the first Markov Parameter CB has full rank m then it can
be shown that the state space is the direct sum of the image of the input map B and the
kernel of the output map C:

Im B 9 Ker C (8.10)

and that the zero pencil then becomes

(SIn-m - NAM)

There are then (n - m) finite zeros, given by u(NAM), and there are m first-order
asymptotic branches of the generalised Root-Locus and Nyquist diagrams given by

s, -CB)/g g.O

Gi (CB) i = 1,2,....,m
and gi j" (8.11)

where {ai(CB) : i = 1,2 ..... ml are the eigenvalues of the first Markov parameter CB.

The numbers of the various types of asymptotic behaviour are summarized in
the following table (where v is the first integer for which the nullity d vanishes):V

order Number of Number of Root
Nyquist Asymptotes Locus Asymptotes

I m -d 1  m - d1

2 dI - d2  2(d 1 - d2 )

3 d -d3 d______2 - 3 3(d2- d3)

Vd 1  vdv-1
Total v-1

Number of m m + E d.
Asymptotes i=l 1

Adding up the total number of root-locus asymptotes and subtracting the
result from the dynamical order of the feedback loop we find that

V-1
Number of finite zeros = n - m - Z di (8.12)

i=l

A careful study of the implications of the above relationships gives a vivid
geometrical insight into the role played by the basic state-space model operators A,B,
and C in generating the main structural features of the asymptotic behaviour of general-
ised Root-Locus and Nyquist diagrams.

" • m -
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9. ANGLES OF ARRIVAL AT ZEROS AND ANGLES OF DEPARTURE FROM POLES.

The ways in which branches of the root locus depart from poles and arrive at
zeros, together with the relationships of other important structural features of these
diagrams to the basic state-space model parameters has been considered by a number of
investigators [91 , [111 , [411 , [42] . In this section we follow the approach of
Thompson, Stein and Laub [42] . For the output-feedback system

= Ax + Bu

y = Cx

U= -1y (9.1)
9

the closed-loop frequency matrix will be

S 1 = A BKC (9.2)K e

Let s ,x. and y. be closed-loop characteristic frequencies with their associated right
and let igenve~tors so that for 0 <g <

[SK(g) - si ] xi 0 O
i = 1,2,..,n

Yi[SK(g) siI] 0 (9.3)

then s , xi, and yi can be obtained by solving the generalised eigenvalue problems

spe = b, ,. ,

AYj Fij A -SI B

=O (9.5)-C -gK - :

where role of the integer p is discussed below. Then,in terms of these quantities it
has been shown by Thompson et al 142! t))at :

The angles of the root locus for O'gt_ and for distinct frequencies s. aregiven by

arg(ds)= arg - yiBKC xio < g,- (9.6)

i =1,2,..,p

or
arg(ds.) = arg i 

K 
wi 0 g<- (9.7)

yx = 1,2,... p.

The angles of departure from poles are found using (9.6) with g = and the angles of
arrival at zeros are found using (9.7) with g = 0. Note that for g >0 we will have
p = n and for g = 0 we will have Opin - m, where p is the number of finite zeros
and m is the number of inputs and outputs of the vector feedback loop.

10. PROPERTIES OF NYQUIST AND ROOT LOCUS DIAGRAMS FOR OPTIMAL FEEDBACK SYSTEMS.

Several investigators have studied the asymptotic Nyquist diagram behaviour
(for high frequencies), the asymptotic Root-Locus diagram behaviour (as explained below)
and the location of the finite zeros for the standard optimal state feedback control
problem involved in m~nimizing the cost function

(= t ut~u

J (xtQx + uRu) dt (10.1)

where R is positive:definite symmetric, Q is positive semi-definite symmetric and p
a finite positive real constant [121,[421 ,[431,[44],[45], [46], [471.

It is known as a result of these studies that :

(i) All the finite zeros of the optimal feedback loop lie in the left-half
complex plane.

(ii) All the generalised Nyquist diagrams for the optimal feedback loop have
infinite gain margin and at least 600 phase margin.



(iii) When p in the performance index (10.1) is- the n branches of the
optimal root locus (i.e. the locus of closed-loop characteristic frequencies traced out
with variation of o ) start on a set of poles which are the stable poles of the original
plant together with the mirror images in the imaginary axis of the unstable poles of the
original plant (assumed to have no purely imaginary poles). As pvaries all the branches
of the optimal root locus remain in the left-half of the frequency plane. For p tending
to zero a number p of the branches (where 0cp-n-m) stay finite and approach a set of
loop transmission zeros. The remeAning (m-p) branches approach infinity in a set of so-
called Butterworth patterns. A k order Butterworth pattern has k asymptotes each of
which radiates from the origin through the left-half plane solutions of

2k k+lsk (-1) (10.2)

11. DESIGN TECHNIQUES.

Despite the great efforts which have been expended on the problems involved over
the past decade, much remains to be done in formulating a definitive design technique for
linear multivariable feedback systems of high (say having up to 100 state variables)
dynamic order. A fairly comprehensive attempt to extend the philosophy and techniques
of the classical Nyquist-Bode-Evans design approach to the multivariable case is given in
12] , and this line of attack can be compared with a variety of other approaches to a
common design problem in [481 . A fairly complete review of the development of the
classical frequency-response methods can be found in [1] , together with a discussion of
various forms of extension to the multivariable case. A computer-aided interactive-
design package [491 has been developed for use in the implementation of the techniques
described in [21 . Experience of its use has shown that an interactive design method of
this sort can be useful to industrial designers. There is thus a considerable incentive
to develop further those forms of design technique which are based on a combination of
the attractive graphical features of complex-variable methods and the geometrical way in
which the main structural features of the algebraic curves used are related to state-space
model parameters.

11.1 Design via generalised Nyquist and generalised Root Locus approach.

The configuration considered is shown in Fig.15. A given plant has £ inputs and
m outputs, and it is assumed that m > Z. The plant output vector y consists of two
subvectors c and z:

Y= z

where c is an i-dimensional vector of variables whose behaviour is to be controlled and
z is an (m-o-dimensional vector of extra available measurements. The design process is
carried out in two main stages, corresponding to the arrangement shown in Fig.16.

Stage 1 - Compensator Design: The purpose of the compensator is to make use of
the extra information contained in the vector z to create a new f-dimensional input
vector v which gives a suitable form of transmittance from v to the set of controlled
outputs c. A suitable form of this transmittance is taken to be one which allows
acceptably large amounts of feedback gain to be applied around this modified plant.

Stage 2 - Gain Injector Design: Having used all of the available measurements
to the best advantage in arranging for a suitable transmission characteristic between v
and c, the design is completed by choosing a gain injector block which will inject the
suitably high feedback gains required to meet the closed-loop performance specification
over the operating bandwidth. The gain injector block will normally contain both
integral action terms to remove low-frequency errors and phase-compensating terms to
improve closed-loop damping. Early treatments of this part of the approach are oftencalled the characteristic locus method because it is essentially based on the manipulation
of characteristic gain loci (generalised Nyquist diagrams).

The basic idea behind the compensator design is best seen from a consideration

of the arrangement shown in Fig.17(a) where the gain-injector block has been replaced by
a unit transmittance operator. In this arrangement the compensator is designed in such away that a suitable set of closed-loop characteristic frequencies is obtained. How the

suitability of such a set is judged is suggested from a study of the implications of
Fig.17. The set of closed loop characteristic frequencies associated with Fig.17(a)
depends on the nature of the characteristic gain loci for the transmittance between vand c in Fig.17(b). Hence, the manipulation of the closed-loop frequencies for the

arrangement of Fig.17(a) is equivalent to the manipulation of the characteristic gain
loci for the compensated plant of Fig.18.

Design of Gain Injector: Assume that the first stage of the design procedure
has been carried out; one is then considering the second-stage situation shown in
Fig.19 where K(s) is the transfer-function matrix of the gain injector and Gc (s) is the
transfer-function matrix of the compensated plant.

Let

Q(s) = Gc (S)K(s) (11.1)
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so that the closed-loop transfer-function matrix for this arrangement is

R(s) = [Im  + Q(s)]-1Q(s). (11.2)

It follows from standard relationships in matrix algebra that every eigenvector w (s) of
Q(s) is also an eigenvector of R(s), and that for every eigenvalue qi(s) of Q(s) there is
a corresponding eigenvalue q (s)/[l + qi(s) jof R(s). Since the setiof complex numbers
{q (1 + qA) : i = 1,2,...,} will have two or more members with the same value if and
only if t e set of complex numbers {q : i = 1,2,...,ml has two or more members with the
same value, it follows that the set of branch points associated with the matrices R(s)
and Q(s) are identical. The characteristic gain algebraic functions associated with the
open-loop matrix Q(s) and the closed-loop matrix R(s) thus share the same Riemann
surface, and these matrices also share the same set of eigenvpctors. Therefore, if the
open-loop matrix Q(s) has a dyadic expansion of the form

m
Q(s) = E qi(s)wi(s)vi(s) (11.3)

i=l
valid for almost all values of s (that is, except at the branch points),then R(s) will
have a corresponding dyadic expansion of the form

m qi (s)

R(s) il wi(s)v (s) (11.4)

valid in the same punctured plane as Q(s) (that is, the complex plane with the set of
branch points deleted).

Equation (11.4) can be made the basis of a design technique for systems having
the same number of inputs and outputs. The closed-loop frequency response is given by

m -qi(jw) )
R(jw) =il _l+qi(ju) w(Jt)v (jW) (11.5)

If

qi(jw)-- , i =  1,2,.....m,

then

m m tR(j )- E w(jw)v. (W) =
i=l m

where I is a unit matrix of order m, so that good closed-loop performance may be achiev-
ed by mking all the characteristic gains of Q(s) sufficiently high over a required operat-
ing frequency range. The amounts of characteristic gain required for a given quality of
closed-loop performance, and the amount of closed-loop interaction which will result,
depend on the behaviour with frequency of the eigenvectors of Q(s). The desired propert-
ies of the characteristic gain loci and characteristic gain directions (eigenvectors)of
Gc(s)K(s) are therefore determined by the following considerations.

1) The characteristic gain loci (generalised Nyquist diagrams) of Gc (S)K(s)

must satisfy the generalised Nyquist stability criterion.

2) For high tracking performance, and therefore low interaction, at any stipul-
ated frequency, the gains of all the characteristic loci must be suitably large. This is
particularly relevant to the low-frequency situation in which it is feasible to have high
characteristic gains.

3) At high frequencies, however, it is not generally feasible, because of the
excessive power requirements involved, to have large gains in the characteristic loci.
Such high gains at high frequencies would, in many cases, also tend to violate the
generalised Nyquist stability criterion. To reduce interaction at high frequencies,
therefore, one cannot in general deploy high gains for this purpose and so must instead
make the characteristic direction set of the open-loop transference align with the
standard basis vector set at high frequencies.

The principal components of a design approach exploiting these ideas are,
therefore,

a) a method of manipulating characteristic gain loci, and
b) a method of manipulating characteristic gain directions.

Manipulation of Characteristic Gains and Directions: From the spectral
analysis point of view the essential difficulty in choosing an appropriate form cf con-
troller matrix K(s) lies in the fact that very little is known of the way in which the
eigenvalues and eigenvectors of the product of two matrices G (s) and K(s) are related
to the individual eigenvalues and eigenvectors of G (s) and K'(s). There is one
exception to this situation, however, and this is teat in which the matrices concerned
commute, that is, when

G c(S)K(s) = K(s)Gc (s).
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This happens if and only if G (s) and K(s) have a common set of eigenvectors. In such
a situation the eigenvalues o? the product G_(s)K(s) are simply appropriate products of
the individual eigenvalues of the matrices G (s) and K(s); the eigenvalues which aremultiplied together are those associated witE a common eigenvector.

Since the equation

det [gIm - Gc(S)]= 0

will normally be irreducible, the eigenvalues and eigenvectors of the matrix G (s) will
not be expressible in terms of rational functions. It will therefore not norally be
feasible to construct a realizable controller K(s) which will exactly commute with Gc(s)
for all values of s. Even in the rare cases when this might be possible, such a
controller could be unnecessarily complicated. A more practical and rewarding approach
is to investigate the possibility of using controllers which are approximately commuta-
tive with the plant at appropriately chosen values of frequency. In one approach of
this sort (MacFarlane and Kouvaritakis (50])the controller matrix is chosen to have the
specific form

K(s) = HAk(s)J

where H and J are matrices with real elements and Ak(s) is a diagonal matrix of
rational functions in s. The matrix K(s) can therefore be expressed in the dyadic
form

m
K(s) I ki(s)hij i

where the vector sets

.t
h : i = 1,2,...,m} and (j. : i 1,2,...,m}

are both real. An approximately-commutative controller is one whose constituent real
matrices H and J are chosen in such a way that K(s) is approximately commutative with
Gc(s) at some specific value of complex frequency i. At such a frequency one has that

qi(s)-gi(s)ki(a), i = 1,2,...,m

where q. (s) ,g. (s) are eigenvalues of Q(s) and G (s) , respectively, and k. (s) are appro-1 -c
priate diagonaf elements of A (s). This set of relationships gives an ovious basis
for manipulating the characteristic gain loci of Q(s) in a systematic manner; it also
turns out that this approximately commutative technique can be used to manipulate the
eigenvectors of Q(s) . Such manipulation techniques nave been described by MacFarlane
and Kouvaritakis [50.

Design of the Inner-Loop Compensator: The ideas behind the design of the
inner-loop compensator are illustrated by Figs.20-22. The form of the characteristic
gain loci for the compensated plant G (s) , that is, for the transmittance between v and
c in Fig.17(b) , is directly related ts the nature of the closed-loop characteristic
frequencies for the arrangement of Fig.17(a) , which in turn is equivalent to Figs.20 and
21. Thus the problem of choosing the component blocks F and F of Fig.20 for the
compensator is essentially the problem of choosing the feedback ILafrix F in the con-
figuration of Fig.21 in such a way that a suitable set of closed-loop characteristic
frequencies is obtained. Since F has m inputs and 9outputs, where 9.<m, the choice of
F is often referred to as a "squaring-down procedure". The choice of F is essentially
based on generalised root-locus ideas and involves the placement of finite zeros and the
manipulation of root-locus asymptotes (MacFarlane, Kouvaritakis, and Edmunds (10]). The
final ob3ective of the "inner-loop compensator" design is to get suitable locations for
the closed-loop poles seen by the gain injector K(s) in Fig.22. A satisfactory achieve-
ment of this objective requires some dynamical insight and engineering judgment since,
in the usual case when all the plant states are not directly accessible, it will not
normally be possible to place finite zeros in arbitrarily specified locations in the
complex plane. Nevertheless, the basic ideas underlying the technique of inner-loop
compensator design are quite straightforward; one places finite zeros and manipulates
root-locus asymptote patterns in such a way that, by setting a gain parameter at a
suitable value, the closed-loop poles of the system "seen by" the gain-injector K(s)
are pulled into suitable locations in the complex plane. In some circumstances one may
wish to pull such closed-loop poles well over into the left-half complex plane in order
to speed up closed-loop response and to allow K(s) to inject a desired amount of gain
before the overall (inner plus outer loops) system has its closed-loop characteristic
frequencies driven into unacceptable regions of the complex plane. In other circumstances
one may wish to "freeze" the location of major poles associated with certain open-loop
plant characteristic frequencies by placing finite zeros near them. Often a judicious
mixture of both approaches will be required.

Although it requires engineering insight and manipulative skill, it has been
shown to be a powerful tool in the hands of a skilled designer. A fairly extensive
computer-aided design package has been developed for use in this way [49] ,f5l]
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11.2 Least-squares Nyquist/Bode Array Approach.

An alternative approach has been developed by Edmunds [521 which transfers the
burden of the designer's choice to the selection of a closed-loop performance specifica-
tion and a controller structure. This approach uses Nyquist and Bode diagram arrays of
the open-loop and closed-loop behaviour as a means of assessing performance and inter-
action. Following a preliminary analysis of the problem (using the techniques of
Section 11.1 above) the designer chooses a suitable specification for the closed-loop
behaviour of the feedback system together with a stipulated structure for the feedback
controller to be used. The controller structure selected has a number of variable
parameters and the design is completed by a computer optimization (using say a standard
weighted least-squares algorithm) of the difference between the specified and actual
closed-loop performances. As one would expect this method, when properly used, produces
better results than that of Section 11.1 above. It has the further advantage of being
extendable to deal with variations in the system model parameters. The CAD package
mentioned above [49] , [511 incorporates the routines for dealing with this approach.

11.3 Example of frequency-response design approach.

Fig.23 shows the Nyquist array for a 2-input, 2 out-put, 12-state automotive gas
turbine. Since all the elements of this array are of the same order of magnitude, out-
put scaling as an initial step in the design procedure is not required. The character-
istic loci (generalised Nyquist diagrams) for this system are shown in Fig.24. An
inspection of these immediately shows that no serious design difficulties should arise;
the speed with which such an initial assessment can be carried out is one of the great
advantages of the generalised frequency-response approach. The next step in the
procedure for this example was to carry out a 'high frequency alignment' [21 at a
frequency of 3 rad/sec. The frequency used is usually that corresponding to the target
closed-loop bandwidth. Figs. 25 and 26 show the generalised Nyquist and Bode plots of
the system's characteristic gain functions after this alignixent step. An inspection of
these Bode plots shows that one of the characteristic gains is fairly 'flat' near the
critical frequency, so some extra phase compensation (s+5)/(s+l) is next added to this
locus using an 'approximately commutative controller' 12) -alculated at a frequency of
3 rad/sec. Fig. 27 shows the 'misalignment angles' [21 following the high-frequency
alignment procedure. It can be seenthat the misalighment angles have been suitably re-
duced except for frequencies in the region of 1.5 to 2 rad/sec.

Fig.28 shows Bode plots of the characteristic gains with an alignment at 3
rad/sec. followed by the approximately commutative controller at 3 rad/sec., followed
by a further alignment at 3 rad/sec. It can be seen that the gains are now reasonably
well balanced. To complete the design extra compensation is now added for low and
medium frequencies. A proportional-plus-integral control term (s+l)/s is chosen for
the lower-gain locus at lower frequencies. The higher-gain locus needs some extra
phase advance at frequencies just below 1 rad/sec. and hence a term of [ (s+0.2) (s+O.4) 1/
[s(s+l.5) ) is used for it. This compensation is injected via an 'approximately
commutative controller' at a frequency of 0.7 rad/sec.

The generalised Nyquist and Bode diagrams for the final compensated system
(with an align at 3, a commutative controller at 3, a further align at 3, and a final
commutative controller at 0.7) are shown in Figs. 29 and 30. These show good stability
margins and gains which are well-balanced over a wide range of frequencies. Fig.31
shows the closed-loop gain array (in Bode form); from this we see that the closed-loop
system has a bandwidth of about 10 rad/sec. in the first loop and of about 3 rad/sec. in
the second loop. Fiq. 32 shows the magnitudes of the principal gains of the closed-
loop system as a function of frequency. These show that the system will be reasonably
robust against multiplicative perturbations in the open-loop transfer-function.
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SUMMARY

This paper uses singular value analysis to generalize the fundamental feedback ideas
from classical single loop control theory to multiloop systems. The classical view of
measuring the benefit of feedback in terms of desensitizing the system to plant
variations and disturbances is discussed. Uncertainty is shown to play a critical role
in determining the way in which feedback may be used. Certain singular value plots,
called a-plots, are introduced as natural and effective generalizations of Bode gain
plots and form the basic tools for analysis of multiloop feedback systems. These tools
provide reliable means for assessing the stability margins, bandwidth, and
desensitizing effects of multiloop feedback systems. Examples are given to illustrate
the use of the 0-plots and their interpretations. Most of this paper is excerpted
from other papers already published ([I) - (41).

I. Introduction

In designing control systems, there are fundamental issues that transcend the
boundaries of specific applications. Although they may be packaged slightly
differently for each application and may have different levels of importance, these
issues are generic in their relationship to control design objectives and procedures.
Central to these issues is the control requirement to provide satisfactory performance
in the face of system variations dnd uncertainty. This requirement was the original
motivation for the development of feedback systems. Feedback is only required when
system performance cannot be achieved because of uncertainty in system
characteristics. This paper is based on the premise that the recognition and proper
treatment of uncertainty holds the key to viable solutions for essentially all feedback
design problems. Section II qualitatively discusses the relationship between design
models and the real world. This includes how the use of models, with their associated
uncertainties, impact the control design process.

Section III reviews the fundamental practical issue in feedback design -- namely, how
to achieve the benefits of feedback in the face of uncertainties. The nominal design
models used are assumed to be finite dimensional, linear and time variant (FDLTI) and
the approach is basically classical ([5] - [61) expressed in terms of transfer
functions in the frequency domain. Singular values are used to generalize the
classical single-input single-output (SISO) results to multi-input multi-output (MIMO)
systems.

In Section IV the problem of representing uncertainty in the design modei is discussed
in more detail. Various types of uncertainties which can arise in physical systems are
briefly described and "unstructured uncertainties" are singled out as generic errors
which are associated with all design models. Section V then shows how classical SISO
statements of the feedback design problem in the face of unstructured uncertainty can
be reliably generalized to MIMO system. Section VI presents some examples to
illustrate the concepts discussed in the preceding sections. Conclusions follow in the
last Section VIII.

II. Modeling and Uncertainty

Most control designs are based on the use of a design model. The relationship between
models and the reality they represent is subtle and complex. Thus, the problems
created by model uncertainty have often been either trivialized or ignored in
theoretical studies in favor of assuming the alternative of no distinction between
models and reality.

A mathematical model provides a map from inputs to responses. The quality of a model
depends on how closely its responses match those of the true plant. Since no single
fixed model can respond exactly like the true plant, we need, at the very least, a set
of maps. However, the modeling problem is much deeper -- the universe of mathematicaT
models from which a model set is chosen is distinct from the universe of physical
systems. Therefore, a model set can never be constructed which includes the true
physical plant. It is necessary for the engineer to make a leap of faith regarding the
applicability of a particular design based on a mathematical model. To be practical, a

- ii
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design technique must help make this leap small by accounting for the inevitable
inadequacy of models. A good model should be simple so as to facilitate design, yet
complex enough to give the engineer confidence that designs based on the model will
work on the true plant.

The term uncertainty refers to the differences or errors between models and reality and
whatever mechanism is used to express these errors will be called a representation of
uncertainty. For example, consider the problem of bounding the magnitude of the effect
of some uncertainty on the output of a nominally fixed linear system. A useful measure
of uncertainty in this context is to provide a bound on the spectrum of the deviation
of the output from its nominal response. In the simplest case, this spectrum is
assumed to be independent of the input. This is equivalent to assuming that the
uncertainty is generated by an additive noise signal with bounded spectrum; the
uncertainty is represented as additive noise. Of course, no physical system is linear
with additive noise, but some aspects of physical behavior are approximated quite well
-using this model. This type of uncertainty has received a great deal of attention in
the literature, perhaps more because it yields elegant theoretical solutions (e.g.,
white noise propagation in linear systems, Wiener and Kalman filtering, LQG) than
because it is of greater practical significance than other types of uncertainty.

enerally, the spectrum of the deviation of the true output from the nominal will
depend significantly on the input. For example, an additive noise model is entirely
inappropriate for capturing uncertainty arising from variations in the material
properties of physical plants. The actual construction of model sets for more general
uncertainty ca be quite difficult. Suppose we begin with a differential equation ror
our model. We immediately recognize the need to parametrize the differential equation
to reflect plant variations relative to our model. However, for certain classes of
signals (e.g., high frequency) the parametrized differential equation fails to describe
the plant, because the plant will always have dynamics which are not represented in the
differential equation.

In general, we are forced to use model sets that allow for plant dynamics which are not
explicitly represented in the model structure. A simple example of this involves using
frequency-domain bounds on transfer functions to describe a model set. To use such
sets to describe physical systems, the bounds must roughly grow with frequency. In
particular, at sufficiently high frequencies, phase is completely unknown, i.e.,
+1800 uncertainties. This is a consequence of dynamic properties which inevitably
occur in physical systems. These issues will be discussed further in Section IV.

Assuming we are given a model including a representation of uncertainty, which we
believe adequately captures the essential features of the plant, the next step in the
controller design problem is to determine what structure is necessary to achieve the
desired performance. Prefiltering of input signals can change the dynamic response of
the model set but cannot reduce the effect of uncertainty. If the uncertainty is too
great to achieve the desired accuracy of response, then a feedback structure is
required. The mere assumption of a feedback structure, however, does not guarantee a
reduction of uncertainty, and there are many obstacles to achieving the uncertainty-
reducing benefits of feedback.

In particular, since for any reasonable model set representing a physical system,
uncertainty becomes large and phase is completely unknown at sufficiently high
frequencies, the loop gain must be small at those frequencies to avoid destabilizing
the high frequency system dynamics. Even worse is that the feedback system actually
increases uncertainty and sensitivity in the frequency ranges where uncertainty is
sufficiently large. In other words, because of the type of sets required to reasonably
model physical systems and the restriction that our controllers be causal, we cannot
use feedback (or any other control structure) to cause our closed-loop model set to be
a proper subset of the open-loop model set. Often, what can be achieved with
intelligent use of feedback is a significant reduction of uncertainty for certain
signals of importance with a small increase spread over other signals. Thus, the
feedback design problem centers around the tradeoff involved in reducing the overall
impact of uncertainty. This tradeoff also occurs for example, when, using feedback to
reduce command/disturbance error while minimizing response degradation due to
measurement noise. To be of practical value, a design technique must provide means for
performing these tradeoffs.

III. The Benefits of Feedback

We will deal with the standard feedback configuration illustrated in Figure 1:

d

Figure 1: Standard Feedback Configuration
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It consists of the interconnected plant (G) and controller (K) forced by commands (r),
measurement noise (n), and disturbances (d). The dashed precompensator (P) is an
optional element used to achieve deliberate command shaping or to represent a non-unity
feedback system in equivalent unity feedback form. All disturbances are assumed to be
reflected to the measured output (y), all signals are multivariable, in general, and
both nominal mathematical models for G and K are finite dimensional linear time
invariant (FDLTI) systems with transfer functions matrices G(s) and K(s). Then it is
well known that the configuration, if it is stable, has the following major properties:

(1) Input-output behavior

y = GK(I + GK)-
I  

(r - ri) + (I + GK)-Id (1)

erf-y

= (I + GK)-l (r - d) + GK(I + GK)-In (2)

(2) System sensitivity [71

Afcl = (I + G'K)- Hol (3)

In equation (3), AHcl and AHol denote changes in the closed loop system and
changes in a nominally equivalent open loop system, respectively, caused by changes in
the plant G, i.e., G' = G + AG.

Equations (1) through (3) summarize the fundamental benefits and design objectives
inherent in feedback loops. Specifically, equation (2) shows that the loop's errors in
the presence of commands and disturbances can be made "small" by making the sensitivity
operator, or inverse return difference operator, (I + GK)

-1
, "small", and equation

(3) shows that loop sensitivity is improved under these same conditions, provided G'
does not stray too far from G. An alternative approach which measures sensitivity in
terms of G and not G' is given in the companion paper [19].

For SISO systems, the appropriate notion of smallness for the sensitivity operator is

well understood - namely, we require that the complex scalar [1 + g(jw) k(j)]
-

have small magnitude, or equivalently that 1 + g(jw) k(jw) have large magnitude,
for all real frequencies w where the commands, disturbances and/or plant changes,

AG, are significant. In fact, the performance objectives of SISO feedback systems
are commonly stipulated in terms of explicit inequalities of the form

ps(w) < I I + g(jw) k(3w)I V-n < Wo, (4)

where ps(w) is a (large) positive function and wo specified the active frequency
range.

This basic idea can be readily extended to MIMO problems through the use of matrix
norms. Selecting the spectral norm as our measure of matrix size, for example, the
corresponding feedback requirements become

T [(I + G(jw) K(jw))-Il small

or conversely

ps(w) < o[ + G(jw) K(jo)l (5)

for the necessary range of frequencies. The symbols T and a in these expressions
are defined as follows:

A) max (6)J I= ! X 11 . J~xl 1 Xax I A*A I

JAI i 1 !AxII XminIA*AI (7)

where 1 H1 is the usual Euclidian norm, X[.) denotes eigenvalues, and [.]*
denotes conjugate transpose. The two o's are called maximum and minimum singular
values of A (or principal gains (41), respectively, and can be calculated with
available linear system software.[8] More discussion of singular values and their
properties can be found in various texts, 9]

Condition (5) on the return difference I + GK can be interpreted as merely a
restatement of the common intuition that large loop gains or "tight" loops yield good
performance. This follows from the inequalities

CIGK] - 1 < a[I+GKI < a[GKJ+l (8)

which show that return difference magnitudes approximate the loop gains, a[GK],
whenever these are large compared with unity. Evidently, good multivariable feedback
loop design boils down to achieving high loop gains in the necessary frequency range.

Despite the simplicity of this last statement, it it clear from years of research and
design activity that feedback design is not trivial. This is true because loop gains
cannot be made arbitrarily high over arbitrarily large frequency ranges. Rather, they
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must satisfy certain performance tradeoffs and design limitations. A major performance
tradeoff, for example, concerns command and disturbance error reduction versus sensor
noise error reduction. 1101 The conflict between tiere two objectives is evident in
equation (2). Large o[GK(jw)( values over a large frequency range make errors due
to r and d small. However, they also make errors due to n large because this noise
is "passed through" over the same frequency range, i.e.,

y = GK(jw) 1I+GK(jw) i-In In (9)

Worse still, large loop gains can make the control activity (variable u in Figure 1)
quite unacceptable. This follows from

u = K[I+GK]-l(r-n-d) - G-1(j) (r-n-d) (10)

Here we have assumed G to be square and invertible for convenience. The resulting
equation shows that commands, disturbances and sensor noise are actually amplified at u
whenever the frequency range significantly exceeds the bandwidth of G; i.e., for w
such that F[G(j,,,)] << 1 we get

1] = 1 >> 1 (11)
a(G(iw)T

One of the major contributions of modern feedback theory is the development of
systematic procedures for conducting the above performance tradeoffs. We are
referring, of course, to the LQG theory 1111 and to its modern Wiener-Hopf frequency
domain counterpart. [12] Under reasonable assumptions on plant, disturbances, and
performance criteria, these procedures yield efficient design compromises. In fact, if
the tradeoff between command/disturbance error reduction and sensor noise error
reduction were the only constraint on feedback design, practitioners would have little
to complain about with respect to the relevance of modern theory. The problem is that
these performance tradeoffs are often overshadowed by a second limitation on high loop
gains -- namely, the requirement for tolerance to uncertainties. Though a controller
may be dosioned using FDLTI models, the design must be implemented and operate with a
real physical plant. The pLoperties of physical systems, in particular the ways in
which they deviate from finite-dimensional linear models, put strict limitations on the
frequency range over which the loop gains may be large. In order to properly motivate
these restrictions, we digress in Section 3 to a brief description of the types of
system uncertainties most frequently encountered. The manner in which these
uncertainties can be accounted for in MIMO design then forms the basis for the rest of
the paper.

IV. The Nature of Uncertainty

While no nominal design model, G(s), can emulate a physical plant perfectly, it is
clear that some models do so with greater fidelity than others. Hence, no nominal
model should be considered complete without some assessment of its errors. We will
call these errors the "model uncertainties", and whatever mechanism is used to expre.-s
them will he called a "representation of uncertainty."

Representations of uncertainty vary primarily in terms of the amount of structure they
contain. This reflects both our knowledge of the physical mechanisms which cause
differences between model and plant and our ability to represent these mechanisms in a
way that facilitates convenient manipulation. For example, a set membership statement
for the g1rameters of an otherwise known FDLTI model is a highly-structured
representat,)n of uncertainty. It typically arises from the use of linear incremental
models at various operating points, e.g., aerodynamic coefficients in flight control
vary with flight environment and aircraft configurations, and equation coefficients in
power plant control vary with aging, slag buildup, coal composition, etc. In each
case, the amounts of variation and any known relationships between parameters can be
expressed by confining the parameters to appropriately defined subsets of paramet-r
space. A specific example of such a parameterization for the F-BC aircraft is given in
113).

Examples of less-structured representations of uncertainty are direct set membership
statements for the transfer function matrix of the model. For instance, the statement

G' (jw) = G(jw) + AG(jii)

with

[AG(jo) < Ia ((.I) * 1,) >o (12)

where .a(') is a positive scalar function, confines the matrix G' to a neighborhood
of G with magnitudega(w). The statement does not imply a mechanism or structure
which gives rise to AG. The uncertainty may be caused by parameter changes, as
above, or uy neglected dynamics, or by a host of other unspecified effects. An
alternative statrnent to (12) is the so-called multiplicative form:

G ( W) = I f+L( t ,) (G( ji)

with
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IL(jw)) <Jm()*Y (13)

This statement confines G' to a normalized neighborhood of G. An advantage of (13) over
(12) is that in (13) compensated transfer functions have the same uncertainty
representation as the raw model (i.e., the bound (13) applied to GK as well as to G).
Still other alternative set membership statements are the inverse forms of (12) and
(13) which confine (G')-1 to direct or normalized neighborhoods about G-1 .

The best choice of uncertainty representation for a specific FDLTI model depends, of
course, on the errors the model makes. In practice, it is generally possible to
represent some of these errors in a highly-structured parameter ized form. These are
usually the low frequency error components. There are always remaining higher
frequency errors, however, which cannot be covered this way. These are caused by such
effects as infinite-dimensional electro-mechanical resonances [16, 17], time delays,
diffusion processes, etc. Fortunately, the less-structured representations, (12) or
(13), are well suited to represent this latter class of errors. Consequently,
(12)-(13) have become widely used "generic" uncertainty representations for FDLTI
models.

Motivated by these observations, we will focus throughout the rest of this paper
exclusively on the effects of uncertainties as represented by (13). For lack of a
better name, we will refer to these uncertainties simply as "unstructured." We will
assume that G' in (13) remains a strictly proper FDLTr system and that G' has the same
number of unstable modes as G. The unstable modes of G' and G do not need to be
identical, however, and hence L(s) may be an unstable operator. These restricted
assumptions on G' make exposition easy. More general perturbations (e.g, time varying,
infinite dimensional, nonlinear) can also be covered by the bounds in (13) provided
they are given appropriate "conic sector" interpretations via Parseval's theorem. This
connection is developed in [14, 151 and will not be pursued here.

When used to repres nt the various high frequency mechanisms mentioned above, the
bounding functions Jlm(W) in (13) commonly have the properties illustrated in Figure
2. They are small (<<I) at low frequencies and increase to unity and above at higher
frequencies. The growth with frequency inevitably occurs because phase uncertainties
eventually exceed + 180 degrees and magnitude deviations eventually exceed the nominal
transfer function magnitudes. Readers who are skeptical about this reality are
encouraged to try a few experiments with physical devices.

NOMINAL

"TRUE"
SYSTEM

ENVELOPE

OF "TRUE"
SYSTEMS

LOG FREOUENCY4 Figure 2. Typical Behavior of Multiplicative Perturbations

-
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It should also be noted that the representation of uncertainty in (13) can be used to
include perturbation effects that are in fact not at all certain. A nonlinear element,
for example, may be quite accurately modeled, but because our design techniques cannot
deal with the nonlinearity effectively, it is treated as a conic linearity. [14, 151
As another example, we may deliberately choose to ignore various known dynamic
characteristics in order to achieve a simpler nominal design model.

Another important point is that the construction of 1m(w) for multivariable systems
is not trivial. The bound assumes a single worst case uncertainty magnitude applicable
to all channels. If substantially different levels of uncertainty exist in various
channels, it may be necessary to scale the input-output variables and/or apply
frequency-dependent transformations [151 in such a way that#MA becomes more uniformly
tight. These scale factors and transformations are here assumed to be part of the
nominal model G(s).

V. Feedback Design in the Face of Unstructured Uncertainties

Once we specify a design model, G(s), and accept the existence of unstructured
uncertainties in the form (13), the feedback design problem becomes one of finding a
compensator K(s) such that

(i) the nominal feedback system, GK[I + GK]
-1

, is stable;
(ii) the perturbed system, G'K[I + G'KI

-1
, is stable for all possible G' allowed

by (13); and
(iii) performance objectives are satisfied for all possible G' allowed by (13).

All three of these requirements can be interpreted as frequency domain conditions on
the nominal loop transfer matrix, GK(s), which the designer must attempt to satisfy.

Stability Conditions

The frequency domain conditions for Requirement (i) are, of course, well known. In
SISO cases, they take the form of the standard Nyquist Criterion, [See any classical
control text.) and in MIMO cases, they injolve its multivariable generalization. [18)
Namely, we require that the encirclement count of the map det [I + GK(s)], evaluated on
the standard Nyquist D-contour, be equal to the (negative) number of unstable open loop
modes of GK.

Similarly, for Requirement (ii) the number of encirclements of the map det [I + G'K(s)]
must equal the (negative) number of unstable modes of G'K. Under our assumptions on
G', however, this number is the some as that of GK. Hence, Requirement (ii) is
satisfied if and only if the number of encirclements of det [I + G'K(s)) remains
unchanged for all G' allowed by (13). This is assured if det rI + G'K] remains nonzero
as G is warped continuously toward G', or equivalently, iff

0 < of[ + [I+cL(s)]G(s)K(s)] (14)

for all o < c < 1, all s on the D-contour, and all L(s) satisfying (13). Since
G' vanishes on the infinite segment of the D-contour, and assuming, for simplicity,
that the contour requires no indentations along the jw-axis, (If indentations are
required, (14) and (17) must hold in the limit for all s on the indented path as the
radius of indentation is taken to zero) equation (14) reduces to the following
equivalent conditions:

n < c [I+G(jw)K(jw) + E L(jwo) G(js) K(jw)] (15)

for all 0 < F < 1, o < w < -, and all L

< o [I + L GK(I+GK) - I ]  
(16)

for all o < w < -, and all L

I [GK(I+GK)-
1
i < 1/ m(W) (17)

for all () < w

The last of these equations is the MIMO generalization of the familiar SISO requirement
that loop gains be small whenever the magnitude of unstructured uncertainties is
large. In fact, whenever Am (w) >> 1, we get the following constraint on GK:

7 [GK(j)l < I/im (W) (18)

for all w such that Am(w) >> 1.

Note that these are not conservative stability conditions. On the contrary, if the
uncertainties are truly unstructured and (17) is violated, then there exists a
perturbation L(s) within the set allowed by (13) for which the system is unstable.
Hence, these stability conditions impose hard limits on the permissible loop gains of

practical feedback systems.
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Performance Conditions

Frequency domain conditions for Requirement (iii) have already been described in
Section 2, equation (5). The modification needed to account for unstructured
uncertainties is to apply (5) to G' instead of G; i.e.,

ps < a fl+(I+L)GK(

ps < a I L GK(I+GK) -I- a [1+GK]

P ) .i* a (GK(jw) 1 (19)

for all w such that 1m(u,) < 1 and _ IGK(jw)J >> 1.

This is the MIMO generalization of another familiar SISO design rule -- namely that
performance objectives can be met in the face of unstructured uncertainties if the
nominal loop gains are made sufficiently large to compensate for model variations.
Note, however, that finite solutions exist only in the frequency range where
tm(w)< 1.

The stability and performance conditions derived above illustrate that MIMO feedback
design problems do not differ fundamentally from their SISO counterparts. In both
cases, stability must be achieved nominally and assured for all perturbations by
satisfying conditions (17-18). Performance may then be optimized by satisfying
condition (19) as well as possible. What distinguishes MIMO from SISO design
conditions are the functions used to express transfer function "size." Singular values
replace absolute values. The underlying concepts remain the same.

We note that the singular value functions used in our statements of design conditions
play a design role much like classical Bode plots. The oif + GKI function in (5) is
the minimum return difference magnitude of the closed loop system, n[GK) in (8) and
o(GKJ in (18) are minimum and maximum loop gains, and n[GK(I + GK)- T] in (17) is
the maximum closed loop frequency response. These can all be plotted as ordinary
frequency dependent functions in order to display and analyze the features of a
multivariable design. Such plots will here be called 0-plots.

One of the a-plots which is particularly significant with regard to design for
uncertainties is obtained by inverting condition (17), i.e.,

£m(M) < 1 0 [I+(GK(j.))-I( (20)
7r(GK(r+GK) --

for all o < w < -. The function on the right hand side of this expression is an
explicit measure of the degree of stability (or stability robustness) of the feedback
system. Stability is guaranteed for all perturbations L(s) whose maximum singular
values fall below it. This can iclude gain or phase changes in individual output
channels, simultaneous changes in several channels, and various other kinds of
perturbations. In effect, all + (GK)- l] is a reliable multivariable generalization
of SISO stability margin concepts (e.g., frequency dependent gain and phase margins).
Unlike the SISO case, however, it is important to note that a(1 + (GK)- I ] measures
tolerances for uncertainties at the plant outputs only.

Tolerances for uncertainties at the input are generally not the same. They can be
analyzed with equal ease, however, by using the function o(I + (KG)- I ] instead of
a(1 + (GK)- I ] in (20). This can be readily verified by evaluating the encirclement
count of the map det (I + KG) under perturbations of the form G' = G(I + L) (i.e.,
uncertainties reflected to the input). The mathematical steps are directly analogous
to (15-18) above. Classical designers will recognize, of course, that the difference
between these two stability robustness measures is simply that each uses a loop
transfer function appropriate for the loop-breaking point at which robustness is being
tested. The relationship between input and output margins is discussed further in the
companion paper (19).

The feedback design conditions derived above can be related directly to the classical
feedback problem as formulated by Bode ((51, (61). This problem is pictured
graphically for the SISO case in Figure 3 using the well-known Bode gain plot. Note
the low and high frequency gain conditions. The designer must find a loop transfer
function, GK, for which the loop is nominally stable and whose gain clears the high and
low frequency "design boundaries" given by Condition (17) and (19). The high frequency
boundary is mandatoary, while the low frequency one is desirable for good performance.
Both are influenced by the uncertainty bound, tm(u)).

A representative loop transfer function is also sketched in the figure. As shown, theeffective bandwidth of the loop cannot fall much beyond the frequency wo for which
wo) = 1. Note also that phase is not pictured nor mentioned explicitly.

What is needed is stability and well-behaved crossover. For SISO systems, phase
provides a very convenient way to evaluate stability and crossover properties but is
not important in and of itself. Furthermore the phase of a rational function is
completely determined by its gain, and location of rhp poles and zeros, as discussed in
the companion paper. (191 Thus, for evaluating the feedback properties of a SISO
control design, phase is not needed explicitly, _ien that stability is checked and
plots of 1i + gkl and Il + I/gkl or igk(l + gk) are provided.
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LOG 6kfiw(I

LARGE GAINS
FOR PERFORMANCE
(CONDITIONS 4 AND 10)

WELL-BEHAVED CROSSOVER

~-STABLE
-(I * lk)/ NOT TOO SMALL

MALL GAINS FOR
UNCERTAINTY
TOLERANCE
(STABILITY ROBUSTNES)
(CONDITIONS 17 AND 18)

Figure 3. The Feedback Design Problem According to Bode

The a-plot generalization of the Bode gain plot and its interpretation are displayed
graphically in Figure 4. The aerformance conditions are essentially the same as for
the Bode feedback design problem with singular values replacing complex magnitude. As
in the SISO case phase is not needed. Thus the fact that there is no natural
multivariable generalization of phase should not be disturbing, because the important
feedback properties of a system do not depend explicitly on phase.

LOG 0 (GK]

WELL-BEHAVED CROSSOVER
PERFORMANCE
oGK >i -STABLE

UNCERTAINTY TOLERANCE

l I(K)
1I 

>0Ll (I-)(* I-

SgjGKI < I/0IL] WHENGILl ),1 (11)

Figure 4. The Multivariable Feedback Design Problem

The 0-plots of a representative loop transfer matrix are also sketched in the
figure. As in the SISO case the effective bandwidth of the loop cannot fall much
beyond the frequency w for which m(wo) = 1. As a result, the frequency
range over which performance objectives can be met is explicitly constrained by the
uncertainties. It is also evident from the sketch that the severity of this constraint
depends on the rate at which a[GKJ and ofGK] are attenuated. The steeper these
functions drop off, the wider the frequency range over which Condition (19) can be
satisfied. Unfortunately, FDLTI transfer functions behave in such a way that steep
attenuation comes only at the expense of small all + GK] values and small
of! + (GK)-IJ values when afGKI and 7fGKJ I. This means that while
performance is good at lower frequencies and stability robustness is good at higher
frequencies, both are poor near crossover. The behavior of FDLTI transfer functions,
therefore, imposes a second major limitation on the achievable performance of feedback
systems. These and other limitations on achievable performance will be considered in
the companion paper [19].
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VI. Examples

Two examples will now be discussed to illustrate the ideas presented in the previous
sections. Both examples are simple and of low order. Hopefully, this will encourage
the reader to experiment with the examples to get a better understanding of the plots
involved.

The first example is a two input oscillator with open loop poles at + 10j and both
closed loop poles under unity feedback at -1. The loop transfer function is

G(s) = 1 - 100 l0(s + ) (21)

s + 100 
1
-l0(s + 1) s - 100

and with unity feedback, K -I. There are no transmission zeros.

Suppose we begin the analysis by breaking individual loops at the inputs and viewing
the multiloop system as two single loop systems. With either loop closed (the system
is symmetric) the transfer function for the other loop is

I
g(s) = s

which indicates that individually the loops have large classical SISO margins at
crossover ( + - db gain and 90

° 
phase at w - 1).

The singular values of GK(I + GK)
- I 

are plotted in Figure 5. From equation (17), we
see that the peak in a near 20 radians, indicates that there exists a small
perturbation (m = .1) that would create an instability. Thus, while each loop
individually may have large stability margins, the feedback system is extremely
sensitive to perturbations which effect both loops.

0

9 I

n
i

t
u
d

10 1 le IU 18

log frequencw
Figure 5. a-Plot for example 1

To get further insight into this example, consider a diagonal perturbation (as in (13))

L j i kj (22)

where kI and k2 are real constants. The regions of stability and instability may
be plotted in the (kl, k2 ) plane as shown in Figure 6. Gain-plane plots such as
these have been used by engineers for decades, but they unfortunately do not easily
generalize to higher dimensions.

In Figure 6, the open loop point is kl - k2 - -1 and the nominal closed loop point
is k I - k 2 = 0. If each loop is broken individually, the kI, k 2 axes are
checked for stability. As can be seen from Figure 6 this would miss the unstable
region near the origin caused by simultaneous changes in kl and k2. Singular value
analysis checks in all directions and gives a more reliable characterization of the
robustness of a feedback system.

4
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Figure 6. Example 1 Stability Domain

As a second example which is more physically motivated, we will consider a longitudinal
-axes design problem for the CH-47 helicopter. This vehicle is a tandem rotor machine
whose physical characteristics and mathematical models are given in [20] and [211.
Control over vertical motions is achieved by simultaneous changes of blade
angle-of-attack on both rotors (collective), while pitch and forward motions are
controlled by changing blade angle differentially between the two rotors (differential
-collective). These blade angle changes are transformed through rotor dynamics and
aerodynamics into hub forces which then move the machine.

Our objectives will be to design the feedback portion of a command augmentation control
law which achieves tight, non-interacting control of the vertical velocity and pitch
attitude responses. This design was considered previously in [4]. A small
perturbation linearized aircraft model should prove adequate for this purpose and is
available [20). The state vector consists of the vehicle's basic rigid body variables
x = (V, z, q, 0) (forward velocity, vertical velocity, pitch rate, pitch angle). Two
integrators are appended to provide desired low frequency gain. These would also be
used to achieve integral control of the primary responses, Z and 0, in the full
command augmentation system. The controls are the collective and differential-
collective inputs described above: u = (c, dc).

The major approximations associated with this linearized model are due to both
neglected dynamics of the rotors, neglected nonlinearities in the blade angle actuation

hardware, as well as changes in flight condition. We will focus primarily on errors
due to neglected roto. dynamics, and restrict attention to a single flight condition,
40 knots forward airspeed. This allows for a simple illustration of the ideas of the
previous sections, without sacrificing the engineering relevance of this example.
Hence, our nominal model is

x = Ax + Bu (A, B given in the Appendix) (23)

X5  z (24)

x6 = 0 (25)

The first step in the design is to escimate the errors due to neglected rotor
dynamics. Elementary dynamic and aerodynamic analyses of rotating airfoils, hinged at
the rotor hub, indicate that lift forces will not be transmitted to the hub
instantaneously with collective changes in blade angle-of-attack but will appear only
when the cone angle of the rotor has appropriately changed. The dynamics of the latter
have been shown to be damped second-order oscillations with natural frequency equal to
rotor speed and damping determined by somewhat uncertain aerodynamic effects 1221.
Hence, rotor dynamics can be crudely represented by second-order transfer functions

2

R(s S + 2 Rs + (26)iws+w
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with WR = 25 rad/sec and conservatively confined to the range 0.1 < < 1.0.
Because collective and differential-collective inputs both involve coning motions of
the rotors, one such transfer function will appear in each control channel.

The rotor dynamics can be represented as a multiplicative perturbation (L in Eq. (13)
where

L = (gR - 1) I

and

k m s
2 

+ 2 R
s + 2RS + 2 S 

=
j (27)

This function was evaluated for a range of frequencies and is shown in Figure 7. From
equations (17) and (18) we know that this uncertainty level will limit bandwidth to
less than 10 rad/sec.

An alternative approach would be to explicitly add the rotor dynamics to the nominal
model and represent the uncertain damping by a variable parameter, as in eq. (26).
This would eliminate the perturbation due to the first mode of the rotor and allow for
a higher bandwidth controller. Unfortunately, such a high-bandwidth controller would
require modification and more accurate modeling of the blade angle actuation hardware,
as well as additional modeling of higher-frequency rotor dynamics (second and higher
harmonics). An engineer considering this option would have to weigh its cost against
the benefits of a high bandwidth controller.

In any case, even with more accurate modeling and hardware improvements, the feedback
designer would still be faced with large unstructured uncertainty, (possibly at higher
frequencies,) due to neglected dynamics. This tradeoff, where more costly and accurate
modeling allows for more accurate control, is a central issue in engineering modeling
problems. By using the model of eq. (23) - (25), we have opted for modeling only the
basic rigid body dynamics explicitly and including other effects in the unstructured
uncertainty.

By combining eq. (27) with eqs. (17) - (19) we obtain the bounds on the singular values
of the loop transfer function shown in Figure 8. The high frequency constraint is

obtained from the neglected rotor dynamics in Figure 7. The constraint has been made
linear for convenience, and continues downward beyond the 25 rad/sec peak because
higher order harmonics and other uncertainties will dominate at these higher
frequencies. We expect that second order attenuation characteristics beyond 25 rad/sec
will be adequate to provide stability in the face of these additional uncertainties.
The low frequency constraints should provide good command response and disturbance
rejection as well as desensitizing the controller to changes in flight conditions.
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Figure 7. Uncertainty Bound for Rotor Figure 8. n-Plot Constraints for CH-47 Design

To strengthen the connection of the o-plots with classical SISO techniques and Bode
plot methods, we will first treat a single-loop problem of controlling pitch attitude
(0) with differential collective (dc). While this loop decouples from the vertical
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velocity/collective loop at hover, they are highly coupled in the 40 knots forward
flight condition so a single loop design would not be recommended here except for
illustration purposes. The Bode gain plots of three alternative designs with loops
broken at the input are shown in Figure 9. These controllers are all state feedback
(plus dynamic compensation in case Ic) since for the CH-47 all the states in the
nominal model are measurable. The design technique used is described briefly in the
Appendix.

Trial la controller violates the low frequency condition while Trial lb violates the
high frequency condition. By adding the second order rotor dynamics from (26) we can
easily verify that Trial lb is unstable for = .1. Trial ic is an intermediate design
which includes a low-pass filter at w = 12 rad/sec to help avoid the rotor
uncertainty. Plots of 1l + gi and Ig(l + gjl[ for Trial lc are shown in
Figure 10. Crossover is well-behaved since 1l + g) does not,?et too small and
Ig(l + g)-ll does not get too large. Recall that Ig(l + g)- I is the
magnitude of the closed loop response or the feedback signal to the input. Thus there
would be little peaking of the response. With the addition of Figure 10, Figure 9 is
unnecessary, since the low and high frequency as well as crossover characteristics can
be obtained from Figure 10 and equations (5) and (17).

(G)2r/

I b

19- 2 .  1-2.

Figure 9. Bode Plots for SISO Design Figure 10. Bode Plots for SISO Trial ic

The beauty of singular value analysis is that the above analysis for SISO systems
carries over without change to MIMO systems. This is illustrated in Figures 11 and 12
with two trial two-input designs. The design technique used is described briefly in
the Appendix. This distinction between Figures 11 and 12 and Figure 9 is that for the
two-input designs, two plots are needed for each trial. Condition (18) implies that
a (and thus all 0) must lie below the high frequency constraint and condition (19)
implies a (and thus all a) must lie above the low frequency constraint. Trial 2a
(Figure l) violates both conditions while Trial 2b (Figure 12) satisfies both. Both
trials use state feedback but Trial 2b includes a first order lag at w = 12 rad/sec
to provide sufficient attenuation to avoid the uncertainty bounds. The n-plots of (I
+ G) and G(I + G)- I for Trial 2b are shown in Figure 13. These can be interpreted in
terms of conditions (5) and (17) in the same way as for Trial ic in Figure 10.

Which n-plots an engineer chooses to use is somewhat a matter of taste and would
depend in part on the design technique being used and on the stage of the design.
Although we did not explicitly design for other flight conditions, the low frequency
gain conditions provide considerable robustness with respect to flight condition
variations. Trial 2b remains stable at eight representative flight conditions from
hover to 160-knots forward speed and from -2000 ft/min to +2000 ft/min ascent rates.
It must be emphasized, however, that these designs were for illustration purposes only
and are not intended to be flight quality designs. Trial 2b might be considered as a
candidate control law but would require implementation and verification through
high-fidelity simulation and flight test before qualifying as a flight quality design.

aniaecnrllwbtwudrqieimlmnainadvrfcto hog
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cannot be dismissed as lightly. It concerns the ability of MIMO systems to maintain
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stability in the face of actuator and/or sensor failures. The singular value concepts
described here are indeed useful for integrity analysis. For example, a design has
integrity with respect to actuator failures whenever

a(I + (KG)-I > 1 I w

This follows because failures satisfy Im <1 .

The major limitations on what has been said in the paper are associated with the
representation chosen in Section 4 for unstructured uncertainty. A single magnitude
bound on matrix perturbations is a worst-case representation which is often much too
conservative (i.e., it may admit perturbations which are structurally known not to
occur). The use of weighted norms in (8) - (9) or selective transformations applied to
G (as in 1231) can alleviate this conservatism somewhat, but seldom completely.

A related drawback is the implicit assumption that all loops (all directions) of the
MIMO system should have equal bandwidth (a close to a in Figure 4). This
assumption is consistent with a uniform uncertainty bound but is not appropriate for
more complex uncertainty structures. These issues are important and complex enough to
deserve more attention in their own right than can be given here. Research along these
lines is proceeding.

This paper has not addressed the problem of actually synthesizing controllers to
satisfy the design conditions developed. The approach taken here has been to examine
fundamental feedback issues and provide reliable and effective tools for analyzing the
feedback properties of multiloop systems. These issues are independent of the specific
synthesis tools used and any technique which can provide a controller satisfying the
constraints for a particular problem will be adequate. Unfortunately, most existing
synthesis techniques are oriented at manipulating quantities which are at best only
indirectly related to feedback properties. An exception to this is the technique
described in [11 and in more detail in two papers by Stein ([24], (25]) in this lecture
series. The reader is encouraged to consider the techniques described in these papers
by Stein in the context of the feedback design problem as outlined in the preceeding
sections of this paper.

The companion paper [19] addresses the achievable performance of a feedback system in
the face of uncertainty. The sources of limitations on achievable performance
considered are:

1) The algebraic conflict between providing desensitization and insuring
stability in the presence of large uncertainty.

2) The functional relationship between gain and phase for causal, rational
transfer functions.

3) Right hand plane transmission zeros
4) Directionality conflicts

The last issue is a MIMO problem that has no STSO analogue while the first three are
MIMO generalization of classical SISO properties.
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APPENDIX

The nominal model for the dynamics of the CH-47 at 40 knots forward airspeed has [211

2-.0 .005 2.4 -32

.018 -1.6 13.
10 0 1 0

[14 -. 12
B 36 -8.6

35 .009

for A and B in equation (23).

The example designs were all state feedback including integrators (and lag filters in
Trials ic and 2b). The state feedback gains were obtained using linear-quadratic
methodology, selected primarily for its convenience and good frequency-domain
properties (see (1], [241, [251). In the context of feedback design, time-domain
optimality, per se, is of no interest. The state feedback gains for Trail 2b (states 5
and 6 are integrators) are

K= -4.72xi0-4  .0259 12.6 47.9 .0417 -57.2

1.0163 -.535 .231 2.16 .999 2.391

Trial 2b also has first order lags

I

I + s/12

added to each channel to provide additional high-frequency attenuation.
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Summary

This paper examines the fundamental limitations on the achievable performance of
multivariable feedback systems. Using the singular value analysis techniques discussed
in the companion paper [I], the design tradeoffs that are the focus of classical
single-loop theory are generalized to multiloop systems. The first tradeoff is
algebraic between large Poop gain for good sensitivity properties and small loop gain
for stability margins. Another is the functional tradeoff imposed by the Bode
gain/phase relations. These tradeoffs impose limitations on the achievable performance
of any feedback design. The limitations caused by nonminimum phase zeros is also
discussed. Finally, the problem of directionality in multiloop systems is presented
and analyzed. This is a uniquely multiloop problem and has no analog in single loop
feedback systems.

1. Introduction

Over the last fifteen years, a misconception has arisen which implies that the
application of advanced control concepts can control any system to any level of desired
performance. This misconception can be traced in part to the aura that originally
surrounded optimal control and estimation theory. The notions that a design could be
optimal, poles could be placed arbitrarily, and that variables that could not be
measured could be estimated contributed heavily to the misconception. In reacting to
the promises of optimal control and estimation, many designers lost sight of the true
nature of the control problem. Control systems are designed to satisfy performance
specifications. Performance is limited by the nature of the control applieation and
the actuation and measurement devices available. Feedback control systems possess
severe performance limitations because of the potential for destabilization and its
consequences.

This paper examines limitations on the achievable performance of multivariable feedback
systems. The notion of performance that is used in this paper is the desensitizing
effect that feedback can have on uncertainty in the plant.

Section 2 reviews the fundamental properties of feedback systems involving uncertainty
using the techniques presented in [l]. From this basis is developed the algebraic
conflict between high desensitization and large stability margins. In Section 3, the
Bode gain/phase relations are generalized to multivariable systems. These relations
impose a functional tradeoff between the rate of attenuation of the loop gain and the
stability margins at crossover. This result is used in Section 4 to study the impact
on performance of transmission zeros in the right half plane.

In Section 5, the issue of directionality in multivariable feedback systems is
explored. It is shown that under some circumstances there may be a conflict between
margins at the input and at the output of the plant. Section 6 has the conclusions.

2. Algebraic Constraints on Feedback Systems

Consider the feedback configuration shown in Figure 1. This represents a (nominally)
stable closed-loop system consisting of a linear time-invariant plant G(s) and
controller K(s). In this section, we will discuss multivariable generalizations of
some classical properties of single-loop feedback systems.

dH
Figure 1.
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One use of feedback is to reduce sensitivity to changes in the plant. It is well-known
that a useful sensitivity function for a single-loop feedback system is the inverse of
the return difference. To quantify the desensitizing effect of feedback in the
multivariable case, we use the comparison sensitivity approach [4]. For the
comparison, let G represent the nominal plant and G(I+A)

-
I represent the perturbed

plant. To obtain a direct comparison of sensitivity with and without feedback, we
consider the feedback system with precompensation P = (I+KG). This precompensation is
added so that the closed-loop transfer function for the nominal plant is identical with
the nominal open-loop transfer function, G. The perturbed closed-loop transfer
function is

G(I+A)-](I+KG(I+A))-I(I+KG) = G(I+(I+KG)-IA)
- I  

2.1

G(I+ ACL)I

where the effective closed-loop perturbations ACL is

ACL = (I+KG)-lA 2.2

Thus for multivariable systems, the inverse return difference matrix, (I+KG) - I ,
relates the sensitivity of the closed-loop system to that of the open-loop system. In
terms of the spectral norm, if the condition

1 > 3[(I+KG)-I] 2.3

or, equivalently

(I+KG) >1 2.4

holds at some frequency, then the use of feedback accomplishes desensitization at that
frequency.

Feedback can also reduce the effect of a disturbance, d, on the output, y (Figure 1).
The response at the output to this disturbance is

y = (I+KG)-Id 2.5

Since the open-loop response to such a disturbance is simply d, satisfaction of
condition (2.4) at some frequencies means that feedback provides some disturbance
rejection at those frequencies.

In terms of sensitivity and disturbance rejection, good performance of a
multivariable (as well as single-loop) feedback system translates into the requirement
of a "large" return difference matrix. Since

o(I+KG) - a(KG) I<1 2.6

this is equivalent to r.oquiring "large" loop gain. A more detailed discussion of the
relationship between performance and loop gain may be found in the companion paper
[1]. We will return to the desideratum of large loop gain after considering stability
margins for multivariable feedback systems.

The representation of uncertainty as (I+A)
- I 

is convenient for studying
sensitivity. Some uncertainties in physical systems, however, cannot be represented in
this way. In particular, both gain and phase become highly uncertain at high
frequencies. Modeling the plant with uncertainty as G(I+A) is quite useful in these
situations fl].

Using this representation for the plant with uncertainty in the multivariable
feedback system of Figure 1, the closed-loop system remains stable for all (stable)
perturbations A(s) satisfying

o(A(jw))< o[I+(X(jw)G(jw)) - I
] v w>o 2.7

The size of I+(KG)
- I 

measures the robustness of closed-loop stability with respect to
multiplicative perturbations (I+A). This is directly analogou" to the distance to
the critical point on an inverse Nyquist diagram, 11+1/KGI.

Adequate representations of physical systems inevitably require that the perturbation
become large at high frequency, and so large (KG)

-
l (or, equivalently, small loop

gain KG) is required at these frequencies to ensure stability.

This last statement leads to a trade-off in the design of feedback systems. At a
particular frequency, it is possible to have large loop gain for desensitization and
disturbance rejection or small loop gain for stability margins -- but not both. More
precisely, consider the identity

(I+KG)
-
l + ((I+(KG)

1
I)

- I
) = I 2.8

A direct consequence of this identity is the string of inequalities
u(I+L) < (I+L

- I) 
< (I+L) 2.9

(I +L)+ oI+L)-
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where either KG or (KG)
- 1 

may be substituted for L, and the right-hand inequality
requires O(I+L)> 1. Clearly then,

o(I+L) >> - o(I+LL
1
) 1

Thus, desensitization can be obtained only at frequencies where stability margins need
not be large. Since large stability margins are always required at sufficiently high
frequencies, no desensitization can be achieved there.

As an aside, note that the left-hand inequality in 2.9 may be rewritten as

- (I+LI 2.10

for o(I+L-
1
)<l. Hence

o(I L-l)&C 1 =' a(I+L)<< 1

Recall that L may be replaced by either KG or (KG)
-
l. So roughly speaking, "poor"

sensitivity properties at any frequency is equivalent to "poor" margins there.

3. Functional Limitations on Transfer Functions

We have seen that the trade-off between desensitization and stability margins applies
to multivariable feedback systems as well as to single-loop systems. Typically,
desensitization and disturbance rejection are desired at low frequencies, and large
stability margins are required at high frequencies. A critical factor in the design
process is the necessity to make the transition from large loop gain to small loop
gain. Throughout this transition region, poor sensitivity and poor stability margins
must be avoided.

The difficulty in this transition depends on the required attenuation rate of the
loop gain. The steeper the loop gain drops off, the wider the frequency range over
which it may be large. Unfortunately, however, FDLTI transfer functions behave in such
a way that steep attenuation comes only at the expense of small a[I+GK] values and
small G[I + (GK)

-
I values when o[GK] and a(GK] - 1. This means that while

performance is good at lower frequencies and stability robustness is good at higher
frequencies both are poor near crossover. The behavior of FDLTI transfer functions,
therefore, imposes a second major limitation on the achievable performance of feedback
systems.

SISO Transfer Function Limitation

For SISO cases, the conflict between attenuation rates and loop quality at crossover is
again well understood. We know that any rational, stable, proper, minimum phase loop
transfer function satisfies fixed integral relations between its gain and phase
components. Hence, its phase angle near crossover (i.e., at values of w such that
Igk(j,,; i 1) is determined uniquely by the gain. Various expressions for this
angle were derived by Bode using contour inttqration around closed contours
encompassing the right half plane. [6, Chapters 13, 141 One expression is

A1
gkc = arq(gk(jvc}]

= I lnIgk(ju)(v)) -Znqk(jcc) I dv 3.1

sinh v

where v = tn(w/w,', w(v, = wc exp v. Since the sign of sinh (v)
is the same as tne sign of v, it follows that Ogkc will be large if the gain
'gkt attenuates slowly and small if it attenuates rapidly. In fact, $gkc is
given explicitly in terms of weightod average attenuation rate by the following
alternate form of (3.1) (also from 161:

gkc= I f _dtnlgkl (n coth IL±) dv 3.2

The behavior of t kc is significant because it defines the magnitudes of our two
SISO design condi~Lons 2.2 and 2.7 at crossover. (Equations 17 and 19 in [1]).
Sp-cifically when Igkl = 1, we have

ll+gkl a ll+(gk -lt = 21sin ( (b gkc 3.3

The quantity of r + %gkc is the phase margin of the feedback system. Assuming gk
stable, this margin must be positive for nominal stability and, according to 3.3 it
must be reasonably large ( ZI rad) for good return difference and stability robustness
properties. If 5+(Dgkc is forced to be very small by rapid gain attentuation, the
feedback system will amplify disturbances (Il+gkl<<l) and exhibit little
uncertainty tolerance at and near wc. The conflict between attenuation rate and
loop quality near cross-over is thus clearly evident.
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It is also known that more general nonminimum phase and/or unstable loop transfer
functions do not alleviate this conflict. If the plant has right half plane zeros, for
example, it may be factored as

g(s) = M(s) p(s) 3.4

where m(s) is minimum phase and p(s) is an all-pass (i.e., Ip(jw) I = I V W.)
The (negative) phase angle of p(s) reduces total phase at crossover, i.e.,

tgkc = mkc + 
4
pc ' 

4
'mkc 3.5

and therefore aggravates the tradeoff problem. In fact, if !,pcI is too large,
we will be forced to reduce the crossover frequency. Thus rhp zeros limit loop gain

(and thus performance) in a way similar to the unstructured uncertainty. A measure of
severity of this added limitation is Ii - p(jw) I, which can be used just like
9£m(to) to constrain a nominal minimum phase design..

If g(s) has rhp poles, the extra phase lead contributed by these poles compared with
their mirror images in the left half-plane is needed to provide encirclements for
stability. Unstable plants thus also do not offer any inherent advantage over stable
plants in alleviating the cross-over conflict.

Multivariable Generalization

The above transfer function limitations for SISO systems have multivariable
generalizations, with some complications as would be expected.

The major complication is that singular values of rational transfer matrices, viewed as

functions of the complex variable s, are not analytic and therefore cannot be used for

contour integration to derive relations such as 3.1. Eigenvalues of rational matrices,

on the other hand, have the necessary mathematical properties. Unfortunately, they do
not in general relate directly to the quality of the feedback design. Thus, we must
combine the properties of eigenvalues and singular values through the bounding relations

orA] < 1X[A1 < ( [A] 3.6

which holds for any eigenvalue, Ai, of the (square) matrix A, The approach -ill be

to derive gain/phase relations as in equation 3.1 for the eigenvalues of I + GK and I +

(GK)
-
l and to u- these to bound their minimum singular values. Since good

performance and stability robustness requires singular values of both of these matrices

to be sufficiently large near crossover, the multivariable system's properties can then

be no better than the properties of their eigenvalue bounds.

Equations for the eigenvalues themselves are straighforward. There is a one-to-one

correspondence between eigenvalues of GK and eigenvalues of I + GK such that

li[l+GKl = I + Xi (GK( 3.7

Likewise for I + (GK)-I;

Xi[I+(GK)- = I + 1 3.8
S[GK]

Thus when IXi[GK]I = 1 for some Ni and ii = wc, we have

A.c

IAi[I+GK]I = 1Xi[I+(GK)-II = 21sin 2_ 1 3.9

since this equation is exactly analogous to equation 3.3 for the scalar case, and since

OiI bounds a, it follows that the loop will exhibit poor properties whenever
the phase angle (r+4b c) is small.

In order to derive expressions for the angle $X c itself, we require certain

results from the theory of algebraic functions. [9-15] The key concepts needed from

these references are that the eigenvalues Xi of a rational, proper transfer

function matrix, viewed as a function of the complex variable, s, constitute one
mathematical entity, X, called an algebraic function. Each eigenvalue, Xi, is a

branch of this function and is defined on one sheet of an extended Riemann surface

domain. On its extended domain an algebraic function can be treated as an ordinary

meromorphic function whose poles and zeros are the system poles and transmission zeros

of the transfer function matrix. It also has additional c:itical points, called branch

points, which correspond to multiple eigenvalues. Contour integration is valid on the

Riemann surface domain provided that contours are properly closed.

In the contour integral leading to 3.1, gk(s) may therefore be replaced by the

algebra:c function, I(s), with contour taken on its Reimann domain. Carrying out

this integral yields several partial sums:

3.10
C Jn l((jo(v))I - nnX(J(, )

I~~~~~~ I i ..._%TFV .... d
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where each sum is over all branches of A(s) whose sheets are connected by right
half-plane branch points. Thus the eigenvalues {Xi) are restricted in a way
similar to scaler transfer functions but in summation form. The summation, however,
does not alter the fundamental tradeoff between attenuation rate and loop quality at
crossover. In fact, if we deliberately choose to maximize the bound 3.9 by making
wc and *Xic identical for all i, then 3.10 imposes the same restrictions on
multivariable loops as 3.1 imposes on SISO loops. Hence, multivariable systems do not
escape the fundamental transfer function limitations.

As in the scalar case, expression 3.10 is again valid for minimum phase systems only.
That is GK can have no transmission zeros in the rhp. (For our purposes, transmission
zeros f17) are values such that det jG(s)K(s)] = 0. Degenerate systems with det !GK] =
0 for all s are not of interest because they cannot meet the condition in equation
(2.4) at any frequency.) If this is not true, the tradeoffs governed by 3.9-3.10 are
aggravated because every rhp transmission zero adds the same phase lag as in 3.5 to
one of the partial sums in 3.10. The matrix GK may also be factored, as in 3.4 to get

GK(s) = M(s) P(s) 3.11

where M(s) has no rhp zeros and P(s) is an all-pass matrix pT(-s)p(s) = I. Analogous
to the scalar case, a(I-P(s)) can be taken as a measure of the degree of
multivariable nonminimum phaseness and used like Xm(w) to constrain a nominal
minimum phase design. Nonminimum phase systems are considered in more detail in the
next section.

4. Non-Minimum Phase Behavior in Multivariable Systems

Given a desired rational, strictly proper loop transfer function H(s) that yields a
stable closed-loop system, there exists rational, strictly proper compensation K(s) for
the minimum phase plant G(s) such that the desired loop transfer function is fit
arbitrarily closely and the resulting closed-loop system is stable. Indeed, it
suffices to introduce the feedback compensation

K(s) = G-l(s)H(s) (- U 4.1

where m is chosen to make K(s) strictly proper and a is chosen sufficiently large.
This means that if H(s) is designed to achieve the sensitivity and stability margin
tradeoff discussed in Section 2.0, then any minimum phase plant can be compensated to
realize this loop transfer function as closely as desired. The same result applies to
multivariable systems as well as single-loop systems by interpreting (4.1) in a matrix
sense. In the multivariable case, however, such compensation yields the desired loop
properties only at the plant inputs; the output loop properties can be quite different.

This is not true for non-minimum phase systems. A transfer function with

right-half-plane zeros may be factored as

G(s) = M(s)P(s) 4.2

where M(s) is minimum phase and P(s) is an all-pass (IP(Jw) I = 1, Vw). The
all-pass cannot be cancelled as in (4.1). It contributes a negative phase angle and
thereby aggravates the tradeoff problem. Roughly speaking, a non-minimum phase zero
A requires small loop gain throughout some freqency interval "near" 1(71. That is,
the advantages of feedback are achievable at frequencies below and above the
non-minimum phase zero's magnitude but not around it.

Multivariable non-minimum phase systems are subject to analogous restrictions. A
plant transfer matrix with right-half-plane zeros may be factored in two ways as

G(s) = Ml(s)PI(s) = P2 (s)M2 (s) 4.3

where the P's are all-pass (P*(Jw)P(jw) = I Vw) and the M's are minimum phase.
These factorizations can be expressed in state-space terms. Let G(s) be the transfer
matrix of the quadruple (A, B, C, D). Then for our purposes, G(s) has a zero at X
means

[XI -A -:B [:C1 4.4
has a solution with w*w = 1 117] for a single real zero at X. One factorization (unique
up to a unitary transformation) Ml(s)Pl(s) is given by

Pl(s) = I - (_2A)ww
T  

4.5

and MI(s) is the transfer matrix of the quadruple (A, B, C, D) where

B = B - 2XxwT 4.6
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For the case of a single pair of complex zeros at A and X

P1 (s) = I - 4y )(sRe(ww*- 6 w*) + Re(Cww*-acw*)l 4.7s 2+2as+xT

B B-2otyxw*-f Xw*)J 4.8

2t32
where a = Re(A), B = wTw, and (= - A A* I -l " The proofs of (4.5) - (4.8)
follow from the generalized eigenvalue problem (4.4) with algebraic manipulation. Multiple
non-minimum phase zeros can be handled by repeated application of (4.5) - (4.8). We note
that similar formulas may be obtained for the factorization P2 (s)M2 (s) by using the
left generalized eigenvector.

J=- -B 0 4.9
[;T~~ CT [ -DAi] = 4

The non-minimum phase zero A adds extra phase lag in the input direction w and the
output direction v. This is the same effect and has the same restrictions for feedback
design as in the single-loop case. However, the transfer matrix from inputs orthogonal to
w to outputs orthogonal to v does not have any additional phase lag caused by X. Thus,
the non-minimum zero A does not impose any limitations on the loop gain in these
orthogonal directions. [Other considerations may restrict this loop gain. For example,
the transfer matrix associated with this subspace may itself be non-minimum phase, although
not having a zero at A.]

Because a non-minimum phase zero A does not impose limitations in directions orthogonal
to w and v, it could be the case that a feedback design has large loop gain in these
directions. The next section discusses problems associated with a spread in the singular
values of KG. Such a design would necessarily have a large spread in the singular values
of KG at frequencies near X.

5. Directionality in Multivariable Feedback Systems

The preceeding sections discussed frequency-domain tradeoffs which occur in the
design of both single-loop and multivariable feedback systems. In this section, we
examine some tradeoffs that are unique to multivariable systems.

Multivariable system, unlike scalar system, signals have a "spatial" as well as
frequency distribution. Some sensors are noisier than others. Certain actuators might
saturate at lower signal levels than others. Disturbances enter particular loops, but
not others, etc. One is lead to consider, for example, different "bandwidths" in
various loops.

The stability condition (2.7) is tight if all that is known about the perturbation
A is its maximum singular value. However, if more is known about A - large in one
direction, small in another -- then condition (2.7) can be sharpened through the use of
frequency-dependent weighting matrices (8]. That is, for a perturbed plant
G(s) (I+A(s)), the closed-loop system remains stable for all (stable) perturbations
A(s) satisfying

o (QI(jw)A(j)RII(jw)]<o[RI(jw)(I+K(jw)G(jw)-I)Ql(jw)] V W > 0 5.1

The known characteristics of the the allowable perturbations are reflected in the
(nonsingular) weighting matrices RI and QI.

The stability margin condition (5.1) yields margins at a particular point in the
feedback configuration of Figure 1. These margins are at the inputs to the plant. The
weighting matrices in (5.1) are useful in handling the issue of directionality at this
point. For single-loop systems, margins at the input are identically equivalent to
margins at the output. Input and output margins are not equivalent, however, in the
muyltivariable case. Output margins are obtained by considering a perturbed plant
(l+A0 (s))G(s). The stability condition (using weighting matrices Ro and QO)
may be written as

a[Qo(jw)Ao(jw)R 1l(jw)o[Rop(jw)(r+(G(jw)K(jwI)-l(jw)I Vw>o 5.2

This is the same condition as (5.1), with G and K interchanged.

From a design viewpoint, good margins may be desired at both the inputs and the outputs
of the plant. One may express this objective slightly differently by first fixing the
input margins and then examining the limits imposed on the output margins. More
precisely, we pose the following formal optimization problem at a single frequency:

max O[Ro(I+(GK)V1 )Q 1)
K

s.t. U i[R (I+(KG)- )Q-] = 1 Vi

and now we require both G and K to be square.



4-7

This constraint of all singular values equal to 1 is equivalent to constraining the

matrix to be unitary. Hence

I+(KG)
- I 

= RfIUQ I  5.3

for some unitary U. The function to be maximized can then be written as

O[Ro(I+(GK)-I)QolI = [RoG(I+(KG)-I)GlQ I] 5.4

= G[RoGR
-
1 ) U (QGQ

-)
1 ]

This means the original problem (P) is equivalent to

max OtRoGRj
1
)U(QoGQ11)-l

U (Pl)
s.t. UU* = I

To solve (Pl), let ROGR1
1 

= UliElVl*and QoGQjI=U2E 2V 2 *
be singular value decompositions where

El = diaqlala ..... an) Ql I2_-..nZ 0

E2 = diag[Bi,6 2 .... Sn
]  

, ._62> ... BnO

Making these substitutions into (Pl),

J[RoGRI)U(QoGQ I)-I] = C[E 1UZ2
I ] 

where U = VI*UV2 is a unitary matrix. 5.5

Proposition

a.
max o[rz I ]

= m (min
U -

s.t UU* = I

proof: Appendix

The formal problem (P) can be interpreted in terms of this proposition. The best
possible output margins equal the minimum of the ordered ratio of the singular values
of RoGR1

1 
to the singular values of QoGQ1

I
. When the uncertainty at the

input and output is unstructured, i.e., RI, Ro, QI, Qo are all scalar multiples
of the identity, the maximum achievable margins at the outputs equal 1 -- the same as
the margins at the inputs. This unstructured case causes the multivariable problem to
be analogous to the single-loop case. When the uncertainties do have some
directionality or structure (as reflected in non-identity R's and Q's), the feedback
problem is inherently multivariable. This directionality may impose additional
limitations on the achievable performance.

In the Appendix, it is shown that using U equal to the identity in the proposition
achieves the maximum. With this choice of U, we can solve for K from (5.3) as

K = (RlVIV2 *QI-I)-IG-l 5.6

assuming that U = I yields RfIVlV 2 *QI invertible. As far as actually
achieving this limit at each frequency, note that V1 and V2 * need not be rational
functions of frequency. Hence, in general, we cannot achieve this limit with a causal
compensator K(s). The question of the limitations imposed on the output margins by
both fixed input margins and a causal compensator is still open.

In concluding thisanalysis, we point out that the formal problem considered here is not
especially important in and of itself. One could pose several other such problems,
e.g., maximizing o(I+KG) subject to constraints on I+GK, etc. The reason for posing
this problem is that it illustrates how directionality can introduce uniquely
multivariable phenomena.

Recall from the section on multivariable nonminimum phase systems that a rhp zero may
cause a spread in singular values. This may cause a problem similar to that caused by
nonidentity R and Q weightings. Thus, non-minimum phase zeros affect multivariable
feedback design in two ways. First, they contribute additional phase lag in certain
input and output directions. This limits the achievable performance in these
directions and is analogous to non-minimum phase zeros in single-loop systems. The
resulting unequal gains in different directions can lead to a conflict between input
and output loop properties. This second effect has no single-loop analog.

A related problem arises when simultaneous input and output margins are considered.
This involves letting the perturbed plant be (I+AI)G(I+A 2 ) where A1 and
A2 are independent perturbations. The companion paper [11 has an example
indicating that evaluating margins one channel at a time does not give a reliable
measure of robustness with respect to simultaneous variations in multiple channels.
Thus it is not surprising that simple examples can be constructed where robustness with
respect to simultaneous input and output perturbations is significantly worse than
robustness for either point considered separately. If a realistic representation of
the plant uncertainty involved perturbations at both inputs and outputs, then caution
should be used in drawing conclusions based on analysis for either point individually.
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To analyze the problem of simultaneous perturbations we may consider a unity feedback
system with nominal transfer function

5.7

K 0

and perturbed transfer function

0 I+Al 0

This system may then be analyzed for robustness with respect to the perturbationAl 0]
5.9

[0 A21

using the techniques outlined in Section 2. Unfortunately, this would, in general,
give a conservative answer since the standard singular value analysis tools do not
exploit the structure of the perturbation in (5.9). Again, simple examples can easily
be constructed to demonstrate this.

Recent research has led to an exact solution (i.e., not conservative) for perturbations
with structure such as in (5.9). These results are as yet unpublished and are too
lengthy for inclusion here. They provide reliable and exact techniques for analyzing
simultaneous independent perturbations and generalized the ideas that are presented in
this paper. The point that must be emphasized is that while the issues presented in
this paper are central to the multivariable control problem, the results should not be
interpreted too broadly.

6. Conclusions

This paper has used singular value analysis techniques to study some limitations on the
achievable performance of multivariable feedback systems. The results give useful
insight into the fundamental tradeoffs that must be faced in feedback design. It is
important, though, that these results not be interpreted too broadly.

In particular, the development in this paper is often quite qualitative. While there
is a central theme of feedback as a means of dealing with uncertainty, the specific
results are fragmented. A unified framework which deals naturally with the algebraic
and functional performance limitations would be highly desirable. In addition, the
issue of robustness with respect to simultaneous input and output perturbations needs
further study, as does the more general problem of analyzing perturbations with
specific structure. Great progress is being made in these research areas.

The important message in this paper is that feedback design inevitably involves
tradeoffs. Analysis and design techniques must make these tradeoffs clear to the
control engineer so that there is a rational basis for making design decisions.
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APPENDIX

Proposition: Let 7.'dia[xl,'CC2 ..... n , lo !... >o and
diag[l 2  .. n] 6 , - '  Then

1 . . . 01 2
( i)

max -r:1 U 2 j min (
L i

S.t. UU*

Proof: For any unitary U,

: U. ll  .U.: I  (A.1)

diag[ l , ,.. 0 , U*diag[o,. ..,o,l,. .l)]

i times n-i+l times

where max . By compatibly partitioning U, this may be written

aso
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-a * (A.2)
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Hence the norm of the matrix on the rhs of (A.2) is one, and so
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Summary

This paper demonstrates how the linear-quadratic-quassian (LOG) methodology can be
used to design feedback compensators which meet multivariable performance, stability,
and stability robustness requirements expressed as singular value conditions in the
frequency domain.

1.0 Introduction

For more than two decades now, feedback control design has been viewed from two
distinct perspectives. One perspective is based on the frequency domain. Its roots
lie in the classical single-input single-output (SISO) design methodologies of Bode and
Nyquist (eq. 6,71, and its philosophy has been carried over to various attempted
multivariable generalizations (eg. 9, 10, 111. The second perspective is based on the
time domain. Its roots lie in the state space concept for system descriptions and in
linear-quadratic-gaussian (LOG) optimization for feedback synthesis reg. 13, 141.

Despite recognized one-to-one mathematical relations between these two
perspectives, feedback design has been taught and practiced in terms of one perspective
or the other. Advocates developed for each side, and the pros and cons were debated
enthusiastically. The freqeuncy domain claimed to provide a natural framework, namely
transfer function loop-shaping, in which to express and satisfy practical design
requirements, particularly the ever-present requirement for uncertainty tolerance.
This natural framework, however, worked best for SISO systems and did not appear to
generalize easily to multi-input multi-output (MIMO) problems. The time domain claimed
precisely the latter capability, i.e., its design techniques handled MIMO systems as
well as time variations and stochastics with efficient computerized algorithms. Its
weakness, however, was the lack of clear relationships between practical design
requirements and the postulated linear-quadratic-gaussian notion of optimality.

Fortunately, the last few years have brought a synthesis of these perspectives
which capitalizes on the strengths of both [1]. The first step of this synthesis was
the reliable extension of classical frequency domain loop-shaping ideas to MIMO
problems. This step is discussed in [2] earlier in these proceedings. The second step
of the synthesis was the discovery that desirable multivariable loop-shapes can be
produced with the linear-quadratic-gaussian methodology. This step is described in
this paper. We begin with a brief review of the multivariable design problem in
Section 2. We then show how this problem can be addressed with the LOG methodology in
Section 3, and provide a simple illustrative example in Section 4. The bulk of this
material is taken directly from Reference [1].

2.0 The Multivariable Feedback Design Problem

Our objective will be to design a dynamic compensator for the generic feedback loop
shown in Figure 1. We have a plant (G) with input vector (u), output vector (y),
disturbance vector (d) as seen at the output, and measurement noise vector (n). Our
compensator is designated as K. For convenience, K is showr in the generic forward
path location from command vector (r), i.e., unity feedback. More general situations
with K is the return path from y or with K split between the forward and return paths
are equivalent to the forward-path location if appropriate pre-filters (P) are used to
shape the commands. Since P does not affect feedback properties, however, we will not
deal with its design issues here.

d

Figure 1.
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The plant G is a real physical system. Hence, its detailed behavior must beexpected to be quite complicated--nonlinear, infinite dimensional, time-varying, etc.
Nevertheless, we will assume that G can be approximated by a finite dimensional,
linear, time invariant (FDLTI) model with transfer function, G(s). The inevitable
errors which this model makes will be represented by unstructured multiplicative
perturbations of the form [21

G'(s) = [I + L(s)IG(s). (1)

Here G'(s) is a possible "true" system, and L(s) is our FDLTI system with known bounded
maximum gain, tm(s). Any L(s) which does not exceed this maximum gain generates
another potential "true" system. Hence, equation (1) actually describes an entire
family* of plants for which our compensator must be designed.

The design problem will be to provide good command-following (i.e., small errors,
e=y-r, in response to commands), good disturbance rejection (i.e., small errors in
response to disturbance excitation), and small responses to sensor noise, all subject
to the constraints imposed by modelling errors in (1). In an earlier paper in these
proceedings [2), Doyle shows that these various design objectives can be interpreted as
conditions on the loop transfer function matrices GK(s), evaluated at real frequencies
s=jw. We need large loop transfer matrices in the frequency range where commands
and/or disturbances are large, small loop transfer matrices in the frequency range
where modelling errors are large, and well-behaved crossover regions in between.
"Well-behaved" crossovers are those which achieve nominal stability and maintain
reasonably large return difference matrices, I+GK(jw), and inverse return difference
matrices, I+[GK(jw)]

-
l. These frequency domain requirements of multivariable

feedback design are summarized in Figure 2.

PERFORMANCE ...--.---
REQUIREMENTS INm

In - , /, LOG W STABILITY

REQ IREMEISTSWELL-BEHAVED / E~RBT

CROSSOVER
ST ABLE OAGK) < I/e.

I+GK NOT TOO \ALL
1+4GK|

"! 
NOT TOO SMALL

Figure 2.

Classical feedback designers will recognize that the frequency domain
interpretations above are completely analogous to the classical single-input
single-output design methodology [References 6, and 7 for example]. The only
distinction, in fact, is that different measures are used to judge when transfer
functions are "large" or "small." For scalar transfer functions, the absolute value
serves as a single measure of size. The scalar gk is large if Igkl >>l, and it
is small if IgkI << 1. For multivariable systems, on the other hand, two
singular values (or principal gains) serve as measures of size. The matrix, GK, is
large if its smallest singular value (smallest gain) is large, i.e., if o[GK] >>
1. It is small if its largest singular value (largest gain) is small, i.e.,
&[GK)<< 1. More discussion of singular values and their interpretations are given
in (11, (23 and [81. The key point to note here is that singular values reduce the
multivariable feedback design problem, in concept, to the familiar frequency domain
loop-shaping problem of classical control.

*For deep technical reasonsdiscussed in [3), the number of unstable poles of G'(s) must
be known for all members of this family. We will assume that this number is constant
and equal to the numbers of unstable poles of G(s). Note that each G'(s) in the family
is FDLTI. This restriction can be removed via "sector theory" (4, 51.

- I
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3.0 Singular-Value Loop-Shaping

The discussions in 121 concentrate on singular values as analysis tools, i.e., as
instruments to specify, analyze and judge the quality of multivariable feedback loops.
Little is said about their use as synthesis tools. It is clear, of course, that once
we accept these instruments for analysis, then it also becomes desirable to have design
techniques which directly manipulate them for synthesis. Ideally, we seek design
techniques which take plant descriptions and performance specifications as inputs and
automatically produce compensators as outputs which satisfy the various singular value
requirements of Figure 2.

At today's state-of-the-art, there are no design techniques which fully satisfy
these synthesis desires. There are a number of techniques, however, which offer
multivariable design capability and which may be compared against the singular value
loop-shaping interpretation. One major group of techniques, for example, consists of
frequency domain methods which approximate the multivariable problem by a sequence of
scalar problems. This is done by constructing a set of scalar design functions which
may be manipulated more or less independently with classical techniques. The ad hoc
"single-loop-at-a-time" technique in common engineering practice (9), for instance,
uses a predefined sequence of inner, outer, and crossfeed loops to accomplish the
design. The more systematic "Inverse Nyquist Array (INA)" procedure (101 uses diagonal
elements of a pre- and post- compensated diagonally dominant transfer matrix as design
functions, and the "Characteristic Loci (CL)" methodology discussed in [11) and earlier
in these proceedings [121 uses the eigenvalues of the transfer matrix.

Singular value loop-shaping capabilities of these various procedures are examined
in II] and 12]. They turn out to be indirect and not generally reliable. Elaboration
of this judgment will be left to the references, however, and we will not study these
methods further here. Rather, we will explore an alternate multivariable design
technique -- the Linear-Quadratic-Gaussian (LQG) methodology [13, 14]. Although this
procedure was not originally designed to perform direct singular value loop-shaping, it
currently appears to be the only systematic procedure available which offers this
capability.

The LQG Procedure

As is well-known, the LQG methodology was conceived to perform control system
synthesis on the basis of time domain optimization. The method uses the following
state space description of the plant, G:

* Ax + Bu + [ (2)

y Cx + n (3)

where x is an n-dimensional state vector, u and y are m-dimensional control inputs and
r-dimensional measurements, respectively, and E and n are white noise processes.
The A, B, and C matrices satisfy

G(s) = CO(s)B (4)
d(s) = C$(s)(s) (5)

with

4(s) = (sI - AW
I
. (6)

The feedback design task is then posed as an optimization problem to find a control law

u(t) = fly(T; T < tI (7)

to minimize the following performance criterion*

J = E {tim ! f T(zTz + p uTu)dt) (8)

with 
#,To

z 
=  

Hx (9)

The vector, z, is an m-dimensional response weighted in (8), p is a scalar parameter,
and E{'} denotes the usual mathematical expectation.

The solution of this optimization problem is given by [131

u*(t) = -Kc (t), (0)

where Kc is a full-state linear-quadratic regulator (LQR) gain defined by the
familiar Riccati equation

0 PA + A
T
p + HTH - pBI__BTp (11)

p
Kc = __ BTp (12)p

*This criterion represents no loss of generality over the usual form (131 with
weighting matrices Q=QT>0 and R=RT>0. The matrix R can be incorporated in B
via B'-BR I/2 and HTH is-the most general form necessary for Q [15].

a m m -| |
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and the state estimate 2(t) is given by the Kalman filter (KBF);
;. A _ A t)
x = Ax + Bu + Kffy(t) - Cx(t)] (13)

whose gain, Kf, is defined by the filter's own Riccati equation

0 - AE + EAT + rrT - ECT-i C (14)

KF = XCT-1 (15)

Here rrT is the intensity matrix of the process noise, E, and ul with u
scalar is the intensity matrix of the sensor noise, n.***

It follows from (10) and (13) that the optimal LQG controller is a cascaded
combination of a KBF and a full-state LQR. For our purposes, this combination can be
treated as an ordinary FDLTI compensator:

K(s) = Kc(SI - A + BKc + KfC)-lKf. (16)

This compensator has the special internal structure shown in Figure 3. In terms of our
previous discussions, the functions of interest in Figure 3 are the loop transfer,
return difference, and inverse return difference functions

GK, Ir + GK, Ir + (GK)
-
l, (17)

and also their counterparts

KG, Im + KG, Im + (KG)
-
l (18)

The first three functions measure performance and stability robustness with respect to
uncertainties at the plant outputs (loop-breaking point (i) in Figure 3), and the
second three measure performance and robustness with respect to uncertainties at the
plant input (loop-breaking point (ii) in Figure 3). Both points are generally
significant in design.

Two other loop-breaking points, (i)' and (ii)', are also shown in the figure.
These are internal to the compensator and therefore have little direct significance.
However, they have desirable loop transfer properties which can be related to the
properties of points (i) and (ii). The properties and connections are these:

Fact 1 The loop transfer function obtained by breaking the LQG loop at point (i)'

is the full-state KBF loop transfer function COKf.

Pact_ ___2 The loop transfer function obtained by breaking the LOG loop at point (i)is GK. It can be made to approach CfKf pointwise in s by designing the

LQR in accordance with a "sensitivity recovery" procedure due to Kwakernaak
(161.

Fact 3 The loop transfer function obtained by breaking the LOG loop at point (ii)'
is the full-state LOR loop transfer function KcOB.

Fact 4 The loop transfer function obtained by breaking the LOG loop at point (ii)
is KG. It can be made to approach KctB pointwise in s by designing the
KBF in accordance with a "robustness recovery" procedure due to Doyle and
Stein (17).

COWEINSATOR 16,

[C A

Figure 3.

***As for the regulator, there is no loss of generality in these selections of
statistics.
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Facts 1 and 3 can be readily verified by explicit evaluation of the transfer
functions involved. Facts 2 and 4 take more elaboration and are taken up in a later
section. They also require more assumptions. Specifically, G(s) must be minimum phase
with m> r for Fact 2, m< r for Fact 4, and hence, G(s) musts be square for both.
Also, the names "sensitivity recovery" and "robustness recovery" are overly
restrictive. "Full-state loop transfer recovery" is perhaps a better name for both
procedures, with the distinction that one applies to points (i), (i)' and the other to
points (ii), (ii)'

The significance of these four facts is that we can construct LQG loop transfer
functions in the following two-step fashion:

Step 1: Design a full-state feedback law with desirable singular value properties.
This is easy to do, as we will see shortly.

Step 2: Recover (approximate) this full-state loop transfer with a realizable LOG
control law using one of the recovery procedures.

In order to apply this two-step approach, we must first decide which loop-breaking
point to design for. If we select point (i), then the full state design must be done
with the KBF design equations (i.e., its Riccati equation (14) - (15) and recovery with
the LQR equations (11) - (12). If we select point (ii), then full-state design must be
done with the LQR equations and recovery with the KBF. The mathematics of these two
options are, in fact, dual. Hence, we will describe only one option (for point (ii))
in detail. Results for the other are merely summarized and then used later in an
example.

Full-State Loop Transfer Design

The intermediate full-state design step is worthwhile because LOR and KBF loops
have good classical properties which have been re-discovered over the last few years
[181 - [201. The basic result for the LQR case is that LQR loop transfer matrices

T(s) = Kc 0(s)B (19)

satisfy the following return difference identity;

Jim+ T(jw)* [Im+T(jw)] = Im+[H4(jw)B]*(H (jw)B]/p

for all 0 < w < - (20)

This identity can be derived directly from the LQR's Riccati equation [191. Using the
following definition of singular values (a) in terms of eigenvalues (A);

021M) = XIM*M[, (21)

the return difference identity implies that

O[l m + T(jw)) = /[I+ (HOB)* HOB /p

= /I+ )[(H4OB)* HOB]/p

= /+0 2 [H0(j.)B1/p (22)

This expression applies to all singular values of T(s) and, hence, specificaly to 0

and T. It governs the performance, crossover, and stability robustness properties of
LQR loops.

Performance Properties -- Whenever a[T1>>1, the following approximation of (22)

shows explicitly how the parameters p and H influence T(s):

i[T(jw)] 1 O[H0(jw)B1// (23)

We can thus choose p and H explicitly to satisfy the performance requirements in Figure
2 (high gains at low frequencies) and also to "balance" the multivariable loop such
that OJT] and f[T] are reasonably close together. This second objective is
consistent with our assumption in Section 2 that the transfer function G(s) has been
scaled and/or transformed such that the uncertainty bound, tm(w), applies more or
less uniformly in all directions. We also note that it may be necessary to append
additional dynamics in order to meet the performance requirements. To achieve zero
steady state errors, for example, a(HOB1 must tend to infinity as w40. This
requires m free integrations in the plant which must be added if none exist to start
with.

Crossover Properties -- Under mild assumption on A, B, C and H, the LOG regulator is
nominally stable 31. It also follows from (22) that its return difference always
exceeds unity: i.e.,

OhIm + T(jw)]> 1 for all 0 < w < (24)

4



This further implies [211 that

O[Im + T-1  
(jtn) J >1/2 for all 0 < w < (25)

Hence, LQR loops automatically exhibit well-behaved crossovers.

Robustness Properties -- It follows from (25) that LQR loops are guaranteed to remain
stable for all unstructured uncertainties (reflected to the input) which satisfy
£m(w)<0.5. Without further knowledge of the types of uncertainties present in
the plant, this bound is the greatest robustness guarantee which can be ascribed to the
regulator.* While it is reassuring to have a guarantee at all, the £m < 0.5
bound is clearly inadequate for the uncertainty tolerance requirements of Figure 2 with
realistic Zm(w) s. In order to satisfy these requirements in LQR designs,
therefore, it becomes necessary to directly manipulate the high-frequency behavior of
T(s). This behavior can be derived from known asymptotic properties of the regulator
as the scalar p tends to zero [15, 16, 22, 23, 24]. The result needed here is that
under minimum phase assumptions on HOB, the LQR gains Kc behave asymptotically as
[161

v Kc > WH (26)

where W is an orthonormal matrix. The LQR loop transfer function, T(s), evaluated at
high frequencies, s=jc/V-with c constant, is then given by**

T(j c/'/p) = /pKc (jcI-,pA)-IB WHB/jc. (27)

Since crossovers occur at ai[Tl=l, this means that the maximum (asymptotic)
crossover frequency of the loop is

"cmax = Z[HB]/V. (28)

As shown in Figure 2, this frequency cannot fall much beyond wt, where
unstructured uncertainty magnitudes, £m, approach unity. Hence, our choice of H
and p to achieve the performance objectives via (23) are constrained by the stability
robustness requirement via (28).

Note also from (27) that the asymptotic loop transfer function in the vicinity of
crossover is proportional to 1/w (-I slope on log-log plots). This is a relatively
slow attenuation rate which is the price the regulator pays for its excellent return
difference properties (24). If E

1
I(w) attenuates faster than this rate,

further reduction of wc may be required. It is also true, of course, that no
physical system can actually maintain a 1/w characteristic indefinitely [7]. This is
not a concern here since T(s) is a nominal (design) function only and will later be
approximated by one of the full-state loop transfer recovery procedures.

Full-State Loop Transfer Recovery

As described earlier, the full-state loop transfer function designed above for
point (ii)' can be recovered at point (ii) by a modified KBF design procedure. The
required assumptions are that r > m and that COB is minimum phase. The procedure
then consists of two steps:

(i) Append additional dummy columns to B and zero row to Kc to make C0B and

Kc'B square (r x r). C$B must remain minimum phase.

(ii) Design the KBF with modified noise intensity matrices,

E(&T) = [prT + qBBT ] 8 (t - T)

where rrT is the nominal noise intensity matrix obtained from stochastic
models of the plant and q is a scalar parameter which will be allowed to take
on a sequence of increasingly larger values.

Under these conditions, it is known that the filter gains Kf have the following
asymptotic behavior as q = [17]:

K f//q#,BW (29)

Here W is another orthornormal matrix, as in (26). When this Kf is used in the loop
transfer expression for point (ii), we get point-wise loop transfer recovery as q

1 .e. ,

K(s)G(s) = Kc[&'l + BKc + KfCP'IKfCPB (30)

= KcI$ - SKf(Ir + CKf)-l C$J KfCVB (31)

= Kc$ Kf(Ir + C0Kf)-
1
C0B (32)

!*The t5 0 .5 hound turns out to be tight for pure gain changes; i.e., 0.5 '6 db,
which is identical to regulator's celebrated guaranteed gain margin [201. The bound is
conservative if the uncertainties are known to be pure phase changes, i.e., 0.5 =' 30
deq, which 'q less than the known + 60 deg guarantee [201.

"*Thls sppcrlIc limiting process is appropriate for the so-called generic case [22]
with full ra;k HB. More general versions of (28) with rank [HB]< m are derived in
Reference 1251.
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='Kc$ B(C^0)-1 COB (33)

= KcOB(Ir + KcOB)-I[COB(Ir + Kc O B)']
- 

COB (34)

(KcB(COB)-)COB (35)

= KcOB (36)

In this series of expressions, 0 was used to represent the matrix (sin - A +
BKc)-I, equation (29) was used to get from (32) to (33), and the identity OB =
OB(I+Kc OB) -I was used to get from there to (34). The final step shows
explicitly that the asymptotic compensator K(s) (the bracketed term in (35)) inverts
the nominal plant (from the left) and substitutes the desired LQR dynamics. The need
for minimum phase is thus clear, and it is also evident that the entire recovery
procedure is only appropriate as long as the target LQR dynamics satisfy Figure 2's
constraints (i.e., as long as we do not attempt inversion in frequency ranges where
uncertainties do not permit it). Closer inspection of (30) - (36) further shows that
there is no dependence on LQR or KBF optimality of the gains Kc or Kf. The
procedure requires only that Kf be stabilizing and have the asymptotic characteristic
(29). Thus, more general state feedback laws can be recovered (e.g., pole placement),
and more general filters can be used for the process (e.g., observers.)*

Dual Results

As indicated earlier, the full-state design and recovery procedures for points (i)
and (ii) in Figure 3 are mathematical duals. This means that the design equations
which were developed for point (ii) above can be transformed to point (i) by symbol
substitutions and transpositions. The major results and corresponding equations are
the following.

Full-State KBF Design:

T(s) = C 0 (s) Kf (19)'

(Ir+T) (Ir+T)* = Ir+(Csr) (Csr)*/u; for s jw, 0 < w < (20)'

o [Ir + TI = /1 +o2 (C o ri/u >1 (22)' (24)'

G[T] z o[C 0 r]//'7; for o[T] >> 1 (23)'

,'Kf # wr as u = 0 (26)'

wcmax = G[CrI//I? (28)'

Note that the "weight" selection process to achieve good singular values now focuses on
the matrix r and the scalar u instead of H and p.

Full-State Loop Transfer Recovery Steps:

(i) Assume m > r. Append dummy rows to C and Kf such that C 0 Kf and C 0 B
are square (mxm) and C 0 B is minimum phase.

(ii) Design the LQR with modified weighting matrices:

Q = HTH + q C
T
C

Then, as q ' , we get

Kc/vq >WC (29)'

and

G(s)K(s) = COB {(COB) -I COKf) (35)'

= COKf (36)'

Note that asymptotic inversion now occurs from the right and that it is again
appropriate only as long as the target KBF dynamics satisfy Figure 2's constraints.

4.0 An Example

The full-state design and full-state recovery processes described above together
provide a systematic way to shape the singular value plots of multivariable feedback
loops. This is illustrated by the following abstracted longitudinal control design
example for a CH-47 tandem rotor helicopter. Our objective is to control two measured
outputs -- vertical velocity and pitch attitude -- by manipulating collective and
differential collective rotor thrust commands. A nominal model for the dynamics
relating these variables at 40 knot airspeed is 1261

*Still more generally, the modified KBF procedure will actually recover full-state
feedback loop transfer functions at any point, u', in the system for which C 0 B' is
minimum phase [17).
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- 02 .005 2.4 -32. .14 -.12]A x = .14 -. 44 -1.3 -30. x + 36 -8.6

dt 0 .018 -1.6 1. 5 009
*0 0 1 00

00 0 0 57.

where the state vector x consists of forward velocity, vertical velocity, pitch rate,
and pitch attitude. The measurements are vertical velocity in ft/sec and attitude in
degrees. Major unstructured uncertainties associated with this model are due to
neglected rotor dynamics and unmodeled rate limit nonlinearities. These are discussed
at greater length in [271. For our present purposes, it suffices to note that they are
uniform in both control channels and that tm(w)>1 for all w,>10 rad/sec.
Hence, the controller bandwidth should be constrained as in Figure 2 to r)cmax < 10.

Since our objective is to control two measured outputs at point (i), the LQG
design iterations utilize the dual equations (19)'-(36)'. They begin with a full state
KBF design whose noise intensity matrices, E(r)T)=rfTb(t-r) and E(nnT)=
uIb(t-T), are selected to meet performance objectives at low frequencies; i.e.,

0 l ( T ( C (D rI/VY_ ps(w), (37)

while satisfy:ng stability robustness constraints at high frequencies;

-cmax [Cr]//t-- < 10 r/sec (38)

For the choice r = B, equation (38) constrains p to be greater than or equal to
unity.* The resulting KBF loop transfer for P 1 is shown in Figure 4. For
purposes of illustration, this function will be considered to have adequate high gain
properties for performance with low gains beyond w = 10 for stability robustness.**
It then remains to recover this function by means of the full-state recovery procedure
for point (i). This calls for LQR design with Q = HTH + q CTC and R = pI. Letting
H = 0, p 

= 
1, the resulting LQG transfer functions for several values of q are also

shown in Figure 4. They clearly display the pointwise convergence properties of the
procedure.

FULL STATE
DSF DESIGN

0 - - -- - - - - - .

0O - / - -

SI 0

FAfOUF0CY RIS

Figure 4.

*if Cr (or HB) is singular, equations (38) o. (28) are still valid in the non-zero

directions.
**The function should not be considered final, or course. Better balance between

and i and greater gain at low frequencies via appended integrators would be desirable
in a serious design.
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5.0 Conclusions

We have shown how the modern time domain LQG methodology can be used to design
multivariable feedback controllers which satisfy practical design requirements
expressed as singular value conditions in the frequency domain. The design process was
broken into two basic steps. First, a full-state LQR (or KBF) feedback law is designed
whose singular value properties meet design objectives -- high gains where needed for
performance, low gains where needed for uncertainty tolerance, and well-behaved
corssovers in between. Quadratic weights for this step are determined explicitly by
known relationships between the weights and resulting full-state controller's singular
value properties. In the second step, this full-state loop transfer matrix is then
approximated with a realizable LQG compensator using a loop transfer recovery
procedure. This procedure involves the traditioral KBF design (or LQR design,
respectively), but with modified noise statistics. The modifications cause the LQG
loop transfer matrix to approach the full-state matrix arbitrarily closely at fixed s.
The overall design process was illustrated with a simple example which shows it to be a
direct and convenient way to manipulate multivariable singular value properties.
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LOG MULTIVARIABLE DESIGN TOOLS

Gunter Stein and Stephen Pratt
Honeywell Inc.

Systems and Research Center
2600 Ridgway Parkway, P.O. Box 312

Minneapolis, Minnesota 55440

Summary

This paper describes the basic design algorithms needed for frequency domain oriented
Linear-Quadratic-Gaussian feedback design and introduces an experimental interactive
computer aided design package through which these algorithms can be effectively
acessed. The algorithms and design package are illustrated with several flight
control design examples for highly maneuverable aircraft.

1.0 INTRODUCTION

In an earlier paper in these proceedings [11, a procedure was discussed by which the
Linear-Quadratic-Gaussian (LQG) synthesis methodology (2) can be used for
frequency-domain oriented multivariable control system design. This procedure is based
on the interpretation of various design requirements as specifications on the singular
value plots of the design's loop transfer function matrices. The resulting desired
loop shapes are then achieved with a two-step LQG process:

Step 1: Full-state design with quadratic weights or noise statistics selected to
satisfy the singular value specifications.

Step 2: Full-state loop transfer recovery with modified filter or regulator design
parameters.

Except for the most elementary design problems, these steps cannot be carried out
effectively with manual calculations. Computerized design assistance is essential,
either in the traditional batch-processing mode or, preferably, in an automated
interactive design environment.

This paper discusses some of the basic elements of a computerized LQG design process.
It begins with a brief review of the LQG methodology. The core algorithms needed for
LQG synthesis are then discussed, and a prototype command structure is introduced for
their interactive computer implementation. This command structure is currently hosted
on a Honeywell Multics system and is being used for various interactive control design
experiments. The structure is illustrated with several aircraft flight control design
examples.

2.0 REVIEW OF THE LQG LOOP SHAPING PROCESS

As in [11 and (3), we will deal with the generic feedback loop shown in Figure 1. It
consists of the interconnected plant (G) and compensator (K) forced by commands (r),
measurement noise (n), and by a set of disturbances (d) which are assumed to be
reflected to the measured output (y). The dashed precompensator (P) is an optional
element used to achieve deliberate command shaping or to represent a non-unity feedback
system in equivalent unity feedback form. All signals are taken to be multivariable,
in general, and both nominal mathematical models of G and K are finite dimensional
linear time-invariant systems with transfer function matrices G(s) and K(s).

d

Figure 1. Standard Feedback Configuration

Basic Design Requirements

As discussed in (3], the feedhack system in Figure 1 has good performance properties
whenever the inverse return difference operator (I+GK)

-
l is "small". For scalar

transfer functions, the appropriate notion of smallness can be captured by absolute
values; i.e., we typically require that 1/1l+g(jw)k(jw)l be small compared to unity



in a frequency range where commands and/or disturbances are large. This is typicallythe low frequency range, say w < (Ajo" In the multivariable case, an analogous
notion of smallness has been defined based on singular values [3]. We require that the
maximum singular value of (I+GK)

- I
, denoted by o[(I+GK(jw))-l], be small

compared to unity over the designated frequency range. The converse of this
requirement is that the return difference operator I+GK be "large", i.e.,

[I+GK(jw)] > ps(w) >> 1

for all w > w0, (1)

where ps(w) is a scalar function typically available as an explicit frequency domain
performance specification. With ps(w) sufficiently large, this expression simply
states that the loop gains OIGK(jw)) must themselves be large. Evidently, good
feedback design boils down to achieving high loop gains in the necessary frequency
range.

Of course, this latter statement expresses only half of the feedback design problem.
In real physical feedback systems, loop gains can never be made arbitrarily high over
arbitrarily wide frequency ranges. Rather, they are constrained by our desire to
suppress sensor noise responses and also by the requirement to remain stable in the
presence of model uncertainties.

The second source of limitations is commonly the more severe. The feedback system is
required to operate successfully in the presence of an infinite variety of differences
between the actual plant and its design model G(s). A very useful way to express this
variety of possible differences is in the so-called unstructured multiplicative form:

G'(s) = [I+L(s)] G(s) (2)
with -[L(jw) ] £m(")

Here the actual plant G' is represented by its nominal model, G(s), modified by a
multiplicative perturbation, L(s), whose characteristics are known only by the
magnitude bound £m(w). Typically, this bound is small (im<<1 ) at low
frequencies, but grows with increasing frequencies and eventually exceeds unity at
frequencies w > wt.

As shown in [3], a nominally stable feedback system will remain stable in the face of
unstructured uncertainties of the type (2) if and only if

0(1+(GK) - I ]  > £m(w) (3)

for all 0 < w <-

This equation is a multivariable generalization of the familiar single loop requirement
that loop gains be small whenever uncertainties are large. In fact, whenever
tm(w) >>l, we get the following constraint on GK:

F[GK(jw) ] < 1/£m(w) << 1 (4)

for all w such that £m(w) << 1

Based upon (1) - (4), it follows that the fundamental feedback design problem becomes
one of finding a compensator K(s) which shapes the loop transfer matrix GK(s) in such a
way that

a) the loop gains o(GK] are high at low frequencies to meet performance
requirements (1),

b) the loop gains o[GK] are low at high frequencies to meet the stability
robustness requirements (4), and

c) the transitions, or "crossovers", between these two regions are
"well-behaved". This means that they are stable (i.e., det(I+GK) satisfies
the multivariable Nyquist Criterion [4]) and that I+GK and I+(GK)- I are not
unduly small.

LQG Loop-Shaping

Although the Linear-Quadratic-Gaussian methodology was developed purely from a time
domain optimization perspective, we saw in [1 that it proved to be remarkably
effective as a tool for the frequency-domain loop shaping task outlined above. In
order to briefly review the results of [1), we will deal with the standard LOG
controller configuration shown in Figure 2. It consists of the well-known cascaded
combination of a Kalman-Bucy filter (KBF) with a full-state linear-quadratic regulator
(LQR). Beyond this special internal structure, the combination comprises an ordinary
linear finite dimensional compensator with transfer matrix

K(s) = KC(SI-A+BKc+KfC)-lKf (5)

where the standard matrix triple (A, B, C) has been used to represent a state space
realization of the plant, and the symbols Kc and Kf are used to represent the LQR
and KBF gain matrices, respectively, as defined by their individual algebraic Riccati
equations Ill:
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Kc = R-IBTp

0 = PA + ATp + Q -pBTR-lBp (6)

Kf = ECN - I

0 = AZ + ZAT + M - ZCN'lCTZ (7)

The loop transfer matrices of the LQG controller are then either G(s)K(s), for the loop
broken at point (i) in Figure 2, or K(s)G(s), for the loop broken at point (ii). In
general, these functions have no special properties except nominal closed loop
stability. However, if the plant G(s) is square and minimum phase, and if we design
the LQR with the following weighting matrices;

Q = qcTC (scalar q =) (8)
R = pI (scalar p > 0 and fixed)

then the loop transfer function GK(s) will approach a certain full-state loop transfer
function arbitrarily closely as q 0 ; namely

GK(s) # C(sI-A)-IKf = T(s) (9)

The function T(s) turns out to be the loop transfer function of the Kalman-Bucy
filter's error dynamics and can be readily adjusted to exhibit all three of the
loop-shaping design objectives discussed above. In particular, if we let the filter's
noise statistics be

M = rrT

N = ul, (scalar u >0) (10)

then T(s) in (9) satisfies

a) oIT(jw) I o[C(jwI-A) -Ir// -  
(11)

for all (o such that oIT)>>l

b) aIT (jw) I = ICr i/ vf - (12)*

as t = -, vi = 0 with wVj constant

c) a(I+T(jw)) > 1 (13)
and
o[I+T-(jw)) > 1/2 (14)
for all o < w < -

COMPENSATOR K(s)

iix Ax Bu K ,-cGs

Figure 2. LQG Controller

Note that property a) provides a direct way to satisfy our high gain objectives at low
frequencies. The gains are simply given by the noise-to-output transfer function
C(sl-a)-rlP/-, with r and U at our discretion. Similarly, property b)
provides a way to meet the stability robustness requirement at high frequencies. It
shows that the loop gains become small at an asymptotic rate proportional to i/W and
achieve their last crossover at the frequency

Wcmax oCr)//u- (15)

Finally, property c) shows that all crossovers will be "well-behaved". The return
difference always exceeds unity, the inverse return difference always exceeds 0.5, and
of course, the nominal loop is guaranteed to be stable.

Based on the above summary of frequency domain properties of LQG controllers, the
following simple loop-shaping procedure suggests itself:

Step 1. Design a KBF with F and v selected such that the loop transfer function
T(s) meets performance and stability robustness requirements.

*This equation applies to the "generic" case with Cr full rank 11).
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Step 2. Design a sequence of LQR's with weights selected according to (6) and q
allowed to take on consecutively larger values. Then select an element of the
resulting sequence of transfer functions

GK (s) =: T (s)

which adequately "recovers" the desired function over the frequency range of
interest. All design objectives including nominal stability are then assured.

As discussed in [1), a dual version of this process is also available for shaping the
loop transfer function KG(s) at point (ii) in Figure 2. For this point, however, the
role of the filter and controller are reversed. We begin by designing an LQR whose
loop transfer Kc(sI-A)-lB has good frequency domain properties and then design a
sequence of KBFs which serve to "recover" this function. Equations for this alternate
procedure are mathematical "duals" of the results given above. Both procedures are
illustrated in the design examples of Section 4.

3.0 COMPUTATIONAL TOOLS FOR LQG DESIGN

As noted earlier, the design steps outlined above can be carried out manually for only
the most elementary problems. Even then, the calculations are likely to be tedious.
Hence, serious use of the LQG method in the design environment of industry and in the
teaching environment of academe requires computerized assistance. The basic algorithms
needed for this purpose and a prototype interactive command structure for easy user
access to these algorithms are discussed below.

Basic Algorithms

It follows from Section 2 that the core computing tasks of our frequency-domain-
oriented LQG synthesis process include the following operations:

1. Riccati solutions for gains Kc and Kf
2. Frequency response evaluationsfor G(jw), K(jw), GK(jw), etc.
3. Singular value decompositions

FORTRAN subroutines for these operations are available on many scientific computing
systems. Riccati equation solvers, for example, exist in several software packages
[5-71. They generally compute solutions for equation (6) and for its mathematical dual
(7) by means of the so-called Potter algorithm [8]. This algorithm expresses the
solution matrix, P, in terms of a full eigenvalue/eigenvector decomposition of the
2n-dimensional Hamiltonian system associated with the LQ-optimization problem [9].
That is, let

I A -BR-lBTJ
-Q -AT  0A Aw

where H is the Hamiltonian system matrix, A- = diag(Xj) and A+ =
diag(lA) are its stable and unstable (mirror image) eigenvalues respectively,
and where W denotes the corresponding matrix of eigenvectors. Then P is defined in
terms of a 2x2 block partition of W as

P = W21 (Wll)-l (17)

An alternate algorithm is available due to Kleinman [101 which utilizes Newton
iterations to solve the Riccati equation. It requires a stabilizing initial guess for
K or P and then iterates as follows:

(i) Let K = R-lBTp0

(ii) Solve 0 = PI(A-BK) + (A-BK)TpI + Q + KRK T 
for P1  (18)

(iii) If lIP 1  - P0 11 > E return to (i) with P0  = P1

Otherwise terminate with P = P1

Still more recently, an algorithm has been introduced by Laub 111 which generalizes
Potter's method by using a real Schur form in place of the full eigenvalue/vector
decomposition to isolate the stable subspace of the Hamiltonian system. In the real
Schur form, the matrix analogous to A- in (16) is upper triangular with real
eigenvalues on the diagonal and selected nonzero entries on the first subdiagonal
corresponding to pairs of complex conjugate roots. In addition, the transformation W
is real and orthonormal (i.e., W -1 = WT). This offers substantial numerical
advantages and makes Laub's algorithm probably the most convienent and numerically
robust Riccati solver available at this time.

Transfer function and frequency response evaluations are also standard operations in
many computing systems. Given a state space tripe A, B, C (or more generally, a
quadrouple A, B, C, D), its transfer function at fixed frequency, say s = jwi, is
defined as

G(jwi) = C(jwiI-A)-i B + D (19)
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This expression is usually evaluated in two steps. First, the linear equation system

(jwiI-A) X - B (20)

is solved for X via Gaussian elimination (LU factorization followed by solution of a
triangular system (121) and then G is evaluated as

G = CX + D (21)

These steps require approximately (n 3/3 + mn
2 

+ rmn) multiply-add operation [131,
where n is the state space dimension of the system (i.e., n = dim A), m is the number
of inputs, and r is the number of outputs. Note that this operation count is
proportional to n

3 
and that it must be repeated for each frequency point of

interest. Hence, if the state space dimension is high and if the number of frequency
samples is large, frequency response evaluation can consume considerable computing
time. These time demands can be reduced, however, by utilizing transformed state space
representations. For example, a full eigenvalue/vector decomposition of matrix A can
be used to convert the system A, B, C, D into its diagonal equivalent

diag(Xi), W-IB, CW, D (22)

While this involves a one-time overhead of 0(n
3
) operation, all subsequent

evaluations of (20)-(21) require only (mn + rmn) operations. Hence, the total
computing time can be reduced considerably. Unfortunately, complete eigenvalue/vector
decompositions are often plagued with numerical ill-conditioning , and hence, the form
(20) is not always reliably available. An alternate transformation, which avoids this
difficulty and still achieves significant computer savings is the Hessenberg form.
This form is upper triangular with nonzero entries on the first subdiagonal. Like the
Schur form, it is achieved with real orthogonal transformations using a one-time
overhead of 5n3/3 operations. Its structure remains intact when we add jwi

I
, so

(20)-(21) can be solved for each subsequent frequency point with approximately (mn2/2 +
rmn) operations 1131. Hence, whenever n is large compared with m and full
eigenvalue/vector decompositions are unreliable, the Hessenberg form provides an
effective alternative transformation procedure.

The third basic computing task for LQG design involves singular value decompositions,
or SVDs. These are also available as standard routines on many computing systems. They
convert the rxm matrix G(jw) into the following factors:

G(jw) = U E VH (23)

where U and V are (rxr) and (mxm) unitary matrices (i.e., UHu = I, VHV = I),
respectively, ( )" denotes complex conjugate transpose, and E is an rxm matrix
with entries only along the main diagonal. These entries are

01 02 > 03 " Op > (24)

with p = min(r,m). The two extreme values, a1 and op, correspond to the
maximum and minimum singular values, " and a. Their significance with respect to
LOG design has already been discussed.

The computation of SVD's relies on a sequence of orthogonal equivalence transformations
whose details are described in 1121. This same reference also provides FORTRAN
listings of an SVD subroutine. SVD's consume approximately 6r

2
m multiply-add

operations. While this is quite large compared with other equal-size matrix operations
(e.g., inversion, eigenvalue/vector decomposition), the dimensions r and m are usually
modest and other calculation costs dominahe LQG design.

In addition to these three basic computing algorithms needed for LQG synthesis, an
effective computerized design environment must also provide software facilities for
more routine matrix manipulations (eg. sums, products, inverses, etc.), for
input/output, data plotting, and for other data management functions. An example of
these essential support capabilities is given later in this section.

Interactive Envirorments

In traditional batch-processing computer systems, basic computing algorithms such as
the ones described above are accessed by the user as subroutines. They are assembled
into a desired fixed sequence of operations by a user-written main program which also
handles routine manipulations, input/output, data management, etc. This program is
submitted to the computing facility where it is compiled and executed. Results are
then returned to the user for evaluations, program modifications, and re-submittal.
While this process is a substantial improvement over manual computations, it is still
slow, prone to error, and frustrating for the designer. As a result, considerable
research effort and hardware/software development has been devoted to its improvement.

One of the results of these R&D efforts is the interactive approach to computer-aided
design. In this approach, the designer interacts with the computer directly, flexibly,
and in apparent real time. He is usually provided with the following facilities:
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a graphics terminal
a software library of design programs

- a high-level command language

editing and macro command generation software.

The terminal provides real time computer access and control with effective graphic
communication of design status, results and tradeoffs. It is usually augmented with
hardcopy equipment and off-line printing facilities to provide permanent records of the
communication. The subroutine library contains all design algorithms needed for a
specified class of design problems (eg. Riccati solvers, SVD's, etc. for LOG design).
The command language provide a simple means to invoke these high-level routines in any
user-desired sequence without concerns about input/output, data handling, internal data
structures and numerics. A command language should be contrasted with alternative
"question and answer" approaches to computer interaction. In the latter, the computer
program guides the user through a pre-programmed tree of fixed design sequences with a
controlled question and answer dialogue. This approach has been shown to lack the
flexibility required for a wide spectrum of users [14). Finally, the editing and macro
capability provides a way to define, save and execute fixed sequences of user-specified
commands. In effect, a user can create higher-level commands suitable for his own
design task. These enhance the power of the basic command language. Macro facilities
have been found to be a key element in the success of interactive design [141.

An Illustrative Interactive System

It is not our intent here to discuss the vaious issues of interactive computer-aideddesign in detail. This is done in [14]. Rather, the intent is to illustrate the use

of interaction as it might apply to the LOG design process. This will be done by means
of an example interactive program package, HONEY-X, which has been constructed on
Honeywell's Multics computer system [15]. The purpose of this package has been to
support multivariable control design research [16-17]. As such, the package is still
in a state of flux and somewhat limited in scope. It does, however, provide an
effective illustration of the power of interactive design.

HONEY-X consists of a library of standard ANSI FORTRAN design programs which are
controlled and accessed through the command and file management facilities offered by
Multics. Multics also provides editing and macro command generation capabilities. The
package is organized into three hierarchial levels, as illustrated in Figure 3. The
levels are:

System Executive--This level is an executive program written in the Multics Command
Language. It is responsible for establishing and maintaining the design system
environment. Upon entry with the command "ec matrix", it makes the design system
library available to the user by designating subprogram locations within the
Multics file system. Next, the system executive solicts a command line from the
user and performs first-level parsing to determine to which of the following clases
the command belongs:

1. HONEY-X system command
2. User Macro command
3. Multics command

The command is then passed to the appropriate processor for execution. The system
executive continues to solicit commands until it is terminated with the quit
command "q".

Program Executive--This level consists of executive programs which interface
between the system executive and the requested object programs. Its primary
responsibility is to direct input to and output from the file system. It must
perform second-level parsing in order to determine which files should be attached.
If the command line contains optional arguments, these are passed to the object
program.

Object Program--This level performs the actual computations which are implied by
the command line. It must check for compatability of input data. If optional
arguments have been passed by the program executive, it must parse them and
determine if it har been given sufficient information to proceed. If input
parameters are missing and do not have default values, they must be solicited from
the user. Note that prompting for input is provided only if the required
information is not present. This allows experienced users to avoid unnecessary
input menus while giving unfamiliar users all the information needed. When
applicable, the object program has the final responsibility of directing printed
output to the user's terminal I/O device.

Programs in HONEY-X's library were selected and developed in the course of several
years of multivariable design research. Programs were added until they formed a set
which would allow most manipulations to be performed by a straight-forward combi.nation
of two or three commands. At that point, programs with significan' overlap in function
were combined. This produced two basic sets of routine -- I) the "General Matrix
Routines" which perform primitive operations on matrices, and 2) the "Special-Purpose
Programs" which perform more involved functions of linear sytems analysis and
synthesis. The special purpose programs require the existence of specific input
matrices that have been named according to the established naming conventions.
Similarily, their output matrix names are chosen so as to identify the contents. Table
1 provides brief description of both types of routines.
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Figure 3. HONEY-X StructuJre

TABLE 1. HONEY-X PROGRAM LIBRARY

I. GENERAL MATRIX ROUTINES

A. Initialization
matini (initilalized, dimensions, entries)
matsid (scalar times identity)

B. Manipulative

mataug (augment)
matchg (change dimensions, entries)
matsam (frequency sample)
matsel (select rows and columns)

addname (Multics system routine)
adds new file names

copy (Multics system routine)
copies files

delete (Multics system routine)

deletes files
rename (Multics system routine)

changes file names

C. Displa,
matchg (print entries greater than a threshold)

matplt (plot)
matprt (print)
matscn (row and column dimensions; list of contained frequencies)

D. Functions

matcnj (conjugate)
matctp (conjugate transpose)
matdia (vector = diagonal)

matimg (imaginary part)
matinv (inverse)
matpol (rectangular = polar)
matrec (polar = rectangular)

matrel (real part)

mattrp (transpose)

E. Arithmetic Operations

matadd (addition)

matdiv (division)
matmpy (multiplication)
matscl (multiplication by a scalar)
matsub (subtraction)

-L l II I I I ]I I n. .
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F. Coordinate Transformation

mateig/qeneig (eigenvalue/eigenvector)
matnrm (normalize columns)
matsvd (singular value decomposition)

II. SPECIAL-PURPOSE ROUTINES

A. Transfer Function Generation
cisabd (from state-space quadruple)
leadlag (lead/lag compensator)
notch (notch/inverted notch filter)

B. Analysis

abk (closed-loop eigenvalues)
svdsys (multivariable margins)
zeros (transmission zeros)

C. Ricatti Equation Solutions

kalman (Kalman-Bucy filter)
lqgain (linear quadratic optimal control gain)

HONEY-X's command language is set up to provide commands for each of the programs in
the library. These commands take the following generic form:

<command identifier> <argument list>

The <command identifier> is merely the name of one of the programs in the library
(eq. matini, matplt, kalman), and the <argument list> is a string of chiaracters
which identifies data files to be used by the program and various arguments needed for
its execution. A few examplesserve to illustrate this command format:

>matmpy sys.b sys.k sys.bk
>matsub sys.a sys.bk sys.a
>cisabd sys -1,2,C1 (25)
>matplt sys.g/Real vs. Frequency/lwlr all

The character > in each of these command lines is a prompting symbol displayed by the
system executive on the graphics terminal to solicit a command. The command identifier
in entered inmediately aftec the prompt. For example, "matmpy" in line 1 invokes the
matrix multiply program. It takes the matrix stored under file name "sys.b",
multiplies by the matrix stored under filename "sys.k" and stores the results under
filename "sys.bk". The string "sys.a sys.b sys.bk" constitutes a specific list of
arguments for matmpy. Similarly, the second command line invokes the matrix
subtraction program, matsub, which takes the matrix stored mode filename "sys.a",
subracts the matrix under "sys.bk" just created by matmpy, and stores the result under
"sys.a". Note that the last step deliberately overwrites the original sys.a file.
Another file name supplied as a third argument would leave sys.a intact.

The third command line invokes the special purpose routine, cisabd, which evaluates a
frequency response matrix according to equations (19) - (21). The argument "sys"
causes this program to use A, B, C, and D matrices stored under filenames "sys.a",
"sys.b", "sys.c" and sys.d", respectively, and to store the resulting frequency
response under filename "sys.g". In effect, the routine represents an operation
performed on a system, not on an individual data file (eg. argument "sys" replaced with
"x" would cause matrices A, B, C, D stored under files x.a, x.b, x.c, x.d to be used to
produce a frequency response stored under x.g). The additional characters in the
argument string of cisabd specify the desired frequency range for evaluation, in this
case 10-1 to 10+2 rad/sec, and the frequency increment between points, in this case
100.1 rad/sec or ten points per decade. If these latter three arguments are not
supplied on the command line, cisabd will ask for them explicitly before execution.

The final command line in our example invokes the routine "matplt" which provides
graphical plotting capability. The argument list identifies that the matrix to be
plotted is stored under filename "sys.g", specifies that the plot be labeled "Real vs.
Frequency", and that the x, y variables be "lw" for log frequency, and "Wr", for log
real, respectively. Scaling is automatic by the default option "all". Matplt will
proceed to generate the desired graph on the terminal face, complete with axes and
labels, and the user may then save this plot as hardcopy if its results are
satisfactory.

The file name requirements and argument lists of other HONEY-X commands are defined in
a similar manner and are fully documented in Reference [161.

4.0 DESIGN EXAMPLES

The effectiveness of HONEY-X and the LQG design process in Section 2 is best
illustrated with some representative design examples. The examples selected here are
taken from Reference [18]. They are concerned with the synthesis of flight controllaws for a highly maneuverable aircraft. The vehicle is a scaled version of an
advanced fighter presently being flight-tested on NASA Dryden's Remotely Augmented

I w o ihymnueal 
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Vehicle (RAV) facility 119]. While the present emphasis is on validating aerodynamics,
control is an important aspect of these flight tests because the open loop vehicle is
highly unstable. The vehicle's multiple, independently controlled surface offer the
potential for high maneuverability in future experiments and an excellent test bed for
multivariable design.

The present baseline set of control laws for the vehicle's pitch axis includes a
single-input single-output (SISO) command-augmentation system (CAS) combined with
automatic limiting of load factor and angle-of-attack. These control laws were
designed using classical loop-shaping considerations [201. The control system designs
presented here represent an attempt to achieve the same basic pitch axis performance
with the LQG method of Section 2 and to extend these designs to multivariable decoupled
flight path control (DFPC) functions.

The Design Model

The designs will be based on a linear model describing motion in the vertical plane.
The flight condition corresponds to a Mach number of 0.9 at 25,000 ft. altitude.
Linearized (small perturbation) models for this as well as other flight conditions are
given in (201. For design purposes the longitudinal dynamics are uncoupled from the
lateral-directional dynamics. The state vector consists of the vehicle's basic rigid
body variables

8V forward velocity
x= a angle-of-attack (26)

q pitch rate
e pitch attitude

As usual, flight path angle (7) is defined as = e-a. The control surfaces are
the elevator, elevon and canard, each commanded through 70 rad/sec hydraulic actuation
systems.

Model Uncertainties

The above model neglects higher order structural modes and resonances and actuator
dynamics beyond 70 rad/sec. Furthermore, because of time delays in the RAV data links,
the actual transfer function differs substantially from the nominal model at high
frequencies. These uncertainties define the tm(w) bound described in Section 2.
Conservatively, this bound exceeds unity for all w greater than about 10 rad/sec. To
minimize command-following errors, disturbance responses and closed loop sensitivity to
low frequency plant variations it is, of course, desirable to maximize loop gains below
this frequency subject to the limitations imposed by uncertainty.

The next section considers the design of three separate control loops. The first is a
minimal pitch CAS. This is followed by an angle-of-attack limiter, and finally by an
advanced multivariable design for decoupled flight path control.

A Minimal CAS

The function of the CAS is to stabilize the vehicle and allow it to be flown by
commands from the ground-based RAV facility. The commanded variable is pitch rate and
the control input is a slaved elevator/elevon combination. This minimizes sensing and
actuation requirements. To realize this design with the LOG procedure described in
Section 2, either variant of the procedure may be used, i.e., KBF design with LQR loop
transfer recovery for point (i) n Figure 2 or LQR design with KBF loop transfer
recovery for point (ii). This is because SISO loop transfer functions are identical at
both points. We choose the latter option on historical precedent.

The first step of the design, then, is to choose LQR parameters for the weighting
matrices Q=HTH and R = pI (the duals of equation (10)). A first intuitive choice for
H is (0010), which corresponds to weighting the commanded variable pitch rate. In
light of the dual of equation (11), namely

a[T(jw)] o[H(jwI-A)-IB]/ -  (27)

for all w such that o[T] >> 1,

the quality of this choice can be examined without actually computing the LOG
regulator. Rather, we examine the singular value plots of the transfer function
H(jwI-A)-IB. This function can be readily constructed with HONEY-X commands. We
simply type

>addnamf Al.a x.a
>addname Al.b x.b
>addname Al.h x.c (28)
>cisab x -3, 20.1
>matsvd x.g 1
>matplt x.g.sigma/Al: HIsI-AJB/ lwlr

These commands assume that we have previously defined the files Al.a, Al.b and Al.c for
the aircraft dynamics and Al.h for our first choice of weights. The programs "matini"
and "matchg" are available for this purpose. The three "addname" commands then

4



associate a dummy system name "x" with a subset of these files. That is, the
(A,B.C} triple of system "x" is equivalent to the {A,B,HR triple of system
"Al". The program "cisab" which expects files in the standard {A,B,CI convention
can now operate on system "x" to produce the desired transfer function file x.g. Next,
the program "matsvd" performs a singular value decomposition of x.g (an absolute value
operation for the current SISO case), and "matpit" displays the resulting singular
value file, x.g.sigma, as a function of log frequency. The resulting plot is shown in
Figure 4A.

According to equation (27), the shape of Figure 4A will be the shape of the LQR loop
whenever its magnitude is large. It therefore follows that our first weighting choice
would produce insufficient low frequency gain for a bandwidth constraint of 10
rad/sec. An obvious way to overcome this limitation is to weight the pitch attitude
response (the integral of pitch rate) instead. This makes H=(0001). We can examine
this alternative by modifying the file Al.h with "matchg" and then retyping the command
list (28). On the other hand, because (28) will be used frequently, it can be saved as
a macro command. For illustration, we will call this macro "lqg weight", and we will
set the macro up to treat the string "Al" in (28) as an argument.* The single command

>lqgweight Al (29)

will then generate and display the new singular value plot shown in Figure 4B. While
this alternative clearly shows improved low frequency properties, its gain at
frequencies below 0.10 rad/sec is still very small. This can be remedied by
introducing still more amplification into the weighted response at low frequencies.
For example, we can define a new system "A2" by appending an added state to "Al" of the
form

x5 (s) = 1 0(s). (30)
s+O.02

The weighting 0' = 0+0.14 x5 then gives

01(s) = s+0.16 0(s) (31)
s+O.02

with H = (0 0 0 1.0 0.14). The command "lqg weight A2" now generates Figure 4C. This
weight selection exhibits very desirable loop-shape properties.

TABLE 2. MACRO lqr weight

&command-line off
addname &l.a x.a
addname &l.b x.b
addname &l.h x.c
ec cisab x &2
ec matsvd x.g 1
ec matplt x.g.sigma/&l: H{sI-A}B/ lwlr &3
dn x.a x.b x.c
delete x.g x.g.sigma

Once the weight selection is complete, it remains to design the LQG regulator and to
recover its full-state loop transfer function with a properly designed Kalman-Bucy
filter. This can also be done very conveniently with HONEY-X commands. The regulator
design and singular value plot, for example, can be accomplished with a user macro

>lqr A2 9.0 (32)

The HONEY-X commands which make up this macro are defined in Table 3. The arguments
specify that system "A2" be used for the design and display with a p value of 9.0.
From equation (27) and Figure 4C, this value should produce crossover between 5-10
rad/sec. Figure 5A shows the resulting full state loop transfer function. Note that
the low frequency gain duplicates the shape of Figure 4C and that 10 rad/sec bandwidth
is cohsistent with our stability robustness requirements.

A sequence of KBF's with measurement @' is next used to recover the above loop
transfer at point (ii). The filter design parameters are the duals of equation (8),
namely

M = qBBT q
N = uI v > 0 fixed (33)

*In Multics Command language, "Al" is replaced by "&l" and the entire list (28) is
saved as an executive command: lqgqweight.ec. In order to avoid later name conflicts
from repeated executions, the exec com should also delete names x.a, x.b, x.c and files
x.g, x.g.sigma as part of each exeuction. The resulting macro is shown in Table 2.)
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Figure 4. Weighting Selection for Pitch CAS

TABLE 3. MACRO lqr

&command-line off
ec matsid &l.r [cdim &1.bj,&2
ec diggain &l
addname &l.a x.a
addname &l.b x.b
addname &1.k x.c
ec cisab x &3
ec matsvd x.g 1
ec matplt x.g.sigma/&l: Kc~sI-A)B Rho =&2/ lwlr &4
dn x~a x~b x.c
delete x g x.g.sigma

Again, a single user macro accomplishes these operations:

>lqr recovery A2 1.0 1.0 (34)

The commands in this macro are given in Table 4. The arguments here specify that
system "A2" be used to design tne KBF with u=1.0 and q-1.0. The macro also displays
the resulting LOG loop transfer function:

KG(s) - (Kc(slIA+BKc+KfCV1 lKf) C(SI-A)-lB (35)
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Macro "lqr-recovery' was invoked several times with sequentially larger values of q.
The results are shown in Figure 5B. Note that the LQR function, KG(s), does indeed
approach the full state design and that the value q=10

4 
produces adequate recovery

over the required frequency range. Hence, Figure 4B represents an adequate minimial
CAS design.

TABLE 4. MACRO lqrrecovery

&command line off
ec matsid &l.n Irdim &l.c], &2
ec matscl &l.b &l.gamma &3
ec dkalman &l
ec matmpy &l.kf &l.c x.t
ec matsub &l.a x.t x.a
ec matmpy &l.b &l.k x.t
ec matsub x.a x.t x.a
addname &l.kf x.b
addname &l.k x.c
ec cisab x &4
ec matmpy x.g &l.g &l.kg
ec matsvd &l.kg 1
ec matplt &l.kg.sigma/&l: K{s)G{s} Mu=&2 q=&3**2/lwlr &5
dn x.b x.c
delete x.g x.a x.t

A. Full State Loop Transfer B. Loop Transfer Recovery

A2: KC<51 -)B Rho- 9. A2: K<s>G(s> H-! a-1,100 $2

102.-\
"

l r r ... If"
l " 

.r -r r,;

1ot r *,eqecv Io *reloO,44

Figure 5. CAS Design Sequence

An Angle-of-Attack Limiter

For highly maneuverable aircraft, the basic CAS designed above must usually be
augmented with "boundary limiting controllers" for angle-of-attack and/or normal
acceleration. Angle-of-attack limits are imposed to avoid stall, buffet, extreme drag
increases and loss of control. Normal acceleration limits are based on structural
considerations. Boundary limiting controllers are designed as regulators to
independently control either angle-of-attack or normal acceleration. Transitions
between these limiters and the normal CAS involve switching logic which is discussed in
[201.

The design of boundary limiters can be achieved with the same LQG used to design the
pitch CAS in the previous section. Weighting the integral of angle-of-attack, for
example, and adjusting the parameter p results in the LOR loop gain shown in Figure
6A. This satisfies our performance objectives and is consistent with bandwidth
limitations. Using integrated angle-of-attack as the sole measurement, however, the
sequence of KBF's in Figure 6 fails to recover the full state loop transfer function.
Subsequent evaluation of the a/b transfer function's zeros with the HONEY-X command

>zeros A3 (36)

revealed the presence of a non-minimum phase zero at

s = +0.195 rad/sec (37)

This zero violates the minimum-phase assumption in Section 2. The results here show
thatthis assumption is not a technical one. Rather, non-minimum phaseness imposes
fundamental design performance constraints.

The loop properties can be recovered, however, by adding other measurements to the KBF
to obtain a minimum phase plant. Adding a pitch rate measurement, in this case, is
sufficient. The LQR loop gain, T(s), and the function KG(s) for several KBF iteration
using the two measurements is shown in Figure 6C. Note that full state transfer
function recovery has been restored.

p.
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A3: Kc<2S-0I Rho- 1. A3: K(.)G<.) P =l..I ., , OSi $$2

I.o- __ --_ -

to- -

11 to to 12 12 o

log *..ou.cw
log fregofloV

A. Full State Loop Transfer B. Loop Transfer Recovery with
Measurement
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C. Loop Transfer Recovery with q, < Measurement

Figure 6. Angle-of-Attack Limiter Design Sequence

Decoupled Flight Path Control (DFPC)

This section discusses our final example, an advanced multi-input/multi-output control
law for DFPC. Design of these flight modes is a subject of continuing research
interest.

DFPC Objectives:

With the advent of digital flight control and the availability of multiple surfaces on
new fighters there is interest in designing control modes for precision flight path
control. These modes have the objective of decoupling attitude from flight path
motions. They offer precise control for certain tasks as well as the possibility of
new tactics for the advanced fighters. Three common decoupled flight path control
objectives are (211:

- Vertical Translation

Vertical velocity control at constant 0 (a varies). Attitude remains
constant as the velocity vector rotates.

- Pitch Pointing

Attitude Control at constant flight path angle (i.e., P = a). Note that
the velocity vector does not rotate. The angle of attacx is varied at a
constant normal acceleration.

- Direct Lift

Flight path control at constant angle of attack (i.e., Y = 0. This mode
produces a normal acceleration response without changing angle-of-attack.

All three of these modes are illustrated in Figure 7. They can all be achieved by a
single multivariable controller which provides independent regulation of pitch attitude
and angle-of-attack. For example, vertical translation can be accomplished by
commanding an a-profile while holding P constant. Similarly, pitch pointing can be
accomplished by simultaneously commanding c and 0, and direct lift by commardinq
with at constant.

4
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VERTICAL TRANSLATION - VERTICAL VELOCITY CONTROL AT CONSTANT
PITCH ATTITUDE

V

FUSELAGE PITCH PAINTING - PITCH ATTITUDE CONTROL AT CONSTANT
FLIGHT PATH ANGLE

DIRECT LIFT CONTROL - VERTICAL FLIGHT PATH CONTROL AT CONSTANT

V ANGLE OF ATTACK

a

V a

Figure 7. DFPC Modes

As discussed above, the basic objective of a decoupled flight path control loop is to
provide indepeadent control of angle-of-attack and pitch attitude with approximatly
equivalent speeds of response. The controls available for this function consist of the
standard elevator (be) and a forward mounted canard (8c). As before, uncertainties
in the actuators, structural resonances and time delays in the RAV facility restrict
the loop bandwidth to approximately 10 rad/sec.

Because loop transfer properties are desired specifically at the measured outputs,
(i.e., point (i) in Figure 2) the LQG-based design procedure begins by designing a KBF
with desired loop-transfer properties. Letting the first candidate parameters for this
design be

M = rrT with r=B (38)

N = I with v=1

and appending integrators to 0 and a at the outset (based on our experience above),
the user macro

>kbf_weight A4 (39)

gives the a-plots for C(sI-A)-lr shown in Figure 8A. These plots exhibit wide
separation between a and '. As noted in Section 2, the KBF loop transfer function
will closely approximate these a-values whenever a>>l. Hence, we must expect
dramatically different gains and speeds of response in two loops of the system.

Singular value separations can be alleviated by "balancing" the noise input matrix.
For example, with

rf=B(V - i )  
(40)

where V is the right singular vector matrix of G(jdi) and E is the corresponding
matrix of singular values, the two new singular values will become balanced (identical)

at wi. This follows from (23). For wi = 100.5, the following HONEY-X
commands calculate V and E:

>addname A4.a x.a
>addname A4.b x.b
>addname A.4.gamma x.c (41)

>cisab x 0.5.0.5,1.
>matsvd x.g 1.3
>matprt x.g.sigmao.5,o.5, 1.
>matprt x.g.v 0.5,0.5,1
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The results are

.962 -.274
V = and E = diag (1.8 .0077) (42)

.274 -.962
j.00046 +j. O01 6

While V is generally complex and not rational as a function of w, note that its value
at w - 100. is nearly real. Using only the real part in (40), therefore, gives a
good balancing approximation. This is verified in Figure 8B which shows the
corresponding new a- plots.

The full-state KBF loop transfer function, T(s) = C(sI-A)-IKf, corresponding to the
weights in Figure 88 is shown in Figure 9, together with the loop transfer GK(s) for
several steps of the subsequent LQR design sequence. Following Section 2, these steps
use the design parameters

Q = qCTC q>-
R = pI p fixed (43)

The convergence of GK(s) toward T(s) is clearly evident. It appears that the design at
q = 106 is an adequate approximation of T. Sigma-plots of its total return
difference function, I+GK, and its stability robustness function GK(I+GK)

-
l are shown

in Figure 10. These verify that design objectives (1) and (3) are indeed satisfied for
the multivariable DFPC system.

04: C(ol-A)G40 A4: C(.ls4)G*'

104 104

0og freq."0a 0 *-t -W*C

A. Raw Noise Matrix B. Balanced Noise Matrix

Figure 8. Weighting Selection for DFPC
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Figure . eig g Design Sequence
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A. LOG Return Difference B. LQG Inverse Return Difference

Figure 10. Close Loop DFPC Properties

IV. CONCLUSIONS

This paper has illustrated the use of the LOG design methodology for
frequency-domain-oriented multivariable feedback design. The basic frequency domain
properties of LOG were reviewed, key algorithms needed for its implementation were
discussed, and an interactive computer-aided design setup was introduced to carry out
LOG designs effectively. These elements were illustrated with several fight control
designs for highly maneuverable aircraft. While many additional design efforts need to
be carried out before final judgements should be passed, the LOG procedure and its
interactive computer-aided implementation appears to offer a very powerful and
efficient approach to modern multivariable feedback design.
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SUMMARY

This paper explains the notions of (almost) controlled and conditionally invariant
subspaces of linear systems and outlines their application to the synthesis of feedback
compensators for disturbance rejection and to robust controller design.

INTRODUCTION

In this lecture we will present a general introduction to the disturbance rejection
and the robust controller design problems which we will view as a procedure for designing
a high integrity feedback control system. The general problem set-up is the following. The
model which will be used for the plant is shown in Figure 1. The plant thus accepts two
types of inputs:'unwanted' disturbances d and controls u which the designer can choose,
and it produces two types of outputs: the measured outputs y and the to-be-controZled out-
puts z. This model suggests that the disturbances are externally generated signals. There
are of course many situations in which in addition to external inputs, the disturbances
also consist of parameter variations, uncertain nonlinearities, and internal noise in the
system. We will lump all these perturbations which act on the nominal plant into one uncer-
tain feedback loop which yields the situation shown in Figure 2.

disturba to-be-c ntrolled output UCRA disturbance
Z internal d' loop input

Uc maume disturbace to-be-controlled

control meaumeasurent

FIGURE 1 FIGURE II

In control system synthesis we are asked to design a feedback compensator which uses
the masurement output in order to select the control input (see Figure 3) according to
some design requirement which seeks to actieve desirable properties for the closed loop
system. This closed loop system is shown in Figure 4(a) for the case of external disturb-
ances and in 4(b) for the case that there is also an uncertain loop in the system.

y K uIFEEDBACK ,ULO

COMPENSAOR O

FIGURE III

d

AFEE 
CIEDBCOMPESATORMPENSATOR|

FIGURE IV(a) FIGURE TV(b)



7-2

In this lecture we will concentrate on what is perhaps the most natural question to
ask in this context, namely the problem of disturbance rejection. The design philosophy
is then to choose the feedback compensator in such a way that in the closed loop syste7
(see Fig. 4(a)) the to-be-controlled output z is independent of the disturbance d. This
design criterion is called exact disturbance rejection. We will also investigate the ques-
tion of when the influence of d on z can be made arbitrarily small in some precise sense
(almost disturbance rejection). We will return to the implications of this synthesis ap-
proach to the design of robust controZZers i.e. feedback compensators which protect the
closed loop system behavior against uncertain loops in the system (see Fig. 4(b)).

This paper contains only the outline of the theory. For proofs and more details we
refer to the literature. A few words about notation: I denotes the real line, r the com-
plex plane, IR: = [0,-) , -: =(--,O] , and for n a positive integer n: = (1,2,...,n1.
The spectrum (i.e., the eigenvalues counting multiplicities) of the square matrix M will
be denoted by o(M). We will often consider families of subspaces of a given finite dimen-
sional vector space X. Let L be such a family; we will say that L is closed under addition
if L1,L 2 E L L1+L 2 E L and closed under intersection if LI,L 2 EL - Ln LL 2 E L. The sub-
space sup L denotes the smallest subspace of X which contains every element of L while
inf L denotes the largest subspace of X contained in every element of L. In general sup L
and inf L donot belong to L. However, the following (trivial) case yields a result which
is very important to us:

Lemma 0: If L is closed under addition then sup LE L and if L is closed under inter-
section then inf L E L.

Let A:X-X be a linear operator on the n-dimensional vector space X and I X such that
ALCL,then we say that L is A-invariant. We will define AIL and A(mod L) by the commutative
diagram:

L AL L If we choose a basis in X such that X=X 1 X2
I A I Q:= canonical with X1 =L and X2X(mod L) then in this partition
X pX injection [A 1 A12

P A(mod LI canonical A looks like A 0 A22 a
X(mod LI -X(mod LI projection A22  A(mod L).

Let L1 ,L2 E X. Then we will say that LI is A(mod L2 )-invariant if ALIc L1 +L 2 and that
LI is AIL 2 invariant if A(L I N L2 ) cL I . Furthermore <Al LI>: = LI+ALI+...+An-ILl and
<L1IA> : = LN A-ILIN ... n A-n+IL 'lenote respectively the smallest A-invariant subspace
containing L I and the largest A-invariant subspace contained in L1 . In terms of the sys-
tem k = Ax + Bu; y = CK, R: = <A(Lma> is the reachable subspace, while t: <kerC)A> is
the non-observable subspace (im and ker denote image (range) and kernel (nullspace)
respectively).

+

Let f: T -X with T = R,m or more generally an arbitrary interval in R,and X a norm-
ed finite dimensional vector spape. Then we will say that fE L with 1< p<- if

- p

Ii L := ( 
( f1f(t)}H P

dt) l/p<- for I < p <-
P ess suplf(t)ll < for p =

t

The notation s.c. stands for 'absolutely continuous' and a.e. stands for 'almost every-
where' and is used here exclusively in connection with Lebesgue measure.

MATHEMATICAL MODEL

We will consider the linear time-invariant finite dimensional plant:

lp: k = Ax + Bu + Gd ; y Cx, z = Hx
p

with xE X = n, u E U = m, dED =]Rq, yEY =IRP, and zEZ =I. The feedback compensator
If will be taken to belong to the same category, i.e., be linear time-invariant and finite
dimensional:

f l= Kw + Ly ; u =Mw + Fy

The closed loop system has d as exogenous input and z as output and is described by:
Ecl: e = Aexe + Ged ; z e HexeJ

with xe: = (x,w), and (A e,G , H
e
) matrices obtainable from (A,B,G,C,H) and (K,L,M,F) in a

straightforward manner:

A = JA +BFC M e= 11 = I 0

The solution z to L is given by the variation of constants formula

A(t A (C ) + le A (t- ) Ce( ) IT
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and shows the additive influence on z of the initial condition xe(O) and the disturbance
d(.) We will denote the closed loop impulse response by W and the closed loop transfer
function by Gcl" Hence

e

q Wt HeeA tGeW: IR I tq W(t) =He G

Gcl: I -q G l(s) = He (IsAe)-I 
e

EXACT DISTURBANCE REJECTION

In this context the exact disturbance rejection problem may be formulated as follows:

(DDPM): The disturbance decoupling problem by measurement feedback: Given I ,does there a
exists If such that w = o? rf so, find algorithms for computing such a if P(SK,L,M,F)from

I t (A,B,G,C,H).
p

Motivated in part by the above problem, there have been some important new develop-
ments in the area of linear systems since about 1970. These center around a number of new
concepts. First controlled invariant and controllability subspaces (which are the key con-
cepts in the book of Wonham [1] who did much of the original work in this area), further
the conditionally invariant and complementary observability subspaces (see [2] and for a
recent fully developed treatment [3]) and finally, the 'almost' versions of these concepts
(4,51. These ideas still play a very important role in the research in system theory and
numerous relevant papers keep appearing.

Consider the linear system

1:x Ax +Bu

We will denote by IX(A.B) all possible state trajectories generated by I. Formally,

Ix(A,B): = {x: R X)a is a.c. and 3u: I- U such that k(t) = Ax(t) + Bu(t) a.e.). Equiva-
lently, Yx(AB) = {x: IR- XIx is a.c. and c(t) - Ax(t) E im B a.e.).If there is no chance
for confusion we will denote Yx(A,B) by Ex .

Definition 1: A subspace VC X is said to be a controlled invariant subspace if

VxoE V, 3x E Ex such that x(0) = x. and x(t) E V,Vt. (see Fig. 5)

imB

AA

A(mod im8)- AlkerC -INVARIANCE
INVARIAICE

FIGURE V:CONTROLLED FIGURE VI
INVARIANCE

Let V denote the set of all invariant subspaces, and V(K) those contained in a given
subspace K of X. The following property, essentially trivial, is crucial in applications.

Proposition 1: V is closed under subspace addition (i.e.',V 1 ,V2 E V- V 1 + V2E V).
Consequently, supV(K) = :V* E V(K)

XC -

Equivalent properties for controlled invariance are:

(I) V E V (holdability by open loop control laws)
(ii) 3F such that (A+BF)VC V (holdability by feedback controls: if we use the

control law u=Fx on I then we obtain the closed loop 'flow' i =(A+BF)x and
x(0) E V then yields x(t) = e(A+BF)tx(0) E V)

(iii) AVCV + imB (A(mod imB)-invariance (see Fig. 6))

(DDP)

Let us now consider our disturbance rejection problem with full state feedback, I.e.
the problem whether there exists a feedback matrix F such that u = Fx will decouple the
disturbance d from z in k = Ax + Bu + Gd; z = Hx. This problem is denoted by (DDP). Its
solution is:

Theorem 1: I((DP) is solvab"P) l imGCVkerH

ker
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The synthesis for (DDP) goes as follows:

Data: A,B,G,H
Feasibility Computation: Compute VkelH and verify whether mGCV

Ckr
Feedback Gain Computation: Compute F such that (A + BF)VkerH c VkerH

Then u = Fx will solve (DDP).

(DDEP)

In order to get observations into the picture, we will introduce the so-called con-
ditionally invariant subspaces. Consider therefore the linear system

1 Y': i = Ax ; y = Cx I

Now let S be a subspace of X and consider the trajectories EA modulo S. In other words if
P is a (surjective) map with S = kerP we consider the output w - x(modS) = Px.

Definition 2: S is called a conditionally invariant subspace if there exist K,L such
that q = Kw + Ly.

The conditionally invariant subspaces behave completely dually to controlled in-
variant subspaces. Let S denote the set of all conditionally invariant subspaces, and S(K)
those containing a given subspace K of X. The following property, essentially trivial, is
crucial in applications:

Proposition 2: S is closed under subspace intersection (i.e. S1 ,S2 ES OSin S2E S).
Consequently inf S(K) =: S* E (K).

- K

This S* plays a very important role in applications and starting from A,C and G, there ex-
ist effective algorithms for computing S mG (see Appendix).

Equivalent statements for conditional invariance are:
(i) S E S (x (modS) is tractable from y)
(ii) 3L such that (A + L'C)S c S (S can be made invariant by output injection)
(iii) A(S NfkerC) c S (S is AlkerC - invariant (see Fig. 6))

Actually from (ii) it is possible to compute the matrices K and L which allow us to track
w = x(modS) = Px from y via W = Kw + Ly. This may be seen from the commutative diagram

A + L'C
C X X

Y_ Pj K JP: canonical projection
L X(modS) ---- X(modS)

In terms of matrices K is defined by KP = P(A + L'C) and L = PC.

An immediate application of the notion of conditionally invariant subspaces is to
the disturbance decoupled estimation problem (DDEP). The problem (see Fig. 7) is as fol-
lows: given the plant Xp: x = Ax + Gd ; y = Cx, z = Hx with d the disturbance, y the meas-
ured output, and z the to-be-estimated output. Wewould like to construct an observer
1o: w = Kw + Ly ; 2 = Mw + Fy, which processes the measurements in order to produce an es-
timate 2 of z,such that, with the initial conditions x(O) = 0, and w(0) - 0, the estimation
error e = z - 2 is independent of d, i.e. such that the transfer function d " e is zero.

TO-BE-ESTIMATED OUTPUT

#MW=EE~qESTIMATED

DISTURBANCE PL MEASUREMENTS OBSERER OUTPUT ERROR

FIGURE VII

Theorem 2: {(DDEP) is solvable} {Sm G f) kerC c kerH}
1mG

The synthesis of the disturbance decoupled observer goes as follows:

Data: A,G,C,H

Feasibility COMTutation: Compute SimG and verify whether SmGn kerCc kerH
Observer Gain Computation: Compute L' such that (A + LIC)Sim G C:Sm G . Let K and L be

as defined in the above commutative diagram: KP - P(A + L'C)
and L = PC with P the canonical projection X X(modSfmG).Let M and F be such that H - MP + FC (such M,F exist be-

cause of the condition of Theorem 2). The system - Kw +
Ly ; 2 = Mw + Fy provides the desired observer.
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(DDPM)

We now turn our attention to the disturbance decoupling problem with measurement
feedback as introduced in the beginning of this section. The main ideas behind the solu-
tion of this problem are as follows. Consider the following generalization of both A(mod imal
and AlkerC - invariant subspaces for the system

:3 Ax + Bu ; y - Cx

Definition 3: A subspace L of X is called (A,B,C) - invariant (ILe

Let L denote the family of all such subspaces. It is easy to show that
(LE EL.. {F such that (A + BFC)Lc LI. Unfortunately L is neither closed under subspace
addition nor intersection and L lacks hence many of the nice properties of V or S.

Now, if we had an LE L wedged in between imG and kerH: imGC Lc kerH then (DDPM)
would be soved. Indeed, construct F such that (A + BFC)Lc L (linear algebra) and use the
memoryless feedback compensator u = Fy on Y Then it is easy to see that the closed loop
system 1cl: i = (A + BFC)x + Gd ; z = Hx will be disturbance decoupled, since <A + BFCIimG>
c kerH obviously implies that the transfer function d" z is zero. However, at the present
time no constructive conditions for finding suchan L are known. In order to get around
this problem, we introduce the notion of (A,B,C) - pairs (first introduced by Schumacher
- see [3] for many other applications of this idea):

Definition 4: A pair (V,S) with VE V, SE S and Vc S will be called an (A,B,C)-pair.

(A,B,C) - pairs come in very handy when instead of considerino 1: i = Ax + Bu ; y = Cx,
we consider an extension of it: :e: * = Ax + Bu, w = ua ; y = Cx, Ya = w and consider 

e

with state space Xe = X* W. (u,u a ) as control input and (yya) as observed output. Let
P be the projection P : Xe- X. Then it is easy to show the following simple

Proposition 3: {VeE vel- {pveE V1 and {Se E Se- {SefN XE S}

From this proposition it follows imediately that every Le E Le generates with (PLe, Le n x)
and (AB,C)- pair. The nice thing however is that every (A,B,C) - pair is obtained this
way, In other words given an (A,B,C) - pair (V,S), there exists an extension le of l (the
dimension of W in the extension need never be larger that dimV - dimS) and an LeE Le such
that PL, = V mS = Len x. In order to see this, take W = V(modS) and let Zc V OW be such
that dimZ = dimW, zNv = ZNW = {01, and PZ*S = V. Then Le = ZOS satisfies all the requir-
el properties. From this it may be seen that any (A,B.C) - pair (V,S) wedged in between
imG and kerH: imGC Sc Vc kerH, yields a solution to (DDPM) as follows: let Le be such that
(V,S) (PLe, Len X). Consider the extended plant ye: x = Ax + Bu + Gd, w = ua; y = Cx,
Ya = w, z = Hx, written compactly as ie = Aexe + Bee + Ged; ye - cexe z Hexe. Obvious-
ly Le is(Ae,Be,Ce) - invariant and, since imG = imG

e5
cS = L

e
n XcLecPLeeW = VO@WckerH$W.

i
- 
is wedged in between imGeand kerHe. Hence there exists Fe: ye ue such that (Ae+BeFeCe)Le

c Le . This feedback control will disturbance decouple in the extended system. The beau-
ful thinu however, is that this static feedback control law in the extended plant, is
dynaaic feedback in the non - extended plant I . Indeed, let Fe: Ya@ Y UaObU be partition-

ed as Fe = K L1. Then writinq out the feedback law ue = Feye gives us the dynamic compen-
IM F

sator Ec: i = Kw + Ly, u = Mw + Fy which will decouple the disturbance d from the controll-
ed output z. Formally stated:

Theorem 3: {(DDPM) is soLvable}. " {S' mG c V'erH}

Conceptualizing this into an algorithm gives:

Data: A,B,G,C,H
Feasibility computation: Compute SIm G and Vkeru. Verify if S~mGc V*erH.
Compensator Gain Computation: Take dimW - dimVi8rH-dimStmG. Pick L

5 
cXIW such that

PLe = 'terH and Le NX = StmG. Compute Fe such that

(Ae + e F eCe )L CL . Then F =[ FI yields the desired

disturbance rejectinq compensator.

(DDPMS) AND (DDPMPP)

In the disturbance decoupling problem considered up to now, we have concentrated on
the problem of making the influence of the disturbance on the controlled output equal to zero.
Thus we know when and how we can make the second term in the response

t

z(t) = HeeA te(0) + j HeeA(tT) G d(T) dT
0

equal to zero. Of course, in applications we will also have to worry about the transient res-

ponse HeeAete (0). it is natural to do this by imposing some internal stability requirements
on the closed loop system. A qeneral formulation for this is to introduce -t c t (the 'good'
part of the complex plane: C is any non-empty subset of C with at least on point on the
real axis. If we require simPle asymptotic stability, we would have 0 - (s £ t I Re(s) <0 )
and require that the spectrum of Ae, O(Ae), be in t . This yields: g

_______________________g
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(DDPMS): The disturbance decoupling problem with measurement feedback and stability:
Gi'en lp and tg,doe8 tk:ere exist Ic such that !-Y = 0 and 0(Ae) Ctq? !f so, find algo-
rithms for computing Fc from Yp and tg.

If we require (DDPMS) to be solvable for all C , then we speak of (DDPMPP): The dis-
turbance decoupling problem with measurement feedbacf and pole placement.

Unfortunately, we cannot enter into details about these problems. They are treated for
instance in [6], where other relevant references may be found. We simply state the result:

Theorem 4: V(DDPMS) is solvable)- {S* cv* and {(DDPMPP) is solvable)
[N? : R * 1 ,imG g,kerH

ImG kerH

here, V* (resp. RkerH) denotes the supremal stabilizable (relative C ) controlled in-
variant reso. controllabiltv) subsPace contained in kerH, while SlimG (Yesp. N? G) denotes
the infimal complementary detectability (relative t.) (resp. observability) subspace con-
taining imG. These subspaces are computable by means of finite algorithms (see Appendix)
and once the conditions are verified, the computation of the compensator gains may be carri-
ed out with the aid of a pole placement routine.

ALMOST CONTROLLED INVARIANT SUBSPACES

We consider again the system x = Ax + Bu. As we have seen, a subspace is said to be
a controlled invariant subspace if starting in it, we can stay in it by choosing the con-
properly. If we only require to remain arbitrarily close to the subspace, then we arrive
at an almost controlled invariant subspace (see Fig. 8). Its formal definition is:

Definition 5: A subspace Va c X is said to be an almost (controlled) invariant sub-

space if Vx 0 EV a and e >0, 3xEZ x such that x(O) = x0 and d(x(t),V a )
< c, Vt, where d(x(t),V?):= infvIvEI v-x(t) I. A subspace Rac=X is said
to be an almost cont rolability subspace if Vxo,x1 E R., 3 T > 0 such
that V E>0, 0 xE Yx with the properties that x(0) = x0 , X(T) = xl, and

(2E(t) ,Ra  < Vt

Ra

L,-: ALMOST CONTROLLED * . ALMOST CONTROLLABILITY
INVARIANCE SUBSPACE

FIGURE VIII

Let Va.R_ denote the set of all almost controlled invariant and almost controllabil-
ity subspaces and Ya(K). R(:) those contained in a given subspace K of X. It is easy to
see that Va(k) and Ra(K) are closed under subspace addition and hence sup Ra(K) =:R, ( E R
and sup a(K) =: V1,KE Vaa

In [4] we have given a large number of equivalent statements for almost invariance.
The main conclusions are the following:

(i) Va E -a (almost controlled invariance)

(ii) V E V + Ra (every Va E Va is decomposable into a controlled invariant and an al-a - -
most controllability subspace)

(iii) 3F and subspaces imB= B 1 = B2  .. D Bn such that Va = V + R. where V E V with
(A+BF)VC V and Ra ERa with Ra = B1 +(A+BF)B 2+''+(A+BF)nlBn (this urouerty of Ra
may be interpreted as follows: if we use first feedback F and then look whic.
states are reachable using delta functions 6 in the direction BI,L in the direc-
tion B2 , etc.,then the reachable set is B+(A+BF)B2+...+(A+BF)n-IB The repre-
sentation of R s'hows that with smooth approximations of 6,6,...,6n-1) we can

achieve such trajectories approximately)

(iv) Va E VD := the 'distributionallv controlled invariant subspaces' (see [41: Va is
holdable using generalized functions as inputs)

(v) Va E Vclosure (how this closure is to be understood is explained in [41,Intuiti-
vely this means that 3V, E Y such that lim V = V . Now 3Ft such that (A+BF )VC C
V and, as E0 F E if VaE Va but &_ EVa fav: high gain feedback)
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The theory of almost controlled invariant subspaces is very apt for studying the sol-
vability of convolution equations. Indeed, let K:= kerH and consider the system i = Ax + Bu;
z = Hx. If we ask when for a given x(O) there exists u : + t such that z = Hx = 0, we ob-
tain the equation

z(t) = HeAt x(0) + f HeA(t- )B u(T) dl (L )0

or, after taking Laplace transforms

Z(s) = H(Is-A)- ix(0) + H(Is-A)- B U(s) (1,)

Let us say that L or equivalently L is approximately solvable (in the L- sense) if V& > 0
3 u such that Iil 0 < £ . The following holds:

Proposition 4: {L, is solvable) " {x(0) E VkerH {Z is solvable with U(s) a strictly
proper rational function)

and {L, is approximately solvable) {x(0( E Vb el:= Rh k + V~erH

with Rb kerr : ARb krH+ imB) . {L1 is solvable with u a generalized
function) (LJ is o vable with U(s) a ratioral functioF . (L is

approximately solvable with U(s) a strictly proper rational function).

(ADDPM)

In this section we take a look at the problem of disturbance rejection to any arbitra-
ry degree of accuracy. This may be formalized by introducing norms on the spaces of to-be-
controlled outputs and disturbance inputs and requiring the influence of d on z to be arbitrari-
ly small in this norm. The influence of d on z is given by:

Z(t) f W(t-T( d(T( dr
0

with W the closed loop impulse response. Taking Lp- norms we are led to cunsider suPd,0

1z_ lll( 
O  

/ J
1

dJJ 
1 (0,-) . It is well-known that for all 1 p< , this induced norm is SoUnded

by the L1- norm of W, i.e. by JIW(t)11dt. Actually for p = I,- this is the exact value, while

for 1< p <- it is in general only an upper bound. It may be shown, however, that this fact
is of no consequence on the results which follow and that for all p approximate disturbance
rejecLion requires that we make the L i - norm of the closed loop impulse response small. We
will hence take the following problem formulation:

(ADDPM(: The almost disturbance decoupling problem by measurement feedback: Gien 7
and any E > 0, does there exists Ic such that

W Ae
fIIw(t)dt < e,where W: Hee G ?

If so, gioe agorithms for computing Ec from I and t.

If goes without saying that one can also here add internal stability requirements. However,
a complete survey of what is available in this area is far beyond the scope of this lecture.
We will therefore not consider further variations here.

The above problem with state measurements y = x is denoted by (ADDP) and its solvabil-
ity is given in

Theorem 5:{(ADDP) is solvable) imG VbkerH)

The proof of this theorem also yields a conceptual algorithm for computing the required
feedback gain ani may be found in [4].

It is of interest to compare the striking parallel between Theorems I and S. As such
one expects a similar parallel to exist in the context of disturbance decoupled estimation
problems. Indeed, this is the case. The duals of almost controlled invariant subspaces are
the almost conditionally invariant subspaces. There are the subspaces Sac X which are such
that x(modSa ) may be constructed arbitrarily closely (in a sense which is made precise in
[5]). All what has been said so far about almost controlled invariance may be dualized: this
yields distributionally conditionally invariant subspaces (in which x(modSa) may be tracked
using differentiators) and there exists an infimal '.-almost condi~ionally invariant subspace
containing a given subspace K of X. This subspace is denoted by Sb,K. This notion is imme-
diately applicable to the almost disturbance decoupled estimation problem (ADDEP). This
problem is the same as the one in the section headed by (DDEP) but now we ask for conditions
such that there exists, Vc >0, an observer Yo such that the ! 1 -norm of the impulse response
d- e = z-2 is less than E. The main result is [5].

Theorem 6: I(ADDEP) is soloabZe) {Sic kerH)
b , i mnC

We now arrive at (ADDPM). In this case some sort of separation theorr-m holds in the
sense that (ADDPM) is solvable if and only if (ADDP) and (ADDEP) are both solvable. Hence
we should be able to achieve almost disturbance decoupling by state feedback and we should
be able to reconstruct the to-be-controlled output arbitrarily closely from the measured
output (this is the main result of [51):

Theorem 7: f(ADDPM) is soloablel (ImGCVb ad s rker)

b,kerH in b,imGc
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SOME SPECIAL CASES

There are a number of situations in which it is possible to conclude the solvabil-
ity or the generic solvability or (DDP), (DDPM) , etc. without having to go through the ex-
plicit calculations oVer V*,eH etc. With 'generic' solvability we mean the follow-
ing: consider the dimensions o f X,U,D,Y and Z as fixed but the entries of the matrices
(A,B,C,G,H) as generated 'at random'. The intuitive content of the notion of generic solv-
ability is the following: if for 'almost all' (A,B,G,C,H) the solvability (e.g. of (DDP))
holds, thin we say that CDD) is generically solvable. For the precise mathematical defi-
nition uf this concept in the present framework, ie refer to 141.

We have the following:

Assume: Then generic solvability of: hol ds iff:

A,B,C arbitrary DPm>I
H, G subject to HG -0 (DP)M

(DDEP) p ? q

(DDPMP) m> t and p> q

ABGCHabtay(ADDP) im ci

(ADDEP) perckq l
(ADOPM) m ti and a

= {0) (ADDP) im cimB andmkel
kerHa er

(i.e. H(Is-A) B
is left invertible)

=N Ix (ADDEP) dim imG.Scodim kerC

(i.e. C(Is-A) G
is right invertible)

R =r {0} dim imB > codim kerH
(ADDPM)

N~mG =X dim imG <codim kerC

From the above statements the importance of the conditions

0 of controls # of to-be-controlled outputs
0 of measured outp uts >#of disturbances

may be seen. We call this the law of requisite variety in control action and measurement
capability. Thus good control is only possible if this variety is sufficiently large.

In 4,5 a complete analysis is made for the scalar case (m = q I p It= 1) where
the solvability of the various disturbance decoupling problems may be decided from very.1 simple conditions on the degrees of the polynomials involved ih the transfer functions
(u,d)"' (y,z).

APPLICATIONS TO ROBUST CONTROL SYNTHESIS

In thi s section we return to the problem of robust controller synthesis introduced
in the beginning of th is l ecture (see Figures 2 and 4(b)) . We assume that the plant is
given by _______________________

Ax + Bu + Gd + GId'

w: Ito i t k-extPr nal s turhance, z the to-Lc-co::trolled output, d' the interrial disturbance,
11 1 .' thwh i nte(-r raIlJ 'i st iirbacc l Iocip in:put; z' generates d' b~y mneans of a iy::iical ss

I F w:::oIh may be noril inear, unc:ertain, t ime-varyi::g an;d which may incorporate un-
ai:r: r: on) inea r i ti e s, pa race t er va ri a tions, and o the r s uch u:An pleas an t t hin gs.

From the(IbFM) +r-sul ts it folIlows that, if we disregard stability con:siderations,

it will bs :.ooibl,2 to make z iO'it:,obot i a xtoirial an:d internal 0,urce: iin

i ~ k,,r,
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If we require however that at the same time internal stability should hold for all finite
gain 1. - input/output stable systems F,, then a sufficient condition is SlimG+imG- C

Vg k rerThese conditions are veri a by finite algorithms and yield a feedback
compensator which may be used in order to achieve these robust control features. Note
that the special cases (suitably adapted) given in th previous section are of much inte-
rest in this context as well.

The above conditions yield designs in which the same feedback compensator may be
used for any Fdist. If we however rephrase the problem by asking when for all F d . t which
are finite gain j, - input/output stable with gain <K< w there should exist a fee ack
Lompensator ( which may hence depend on K) such that the closed loop systems remains sta-
ble, then we may use the theory of almost invariant subspaces and we arrive at the follo-
wing conditions:

(i) if the initial conditions are zero (hence to some extent disregarding internal
stability considerations) then a sufficient condition for the existence of such
a compensator are

Sm G + imGC kerH N kerH'

and imG + imG' c VkerH n kerH

(ii) f we also require internal stability and take y = x the it suffices to have

imG + imG'C V* + R*
g, kerH n kerH' b, kerH n kerH'

We close this section by referring to [7]where results on robust controller syn-
thesis are derived in a context which is more general than the one considered here since
it allows more than one uncertain loop in the system and in addition considers white noise
stochastic disturbances. The results obtained inf7]use the same geometric concepts exposed
in this secture, but arrive at results which exploit the structure of the system in a much
more subtle and effective manner.

APPENDIX

The most basic relevant algorithms in this area are the following

k+l 1
(ISA): V kernA I(V k + imB); V 

0  
XkerN kerH kerH

(ACSA): R k+ =keH (AR k imB(; R = {0}
kerA kerN kerH
k+I kS

O

(ACSA)': Sker = imB + A(S 
n 
kerH); S ke = f 0

kerN kerN kerN

These algorithms attain their limits monotonically (hence in a finite number of steps <
dimX) and we have:

urn V V*; um R
k  

R* im k R k V*eH ker= kerH - kerH akerH i-- (Vker + ker aK

ii (V lerH R I = R ; and im S
k  

im (AR k imB(
k ker kerN kerH i-. ( ker bkerH

The dual algorithms are the following:

(CISA): S k+l =k 0
i= imG + A(S m kerC); SG = {0}imG imG imGNk+1 -

(ACOSA): Nm imG + (A IN 0fkr*
iGimG) 'eC Nim G

vk+l -ll k V0
(ACOSA)': Vik = kercnA (V k + imG); V 0 = X

imG im MG mG

These algorithms attain their limits monotonically (hence in a finite number of steps
dimX) and we have

m k mG = mG Ji k N*i (Sk n NkS
k  

= S G; m mG a,i ; i G in
)  

S
m .,i.G

k k k - 1kim (S G + N ( N G; and J im V~6 = .im (A N m G) kerC = S
I- im riG i.O K~ m iG b,imG
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A GEOMETRIC APPROACH TO MULTIVARIABLE

CONTROL SYSTEM SYNTHESIS

by

W. Murray Wonham

Systems Control Group
Dept. of Electrical Engineering

University of Toronto
Toronto, Ontario
CANADA MSS IA4

SUMMARY

These notes present in summary fashion the essential results of the author's
work: Linear Multivariable Control: A Geometric Approach (Second ed., Springer-
Verlag, 1979), together with some more recent developments on nonlinear systems.
Part I, Linear Systems, deals in turn with fundamentals, disturbance decoupling
and output stabilization, controllability subspaces, noninteracting control, and
regulation and tracking. Part II, Nonlinear Sstems, summarizes structurally
stable nonlinear regulation with step inputs, and concludes with a version of the
Internal Model Principle for controlled sequential machines.

PART I - LINEAR SYSTEMS

1. LINEAR MULTIVARIABLE SYSTEMS. FUNDAMENTALS.

1.1 State Space Description

x(t) = Ax(t) + Bu(t), t ? 0

for x(t+l) = Ax(t) + Bu(t), t = 0,1,2,...]

x = state vector c X = Rn

u = control vector E U = Rm

A:X - X, B:U - X

External control: u = v(t)

State feedback control: u = Fx(t), F:X U U

Combined control: u = Fx + V,

x(t) = (A+BF)x(t) + Bv(t)

System outputs:

y(t) = Cx(t), C:X , V = IP (measured output)

z(t) = Dx(t), D:X - Z - ]q (regulated output)

1.2 Signal Flow Graphs

= Ax + Bu

u = Fx + v

z = Dx

Take Laplace transforms:

ic(s) = (sl-A)- IBu(s)

i(s) = FX(s) + (s)

i(s) = Dx(s)
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1 u B (si-A) 1~ x
V

input node F output node

State feedback
loop

1.3 Controllability, Feedback and Pole Assignment

x(t) = Ax M) + Bv (t), t ? a
X(O) =x0

t

x(t) = e x 0 + f e (r)BV(T)dT

What states can you reach at t =T (say) by appropriate selection of V(T),

Os rt - T ?

Let x. 0

Have elA I J, Arl
r=l r

Then

nr-
x(T) Y r (T-T)A' BV(T)dTr

Let R {x(T): v(-) continuous on [O,Tfl

Fact: R=Im[B AB .. A B]

Let 8 Im B = BL X

Then R B + AB + ... + A n-lB8

< I > , X

(A,B) is controllable if <AIB> =x

Suppose 'AIB' yi X

Let P:X -~ X := /AB

X A

0 A

Write X =X 1* X2

X, =IAIB, x 2 X

A A
A 1 3] B- B
A 0 A A2] [ 1J

The signal flow exhibits the system decomposition.
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BI  (sl-Al}-i

u B ----------- xI  controllable

A3

(si-A2 ) -1

.: o x2  uncontrollable

1. Fact: (VF) <A+BFIB> = <AIB>

i.e. Controllable subspace <AIB> is invariant under application of
state feedback.

2. Let dim(X) = n.

Consider o(A+BF)

o = symmetric set AF of n complex numbers

Fact: o(A+BF) = poles of (sI-A-BF)
- I

Theorem ("Pole assignment"):

(A,B) is controllable [i.e. <AIB> = X]

iff

(VA c , symmetric, 1A1 = n)(aF:X - U): o(A+BF) A.

Stabilizability

Split complex numbers a: = (g 9 aCb (g,b mean 'good', 'bad')

e.g. Cg = (s: Re s < 0)
g

A:X - X is stable if a(A) c T:
g

(A,B) is stabilizable if SF: A+BF is stable.

Let characteristic polynomial of A be il(s).

Factor r(s) = Tlg(S)7b(s), zeros of 7T in Mg, etc.

Unstable modes of A is subspace

Xb(A) = Ker rb(A).

(X = Xb(A) 0 Xg(A)}

Proposition. (A,B) is stabilizable iff

X b(A) c <AIB>

i.e. unstable modes are controllable.

2. DISTURBANCE DECOUPLING AND OUTPUT STABILIZATION

2.1 (A,B)-Invariant Subspaces

x = Ax + Bu + Sq

z = Dx

q = q(.) is an exogenous disturbance

Temporarily set u = 0. Let S = Im S. Disturbances act in subspace

'AIS,. Output z(') is decoupled from q(-) iff

D<AIS > 
= 0.

Now let u = Fx

o,-.
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DDP: ?3F: D<A+BFIS> = 0.

i.e. ?3F: D(A+BF)J-
1
S = 0, jn.

Nasty nonlinear problem in F!

Recast in geometric form

?9F: <A+BFIS> c Ker D

The foregoing problem motivates the introduction of (A,B)-invariant subspaces.

Let V (= V) = <A+BFIS>

Note: (A+BF)V c V.

Problem: Given A,B, and any subspace V c X

?HF: (A+BF)VC V

Call such V: (A,B)-invariant.

Fact: V is (A,B)-invariant iff

AV c V + B.

Notation: I(X) = (V: AVc V+B}

I(Ker D) = (V: Vc Ker D & AV, V+8}

Note: 0 E I (Ker D) 0.

2.2 Solution of Disturbance Decoupling Problem

Proposition. DDP is solvable iff

3V: V I(Ker D) & V S.

(Proof. (If)

Let F: (A+BF)Vc V.

Then <A+BFIS> c <A+BFIV>

= V + (A+BF)V +

V cKer D.}

Proposition. V1 ,V2 c (Ker D) - V1 +V2 E l(Ker D)

Proposition. 21 V* I (Ker D):

(VV) VE I (Ker D) - V c V*

Write: V* = sup l(Ker D).

Theorem

DDP is solvable iff V* S

Algorithm

V
0 

:= Ker D

Vj + l  
:= Ker D nA-1 (V+B), j = 0,1,2 ....V Vn = V*.

Signal Flow

Let X = X1 S X2

xI = V*, X2 = X/V*
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= [ ,1 A3] D = [0 D21, S = 1.
A2  0

qo
Si

U B -1 (

B2 A x

(sl-A 2 )-1 D2

2.3 Output Stabilization Problem

x Ax +Bu, z = Dx

OSP Find u = Fx such that, for any x0, z(t) Det(A+BF)x 0 has all its

exponents in a
g

Equivalent problem

Find F:X - U such that

Xb(A+BF) C Ker D

Theorem

Let V* := sup I(Ker D).

OSP is solvable iff

Xb(A) c <AIB> + V*.

3. CONTROLLABILITY SUBSPACES

3.1 Controllability Subspaces: Definition and Characterizations

x Ax + Bu

R, X is a controllability subspace (c.s.)

if SF:X - U & G:U - U such that

R = <A+BFIIm(BG)>

v G B (s-A) x

F

Notation C(X, C(Ker D)

Fact: R1 ,R2 c C(Ker D) -9. RI+R 2  C(Ker D)

Fact: 3! R* - sup C(Ker D)

Fact: 0 , R* •V* Ker Dc X

Notation
F(V*) : F:(A+BF)V* V*} Say: "F is a friend of V*"

F(R*) := 'F: (A+BF)R*c R*}
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Fact: F(V*) - F(R*). "Any friend of V* is a friend of R*,"

V* (A+BF) V* V*

- F

3.2 Transmission Zeros

Fact: AF is the same for all Fe F(V*).

Jargon: a(AF) is the set of transmission zeros of (D,A,B).

3.3 Disturbance Decoupling Problem with Stability (DDPS)

rA+BF is stable, &
DDPS: ?HF

'A+BFIS, Ker D

Ker D 9 V*/R*

F F(V*)

!P:V* - *I

V*?
g1 X (A X (A )

I b F g F g F
R*? g

U
0o

Theorem DDPS is solvable iff

(i) (A,B) is stabilizable

& (ii) V* , S
g

4. NONINTERACTING CONTROL (DECOUPLING)

x = Ax + Bu

z. =D x i k1 1-

k
Let u =FX + , Giv.

i=1

4.1 Restricted Decoupling Problem (RDP)

?3F, G i (i k) such that vi controls zi without affecting z.,j #i

Let Ri = 'A+BFIIm(BGi)>

RDP can be stated:

?3 c.s. Ri' i , k:

k
-F(R) 0, DiRi = Im Di, Ri j niKer D.

i=l 111 1 ij~

Unsolved. Add more state variables.

r _ _ _ _ _ _ _ _ _ _ _ _ _ _
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4.2 Extended Decoupling Problem (EDP)

Adjoin auxiliary dynamics

x = B u , x EX , u EUaa a a a a a a

Extended spaces X =X X a Ue =U Ua
e. a e a i D )

Extended maps Ae  Ba D = (

EDP Find n and extended c.s. Si (ic k) such that

Sic iKer D. , n F (S.) '
1 # je iEk-e 1

S.+ KerD = X , i c k.1i De e -

Theorem EDP is solvable iff, for the original RDP,

R* + Ker D= X, i E k.

Then can choose

k k
I d(R*) - d( [ R.).na i=l i=l

4.3 Generic Solvability of EDP

Regard

p := (D1 ..... Dk, A,B)

Nas a data point in JR

N = (ql+.. .+q k )n + n2 + nm.

Fix ql .... ' n 'm  EDP is generically solvable if solvable for all off
k Nsome proper algebraic variety in R

Theorem

EDP is generically solvable iff

k
q. < n (generic noninteraction)

i=l1

k
m >1 + I - r qi (generic output controllability)

i=l 152- k

fIf either condition fails, EDP is generically unsolvable!)

Then can take, generically,

k
na = (k-l)(n - qi

)

5. REGULATION AND TRACKING

= Ax + Bu

y = Cx (measured)

z = Ox (to be regulated)

4



5.1 Regulator Problem with Internal Stability (RPIS)

Find (dynamic) feedback from y, i.e.

such that

Wi All controllable, observable modes are stabilized.

(ii) output z is regulated, i.e. for all i.c., z(t)- 0 as t.

fTypical format:

1 1 1 3 2 + 1u2 2 2

(Al1 B 1) controllable plant

A2 - exosystem, A3- disturbance couplingi

Admissible controls

Could try static output feedback, i.e.

u -Fx, FFiC or Ker FsKer C.

Intractable!I

Better: y new =Cne x,

NeC = nKerC AKrCnewil

u -Fx, Ker F 4N

Tractable! since AN4 c

This is algebraically equivalent to using a dynamic observer:

observer -x mod NJ
y -

Internal stability

Any observable, unstable modes should be uncontrollable.

C (5: Re s aO1 0 {s: Re s < 0

Require:

x + (A+BF)+N "<A 8>+N 0

or

X (A+BF) n (<AIB>+N)cN

Output regulation

Bury unstable modes in Ker D, namely arrange that

X+ (A+BF) cKer D

Given A:X -. X, B:U - X, D:X * ,and Nc X with ANc N.

Find F:X U t such that

Wi Ker F v, N

(ii) X(A+BF) n(<AIB>+J) ,N

(iii) X +(A+BF) Ker D
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Theorem

RPIS is solvable iff aV c X such that

(1) VcKer DnA- (V+8)

(2) X+(A) n N + A(VnN) c V

(3) V n (<AjB>+N) , N

(4) X+(A) C <AI > + V

5.2 Separation Theorem for RPIS

Extra dynamic compensation (beyond the observer) does not helpf

5.3 Solution of RPIS: Geometric Structure

Assume first that N = 0.

V* := sup l(Ker D), R* := sup C(Ker D)

Recall: F(V*) , F(R*).

If A F := A+BF, FE F(V*), then AF, induced on V*/R*, is the same for

all F E F(V*) .

Let AT cT and AR cRc T.

Def. R decomposes T wrt A if 3Sc T, ROS = T, ASc S.

Fact R decomposes T wrt A

iff {e.d. AIR} 6 {e.d. of A on T/RI = fe.d. of AIT)

iff A1V-VA2 +A 3 = 0 is solvable for V.

Theorem

Let N = 0. RPIS is solvable iff

(i) X +(A) c <AIB> + V*

(ii) In X/R*, with Fc F(V*),

V* n X+(AF) n <AIB> +R*

R*

decomposes

V* nX +(AF) + R*

R*

wrt map AF' induced by AF in V*/R*.

{Condition needs to be checked only at one, arbitrarily selected, FE F(V*).}

Proof of Theorem (if)

xrI (=x/R*)

Ker D *

V V* n +(Tn y

R*, V* oR+ (Ar ) n <Rig>

0
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V X (AF)

W V* n X+(A F n <A5B' R V

by decomposability V has required properties

Corollary 1

Assume: N = 0

& ofinduced map A on X/<AIB>) c&+

RPIS solvable iff

(i) <AJB> + V* = X

& (ii) V* n <AIB>/R* decomposes V*/R* wrt AF induced on V*/R*.

Let X 1 := <A1B>, A1 := AI<AIB> , etc.

a* := ofinduced map on VIR I ]

Corollary 2

Assumptions as in Corollary 1.

RPIS solvable provided

(i) <A;B> + V*= X

& (ii) a* n o(A) 0.

Example (RPIS not solvable)

z
o

u o s+l I 1/s Xlix12 11

x2

R* =0, , =Ker D

A F'v* .0AB = 0

Decomposability fails!

General solution of RPIS (N # 0)

Theorem. RPIS is solvable iff

(i) X+(A) ,N Ker D

(ii) In X X/X+(A) r. N, the reduced RPIS is solvable,

i.e. aF:X - U such that

X+(R+BF), Ker F)

&t
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5.4 Solution of RPIS: Linear Maps Criterion

+
Assume (i) 0fexosystem} c+

(ii) X+(A) o N = 0

(iii) D<AIB> = Z

Theorem

RPIS solvable iff 2V c X such that

V c Ker D n A-(V+) , a

& <AAIB> V = X.

Let P:X - X/<AIB> X .

Corollary

RPIS solvable iff 2 maps V:X - X & K:X - U such that

AV - VA + BK = 0, DV = 0, PV = 1.

5.5 Well-Posedness and Generic Solvability

Coordinatization

A , B B

C = (C1  C 2 ), D = (D1  D2 )

A1 :nl ni, A2 :n2 x n2, B1 :nI xm, DI:q x n,

(AI,BI ) controllable plant

a(A2 ) c M+ • exosystem

Rank D1 = q (full rank)

Data point E = (AI'A3,B) ,

N = n2 + nln +nM
1 1 2 1

NDef. RPIS is well-posed at p if solvable throughout a nbhd of in JR

Def. Fix ni, m, q. RPIS is generically solvable if solvable for all

p cR N , off some proper algebraic variety.

Theorem

RPIS is well-posed at = (A1 A 3 1 i

(Al81 - @8A;) Ker(D,81 l) + Im(Bl018) =X

Corollary

RPIS is generically solvable iff

m (= no. of controls) ? q (= no. of regulated outputs)

If m< q, no data point is well-posed.

Theorem

Assume also: (D1 ,AI ) observable

& o(A 1 ) na(A2 ) = 0.

F
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RPIS is well-posed at (A1 A 3 B1 ) iff

HI(A) := D(1 -AI) IB 1

is right-invertible (over V) at every X E o(A 2)

Example (RPIS solvable but ill-posed)

s

s +s+l s+l kxo
1 1

S -1

If you perturb the branch

1 to 
1
1+E

then RPIS becomes unsolvable.

5.6 Strong ('Robust') Synthesis

Assume RPIS well-posed, and C = D.

B1 1 (s-A1)-
Fc

A 
3

(s-AA

B
(s-A2)-l1 D2  D

2 2 -_ 1

x2  z

Def. (F ,A ,B ) is a synthesis if-- c c

(i (Fc,A c ) observable and (Ac,B ) controllable

(ii) Loop is stable

(iii) Output regulation holds.

Def. Let 2 = (A,A 3,BI). Synthesis is strong at p if properties

(i) - (iii) hold throughout a nbhd of p in IRN.

Theorem Let Sc = (F c,A c,B c ) be a synthesis.

Let a 2( ) be m.p. of A 2.

Let T:T - T be cyclic, with m.p. 02.

Then Sc is strong at D iff

31J:T 0 Z' + Xc , injective, such that diagram commutes.

T 12

j A
x c x c
y "c

say: "Ac incorporates an internal model of A2".



8-13

Theorem

RPIS admits a strong synthesis at p iff it is wull-posed at p.

5.7 Internal Model Principle

Assume y = Cx, z = Dx,

but no a priori relation between C and D.

"Synthesis" as before, but now with y as input.

"Strong" as before, but with certain variations in B c

Theorem

Synthesis is strong only if

(i) Ker C<-Ker D fi.e. z = Ey, some E)

& (ii) "A incorporates an internal model of A that is controlled by z".
c 2

PART II - NONLINEAR SYSTEMS

6. STRUCTURALLY STABLE NONLINEAR REGULATION WITH STEP INPUTS

Let X - smooth (C) manifold

TX- tangent bundle of X

-:X TX vector field, complete

System is a pair (X,i).

Call (X, ) the regulator (system).

Bring in auxiliary system

(Vn) - exosystem

Assume 3 surjective submersion iT:X - V such that we have

X --- TX

V -TV

Assume: (X, ) admits a subsystem 'induced' by (V,n), in the sense:

v r) TV

V! V

id X TX id

i~IT
V --- TV

Assume: is a regular embedding, defined uniquely by (1), viz.

= ' o ,, ioV id.

In applications one might often require that v(V) be a stable attractor
for the flow determined by on X, viz.

(yx0 )x(t,x 0) v(V) as t .

Bring in a 'good' submanifold (K,K),

K - X

K is where you would like to be.
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:E.g. ,(K) = *- (z ,

where 6:X * Z is an output map, z0 ,Z a setpoint.}

Output regulation condition

v (V) , , (K)

So a embedding i:V * K such that we have

IV TV . 0

F *I
KI V T K (2 )

X -~--~TX

Regulator structure

Assume

TX = E ( E ( Eo c e
where the vector bundle

E is identified with 'plant'
0

E is identified with 'controller'c

E is identified with 'exosystem'e

Thus

E ( Ec = Ker Ti*
o
rE = TV

e

= 0 ( c Q re

Regard ,0,rcle," ,K as fixed.

Consider 0 variable to 0 near 0 in r(E0

Assume (1) holds near r i.e. to each 0 there corresponds u such-'0 0

that (1) holds with ( 0,lce)

Say: Regulation is structurally stable if (2) is preserved as well.

Namely

(a nbhd No of 0) (VT

00 0o , No 0 =! (aTG o?. (3)

iAssume Whitney C-topology for I' (E0 )1

Problem: Assuming structural stability, what can we infer about the

controller F c? Consider only the special case of

Step Inputs

Assume n (v) = Ov , TvV, v.V.

(I) , T1 ,(x) = 
0 
n(x)

Notation: ,:X * E is zero section;

let Z = rA(X) = f (x,0): xXI

Structural stability, plus (2) & (1), mean that

Foio (v) = 0 v,V

* 0-(V) Z

x

'--
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Y{ . M0 ~i c } (4)
ZecOT(V) Z c

Assume

(i) c Z c }5
(ii) ( co,)- (Zc) is a submanifold of K.

By 'density' theorems,

0 N 0 such that

ZoOK A Z0  (6a)

(YK) I (cOK) (Zc) A Z0  (6b)

(To justify this step in detail need

Lemma: let K c X, Z Y closed, embedded submanifolds.

Then

If: (fJE) I Z1

is open and dense in C (X,Y).

Proof (sketch): Start with g = flK, in a canonical coordinate patch.

Give g a small, polynomial perturbation g '- g, to achieve g A Z.

Smooth to get f = g on K, f = f off a nbhd of K. Technique as in

Golubitsky & Guillemin, p. 55, proof of Thorn transversality theorem.)

Note that if (6a) holds and Z0oo(K) n 0 # 0, as is assumed by structural

stability, then necessarily no f n-q, viz. q cm+nc .

In (6b?, write

'-l
K := (& OK) ( Z )
c oO

Have

(D4) (Tx K c ) + T(X) Z0 = T OW E0xc 4(x)I0 (x) 0

- TK c + (DW)
1  Z0  TxK

Kc A(x 0 ( Zx= Kc  ¢-(z 0)

i.e.

( c O)-I (Z) (Z oK)- (Z 0) (6c)

Introduce dimensions

X V E0  Ec  K

n m n+n0  n+nc n-q

no : n - m - nc

Let

Yo :dim (0oK) (Z0)

Yc : dim (.cO)I (Z c

Now

(6a) -- codim (0 K)-(Z 0 ) codim (Z0)

-- n-q-y 0 = dim (E0 ) - dim (Z0)

(n+n0 ) - n

= no

U--
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Y0 = n-q-n
0

= m+n -q (7)c

(6c) 4 dim [(FccK)- (Zc) n ( ooK)- (Z )J

= max {0, y0+yc-(n-q)} (8)

(4) dim f. .1 - dim 7(V) = m (9)

(8) & (9) y0 +yc-n+q m (10)

(7) & (10) yc ? n-n c (11)

But c n-q (12)

(11) & (12) - MAIN RESULT: nc ? q. (13)

Interpretation:

The control section reduces to zero on a certain submanifold of K, namely

Kc , of dimension yc, where c n-nc. By (13) at least q 'components' of

control vanish on Kc, and this fact has the engineering interpretation that
the inputs to at least q 'integrators' in the control loop reduce to zero

when the 'error' is zero. In other words, we have a version of the Internal
Model Principle for nonlinear regulacion against step inputs. Constructing

a tubular nbhd of K(K c ) in X, we may parametrize it as usual by the fibers,

and the n-yc ?q 'components' of the fiber vectors provide a specific reali-

zation of the required feedback variables.

We can be more precise about y c if we

Assume: x(t,x 0) - v(V) as t -, all x0.

Then T-I(Z) = '(V)

S l(Z- 0 n -c(Zc= (V)

Y 0 +Yc-n+q = m in (10)

Rcl n = q in (13).

Then yc = dim (Kc
c c

= n-n c = n-q = dim (K)

Thus K is some closed submanifold of K, having the same dimension.

c

(V) T(V)
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7. AN INTERNAL MODEL PRINCIPLE FOR CONTROLLED SEQUENTIAL MACHINES

7.1 Introduction

A long-standing idea in the control literature, and in several other

disciplines, is that good control, on the part of an organism or artifact,

depends on the formation of an internal model of the outside world. We

shall discuss one way in which this 'internal model principle' can be

formalized, in the context of controlled sequential machines. In conclusion

we speculate on the implication for future control theories.

First, some citations from the literature.

1. O.J.M. Smith (1958):

"Feedback design techniquestcan be]based on predictors which incor-
porate models of the mechanism of generation of the various signals being
predicted".

2. C.R. Kelley (1968):

"Prediction and planning involve the operator's internal model of
the control process and the variables in the environment that affect
it ... Man's ability to interact with the environment depends on the
accuracy of his internal model of that environment".

3. K. Oatley (1972):

"One fruitful idea is that the brain is a complex information-
processing device that contains an internal model of the outside
world.. .The brain, in other words, acts as a model in which neural
processes symbolize the workings of the external world and thus allow
us to predict the outcome of events and of our own actions".

[Credit to K. Craik (1967)].

4. James Albus & John Evans (1976):

"Efforts to equip a robot with modest intellectual capacities have
occupied workers in the field of artificial intelligence for many years.
In most instances the effort has required that the upper levels of con-
trol incorporate some internal data structures - a "world model", or
knowledge frame - that can represent the state of the environment in
a meaningful way. The robot must also be endowed with an adequate re-
pertory of sensors and data-processing circuits for analysing the en-
vironment so that the robot can keep its internal knowledge frame up to
date".

7.2 Abstract Internal Model Principle

System is abstract automaton

State transition map a:X - X

Controller y:X - W :x - y(x) = w

W is controller state set.

Good set KC X

K is where you would like to be.

{Typical situation: X = Xs  c
K K Xc, SC

Y: (xs,x c ) F-- x
S c s

Assume: y(K) = W

i.e. "Knowledge merely that xE K yields no information about

value of y(x)c W."

Exosystem - "outside world as seen by controlled system". Assume

description incorporated in a, viz. there is a subsystem X X,

X cX, a(X) X

X+ could be determined as follows. Postulate that the exosystem is

modeled by a pair (Xe ,e) that drives the total system (Xa) in

accordance with the diagram



-- X

e
e e

Here i is a surjection. Now assume that (Xea e  is coupled to (X,,)

in such a way that the total 'action' due to (Xe ae) is uniquely
+ + ec

determinable as an induced subsystem (X ,
+ ), viz. there exists a

unique injection v:X e X such that we have the diairam:
e

ee e

V, V + (I v X
+  

VXid X X id +
C( := 1z X+

"IX
e e

Regulation condition
+

x K

Detectability and observers

Consider time history fx(t) :t Z +
,

x(O) = x0 1 X

x(t+l) = I(x(t) ) , t > 0.

The resulting sequence of control states is

w(t,x 0) y(x(t)), t, Z

We would like to recover x0 from

fw(t,x0 ) :t E Z
+ ), for certain x0 .

For this we need concept of observer.

Observers

Let O:X + T be an 'output' map.

Write x - x' mod O -= O(x) = 0(x').

Identify 0 - equivalence relation on X.

Let E(X) be class of all equivalence relations on X.

If ) a E(X), also identify 0 with projection X --* X/O.

Also, 0 - partition of X.

If 0,rj E(X), say rl 0 (ri is finer than 0) if each equivalence class of

is a subset of some equivalence class of f.

Ii X

i.e. 0 factors through ri.

Fact: - is a partial order on E(X) and induces a lattice structure.

Namely for any ri,0, [(X) there exists I := YlAtl with the properties

1 & I
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& (V*)<: n and PO =.* p <

Similarly there exists = nvO

(replace < by > in definition of A)

Fact: E(X) is complete, i.e.

F , E(X) -= sup F, inf F , E(X)

Note: 0 := inf EX) = {{x}:xc X}

1 : sup f(X) = (X)

Can now define:

Given (0,a), cE:X - X, 8£ E(X), the corresponding observer is ac E(X),

sup ': ' E(X) & wi 6e^(w' o)}

(Here x x' mod 'o.c =-(x) = a(x') mod w')

w is the coarsest partition of X that is finer than 8 and is also

a congruence for a.

Can show: w = inf (8oi
-
l, i -l).

Say: (6,a) is observable if w = 0.

Now let E C X, a(E) E, a E = alE etc.

If ,, is observable for a then wE is observable for aE '

E is detectable rel. (8,a) if (8 E'aEc) is observable.

Assume: >:+ detectable rel. (y,a).

Feedback

Controller is actuated externally only when system state deviates from

good set K.

Let xc K.

Control state is y(x)E W.

Successor control state is ¥oa(x) c W.

Assume: yo(x) depends only on y(x).

viz. (Y°a)K > YK

Summary of assumptions

X, U:X - X (1)

- I W, Y:X - W (2)

K1 X, y(K) = W (3)

X+ , K, a(X
+ )  

X+ (4)

X+ detectable rel. (y,%) (5)

YK < (Y¥°)K (6)

Put a+ : aIX. Y+ Y1 X+

Theorem

(i) a1 map a:W - W determined by

(a.Y) IK = (yo )IK

(ii) oY+ + +

+~(iii) y is injective.

1-



We have +

X 
+  

a + X 
+

- x

W W

Proof
(i) Let w W.

(3) = 3x K, y(x) = w.

Let a(w) := 7oc(x).

OK? Let x', K, y(x') w.

x x' mod y

X X' mod yoa, by (6)

= - ( .oX)X (y a ) (x )

(ii) Let x, X
+
. By (i),

X K .oy(x) = oC(x)

++ + + +
A x = ' (x) & a(x) X - o¥+(x) = y O+(x)

(iii) Let . observer for (y, ).
+ +'

-X :etc.

(5) s ,+ I sup :W'. E (X
+
) & W' < y+^(W'o +))

=0.

But (ii) -- +.

+ +
So - 0

+

i.e. is injective. QED

7.3 Conclusion

While the role of internal models now appears to be central in many pro-

cesses of prediction and regulation, formal demonstrations of the existence

of an internal model, and of how an internal model may be used (together with

a stabilizer) in a feedback loop to achieve good control, are still few and

somewhat specialized. However, such facts as we possess do point to the

intriguing possibility of a 'general systems theory' considerably deeper

and moie substantial than exists under that title at the present time.
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MULTIVARIABLE tESIGN THE OPTIMIZATION OF APPROXIMATE INVERSES

G. Zames
Dept. of Electrical Engineering, McGill University,

3480 University St., Montreal, Canada H3A 2A7

A new mathematical framework for the analysis of sensitivity in multi-input-multi-output 
linear feed-

back systems is proposed, based on the concepts of a multiplicative seminorm and an approximate inverse.

Many of the empirical results of "classical" control theory pertaining to the use of lead-lag networks

can be deduced in this framework as solutions to well-posed mathematical optimization problems. Moreover,

new classes of optimal filters for the reduction of sensitivity are introduced.

A definition of optimal sensitivity to plant uncertainty is established. The multiplicative property

of seminorms is used to obtain the following principle: For any specified aposteriori accuracy, there is

a maximum of apriori plant uncertainty that can be tolerated, and a minimum of identification that is re-

quired.

INTRODUCTION

In this expository summary of Zames (1976-81) we are concerned with the effects of feedback on uncer-

tainty, where uncertainty occurs either in the form of an additive disturbance d at the output of a linear

plant P.

d
U V + Y

Fig. 1

or an additive perturbation in P representing "plant uncertainty". We approach this subject from the point
of view of classical sensitivity theory, with the difference that feedbacks will not only reduce but actually
optimize sensitivity in an appropriate sense.

The theory is developed at two levels of generality. At the higher level, a framework is sought in which
the essence of the classical ideas can be captured. To this end, systems are represented by mappings be-
longing to a normed algebra. The object here is to obtain general answers to such questions as: How does
the usefulness of feedback depend on plant invertibility? Are there measures of sensitivity to plant-uncer-
tainty that are natural for optimization? How does plant uncertainty affect the possibility of designing
a feedback scheme to reduce plant uncertainty?

At a more practical level, the theory is illustrated by simple examples of involving single-variable and
multivariable frequency responses. The questions here are: Can the classical "lead-lag" controllers be de-
rived from an optimization problem? How do rnp (right-half-plane) zeros restrict sensitivity? In multi-
variable systems without rhp zeros, can sensitivity be made arbitrarily small, and if so how?

A few observations might serve to motivate this re-examination of feedback theory. One way of attenu-
ating Jisturbances is to introduce a filter of the W.H.K. (Wiener-Hopf-Kalman) type in the feedback path.
Despite the unquestioned success of the W.H.K. and state-space approaches, the classical methods, which rely
on lead-lag "compensators" to reduce sensitivity, have continued to dominate many areas of design. On and
off there have been attempts to develop analogous methods for multivariable systems. However, the classical
techniques have been difficult to pin down in a mathematical theory, partly because the purpose of compensa-
tion has not been clearly stated. One of our objectives is to formulate the compensation problem as the so-
lution to a well-defined optimization problem.

Another motivating factor is the gradual realization that classical theory is not just an old-fashioned
way of doing WHK, but is concerned ith a different category of mathematical problems. In a typical WKH
problem, the quadratic norm of the response to a disturbance d is minimized by a projection method; in a

deterministic version, the power spectrum Id(j.)J is a single, known vector in, e.g., the space L2 (--,-);
in stochastic versions, d belongs to a single ramdom process of known covariance properties. However, there

are many practical problems in which d is unknown but belongs to a prescribed set of disturbances, or to a
class of random processes whose covariances are uncertain but belong to a prescribed set. For example, in
audio design, d is often one of a set of narrow-band signals in the 20-20K Hertz interval, as opposed to a
single, wide-band signal in the same interval. Problems involving such disturbance sets are not tractable

by W.H.K. or projection techniques. One objective here is to find a systematic approach to problems in-
volving such sets of disturbances.

Another observation is that many problems of plant uncertainty can be stated easily in the classical
theory, e.g. in terms of a tolerance-band un a frequency response, but are difficult to express in a linear-
quadratic-state-space framework. One reason for this is that frequency-response descriptions and, more
generally, input-output descriptions preserve the operations of system addition and multiplication, whereas
state-space descriptions do not. Another reason is that the quadratic norm is hard to estimate for system
products, whereas the induced norm (or "gain") that is implicit in the classical theory is easier to esti-
mate. We would like to exploit these advantages in the study of plant uncertainty.

_--A__ _ _ __ _ _
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Weighted Seminorms and Approximate Inverses

One way of defining the optimal sensitivity of a feedback system, and of addressing these issues is in
terms of an induced norm of the sensitivity operator. However, it is shown Zames (1979) that the primary
norm of an operator in a normed algebra is useless for this purpose. Perhaps that is why operator norm
optimization has not been pursued extensively in the past.

Instead, we introduce an auxiliary "weighted" seminorm, which retains some of the multiplicative pro-
perties of the induced norm, but is amenable to optimization. Plant uncertainty is described in terms of
belonging to a sphere in the weighted seminorm.

Approximate invertibility of the plant is one of the features which distinguishes control from, say,
communication problems. We define the concep of an approximate inverse under a weighted seminorm, and show
that sensitivity reduction is possible if and only if there is such an inverse.

ALGEBRAS OF SYSTEMS

A feature of the input-output approach is that systems can be added, multiplied by each other or by
scalars, and the sums or products obtained are still systems; i.e., causal input-output mappings from an
algebra. The algebra of all such mappings under consideration will be denoted by A. For example, A can be
an algebra of (possibly multivariable) causal frequency response mappings. I denotes the identify in A.

Suppose that A denotes the strictly causal systems inBh, i.e., s is a subalgebra of A defined by the
property: for any plant Pe( s and feedack F_ , the c.l. (closed-loop) operators (I + FP)

- 1 
and (I + PF)

- I

are well defined. Strict causality is a generalization of the physical property that (strictly proper)
systems can not respond instantly to sudden inputs. Mathematically, Js is a radical of A. However, all that
concerns us here is that the incerses shown exist.

The subalgebra of stable systems in A will be denoted by U. Suppose that a norm, 1111, is defined on B
and that B is complete. An example of such a normed algebra is the (Hardy) space H' of frequency response
p(s) analytic and bounded in the rhp Re(s) >0, where the norm is the supremum of IP(s)l over the rhp. The
symbol U s will denote the subalgebra of strictly causal systems of E.

COMPENSATOR PARAMETRIZATION

A feedback system with strictly causal plant P and feedback F in As can be represented by the matrix
of 4 c.l. operators

I7 1+ 
-1 

1

( I + F P ) _ 
P ( I + P F )

(u++ PF) (I +PF])

(I + PF) I is the c.l. response to a disturbance at the plant output, and will be called the sensitivity
opetator. The initial objective is to make this sensitivity small in some appropriate sense, while keeping
all 4 operators stable. Our first step will be to separate the desensitization problem from stabilization
by a change of variable.

Initially, assume P stable. Let Q F(I + PF)
-

. The matrix (1) can be expressed as

(I QP ) 
P (I 

-3 P (2)

It can be shown that (1-2) are stable if and only if Q is stable. In -fect, QEB is a parametrization of
all feedbacks that preserve c.l. stability. By designing Q instead of F we replace a potentially unstable
operator by a stable one and, more importantly, automatically guarantee closed-loop stability; no need to
keep checking Nyquist's criterion, etc. The expression for sensitivity assumes the from (I - PQ), which
will be convenient in studying the relation between sensitivity and invertibility of P.

If a plant P0 is unstable but is stabilized by a feedback Fo C1 s , which makes P A(I + Po Fo
)- I 

stable,
then design can be separated into 2 stages: 11) stabilization by Fo; (2) desensitization by Q. In other
words, the pair of operators (F),Q) parametrizes the set of all stabilizing compensators, in a manner which
separates design for say, low sensitivity, from stabilization.

LIMITATIONS OF NORMS

For low sensitivity, Q must be designed to make (I - PQ) small. If P had a riqht inverse, the choice
P = Q-1 would make sensitivity identically zero. However, it can be shown that strictly causal operators
have no exact inverses in B (just as strictly proper frequency responses have no strictly proper inverses).
Instead we try to make Q an approximate right inverse of P, by making (I - PQ) small in some sense. Indeed,
the various approaches to feedback theory can be classified according to the way in which they measure (I - PQ)
and construct this approximate inverse. At this point we note two peculiarities (Zames,1979).

(a) III- P I , i.e., it is impossible to make sensitivity small in the primary norm of a Banach algebra.
Ex., for frequency responses, P(jw)q(jw) 0 as lwl! , so sensitivity approaches 1. It is possible to make
IlI - PQ( small if (I - PQ) is restricted to a finite band of frequencies, or, more generally, an invariant
subspace of B. However,

(b) the infimum over all compensators QCB of (I - PQ) restricted to an invariant subspace of B is always
either zero or one. For non-minimum phase systems, it can be shown that if sensitivity is made to approach
zero over one subspace by choice of Q, then it approaches infinity over the complementary subspace. The



9-3

norm of (I - PQ) over an invariant subspace is therefore not a useful measure of sensitivity for optimization
purposes.

Properties (a-b) delimit the peculiarities of the sensitivity reduction problem. In one form or another
they were recognized in classical theory, and are perhaps the reason why sensitivity reduction was not posed
as an optimization problem.

Our approach will be to employ an auxiliary norm or, more generally, seminorm (a nonzero element has
nonzero norm, but may have zero serjlnorm) relative to which (I - PQ) can be made small.

WEIGHTED SEMINORMS

(We shall consider symmetric seminorms here. In the general theory, left and right seminorms are
employed.)

Suppose that an auxiliary seminorm i111 is defined on B, which will be called a weighted seminorm, and
has the property that IIPIIW<IIPII for all P Z , i.e., 11-11 "dominates" 1-11 Let I'~IW be held fixed through-
out. Q E B is called an approximate right inverse of P EB relative to r- w if Ii - PQIWI<IIIIw. The mea-
sure of right singularity of P is

d(P) 4 inf. E ] s iI - PHW

P(P) is a number between 0 and I which measures the noninvertibility of P (and which, for frequency responses
P(jw), usually depends on the rhp zero locations of P.)

THEOREM For any plant PEB, there is a sequence (of compensators) Fn E A s, n = 1,2,..., for which the
sensitivities II(I + PFn)

1
11 approach v(P), but no compensator can give a sensitivity less than u(P).

i.e., the optimal sensitivity coincides with the measure of singularity. Feedback can reduce sensitivity
iff P has an approximate right inverse.

In our framework, a disturbance attenuation filter of the WHK type can be described as follows: If
the disturbance has a power spectrum 6(jw), the weighted seminorm is the root-integral-squared,

I) (I - PQ))IL2 L6 (f,_- I Il-P (j ) (j.)] (j,)1
2  

dw)
I/ 2

and p(P) is the irreducible error.

Such quadratic norms present a difficulty in problems involving plant uncertainty, because they lack
the multiplicative property IIAJI II<-i1AIIBI) (needed to make ]B into a "normed-algebra"). If AP is a plant
perturbation resulting from, say, the identification of P, the closed-loop perturbation has the product form
(I - PQ)AP, and is difficult to estimate without a multiplicative property. Indeed, the product can become
small even as its factors become large. Instead, we shall concentrate on

Multiplicative Seminorms

A weighted seminorm I "1W on B is called multiplicative (symmetric) iff it satisfies the following two
inequalities for all A, B EDB.

II I INI .il1 llwB1 ,  If~ l ABI 11Alwll Bl
w w w

A simple example of a multiplicative seminorm on the space H of frequency response is obtained by
taking a strictly proper weighting filter 0 E H' with lw(s) $1 in Re(s): 0, and letting

IIw A maxIp(jw)4(jW) (3)

If p(s) has rhp zeros zi, then it is shown in Zames (1979) that w(P) 9(zi), i = 1,2,..., so it is
impossible to achieve small sensitivity if zeros are present in any heavily weighted part of the rhp.

Minimax Filters

For seminorms of the form (3), the optimization problem takes the form

inf sup I1( - 0(jw)q(jw) )4(j)jI
Q Eia s w

This problem has explicit solutions which are detailed elsewhere. Let us merely give an example.
Suppose that the plant (s)A(B-s) (8+s)-

I 
has one rhp zero, and 0(s) is the "lowpass " weighting k(s+k)-l

k , 0. Then w(P) - w(8), and an optimal sequence of filters has the form s(s) = cm(s+6)(s+m)-l(s+n)
-

where m, nm = 1,2,..., are integers and cmAm
2
nm (k+8)

"I 
is a constant. The filters 4m(s) are "lead" net-

works whose bandwidth incerases with m, and which approach a "proportional plus derivative" form as m .

Our point here is not that minimax norms are better measures of cost than quadratic norms, but that
minimax norms have the following advantages: (1) their multiplicative property makes them amenable to
studies of plant uncertainty; (2) they enable us to design filters which perform well over sets* of distur-
bances of imprecisely known power spectra; (3) the resulting optimal filters have a remarkable resemblance
to the lead-lag filters of classical control theory.

*There is a 1:1 correspondence between weighted seminorms and convex, balanced, absorbing sets of functions
in a Banach space.
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M.TLIVARIABLE SYSTEMS

Our objectives here are: firstly, to show again that optimal sensitivity is limited by the presence of
heavily weighted rhp zeros; secondly, to show that sensitivity can be made arbitrarily small, by a sequence
of filters of increasing bandwidth for which formulas are given, provided the plant matrix determinant does
not vanish in the rhp, and does not decrease too quickly at high frequencies.

H 
N 

denotes the algebra of NXN matrices whose entries lie in H-
. 

The norm of any PJo) CH is the

largest singular value of(jW), denoted by sup OEP(jw)]. (i.e., largest eigenvalue of P(jw)*P(jw)). The
algebra of systems with H frequency responses is denoted by ]H;

.

A fixed, strictly proper, scalar weighting filter w(-)c H is assumed to be given, and the multiplica-
tive seminorm II1PW - sup o[0(jw)P(jw)) is defined.

We again conclude that the measure of singularity satisfies p(P)> w(so) , so being any rhp zero of
det P(s).

THEOREM If det A(s) # 0 for Re(s) >0, and Io[p(s)]1> clsl -
k for Isl >p , where c >0, p>0, and k - 1,2....

are constants, the sensitivity 11(l + PF)-111 can be made smaller than any E >0 by the compensator.
On(s) = P-l(s) n(s+n)-llk+l ,n being a sufdiciently large integer.

DISTURBANCE ATTENUATION UNDER PLANT UNCERTAINTY

Two opposing tendencies can be found in most feedback systems. On the one hand, to the extent that
feedback reduces sensitivity it reduces the need for plant identification. On the other hand, the less in-
formation is available about the plant, the less possible it is to select a feedback to reduce sensitivity.
The balance between these tendencies establishes a maximum to the amount of tolerable plant uncertainty and,
equivalently, a minimum to the amount of identification needed.

It can be argued that the search for such a minimum should be basic to the theory of adaptive systems.
Actually, even the existence of such a minimum appears not to have been stated, perhaps because plant un-
certainty is so difficult to study in the WHK framework in the absence of the multiplicative properties, and
because there is no notion of optimality in the classical setup.

Here, we would like to take a step in the direction of articulating these issues, by defining the trade-
off between minimal sensitivity and plant uncertainty and deducing its simpler properties. Sensitivity to
disturbances will be considered in this section, and to plant uncertainty in the next.

Uncertainty in a plant P E Bs can be described by stating P is an unknown element of some prescribed
"ball" of plants, denoted by b(Pi,6), centred at some nominal plant P1 , and of radius 6 > 0, i.e., 1PI-Pli <6.
For example, for a frequency-response P(jw) this means that P(jw) lies in a band of radius 6 centred around
0l(jw). This description of uncertainty may be cruder than a probabilistic one, but has the pragmatic advan-
tage of being tractable under the nonlinear feedback transformation.

Let I-IIW be a given multiplicative seminorm. If the plant is in the ball b(P1 ,6), we define the optimal
sensitivity under plant uncertainty to be

6(Pl,6) = inf sup 11 (1 + PF)-W
F PEb(P1,6)

the inf being over all F Elks that maintain c.l. stability; i.e., n is the optimized worst-case sensitivity.
We obtain the following result.

THEOREM For any nominal plant P1 E
3
Bs and radius of uncertainty 6 > 0, the optimal sensitivity n(Pi,6) is

a monotone nondecreasing function of 6, which approaches the singularity measure p(PI) as 6 - 0, and equals
1111w  for 6 - UP111w .

In other words, the less information we have about P, the less we are able to design a feedback to
attenuate disturbances.

I 1p --

AI(I~) I!
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FILTERING OF PLANT UNCERTAINTY: INVARIANT SCHEMES

Finally, we turn tothe problem of a plant P in a ball b(P1 ,6) of uncertainty of radius 6 0 centred
at a nominal value P1, and consider feedbacks that shrink the uncertainty. Any linear feedback arrangement
for a plant that has only one (possibly multivariable) accessible input can be parameterized by two opera-
tors (F, R) as shown in the following flow-graph.

1U U 
V P 

y

Fig. 2

of course, uncertainty can be reduced to zero by disconnecting the input u from the system, but then
Pl, is also transformed into zero. Clearly, the problem is trivial unless there is a normalization or con-
straint on the control law that transforms P1 into a closed-loop system.

We would prefer as far as possible to separate the reduction of uncertainty from the transformation of
Pl, and therefore seek a definition of uncertainty which is independent of the eventual closed-loop system.

If Pl were a real number, uncertainty could be normalized by specifying it as a percentage of the nomi-
nal value. This possibility is not open for noninvertible plants. Instead, we achieve a normalized defi-
nition of uncertainty by employing the device of a "plant-invariant scheme": i.e., a scheme which leaves
the nominal plant invariant but shrinks the radius of uncertainty. Such a scheme is shown to be always
realizable in the form of the following "model reference scheme":

d

Vl

Fig. 3

This device also enables us to separate the design process into two consecutive stages: (1) reduction
of uncertainty, and (2) transformation of the nominal plant into a nominal c.l. system. (cf. the separation
into estimation and control stages in Kalman filtering.)

Suppose, then, that the feedback scheme is (normalized by being) plant invariant, and for simplicity
here say that R = 0. Let 1f*.1W be a given multiplicative seminorm.

For a plant P in a ball of uncertainty b(P1 ,6) the optimal sensitivity to plant perturbations is defined

to be

.(Pi,6) = inf sup IIP(I + FP)- P 1(1 +
F PEb(P ,6)

THEOREM For any nominal plant P1 in IS , the infimal sensitivity to plant perturbations v(Pl,6) is a mono-
tone nondecreasing function of 6 > 0. v(PI,S) satisfies the upper bound conditions v(Pl,6) < n(Pl,6) and
lim v(Pi,6) < w(PI) .

Again, there is a tradeoff between uncertainty about the plant and sensitivity reduction achievable by
feedback.
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or -c' 'n'sfurC an of P, whtere it, fact both are now finite. Both (l-PQI I

- t,. I Iof --.,m ml, r,;. TI,, normn and (I - TIQI must there fore be bouinded and analytic

'lylo t rt~.rilc t-vnl: ; pot: d-0is1-tilll to be in Re (s( 0, and therefore stable, i.e., Cl is true.
;U c u..under tti s norm, thi-aqe

er Pfsal-' freqenc repne isclettoIa Observe that under C2, Q has precisely m zeros

or)'d- r -', and dennted by it" . It can be

"othat thie It" norm can be found from th.' magti ieairna- ihig
tsj I,.(5 alonq the jw-axis, i.e., lIdl = suar:Gljt(. ei eairler-;Wihig

Th'., stri-,ty proper freque ncy res)'orises in 1F form Some notation for limiting the growth or 0i.-

a soiba Iqebrd denofod by It. cay of frequency responses as s -. will be adopted.

it wll i~su~d hrocitiut hat ~s)and Notation A frequency rest onse 07 is of inferior order

Itwil ;. asmi hrtuhu -that F(~(s) ad 0)-I) at -~, Z1- 0, itt for some R > 0,

rt I dleot icial1ly r-qua to - 1 (which will1 certainly JG(s) 4 Cotstls (2.4)

ril iftic ar) Fs) re tritly(roer). Tis for Is I 'F e (s) 5: 0. The statement that,0 is in
a, ;,ml tioni '-osur' s that- all1 the inv('rsesl ini (2. 1l)are 11t

s 1-1definedt tretuoncy restOrseS. Furthermore, it (U -4- I Ftmeans t at (1 + S( G (s) is in If

-It I1- 1! um'-d that P(s) is the sumi of .ini If tNX- .The Problem
iti i *l ropeor rati,)isa) function ),o that N'.-) is;

r) it,) atF,(,) (has at most a finite number of T),e mxi objeetive oft this taper is to salve

,lzer's i n FeM (5 0. t), fol lowintI -robl-,ms- Supp1 ose that the 1lant P Is)

and) a weiqIlitinq W (s() are, fixed, (rro)-or frequency

I. -, in,'l th,.-reliy '-ir';a stal ''lei'si'tii This strictly (0')" r F~s) into -i strict ly 'rpr l,'(
tr-i,> ft.t,jtl,.,.-s,- irjtr-,duc-d in, Ill for -a,th- al,, vice versa.

I nt. ind' is .-xt,-nd,l li-ri, tLo un,;fal,e plant s. Dtt
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in Re(s) 1 0, and a proper rational function; P(s) B

has poes, l-aq' nd zers, il .. bLet H denote the algebra of functions G(s)has q poles, a1 ,...aq , and r zeros, bl,...br , n which are analytic in Re(s) >0 and bounded on every

Re(s) >0, (q, r, finite), each enumerated accord- half-disc, Isl <R, Re(s) > 0, of finite radius R >0.
ing to its multiplicity; no poles or zeros on the o
3w-axis; and P(s) has inferior order 0(-k) at - Problem 20 Find a(not necessarily proper) Q in

H to minimize (2.6) subject to the constraint that
2) W(s) is in H is continuous in Re(s) 10, B B

has norm 11 A e 1, has no zeros in Re(s) r 0, and I C3 (i - PQ)P is in H (Note:Q G H, (1 - PQ)E HS
of inferior order 0(-0) at -. PQ EHB')ofifro•rdrO-)a This problem is divorced from any consideration

Problem 1: Find a strictly proper feedback frequen- 
of F.

cy response F(s) to minimize

IIW(l + PF) II (2.5)
III. ALLOWABLE SENSITIVITIES AND

subject to the constraint that the CL matrix (2.1) FEEDBACKS: INTERPOLATION CONSTRAINTS
is stable. As the value of (2.5) is identical to
that of The optimization problems 2 and 20 will be

Il - PQ))) (2.6) transFormed here into optimal interpolation problems.

an equivalent problem, which is easier to solve be- In partucular, the constraints C2-C3 on Q will be

cause (2.6) is affine in Q whereas (2.5) is non-

linear in F, is: Problem 2. Find a stable strictly Suppose that P and W are fixed as in Sect. 2C
proper Q in H, to minimize (2.6), subject to the and Q(s) is in H

B
. We shall wish to characterize

constraint that Q stabilize the CL system, i.e.,
that conditions Cl or C2 hold. those Q(s) for which P(s)Q(s) is in H

E
, and observe

that there are three equivalent ways of character-
The expression (2.5-2.6) will be called the izing Q(s).

sensitivity. The optimal sensitivity, denoted by 1) Q(s) has zeros at the poles of P(s) in
P(P), is defined by either one of the equivalent Re(s) > 0, taking into account their multiplicities;
expressions

1(P) 
= 

inf nWU + PF)-III (2.7) 2) Q(s) satisfies the interpolation constraints

F Q(s) - 0, dQ/ds ,..., (d/ds)m-I Q0 (3.1)

= inf IIW(l - PQ)lI (2.8) at each distinct pole of P(s) jf multiplicity m in
Q Re(s) > 0;

2) the ratio Q~s)/Bp(S) is in H , where

where the infima are taken over all strictly proper P

frequency responses F, or over all Q in HO satisfy- q ai - s
ing the constraints Cl or C2. B (s) = -i( -) (3.2)

i
Remarks

(recall that al,...,a are the Re(s) >0 poles of
W generates an auxiliary norm 11 II. on the alge- PIs).) q

bra of stable frequency responses, defined by
(dl A jiwdi, and our object therefore is to minimize A rational function of the form (3.2) is called
this auxiliary norm of the sensitivity function, a Blaschke product. In Engineering terminology, a
11(l + Pr)-l W . The auxiliary norm has the "multi- frequency response is called allpass if its magni-
plicative" properties, tude is constant a.e. on the Jw-axis. As B (jw)= 1,

IG 2 1 H IG It G2 iW IG1G2 I G I IG21 (2.9) Blaschke products are allpass.

It was pointed out in I1l that inequalities (2.9) Constraints induced by RHP Plant Poles
are important in the study of plant perturbations or
plant uncertainty, but are not valid for the quad- A (possibly improper) frequency response Q(s)

ratic norms used in LQG methods. One of our main in H
B 

satisfies the condition C3 for the CL system

reasons for pursuing the presented weighted-H to be in HB iff [1 - P(s)Q(s))-has zeros at the MIP
approach is that it can be extended to problems of poles of P(s), taking into account their multiplici-
plant uncertainty, along the lines of [11, although ties. There are, again, several equivalent ways of
plant uncertainty will not be considered here. expressing C3, namely

1) Q satisfies the interpolation constraints
2E. Relaxation of Propriety

(I - P(a)Q(a)) = 0

The optimization problem is simplified if the (3.3a)
propriety constraints on Q and the other CL responses (d/ds)m-l 1 - PQ] = 0 at s = a
of the matrix (2.2) are relaxed. It will be conven-
ient initially to solve the simpler problem (in at each RHP pole a of P(s) of multiplicity m.
Sect. 4), and later in (Sec. 5) to modify the im-
proper solution obtained for Q, by inserting some 2) A compact way of expressing (3.3a) is to
high frequency attenuation, and so obtain a family say that B divides (1 - PQ) in HB, i.e.,p
of strictly proper solutions to the original problem. -1 B
The relaxed problem is defined as follows. (1 - PQ)B 1 C (3.3b)
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as an extreme case of the former.
or that

3) W(l - PQ)B
- 1
E H

B  
(3.3c) The minimal sensitivity w(P) can be interpretedP as a measure of the constrained singularity of P.
-l

(3.3c) is equivalent to (3.3b) because 
W and W are

in H
B, 

the latter because W(s) has no zeros inRe~s) 0.IV IMPROPER MINIMIZATION
Re (s) ? 0.

The conditions for stable Q(s) to stabilize We turn now to the optimization problem 20, of

P(s), namely Cl-C2, are equivalent to the require- finding the minimum

ment that the expression in (3.3b) be in H- or that p (P) = inf {114 : X - W(l - PQ)) (4.1)
(3.3a) hold.
3I1. Prop Suppose there exists a function Qo(s) in under the relaxed constraint that Q(s) is a possibly
H° which stabilizes P(s); then improper function in H

B 
which satisfies the plant-

H c spole constraints (3.3). (Equivalently, Q is in l).

a)Qo(S) can be expressed in the form Qo(s)_= Here, P(s) and W(s) are the fixed functions definec
QA (s)Bp (s), where QoA is in HO; in Sect. II, and it will be assumed that P(s) is... P Aeither strictly proper or has at least one RHP zero.

b) The functions Q in H which stabilize P(s) are
those and ony those which have the form X can be minimized first, subject to (3.7), and

2 Q (382 the optimal Q calculated second by (3.6). Furthermore,
Q = Bp oA + pQ1  as 11X = IIXB- II, the minimization of X can be accom-

where Q1 is in H0. plished by minimizing XB 
1 

and multiplying the re-
sult by B

c) More generally, the functions Q(s) in H
B 

for which
__ is in HPte(orH are those and only Lemma 1 (a) There Ls a uniue weighted sensitivity

those which can be expressed in the form (3.4), with function x , W(l - P) in H of minimum norm. The
Ql( in H

B 
(and such-that P(s)c(s) is proper). necessary and sufficient conditions for X to be that

function are that X satisfy the interpolation con-
Remark There is a connection between Proposition straints (3.7), and have the (allpass) form
3A1 and Theorem 3 of [71, which is elaborated in the m ci - s q a. - s
original report. X(s) = D fl (F--) H ( + 1 ) (4.2)

i.l I j 1

3B. Constraints Added by RIP Plant Zeros
in which Re(c.) 4 0, D is a constant satisfying

We are interested in optimizing the weighted T6T-7-I-i, and m=r-l.
sensitivity fu-ction W(l - PQ) which will be denoted (b) Theoptimal 0 is P-1(1 - w

-
1 i), and belongs

by X and is related to Q by the equations to ( o i s)k s-Ha
. 

-l

X = Wl - PQ) (3.5) (c) If the plant P(s) and weighting W(s) have con-

Q = P- (1 - W
- 

X) (3.6) jugate symmetry, then so do X and 0, and the co-
B efficients in (4.2) are real or occur in conjugate

Let Q denote the set of those Q(s) in H that pairs.
satisfy the pole constraints (3.3) and for which WPQ
is proper. If Q is in Q and X is given by (3.5),
then it follows from (3.3) and the propriety of WPQ V. MINIMIZATION OVER STRICTLY PROPER Q
that both X and XB-

1 
are in H'

. 
From (3.5) it is

clear tnat X must satisfy the following plant-zero Suppose that P(s) and W(s) are fixed as in Sect
interpolation constraints; 2C, but will be assumed to have conjugate symmetry.

Q(s) and X(s) are the extrema specified in Lemma I.
X(b) N(b) and Q (s) is any function in HO representing a

(3.7) strictly proper feedback that stabilizes P(s). Let
(d/ds)m-1 X (d/ds)m-Iw at s s b )n(S), n = 1,2. be defined in one of two ways:

at each distinct plant zero b of multiplicity m. Case 1. if W(s) is strictly proper,
Qn() Q s)+ (Q-Qo) (s)([n(s +n)-l k + +l  

(5.1)

Remarks on Stabilization and Desensitization vs.

Inversion Case 2. If W(s) is proper, and

To achieve a small sensitivity WU1 - PQ), PQ Ii , 0 IW(s)JA
I
W(-')

]  
Ii(Jw)I, then

must be close to 1, i.e., Q must act as an approxi- Xm Bz I- R ( 0

mate inverse of P subject to the plant-pole con-
straints (3.3). Now (3.3a) means that only those (a) X(s) - 8z(s 7 X(-)-W(-)
approximate inverses are allowed which are exact at , A (5.2a)
the RHP poles of P(s). Equivalently, sensitivity is Bz(-)X(-)
made small subject to the constraint that it is zero
at the plant poles. From this viewpoint, the prob- Oln(S)A P (s)[1 - Xln (S)w-(s)] (5.2b)
lems of sensitivity reduction and stabilization by
feedback are related, and the latter can be viewed
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Qn(s)A Dos + 
1
In (S)1 a [M(S +mn)-ljk+t (5.2c) problem falls on the calculation of the factor of

(4.2),

where, for any n , 0, mn >0 is a sufficiently large r-i c. - s
integer. X(s) - D l (- 1 (5.10)

B (s) i1 8i+s
In either case, the corresponding sequence of P

feedbacks is given by the fractional transformation whose coefficients are not known priori.

Fn(s) = Qn(s)(l - P(S)Qn s)] (5.3)

Assumption (For simplicity) suppose the plant zeros
If the numerator and denominator of (5.3) are divid- bi are distinct.
ed by BDI(s), (5.3) can also be written as

- l - l)-l By Lemma 1, XBp is unique, and by Prop. 3B1 is
n() Q (s)6 (s)(11 - P(s)Qn(s)]B (s)) determined by the interpolation constraints (3.7),

(5.4) which take the form of r equations

Theorem 1 The functions Qn(s) defined by (5.1) in X(b() r-l c - b
) I D =1 6.1 (5.11)Cse i1, or (5.2) in Case 2, are (strictly proper) in B (b.) c + 

b
H0, stabilize P(s), and are optimal in the sense of
producing sensitivities approaching the infimal where Oj A W(bI)/Bp(bj) are complex constants de-
value u(P), i.e., pending on the values of the weighting W(s) at the

RHP plant zeros, and the location of the plant poles
lim IW(l - PQn1) = i(P) (5.5) in relation to these zeros.
nn

VI EXPLICIT FORMULAS: FEW RHP ZEROS
Similarly the feedbacks FnCs) are in Ho and optimal,
i.e. n6A. One RPN Plant-Zero The results here are similar

SnP)_ P to those of (1), and are omitted from the sumtmary.lim l)W(1 + FP )= j(P) (5.6)

n- 6B. Two RHP Plant Zeros

Moreover, jj(P) = lix. In this case, P(s) =(b I - s)(b 2 - s) l
+ s) (b- + s)P 3 (s)Ba (a)

5A. Bounds on the Minimal Sensitivity where bi, i = 1,2, are real or occur in conjugate
pairs, and Re(bi) >0. Here r = 2. By Lemma 1, the

5AI Prop. a) p(P) max IW(bi)BpI(bi) I (5.7) minimal weighted sensitivity function X must have
i the form

max W(b i (5.8) X(s)B- (s) = D(c - s)(c + s)
-  (6.1

i and the interpolation constraints are
assuming P is unstable, i.e., B * 1, in (5.8).

P (c - b)
b) If P1 and P2 are plants with identical D (c + b )  i, i = 1,2. (6.2)

RHP zeros, P1 is stable, and P2 has poles in the RHp,
then 4(P 2) ' I(P )

If D is eliminated from the pair of equations (6.2),
a quadratic equation is obtained for c, only one ofRemark: It follows from (5.8-5.7) that small sensi- whose solutions lies in Re(s) a0, namely,

tivity can not be achieved if there are zeros in any
heavily weighted part of the RHP, or poles anywhere (b - b ) /8 + 1
near these zeros (since Bp(bi) is smallest near the c 2 1 /82 1
RHP poles of P(s)). Prop 5Al shows that the inser- 2 -el
tion of unstable poles in Re(s) > 0 into an other-

wise stable system always deteriorates the achiev- (b2 _ h 2 ( )2 2
able optimal sensitivity. + b b (6.3

5B Determination of X and If D is expressed in terms of c using (6.2) and
(6.3), there results

The plant P(s) can be expressed uniquely as the
product 82- 81A (b + b

PD) -

= z P '''P ls), (59) 2 - 1  2
consisting of the two Blaschke products Bz(s) and a2-O 2 -2 + b
Bp(a) determined by the Re(s) > 0 plant zeros and - sgn 1-26
poles respectively, and a factor Pl(s) which is
always in H. The burden of the optimization



from which it follows that since v(t') = uthe that assume the value 0 at b, and the set of allpass
minimal sensitivity is functions xl(s) of norm I (whose value at b is

arbitrary) . This property of (7.2),. toqether with

ib ~the res-ult of Lemma 1 that the smallest Yr function
1 02 - a1 b2 + bll sat isfyinq an interpolation constraint is a unique-

- l2  b 2 alll~dss function, i.e., a Balscbke produce, immedi-
1 2 - bliately yield thle following.

02 K 0 2 (6.5)
lb1 b 1 7.1 prop If the smallest H' function assuming the A.

4 i2 1 values (0 ,...0 r) at the r points* (b1 ... .br is
X(s) and Lis norm IMl, then the smallest H~' f-inction

(In the language of (1], (6.51 is the measure of assuming the transformed values
singularity of P.) [U 1 (02 ), U 1(0 3 ).... U1 (0r)"U U1 4,U ~ at the

It can be deduced from (6.5), after some mtani- (r-1) points (b 2 .. br) also has norm IMl and is,
pulations, that pIP) lmax(10 1 1,10 2 ) in conformity uniqely (UW )
with Prop. 'SAl-a. uiel, UXIs

If we assume that B3 (s) =1, then the optimal Prop 7.1 offer.5 the possibility of reducing any

improper Qis P If minimization problem involving r constraints to a
probilem involving (r-1) new constraints. If this

lb s) lb ±reduction is repeated r Times, all constraints are
1) Il- c - S) 1 2 removed, and a constant of norm IMl remains. Let us
Wis)(c + s) (l -s)(b 2 s detail this procedure.

if W~s) is th-2 "lowpass" weighting K( + K)' 11Bea that XBpis the function of smallest
K 1 0, thenH norm assuming the constraint values 01 ... Or at

the points b1, ... .br in Re(s) > 0. Let M be a com-
Q~si lb sll + )plex constant of magnitude lx10, and angle to be

I s )(,+S( 2 +sdetermined. Consider an iteration on the constraint
K(c + Si set, as follows. Denote the initial constraints by

{o) i.e.,

which is a lead-type function with an extra "break". (0

I , r = {l...eld
VII EXPLICIT FORMULAS: MANY RHiP ZERO)S

For any i >, 1, if the (i Ist constraint set has

The r simultaneous equations (5.11) for the the form
coefficients c. can be solved by a method based on (i-lI x(i-i) x(i-lI
tole Schur-Pick!INevanlinna Theory (See Walsh [2, Ch. [x i+l r leth - cnrat

1'I1 for anl .- xposition) set be

{xIi), Ii) ... Ci) I i) (i-l), TCi) (i-i)
i+1 i+2 r T~ i+2

Le~t M be fixed, and for any 161 M let U0 :H +H Wi il
denote the mapping x 1 u satisfying the equation T x

___________ Cr

U(S) = M f(s) - 01 (7.1) where T Wdenotes the transformation
M2 - 6XS

(7.1) maps the (solid) ball of radius M1 of tI' in- IT Mx1Cs) 4, 1 1
to itself, and the set of ailpass functions of norm N

2  
TCi (S) b -

HMI into itself. Moreover, if x(s( satisfies an xi )
int, rpolation constraint x(h) = e, then u(s) has a We have the following main result

(7.1) is now modified by division by (b-sI (b+s) Term2 a aisisteeuto

thereby removing the zero atbwtotinraeo T ()T . T ( 1(b r) ' M (7.3)
norm, to obtain the transformation u Ft h: 11 r-
x1. which satisfies 0h(which, after evaluation, yields an algebraic equa-

M~ [~s)- 01 lh-tion in the single variable M).

x Ms _----- lb -~s S).) b) The optimal sensitivity function X is

W - 0ti~s)determined explicitly by the equation
17.21 still - q thle I - ball of If into itself. (l) 1l (2) -1 CW -1
It also !stal, hes a 1:1 correspnundencn. between i~)=Bp s( I-T I- T I (M

the! set of all allp'ass functions ti(s) of norm Ml

*Where Re bi >0
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spond to disturbance having not one but a variety of
where T )

I  
satisfies power spectra. Low frequency disturbances, which

2 must be attenuated, occur most often. However, even
T M Mx(s)+xi 1](b - s) very high frequency disturbances appear occasionally,

(s) = and response to them must be limited, even though
[M 2 il)xs)](b + a) attenuation may be impractical. This situation is

tailor-made for an H' description.
i = 1,2,...r.

Suppose that disturbance spectra can be arbi-
trary subject to the upper bound Id(j)Jl I Jw(jw)l,

VIII COMPARISON WITH WIENER-NOPF where

QUADRATIC MINIMIZATION 0 3,
W .1b =3 lb 1/3

The well known Wiener-Hopf quadratic minimiza- W(s) = 0.lb + s = 2= )
tion method, e.g. in Youla et al. [61, provides the
optimal feedback for disturbances of fixed power The weighting here is substantial for frequencies
spectrum. smaller than b , (IW(jw)I > 0.707 for lorE [0,0.lb])

then drops off quite rapidly, but never falls belowIn Fig. 1, let d be a disturbance obtained by the lower bound 3 = 1/20. The optimal unweighted

passing unit variance white noise through the tensitiityouncti f Th pbl obtaied
filter W(s). The mean-square value of the output y sensitivity function for this problem, obtained as
isin Sect. 6A, isis0.1b + s 3

1 X(j.) I8 (1 - 6)- W(kl)/W(s)= 0.077 (b
2- X dw (8.1 .

and is illustrated in Fig. 3.

and the Wiener-Hopf objective is to minimize (8.1) Although there is no completely satisfactory
subject to the constraint that F stabilizes the CL description of this problem in H

2
, a widely used

system. current approach is to design X as though |W (s)

2 were a fixed poewr spectrum.2 Strictly speaking thisIntroduce the Hardy space H of functions G(s) is possible only if W(jw) H , i.e., if & = 0. In
which are analytic in Re(s) >0 and for which the that case r = 1 in (8.2), &(s) is a constant, and on
norm is lid!2 -SPo>0[f IG(o+j)1

2 
d.]I/2, This matching interpolation constraints, the result

norm can be shown to be computable on the jw-axis, - (b) ( = p (8.3)
and lC d2 = (1, G(ji) 2 d,1)1/

2
. s+b s+b

is obtained. The unweighted sensitivity function is
The Wiener-Hopf problem is equivalent to the greater by a factor of nearly two over all frequen-

The ienr-Hpf robem s euivlen tothe cies of importance than in the H- case. if ~ 10,problem of minimizing the H
2 

norm of the weighted Nis c anbeapxmt in a dis i sensesensitivity function X, with the same constraints W(s) can be approximated in a distributional sense

as in Prop 3B1, and can be solved by the same method by a sequence of H
2 

functions, and the result (8.3)
as te H prolem Th reslt s tat ter s a and conclusion still hold in the limit, as shown inas the H problem. The result is that ther is a Fig. 3.

unique weighted sensitivity function X in H of 2
minimum norm, which is characterized by the formula* Remark. The H method forces the integral-squared

value of the unweighted sensitivity function to be
s 0(s) q a -s small over high frequencies (i.e., over (b, ))

X~s) 1 (8.2) where in fact the integral is of no consequence (in-
=l (bi s) j=l deed, in practice can not be finite, as PO isstrictly proper), and where in reality it is enough

where *(s) is a polynomial of degree < r, which is to maintain an upper-bound on that unweighted sensi-
uniquely determined by the plant-zero interpolation tivity function. This gratuitous reduction comes
constraints (3.7). *(s) can be computed, e.g., by at the expense of the sensitivity at all frequencies
the Lagrange interpolation formula. (Eq. (8.2) is of importance.
equivalent to (41) of [6].)

8A. n E _am I 88. Conclusions

If the disturbance power-spectrum exactly equals
Let us consider a representative servo problem IW(jw) , quadratic optimization gives the best sen-

involvin? a single RHP plant zero, and compare the sitivity function. However, this sensitivity func-
H- and H solutions. tion can be quite poor for other spectra, even with-

in the passband of W(jw). For example, it is poor
As RHP plant poles affect both solutions similar- for a disturbance whose power is concentrated in a

ly (cf. (8.2) and (4.2)), the plant will be assumed narrow band around the frequency of the peak in
stable. Suppose that Fig. 3.

P(s)=(b-s)(b+s)
-I 

Pl(s), b> 0, p E H. For plants with conjugate sy metry.

Typically, servomechanisms must be able to re-
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[10] D.G. Luenberger, Optimization by vector space

Of course, neither the H nor the quadratic methods, Wiley, New York, 1969.

solutions presented here consider practical issues
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H formulation appears better able to cope with those
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mechanisms are (and as opposed, say, to single-
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ACKNOWLEDGEMENTS

The authors are indebted to R.W. Helton for
introducing them to the literature on the Schur-Pick
algorithm.

This research was supported by the National
Science and Engineering Research Council of Canada
(G.Z.), and the National Science Foundation (U.S.A.)

Grant No. ECS-80-12-565 (B.A.F.).

REFERENCES

[11 G. Zames, "Feedback and optimal sensitivity:
Model reference transformations, multiplicative
seminorms, and approximate inverses", Proc. 17th
Allerton Conf., Oct. 1979, pp. 744-752; also in
IEEE Trans. Automatic Control, Vol. AC-26, No.
2, April 1981, pp. 301-320.

(2) J.L. Walsh, Interpolation and approximation by
rational functions in the complex domain, AMS

Colloq, Publ., Provienc, 1935.

131 W.W. Rogosinski and H.S. Shapiro, "On certain
extremum problems for analytic functions", Acta
Math., Vol. 90, 1953, pp. 287-318.

(4] W.L. Duren, Theory of H spaces, Academic Press,
New York, 1970.

[51 P.J. Koosis, Introduction to H
P 

spaces,
Cambridge University Press, London Math. Soc.
Lecture Note Series No. 40, 1980.



B

SELECTIVE BIBLIOGRAPHY

lhis Bibliography with Abstracts has been prepared to
support AGARD Lecture Series No. 117 by the Scientific
and 'Technical lnfoniation Branch of the U.S. National
Aeronautics and Space Administration, Washington, D.C.,
in consultation with the Lecture Series director, Dr R.E.Pope,
of the Honeywell Systems and Research Center, Minneapolis,
Minnesota.

iA



a o c c ae 4 1,L I. - 0.' - 6 a u (0
a W0- 0 C- 40 c aisZ .is ,.>!e

-. 6. 4L i -0-LS 0 - a >o ~~ ~ f 4)o a ao mwse * I- 4 -s >

CE> ao -UC.N. is.! >--l. E O

is-0QL0-0 is C M Ct(Qo-Lis. >t)s0insUs'A 5 is 'I

0 ~ Cic C. U ,c EC Z WV isi 0> r 4 > , > *- 0 to D fu 4-oo
- C a)C -c -C-O -G.iC - M w U0 E -7 i f) 4J0 0ifl L CO

U-i~ Ois U F 00.X- x -Ou jvc 0 .90E C" L 0- L 0 E .'
a a0.a - *-- V V 3 0 >OG >- u- L is -lt fliu 0 O

US!OC 0 0 -W doi - 10C Esis3s..'Q 40 90I *sLi 1V 13- C C> z in z 0 c 0'): C~ii0 D 00.D cisaQ C - D V L c0L>i
i Q C--- U4 ID- aC LC-VQU VIDN to 0 - 0 -LVO-)>0 A)L

M>i a- zs-J Ml >l i- C ZW-# 9. - O .- is: a uis f
'.-f sfi 0 cLU -n£z u - ciim m sO , .- -0> L- 0 D> 41c I

U)s L.- C L 4 ljo ) 0 ot GD-i M-is 0 M ~ iL M L 41 M41 r 0LG6
'D 0- L aU E isris " G- - C -C Q U '-. o 0sc - F! - '40 . is x

"0 -. a 0 - 10fx 0 4 . 00 0-ir- O- . ',00 j 0 !) -DCic: -;U0C
JO- L4L GoV 10 0 ) w xI -0£ -i m~ -'- LG - LG-J.- 0E 0
is-.-.- C -GDcW).L > 3isE-isis-Cc -- L s L.._'V 0 10 .L U E-G _ a U

:3 Vi -. C) fl- -. -C a ID :3:3 ML M 0 - C-- Mii M C L..'DC >.-

a ? 0 ? ~ >i W-LD i If~si-> Ei iu C a-GD -' U- -C1
U- i-' UWC- -00Iw0n > 0 .'-isOto s V)C c~ is 3 -. >

L'--i U C'i - >> - fr i £ ~-C. L .- is is -)t ; 3 > C -0.- - -
4)isi C ~ 0 -4Cc0- .' O0- . -fl- CCW -1 is M C~l

is miC - ~ 's C4c01 - 0 u ?)a:; - E -isisM> (> .0'- OE .3- -ia i>
41i'- M m u -'-O W U- L>OC c - GD>- IOG VV Dc-Im-is )

L > V) Cn C 0 L - C - L 0 C - C -0 m L Dm 4000 . 3u ) >zE .

ms .-0 a0 is, a 9a o a 0E D3

0 C c u 0* a'. a u L >LU )0 0> L t
is 0 E CU: is 0. - 1D5 is C () T C

- isO V -. C~O.'A is 0 D I ii
CCL is E'is' >-- a mi U n U Lis

is_ >0 EC a- C0 L 0V, is 0- > C -L 0 (
is~~ ~~~ 0 3 is -' 0 LI > i . is " - C

2c -L -> G~L W 5CC -CC 0,V L - 4 C CO OI WCisac n0> a 1 >4)L
* -o .- .- .Lj Co- 0)u( U 3: .L aCL0._ i 3is0 0 a Lsisc ;4V0 0 .4

W L4 VGD- -3 4 MsA --- 'LisatE.) - U Z E Cs DCCU 0i- u U - +V in ' Cc-I U

- OC i* 4 0 000) 0-.' Os>- Lo f£-C0C is..'
>C -Lisi :3 0- -C U - tCo CC10is GD to 0 -esC a).Cm.
is D~iC 3 C C 4- -C a Ois>Lis.'C0'is. - m.

V) Ca.' O C O -- m-5. C L0 aGIDC ML -3 is4- u w
-0 0)- i i C - s - (. - -s a .- . 0 C 0 t is-- .O 0'4-'

oc Xis--.o 0 :3 ;k-i 0is sLU C .

0 0iO -i )C- 0 U~s 3- L 0 0fL V) L .0'L- CG m 0 0 - i x4

Ls , " - N-CCLo EsL-2C04 U- 0ti0 Mi isr sQ is 0 4,- - 0-L Cl.
is C 3L U' m 0 4 c -3 C D 0-DE 0 LISL U 0 c-iw--0C r- -Lsi .- ' - - -~s. >- -o -- c>- o c- s

a 1 4 L3 nz V (ac ;. L- U C - 0.~- Cl -- ai i is -'C V OD u 154-o'o
> L-0- - iin Co 0-as. 0isL0 'U L L L isi C isi Cis E -CID3 '-L

3 0 'aisi -s~-- m I- >) C 0'41i>1C -- iO .qL-
U 3 1, rC-Z U _4 isD is -U Zc3 isi 0. i i 4C is- -uo- C

O CfLC Ois - 0 .isaWw -U Ess CC CC. LI-J C-*
EU CCOC. OD .. i- LU. *o t- ~ i~ m ,O - L4-'-aisC t m0

43 _ 0i-Ua m w w wc O 0C-lm- sw ED-a U0 00ias 0L t)4 M 0 C W E~
ap0 ELO U- C G .- ' )- - 1 E V0V- LC C-u E Oi -Qxr0 E
C 0 >"i F6L . L C E ~ is-GD 0 LL 0 .0i

- ~ ~ 4 Ct U) m.GD Uss *-is' 00 >0i "-I 0i U *C D
>~ ~~~~ as')0'CU LO >. u> D ss iOf~sO >. 0 -CO-mi

-1C -- 0 %is LL L'a inm isL m~Ls-- C W > c~U
0 -u -sC C C. :D z-- .f L~> C0 LL .0C0 *C'ia,

I C -3s 3 0 ' a u0c is - 0 M - l is ;L0 L ;L
u ('--is- 1- G-;L 0>i isl o E ) j4) 004 . 4 L 2C -L 0. isi iss.i msi m>-s 4 L _j15i aU C . ?L- LUG

0 - m-U-a- i O 4 -E UCI C- . to .s C a)OC 0 -s4.1 0 -C cL0f- C
.n ' G - -UU- 0o a u U~iUi 0--L- Ziui- 60 0

4 Q 4'CiiU''u LC----------------ac-uDU.c 0ss0~ MlOOUU C 0004L;C E

C CL '0 0- L I DL U
m- I- Wh - Inuc> :ut ) 00-D f :0W >M- -0 -C 1-
m lc4 4 U ID fo 00 L0 LE0 C rL-0

4 P M JO C - C . F V L3 a 9C M -c



B-2

L@ CL •

0- 0• 0- .... 4 ' 0 . C a C 3 0
aC >r LU - -- 'm C C U LC - C r, - 0 -U

Cc'L C '--.'- ---- - L o m V) mLn z m In a 4-
00 3 l- ,)> - L of-0 CO - ' L. Uf')W O E-) 4->0- 4
- -4•) 10 0 3 : -0, -LW 10 r , l.

W-- " ' t. 0-C r -- L 0 - 0 D C C ',0 0
) C DL 0 ') - 0 U -D " lf" V.-0U)1 C-6"

0)4 6- 0-.0L'' IfnUU)O c CLc ~ >. L- -0 A

U).-' -~- O~f: (- O4 - ? S U- " - - C-- 0 !Lr) *'- 0 U) M-LE *U 3L -A C - C. - L UL O.C-'13

L o - a-L>N - >, L-C) - L -) Q LO L 10, u0 - 0- alC 00L) -L0) W0 0 L - Dn j m c -- E - aoU w l--Nu 00D-
V o - o - o , E.m Go 0 E. 0 --- - a o - 3 E--

--C- L(OE -- U) V -Q E0 - C - . t-" • WQ C->-0 O L
In *- ) We'd-.- - oSCapLZ' LQ - L"C>- o. T (7) 0 CL0100 L r i
In X > Nd 0 ) O O C/0- C 0 aL E -0) 1- - , > .UC W C0U

- 1 - C C -- LC.U - B ]2 C SOLQ--50t U Lh-C SO' C'O -£ --1L

O- Vt C'ur .... >.--Ou -- C -550)) ' C E O Z *V-OV LO@C O

C - 0- E 0 L. . .a 0 , ) 4> 0 O W m C >-' C L0 Ul --,-w u .-0 0 - D -u-, : . m c T) > . >0 - 4 0cID -0 . N0
- -0 C >00 . W.? n L 0 wOL - d.0 U-in C U

C, C)- -
° - 

t-0 , U M 0 3 C -L 'CGD lO a) .0, S- 0 )C U .- uC >- :. CIt 0, 5 .41E. l-4ULT

O Q -00 -L D I-nS- tEL L ' 0 -- S fn C 0 CO - - >C 0 C4?o ( CW'ElV)CE@C S L L.0C Md-0 O.0. 4 C L 4 c - o0W -C 4 4 I> -- Cr U

> LU- V V - O O T.- 4 Q - 4 0' - o - -- C )

0 n 000 Q.'C- MEC 0 U) 0L -0 U) 0Q Do a -0n -W 1,) 0 - c
0 - LOV r -' _-C 0 ~ O 0 '-0 LC~ > E 3.U C)

0)uC wJ a5 _~~4 XO V> -Q0 C L- - S fl - Q 3-
0' fi u r-y- E-EU C) go0'~L 'U U) S E C ) -C 0 E C>'U U3.00 00C):6 L 0 1 )' 'IL *0 .. WO :3 XW 0)"D'U'Ua::Ux3Z SID a . L 0 1 CLC))- C )- M) .C -?0 La m C MI WC , Q) LU)CW IUUV m

L) Z0-.O 0- 0 0I-- MfV WL -- 0_CL0 5 C_ U VS U>!) -4)4)Da)

0U L - -CS.. ..... ... > ,>nI W 0 SLO M C J- x IlC . V"-V L 0- C U) - - in OJ 50 0Q -0 C '!.--US L)0- Z SC
0 a'SL)) S0 L CL S0 C W SL 0.- - *.-.-lflu fl v)-

C '-In ) C- V (-. Q U - 0 L - W OOVa C P i 50 -'U 0 ;0U'. C. 3"_
v) -3 -- U0 >''- .>>). C n 4)-(> >L o( U_ -'-C U , LUC !!--EE3.-L, ? C

Sc 0 C - C -0IC. 0 -:5.-.>Utt, C C ''SL LSEWL)WL L a- 0N ~ ~ ~ 4 m C00 L--'- GP) -op.' -n S 0'S'-W )-.'fU

E ,a- Dc N4aD o 11 0U0C )'' 0f-U S O - 0 , , . . -' O.> U U > S ) CE E 'S-e)0UfC~l- C L CC -. US-- >> L E D-40

0- C-4*. L - .'. - ) al )CCWC U- 0N.> LC O O C' 07 ' 0
0 m4On- W ') 0 0 U- aECYL Q E LC a - 1U0 DCXMC0 0 --4 -0D0 0 > 0U L L - C

0 40 4 4 4DE uCc .9 oqi M 4 EE0W Lt

C WU) to C)
0 - .- ;0) L - >a 0 U)C
- 0 C. COC '.. a6 *0 aU 0UN inE .;.-ZC ;-' 2 0 00 0. 10 W -' L'-'in 00) S)ENO
u'o 0W 0) 0 0)AC0c C 00> , -C- - U

t 0> - 00 L> SC-gO)t .U. 0- OILS 3- 1050 GoU)I -t
* 3 0.- WV C C C- :- -. CD--l- 0 C I-

0 - I. S )N C W.OS - 0m) 0U)-'n C C. * 0
D w. 04100 05a43 - Un) C-V. C 3 -101-SW 0 050)a
C. - a C M.Q u OE - 3 3f t- 0L C 4) inS -t r0 O- a -C C - U

0 U-' S ) , C S (030C eo -U lW 0 , -U L-)-UULC.4 -4 .>O 50 - ?20 -' 2. N- 0U 0 U)2. C-6

C o x )0C 4) S. L 0 -C u 4-t C E wC f-U L 40 0'-U,05 L0 0 1
0 L L GI S W - 411D 0)1 .- 0 0) .-a Go 0 0 QU. -60-E

D C- o>!- .C )L 0 00. -3.0Q0 L0- > >- 3 u -5000)0) 'U
aU . LO CSU) 0 - L 0-0)"" ) .->r CLO 0S0V- #-fi )m

- 0 '-U 0 -. > rSO0L > C CU) - o ;;() Z) IV> M5- D40 Ou
0)*C 0 , - 0 C L L O 0D -- C- 0 L. 0 3 C-o~~~L 0- 0)-5C 0- 'U- >))C m2S - 0 CC LSi 0

.0 C E(GC 0 Z- WMU.CE .0 L D> WU DlL -- M0 0 0.-l (1 a-SM 0U) 0 0 C
60ow SS O,0-'V I -o OCS -CL L. .. LQ? 0L 0 334-M''

a,-U (D-S0O S C). W5 U 0L)) C C .O uil)>.- >C CU lb
U SL- Do)0 u.-E0-U)EO _3041 SCuQcO u 0-E ---- S0--:CL

V) r CL- V 0 2>5m0 w410 5.) 0 0"u.- - W -,-(.- I.94 L -L C EL - - Ia ) m 4). M C L .- IDQC )5-. COD 4) ) -L L 3-'M - U ) 0C

-414-~~41flU)SSC 0 0 0 -0,~ #A)Q 0.- SS)
.4 -a: Q- 0 E m T cC 0 Lc2E 2 *- W 50 0 C -al- 50' 0 Ln0- 00o

-t j ..-. '0- WI41 55l(DC 4041. -.0 <u 10 0 M- u L L C<5W- 0 S~0 00 - C
54f- 4' L " L L U C 0)E V 10 m C C M'-Mm '041z0 0)E 0 L 00.3--

L0)V>0(t)3)0CC0U;3;0 0 IA r8;& V) U (o "-
05m C C 00 C (nLW.' 0.- z 500') a,4. -'0. a-, C in)G L E - : U
v1 toS V)C 0-;0)-C V; -0 >00- (C 410)- -- 0 C -10 413 in0 09

-) ..- r..'. 4100' .- L> L LL 0 W ' C .'LV- E OW
- 0 > C- ) 41UO Lo)- CU) (f 4 L - 0 U'U0 aSU E 1 V- W1CSmSUinU)WVC..9..

0 E 5000 3: '- 0 CL0W')- 0)2E C'M 0 0 0mS t 'C 3 - L - -0 C C
-0C -O WL a0OL CESM- L 0 0)0 W'.C'aS 5'-o U- L.- -UL S0
0L 0-0) CU)' W.-.- Sa L' 'S). CC C Q 'U.0 C C

M1' -U-- CE 0UC X~lU 0 0 )foCC- CoUd) L 4 IX - C 2 C 0. ~L (p-L- -l
ZUW 0 L-S 0 CO ZOcO C-S -e cJ40 LO 4.' INC
CZ0 C 00 0 d)- C 4)L - X-- ',. CI'Cd S> X C Sa- ob E0-SZ - 3 O C U 0 U
-LI'-0-L - MC Z C G-0 0 C0 -0S0 f--C OCL 0 _ ,,0C 0.30 L 0SLO L0 3

0 0 E C
-4 V) U X4U0 - L UE4 o D 1w W uE0Q 0-(



B-3

L 4-
a. L. LO C E a -C0 0 a 10 11 Cc 0 a> 4 - .- £VU 0 .

-~~~ U6 49 - 7;~ C - L99 D 9 .10L-1 3 C0 0 >0 E- .9 U-- * 0 9L~ M LO C CO 8-!
O 0 c Co 0 - - -o - 00 900C-( I-'A>I - c' *".4'-0 O. -~ L

10 C, v 0O -- > 0 10 Q -. 9f 090 U O-3l0
-0 0l C 6 -0 - 00?0 90 a9L L 919-O O4C CO O 0ZO -C 0 £9-"0 01 0 & L c 0 00~ 0 m 0, " -!.-90 W999 a

0 N 0) 9 0 -0 V 10 to ."9t-0 . 0 00 0 4 0 ou )U C P) L 3 0 WL
4ftCD L o00 cg 3C 0 41 U9 O ~ 01(1 O L - "- L 0 InlL 909V0 -410- 0 - U- -

100 r.V~ , W 0 - 1 CIO L0" 10 0(-0 fLC] CL E -v0 -9-f C- U- ]09VV9 m0C01'9 4,J.0to
Q-X O 0 9 010 ID 0 L -000-1£ v-f Q9)U L 90 C

a 0C 3> 0 inC IC- -,0 L-(A C 0 X0 U. 0 C) 17O U00m0u
01. -U .t IC L !~9V /-9'- -0 00 f-I - -0D- -

L - *- - L 0 19)9 00 wZ 0m- -"9 0 u 0 E0~f Lq L 4M G.41fl C U
C . t0->- L to -. U 0-. 0 0- 1f l c L (>- -OVI CL-

OCO mCO 1- 3 - M00- O (O -00 9-Cn 1Cc0 004 01 9 m 0-090 0 - 2 9L > t-Vl 3-9 0C - 0 L -C 0) V-.3 C 0 CDO- L C :!.g
1- U O L0Ec -- 9 L-~ c0 C; to U 0 l

L 4 Z GOt'z -C 4D0 0 -L) 90 .'0C0. 0 E U 0 CL- 1 -V.0*90 o' CV 0 - C, . .10 C.0O 0 a : C, > .. 40 1 0L."0U-9 -7 -C -- Cfl Q) 10-Q 10 .'0 0 L0 1-U u c 009to00
090z OcC'90c 03 CC X-MOrCCL - C 0 C M -- 9E -- ( 00) 0OWOnu 0
-- 'L J> to C.'00 -4- .'000090-- C. 0 0 - - -9 i-C

V1'I0 '0-1:3 V -0 DU9 L-0 Z'-9~ W~'.'-' ) -9 - -0 E0.-Cfa W 0 40L N c U -C"-CXV o 1G)U VO EC 0 0 0 (DLf .9 C aIn u .- ,0 -092 > t 90-O-910-'-10 90-1 E0OV (-0f -'-- -09009E010 - c -' C'0.9E 0-0-1 O O ELO-.U
LV /) ~ -. 0 ------------ D L in EC: -0- *00E ~0 0a . C

CO0 q9 0V *fu- -. 0 *C' c 0u 0 4)- C L9 m a 0LIY) a)'>9U 01
00 1000 0009 tV - ]q-C C1V0 10 1 C 0 ZL 0 - O09 L9 LU 0.
o---10 C10> 0 a D 0- w-C-'D0' !c m0VC 0 L 0- -O D :(3- L0VOC Go

9040 90 0 > a C op0 CU- I0 90 -V09 _00 0L.---9 a) 40o00.
a) .0'-'-.-..C14 0 (900 .0 0 (2 . - V ' L C 10-fOC 0) - E 1 0

-- C~ ~~~C -00 19 CV CfC0)~ L~0- '~l~) 3OO-0 00. E1) - s 09 -OL'a) d) CE E0 U L C - *'- 90 C0( - Z0 0 90-9 0L- C M~0 09'-0090- E 0-0 0L 1 - 00. L Z
V0~.O V) -1E 0)09 10 3 0 Q 3 L -0 LL 'o c M * U (0.0 I= '--)-]L : 90C
CL -9 00 -- 0 C0---0-O.'0 LC9 . 00-

>9 ~ U C - 0 0 0 . r -0 -£90 0- aOD: _ m to9 ' O9 U . -0 0 - (1
0--00 -Q. rL> --- I4 - L 90 L-- M-0.Z.-0- ZC19)9c-

m In InUw 10 TC-0 -0 C 3( ~ -. -0 I 0 -09 00 .C-. L.Q0.-O.

aI w. 0- co
- Wf 9-)_, .a E 1>0 . In E- a

90 1 " 3' (1 > C.'9 ILnn o 2co>' E - oI-W E 4 00C U) E0 90 C : X (A C 03 > .90- 0 L " ni 10900c )4 - 0)-.' 09 -mMEQ) £ 90 Cl0 C-00C
E D0 L c" V 009 0 0-----CL90 L a"-- >E3 D 0 00 m0->0V . 0o.

9 1 > 0 -.- f 0 - O l > C . 0 E

E- --O0L 0 UC VL 9)>-C10V E '-9 MO c mfl3CVXO
E-C 0 L Q Up '0 90 90 D- (-C 0.0I ED C C-

90C10 CV m .3 0.> 0U -. 'C a4 ,4)' 0 .0 2 -- 0--'.
CX _D T- 9990 U z99 '- 0 "c0 0 _ D 013 0 in - 41m-LICC'C0

13.-0 C 90 (m (D 00 -- C 'U 0. .--0 0 00-w 0 0 3. C 10 C- (')EC'4Orc-0 -U-D 0 01 CO 9 10 I- C 1 - 0- 0
-00 fl co E 0 0 £10 c m"- 0 c 0 0 C 0 0 9L00 -0 -
El- 901 -90' M U)( - : - a - 0 10 00 -U 3 0o 0 -0 > mq
I C . - o -- OUOc 00 0- CU 0 C -0010 a -'1. U- -'LID900C

1- 00 "' D! -C - 3 !'00C2 r 90-0200 E U-9-- ) P
'-10 -m- L 0-U0~ 9 09 0-V001too

90)0IM LL-0 I1C C0 '-E1 C- C>(;C0- C
W--0 !!'O E V0 p 0 c0 0 0 COT>- -. -00 C 4D - .0
'-.' -UL.DC-', C D- 9 0 ) '-'-0 .- L .- 0 C -- ' .- 0 ]0 - -- CIL 0 vC!]00 01 C Q-'-01 Q L03-V 90 a000Ua -0 1 - 000O-C 0) '-L>C9-0L0 0 L- 0. '-9."f 10C.I- 90 0-T I 0 00 ,-- -Cfl 94,00 (-0 C -C 00 c0 00 c *-- 1010 0 -

>, :3 C- 0L0 E .UQ uL )L 0 10-'CLC £0 L M CO 40 '40
C ,30(CCWQ W0 >'4U9L 03 10-00-3'.09 .- fl-CiC W-; X -0L --N0 CC 9''- 0- c-- CL -0 co0 0

-~~~~~ L0--9 >- U CO CC9 -- O L E(9 -. '0 -Eto
E 0 ec 099 C O .'0-- £)C L 0 0 0 - -- 3 10(a
90(EU 00;U - ~ 90 lb :;'19)E 90 X ." L 09 ;C>'"- 0C-u -£01 L- C- ) C - L L (n L~N > *C

1 0
M - 0 u0 > 0 L U C' 4 L m >0 -OL0>9 1090£W.-'m 0.3CN w09000. XCD 0- 0 -~ 0 30

- 40 - Ca', r0 -U9"0000.0 L > - - u 32M
0.>- -'9>0900.o LW 9 C-O C0 0 L- c L 4 0 0 -0 V

000~~ ~ -9N0 (-9 090 0' E c '-. c£- 9)U O.-- C
0-C-o 9) C0-9 -0 0 -C - 0m. OC -0 oN

> -"1v- -- W-j 0 C m0L..ID-'1. --C00 310 0- -- LOC4EID-O0
c 11 0 a) 0 > w w0 y cU"0 05-090 -"0: 0 0S

4, - -95900 - !- ro J> 1 IcOCOr C0- C9 > "-- --'- A
m > ( 0CO to E LUNC0 -CC- 00 '.Go -0 CQ -CWL 910C1 9 0 > Ul ~40

00-a - goN Cr Er E0 0E-090c90-.-'ACX.£ ~ U 0n0) -Z9



B-4 -T

a Cc0

L 0 . 0 40 L 0
£0 0L 0 I - - 0) 4 0
LC 6) 3 V CD 0c c - V ) -V. 4 U 0 -0 0Q (

al D - 04-- -0) 0-- IM ,= E ; A00Zw1

Lc -10 E 0) -'-0 0 C ) 2 -0 L 4).- C -fl D 0)0c0
-00r L 00) M0-c 0.0 C)C 0 0 4 0 1= Ow Z)-V) ) D0)ElU QC a).0LA 0)m0D-CO 0 L a'

' 0-0.- L 0 0O 1 >c - 0 T-0)0L M V 0-U00rO0- E 0)o .-- C L-c W-0 )f EWD4 Go U L
0C~l~ 0 -f 0 -O > -4 O L0 0 uc Q r- 4-

G0VO 2 -C U. *0)-. M L O> C C C 0 L -0) OLw
Qc - M o - L - 0 ) -h 4 - >C C ; O00-U 0r a, 40' U 0-0 C]. MO- 0-000 0 in>>r 0 - .In c l-)C c 0 0,nE

Vt :; 0 r CC L 30 0)C E-C-'0 4 4 O- CC 0L-)O 0.u- - 0)COr c
OE E -. 10L 4- D- V)~ 0. Qk D -w 'a r- 0 o x -LN 3 -t

L .- 0*). a -0)-) 0)E *>C4 -0-)))c z :3 U 0
> - 0."L00)E on-~ DO- .- C u C, V 3-, jU)))-W ,CC ~. L' EM Va) 0)0 n.>.L-- - 4 - rc

m ULWo--0L C ) r_ . >- a- -'CC Inf- C- C 0 0 -~ V 0 0
L 00) U (1)L )0 3 U'3 0))In L - -Wl4-- -.O 000) )- E-
L) - - O - C E " > 0 , L C E >I.3 fl 0 . ' - 0in '. I 0 h .CCC )0 0 - >. 0 i(3l) > a) _2 _ _ _ 0 m .uOD I )- - in'0O)L0)- 0- L~0 Ui E* (A- CLQ .)-~)>~ ! - c > L I41

cU m. W L 'LC0 > V) 'n - - M Q t - n --- 0c L)'/ll V>-)
m c mu 0 0 X3 O0) QQ O). 0 u -) f.'V- 0- 43) M N > -0)Z V0 >-

m-)-l) v 0C U I QL '0 C> ) W L r- L)00)0L4M0)ID - L nA> FL 0>D
u D 4 0(I CO VDL V~) -L - M m>V)- C )- 30 ( ~ 0 - 0 0)E00

D 0)- U D C - a))u E 0 40W )0)- 0 L - c - E C ) - .C -.- > E -Vfl)
U NW).XC - - '- C - . 0- a:c> O0j) cflm- L 0o) (D-U OU 0 E u
> - V > U 0 E_ 0 U 0 - -C 00)C 1.0- UDiC - .0 M aJ) M 4
Z-: lU00-C)> W UO0 M 4LM - C0 L 311O0CL ) w JC 0)V an 10 al V O.L 0 D

3 0)LD-0 .C 4-fD 3 .. D~ -> . - ') (DC0 QL - 0 i-> L 0 '0aCI (0o- ) 0 inCLa '- :3L4 V '0 ac u E C C L COC -C> 0- M- W)0W -0 W CIC'4)-C q
-3c 0 > 0CY 0a C LO CO C c *O . 3 aD0 - E--3- L 0 ) C0C - r 0 wO0-m

'-C . ' ) CC ci 0--~~- (1~U C' C - 0 C)- V 1j) - -L

-W.O. 0' C U U 0L> 3 aC>L) " *-"-V 03 4) OL "- U0)) a00
-. 'O9EO CO-C CU aOJ)*4 O -0L lfOC a Q, w - o- .

m n a-0 C m)0 w 1 00)0Z > l- 0 -- U0>o 0) 4X-C) t) cLLDf 10 D
CO)) !00OCC * )-.Ofl0 0) L ) V L--- - *-Ic ! z c 0 0L0 OU)Vl- - -. zfl -l-13 'A u co- C !0 L -C 0J-I- U 1004L'.CO

in X u
L* DO M-I >C mA 0) (nO L0C 0

om.( o o--c~wc - ni 4, ) 0 x~ in 0 3 o~
a 0 L- - 0 0D -M .3m D 0 D- CX 000 0 ~ 0 I -

to V''Il c-. E0) M E 4) -o -V0
r_ L nF 0 Z D0)0 0 -X F - 0 n 1 0O C- 0) *o U'0m( 3r 3 c t c

A) LC i - Ifl)'U 10 10- 142z c it U I- E C-f Or> E'* -19 iU t

10 -C1 0 4 -~ a 0 .' 0 0- fi-L) on.C- .Ga) ML)i 0io ) 00-0EV))O 00 .
LO c 0..'iL)-- 0 UC0D- 0 0A w 04-~,)-r a -c 1

0- 0 0 -C 01 -00. 4-. 0) -0 - *- 0 0
-~ *U0)I0 .0DCC)-V C mU- -0 0) V0) C- Ca

L 0u0 aONC ) .- 4'U c. w- xtD ) O C . .- Eo -
L f L 4 *C0) a on)- 0u1cao - C) cO On--V 4- > 40 > 0

0. >) C L :3 0 C 0 3'- MCU-''.-0ID00 m 0 ) EL4D L-u.0 ' ) >0 L
C- - C', OCQ )E0 0 0 U CIDVC .0 - L ) 40) 0) 0) Uci t-I UA

0C W OUL - 0 (aU0 C1W0 10> - q ) a) . 0) -'C -

a = 0- -' C4 0 -0-) LE.-4- - - OEOL0)4-L0C L0) LE-Vm-' C
C)O 3- -U GJ) 0 0CO D ) L EC -0) 0-0)M- 0> 0) _C 0)

-1 L M4_ 1-mLY) 0 C JCOL O 0)-' Ci 40 m 3 I-.0.-0 az10 -V .4 4i 4-'
iO 0---L ) -m - 0UL 110 L 0 4- U.E ::C a - c > 0- cL 00L
L) -a. c 0- 0-- 0)O EC 0 "- -0-)) mi 0L.' C

0) 0)- C C MU0C) U ,: U-- >O C C - u m u Q) E C 0.0 u > U
M- 4ca a,>0) a 4' C 'C> a- -' c ODm- W m 0) 0D 0- U

F a) m al V C C C - E0 - . CC 0 0 P ). ZEL '0L 0 00)3

OLO -WC-' C) C )CL L )CC>( 0)I
! r mOO. ) -- 0- 0 30m?)0) ; Q0) 2 4- !0 - 4-4-' L > Z)1 L

a)O - VL. - L E u .-0.CMDE M L) WL0 0 Ca 014 L> wo L01
cL0- X' a) m'M L0W 0UCV OC0-- 4- 0 - 0 ) 0- o V) Cm- > W L Cw

-Q4 Or * 0 L LL j i4C L~ 0)E - 0C -0 0-C ,L - 0' 10) >- > 0 -
M) 0. LI 4-00 a 00 w C- <ZL- 0 L'-'C) O CC4 0 m O0)

L -).0- 0--)i)0L)0 0.)CL (D-nfl -- O-O

CC4D M- .C 0 W >) ii-0) C CE0 0 I-4.O'C >) v) 7 a0 L L 4 C *

E In J:) 4 EZ M n C T 0 r - 4 - m 4CL'



B-5

S 40 0
ep 3 0 0

-'C 44V I. ) p 10C r 0 0 . 0 0 C to
0 044 - C 04 c - r-.. 0-) N
C VJ 404 ib - 0-'-4 Of O..- 044.- 0a

2 '.0 L.0 - 11 000 z L 4 0 04, c c C C - 4 0nol
a, T 40.a~ D- 44.4)-in > C 0 a U4 - z V) C -D, LO 40:;0

o) L 74- ( > V0 L4 x w 4~4 a 0 c CU to 0 q-440c
> 0 cC L 04 0. .- al ap ) 04 c c 0 4)0 40 .-- vi - m4

-.- , ? ? - 013 M 0 4f-.- ;C U-. 0- (D 0 0 WC - 0 O
'o4 --. e, 0-CL1 - 4-'1 'E 0 ) C D ZC-4 WCV' LC>

041 o 0VC L -L tL- DC 4 O U4L r L L0 04.' 44Wm a) V
V G, CW4 D * 0 .40C M C rd. L 04- C, In C O.-'

0u~~~ - E-- s0 . I- C C I0 ) *- I 4-V -0
*0 CC-. m L) ~C 0 t .' -) 0-0 ~ '-- O a

ITC L U Qc r >a m7. C-C( 0 If, 404 0 0 w
C3- C , U 0) U >L0-C lC- C-a -n-a 0 - > go4.m0) 31 C

jo a-- ) M-0~ CL 4C - ) E0 u0 -4- ECn-

40cm-C-> 407 - -C 4N - t- E ->'W L 0 ;;V)U 0 C) 1 CC IV U 3 0U--4
c co c I L00£) U >-0aWC00 0 0-V-- n 0)z t - E 0, L

100 1d0 LC> 0>] M (2 D a-a - O0 40
>1 4.0 F-4J).-. r 1]0 a 000 - - 0to M0

0OEn- 0 0 4 w J C L -UO ' 0 '.- -CU 4.. C' -0.0Ua 430)04 z- Z Z) _ M ;: 0 a-.'OW) -04M 0 - C U (D4 - a
0- .40C 1r- L C) ) 4)M() 0C M-a L 04 Q. C c 4 -L 10 0- 004fl

E).-0 £C C :00 0404 C .0 C;-. V4.'044
V)>C m04 a) ~- -1 * Uz - W- tof0 C04.C U -u ) C-

041, > c CV w-4f- :30fl0 'o C) "I c 40C 4
EU,-fm -. nU) 0 0 --. £---N0o C).-E LE LA D0 MU 400 04 U0-

041 ,(o - 0, 0 M ~U L L (.1 W 0) f 0 4 C 40> w--- 20C
O- 00.0.1 -'E CL _ am L 444 U D 10 ) Q)40 .0 C0V)

Q L04 C E 0 >- ->0-0 M : > ,J - - CIV O--0
Lq---40 C u040 0 -- 4.0 *C4a,- C L,) P r>4 )C4 0C-

m4 L04J4Wx 10- -' >.- -.- b- >4 D04 U 00C 3 W>-) .L
*£0)0L-- a *- ~ 040U00W 0 --- N Co CO)4 W WE-C 4

c 4 
4 0 

? ,C .0 M-'£-W f-0 04 -" WOW E .- -C
40 cr CVC4) a 0 O'O4--.0 0 4f- w 00-4.40 0 W4 0 C

c U)M tEU M 0 L 0 L44~w-Oa L )400
a m C OE C Q.' UOU 0) W-0- M Cl C C u. C E 0 40

O' ' I t c . 0m -( c L ZWiU CL 40 WC W 3VOM]0

I - I
Q.- ,f <- ) a)WU -q

C> C 0' 43 L04 - (7

0 U) V)w D )- 4I WC In 40n r-O Z) C) m00 L0 U 0 a, >4i

04L C3 3:') 0 0 CM 40 0 'V ) L4 0)
COCO- - 4UC- .0 0 C Cw 0 00 W to4

:C3-4' -4 04 E, 04 - - I ) 0 41 C0

CC~ ~~~~~ -0 OOC c-0 C-0 0 C-i 00> 0 to- 40 0.

c M m~'. *ZD0 InCW . C0 0 -T m- .- - I La 0 1 Cj 400 r44 - L.-
(1) 3-C. -V y..->- w.'4 - 04 c c ) 3 p Q 04 -. > > 0 ap40C D044v

L-3 4.J1 3 -OC1 C04 V 4. 4 f- 4)-0C>EC- C 0 O 0440 C 040
L- Co! 4- W 0 0 L a- 0 -0k 04 4l 40> U D L4 0 400.O- - 4 -'.->4V0V

to 0 C z0 c4 cC'w4.-'--. 0 - C C L 4CC C-4 L -m0 400V < E>
C '0 :3 M L -400 C0c0-C4)0 a)40~ 004 4-O - 4c 40 <*C C -19

C-. Z)0 C)U- io0-- E . .0 Z04 04- 04404- -cW -040440r
it (Dw u C a,0 - E a)W--- V u m C 000 0 4 0 .4 CL >)Cl

c02 0') 0- O C )C i 0 M0f O %' 0 W04 a) 0 - -C0 C 400m - c

C) JDOU -- 0C 3 04' '4 ?0C C5 L-40)00 0 t-0 4)
0 C-~ -- CU'- C 4)- U30) 0 'D- I a040 -!- C
Z L.0'- -04 C C 0 0 0) - :3 - roa ). 40 mZ 044040

31U 0 U 0 -440.0 3 0C EEW ?wa a ai)( 0 E404Z z4 mWCC'W4.) -- 'A0 V
40 7u c ( -C-c 0 A ! z '-' C' <04- - tC -0400. 0m4 > L4-

L 4 M 40.a mC 40 a) -x L0w 0 JC-- 0 UC U D ~ 1.0 - 0
0-41 t-W40 0CL IVE 0 > c - 4)0W3 M-4 L 40 L ')O 0 -0 CL7 40

-~ ~~ ~~~~~ w C W-- > - C 4~ ME m)4W -E0 0U0 U4 C C.- 40
V ID V 0 --- EC.-- - Z -Z4J a)-0 CfD 4) Ca) 00 U, L in C

C tr C L) .p-43V0 0 QE) La- c . c4- '- 4 -. 'Q044 4- V '- -0 N4 0
40 00 40 40m- a,) 040 ) -C (n 0 - C -flc) u w .7 u 0) C O"-OC -4-'

w -4 -0 >C u- 0 - > 0 0 - > > Q C n- -'0 4) 0*-z - -U.:;
(D--' 0C-- U0) > 40CCC C L 0 c- U 0 c 4W44 v. -4 >-L (a U

CD I.0 CM0 C 4C- L0 G)00 c a W - a) C',0 C no - OV0CW4 CL- -X O l0
Lo COU -- 0 C V0£ C U) M 0) DU--C -1-- OD -0)C- - UC - W'- C 0440'-. 0

E4 c Cc-'U OC40 a: E 0 Z L - a00- 0-Cf-- 40U 0 Z-0 C C
0)>4 LCr -.af- C' -1a04 CO C.Eltu C0 OD-.-- 40 04
C~ ~~~~~ _COu £ aC C 40 .'l -L- >- 40 L004 W 4.E -0 ,

; - - U uO Cc 00 1 - 0 0 C O M- -01 L 0 C0 0 - -U>- 4-4

41 .1 o 0 - 10 304>OV4V - r0 toU c-44 40 C-U X4040 00 L V EC L0 -0 -
L4>0 L .- - C 0 40 M 4 - C.4 M:--0to0 d0)0 0 L4 0) 4 )fl c "4D c

3 QC 10 - C- - -'L U-40C 0 2 ~ 300C440 -CC. CN. 4 O0 - M
*~~~ - d.0)0IV L0.- U -- EtEW fC0.' 0 U.' t0o40) -- 44 2-

-''-'0>--"-- V) *U 0 C04 E0 0 0)0 L J-0.'-U c DUCa4040m)M>0M-iV4c LE4
'--3-U-404L L 004''C-E- V-I4C041 -) C E -L41040 D 10 a .0. 0

9) t)C 1C) L 0440040 0 - L--.-J C-) J - C -540 c U (n CCOL m.C

I .I* ' OE - 1-o 4 CC L - ) 4 3cc EQ00 1
0 -Q4 >- IA 0- Z U)C C 0 o U T 0Q o0031

> Q L - S C0C ! 1CD -
it in L E4 4) X4DL1 P

>. - T-UV ) 4 ) - o?0 JV-



r - T 0 ) c G 4

oL~ C In E c 00
0 -~ £ )-- 0 (' a~ . 0 C C- al Go L

0 4 L..C4)4) E -x 04 -S 0 4) 04) 6

Cn -o L4.- 0)) > W 4, 4, 0 0 0-- !! v 4 30nU a 06
0 OL JVU0 42 C.'SQ> D- M C-M D 0l ) c -E > MCE C- X

4 C E4) 0 ) 4>. 40 34J. )L- -
Ic -0 L 0 E r o- U) c rO0O) f v 1 US -D fL.-

VU 4040. aU 0~ D o- j L0. (XC C c LO >.-c m D IV0
V) E EC-- UCQL CLO4)- CL 000-D]4-)..0~.''

) c)- m E C L~0 C4~ J 00 - 'Z u)'4 - " to0'-9-m
L.- > )E E o) - 00 C 4L -' 4- :3 E 0 >

4) W- a0 E 0004 C >". L) 0) (AC' C] 0E-' E> 444 C M.
C.- JC>. > > a0 V) L)) w t-~'- 4 to cC) C 3 ) 3CM

41 D: V) . 43 ic)D ID 0 - L LP c r 'qCLa.' - > .4]0 ]4Z 4
.2 L4 0 --- L D C M -0 0 L Z - 0 4) 00) 3 l 4)'4L L O0

fl > In4).A) > 40 0 04m)0 -'- 0 x T)- a . .- _ l4_-C.Cr

- 0 *0C).' c - )C L L .0 0 ' 0) M-O ] 3 C ' ff) "- M L0 LO U)a
L '4 a)- m-4 > J D4) jo 4)0) CUnu C04 Z M ;E L 4) A4C4

L) (I'4) - C-) 0> -44 - -4>)' L' )L W 2U >L4D
> -C- 7 L m mL -C- 0-44.'- 3)~ C - D 4 -4 ton -E0 L .L-'0

C, w 4)0 "1) mf -- m-444 -Z ZO r-]tD--0-L-m )4) E) L
:3 Ct EDLa- mC >Z >-0 4)-0.O'4 -4.) --r :: I a) >4 - O 00

u zm 0 (ac4 EL I- 4 W W - 4).. C - 0 a4)C-CLE. M - 4

E 4 r. -' L C) - O 4),O --- .-- NZL-L c ... >0' V4)

C O E r, ME0 M 4 -'4 C L > oC > - 4 l- l ~ 0.0 C E4)w- -0E

0, 44a)0 1- 04 00) 4L)Q w - U -.) 44 0 -C-C C
c xL - DC -, '1) 0,.4C -O - U OLCW - *U-EU4m)W -0 C

Cl 4 m L L W m -)O LO-t- 10 rL0--.4 %4 E4 4)0. *0) 4) 4) .'0

- 4) "1O) cC o uV4 ) V).-' ' O 4>I-L X ... ' - -)) U 0 > " 4) 0 wC 0
4n)- w --. -- 0 c- C -L- 44 - C010 0. -4)(0 4) o2> JC ILOL -C
o00 u - E) 2- 54-0 v). - m "'f 4' a0C ~ o0 to)0341 0'-'

,.QD- Q4 m)) 0 0 m4) OULO]:3 OC, 0 n - 4 U L 41 - al C4
04) M>C C L L 0 0 01E 0 W)I' -- )~44U C4) Lfl 41 D.-L E

4)4 a >- 04) (00C) c -t (n 0 0 zOcCO(-U *4Q)4)MO0L M-
,c> 0 c --.-- a a--C)O u)Cf ]Z oo-. -t--- . - Q(L) L>C

-- J O1Q 0 4m0 .4 *J 00) 0 CLE4)c J)U u C-'C) 3 0J~) w)4 .. 0.-]4
-- 0 PE U'- ~.. - C-UE 0C 0 C (a- 4)Z *0 n c'44)4E 0 z 0 L)40-L In

o -7 In )C W :: 4 (a4 004) 3 0 0 *C 0 4). E)Cw) - aE to-4)000

C L- 0 LI ' I c
4 L-: .- o, to D .Ix V U) 0.- ) z 0 3V a

C) *. 4

C LI a. W- 0) 4) uC cucm
0O(D C ~-,c 4) 0 0 C0 4)4Wm)(a- 4)r

C_ Uq 4) LO )c 0 - I ->C W) r- £4 4)) ) mU
3w (4 ) 4 2.7 cl - CO 0 OL , 033 4

0C ."-4) 6 u 4 4) 0 4 44)C>' .- 1 0) L *C
LoI z zC E -W L- - 4-0 E U - W CM -'- toCO0 '- - 41 4 DO

L M (0- OLO L 0 M' C 0 L . 04)4m)1 0 - * - c faC 4) L L
4) a) -C4C>.- C4C 4) U 4) Q 0 ID >. L4 C: 0.

GO) :3. J- - >- M - M L C L -] CC 0.- ) L4)0DE 4) -a - w
C L4) O-C-.EE4m-W - 0 1 E444-4C4 - - .

- 4 3-0C VD )) -L c' LO 4--0.- Z 0 40 0.C4)Q.'a 4- CV
- C. . I a 0.'M)0 -j c 4> tu )404)4 410). ON- a UA

m40 0,0 4 ) 4L~ -X -C4 a, o- - >0 4i L V 0 Z- I
C 4 L f, c C4)OL4)-CC44Q W f E E-C 0 EC) 400. if-)4)4 -) 0

- L Im L M.-0 r)) -EU'-N 0 0-- - c CC aCaCA LZ V)N 4 o 0 n

- C M)a 0- w- L 0 0 U- 0 -U C -. .L - (P 0 -CM
w 0U OC CWCC r W)D0U) 0 ir E L -0-)0 )4J-'40 - LED

C UG -. ' J C 3-L .. t- ~- < - LO LQ'') -l a) w 9C
V) CJ '-- 4 - 44- .' C 0 3 ID 0 L - , C 0)- N 4-4)0 C

.I C :3-. V) 3 ) 0OC- E W E a-:L LU 0 ).. 4s CO r 4 04)W- V)0.-
wo m 4)-aI) 04)00 34) C : I LC0O -0) C 0DC L c OOL 00* C> 0

L4) - 'In )- - .- .'00 4)E-0 4- -- 4W4).-'D 04) CO
L t 4 1 s 0 L--C 4) 4 - I c)4 - U) . - a J c E4 )V- ) -- WL'. V 4

(N V O- -EQ 4E L 0- C 0 . ) r- C LXU CE- Q 4) W C A/)4)E 0
o E L -'Q-C L4. 0l M. -' 0L O W z V 0(I> do)-' 4E

C -, -U] u) w 4)Q0 a))) - ->4 ) m 3O'U'W)E - t- .-- E E.' 4
4) Cr < 04)m- 4) c 04E i- 41 c ) 24)'.- 0I M 4> 0 0C M :) q2a4)0- 4

u) n : 4- ->C 0 -13 1--'. 0V ) UC L 4ML C C44C-

C. rd m 4 )0-V ) (1 a> L) C L- 4))) C L mC)) o 004) )j4
-,4C3 U0 L 0 )C m ) U C;. - 4) -ID)4) (404- Q C C 3 0- C. 4) 3 1
-E C >OL) o -4)3 E o C 0- 4)E Z C> >CO"I- 'o> . .900 4 4) E04E)) C 4 - 0

Q,0 . oC.C L -- 4) M ) M C 4D 0 4D-'.--- U %DC!2 0 342)10 z-rD4 0
I.J- COL 4>U 0 C C 44L- >) U- a4l. 4.0C L

V4) -- OC4)O 0 a LO ? 0)l r- C.E: -) w 4)E D i 4)-0

W V) 04)- ) L-C E 0EC4) C.. 0 C./)C do '.--.L4)VC E L L 0C

L L'.rOC04C m c ML-'- 4EN."C c 0> W) S U. -Cl ) to
L4)o L U 0 w(A/ :3D VWL r 4)- 'o c5U) 0)
3- - 3J J 0 mW : . S U-4) 4)) CO t--'

10 .0 m 4C C ) E C -E04) L -4In 0 M) U O LCC 1- oCr4w0 CO .0

I4>)-C) -E ) 0) c -D - 4- OCc4)E)4" U3- 4L4) Ig : W4)4x).C'
414) CL)0.4C Z. 0 T-U - 4) C .L E 0 LCC4 UCa a -LC.N

U) S.C (nC C ) fO E I

m =4 u O EI V 4 4 aU 4 0 4 l-0LD1 OE- J9



- B-7

0) U0E cq alD 4A 9E r 1 0 V
G 0.4 0 mo 0~ -C L & GbL t -

6 L 6. Ob ow ' rD C CO 0b 0
3 0 c - 10 C LED U1 62>0 L.~-~~ -00 a0 - V~E -- - 0 a to

0 0- -LDj - .0 ~ -O.. V) ClD E 0D JC -E C- 0 A )4
A VL 'U C N3f O:3 Ecl. I aO4f EDL L 00J 3 C

cnLaQc 10 ED 0 C 0 - ED c n- 44 0 ED . a C-

VED -0t Q.- LE D OCA'3-A. 04 u CC -.-0 0 4C 0- cE
-qO L04L L Q)- -- 0 ~l UD 0 C - flc lO- l U 4EDC :O

OL ).0 c ED-L .,--- r 04. - C U a - c4 ED
4-~ ~~~~~ ~~~ a,- 2~ 4 - L.--->-, O OE iI- CI E'.

Q 0 C-. 0- 0- -E -ED3- 7,-.E > 0- ID 44 at
EDc --- E L .- Q.4 EC r .VE W - fE OO 10*-Qt 0

0. U)OO VD- GOD >C ED E- C - Lf- E >-C0 o- a

0.-OWO.M 0 o) L- W0.'Q ED >D.~ EDDE U CE .O
GOC- o -- x-- -L 0D-'> L 00 -WO L0 0 O1.-- L: ;>E 00 E CL-: -

-C 0ODO- 0 aC.'W W.-- toOED 01 O. 0- 0 u-E C
O--12E CC 0-z -L)EDC DL -OE C>OW 80 ~ ~ Mu-L

-O CO WO. 44-0C U l LLDD .- WC ED----. 04 4 aX

u -E O EDJ w~C-) D~ 0M 7 c-L 3 ' 00 > 4 b' 4 ? u40u L
EDE .- CJ.. 4 ED~0--- LOCE M. 'D 4.- toE L U £ --. 0u 0 - DW W -- il C4I L 4)l 1---E - fl-O C4 E 10ED

.w cct *4-C -- W C0- E E . -~4 4 V)EL0 c 4 - D C~~L k >
>ELD- UMV ED" - -0- >E L.-' )U- CCED -z- VLLC QE.4E >.f DEDL 0

--fl- w 'D -V0 u E DJ ( E-O D CE ~ f D -'- >C E C U ----- 0 ED

LC.-Q a - LE . k L) 02C.W fl-o -- VCL JCNCED>.-wED MDZ 40
11O M-40D EL>.-O) 0i D1 C)3J EDZ J-/ *J0 cE 0 L - E D L- (

d- 1 to 0 M :-E - Q- -L C L) D L CE~ .w' A- EE -ED w *cL

LUQ) 1U D-1- C 0D >.E C iEDO 0V-1-CC L~~ (D- -4VLEMO00O
--- D- 000 C -E ' 00 C LD .- L, 3 w)0 0 L C.- -- c o 0J - -3 >

C Z C I .- l-flD am~- -- > 3 O 0 -.-D'ED u 0 -'--- L £0 z :) D i0
O0DL l0 -0 a)D M'E a.'-0-D cfOZD ED J- 3U - 4f D >C

- 2ODDD -- 4-0 DOE.EDD' *-E- - -EEDD 5 0 05 V)LZ) 0oo- fuuQ aQOn l -q JQ 4 ~ Q E~- -. I -.-V OC C ~ -O4wE- C

En I- !n P-- En - ' )E V - ;- 'I N

r. E. MD ED ED;L C C V U EMC9

U u ElCO>a00 zE nXD C W ED C U w .)oW- C Y
0) 0 -> E - x -L IE n. 0> 00 IDr-E D C M ED C *X w--

t- D C I'ED bO L 'D ED 0 IC >-E T.' 0 ED L -DEDDf
-~~~~- -3 > EJ E LC.-n- ~ - -V) LE ?UDa,

ED ub' >ED 0 -1 '-. .- LV 00 ED tC-M E)

0 EV E -lE ED WC OLJ c QoQN

E ED ME-- 4-ED c 0 0> 0 '-3EDDED- - -- 'E -) 0EDoW -4. W 0
C~ ~ >C t-0 C - DEC 0 -L-- C -Q 31 O.'0D 0 -C

.- ~~ -L-. 0 OL 0- E-E-- 0 > 0 -- DC 0 Eo C CN 4'-

ED -010 OW in-0 DED-EDOC c ED 0 00(00 EL C0D 0- .- 0A ED 0 0 )-
u L (a---~ -- c --MEO U, 0 z E - C) UO.- 4 00- EL ED ; 3 t- --- 4-

ED - D M OWI3> M'> E> > o z 0 Ono w IC -In VED C -.- 44C-Oin
> C-d - 0. C C MD -w- -- if -, mW-) --- 0 3 0 - OE EDa
C C C0)- O -> .- ?D C 4V UOD C -D N -. L- 0 E -Q O W

L L L '-- LOW 0 LE- D . QO D - .' -l L L .'E 0 o -> to'

-~~0 0Cl~i 0D-O C ,-0 (n~0Ni EW -DC ED ED - -3

ED~~a 0C C.D -t-- c 41 O O O D >,D- -0- (CN E.'D E - O '
4 E c4 -0 CA~ WE 00 .4 C -Cc-f- 0 4 - L 0 E >U0D omf

C Q . ? . 0C OW 0 C -- C D O D D 0>-- OWT - u cOWOEM.L 41 Q 4n.
M Q w0 X -E -L I E 0 - >E0uO 0 D 04C0 j ED-E -0'- 10W-EDD0V)C - U

'o W--- inE- -r - 3. C <4 Z 0 0040
IC) c > L W- - - OOCT)0Jr- EDDO -O v W1 -T) N EDQWWOEDOuCL >.- -' -

C: c_ 1OE OE 0M 0 04 J) U)CW o 44)r- M u =
-) - M- 0 - -- ~ "- L- E- 0O W -CC)

0V N0 -~ 'D - Ln,.1-) ,DO0)M Q ED -rO D IEC E EDU *E C -L
t--C 'DOE AV.D- C.-3 'o LC0 O --.-- wEE C EDE -V) 0

M N> M VC D D O 3 0 )
CC' 0 c0 -0Q)u LoZc00 W--E- 4 EDErEUEDa LD?.) D E (i-C0)- C o EDE E4 .0- EC m G

-r 4- D 0 -010 In .- LD U U )0 1- - 050- >-N --- ' ED -0 *V z )

LEC- *Oc CC - LEDE LEDEC ED -" *O - -- C V D D 0 EDU 4 D D -
0-1. -- EDDD-DOEMOED0D.DOE 0.M )UEDD D rED 0 0 DEw a4 -.-- G

> Z-4 OG E ) L E Z L-E > EV CZ0a E D- J-E oED'-M. VDO)-''W
W. D E - 0W UE . O 0-0 CD~.AE 3C 4 M L -0 Z-E0 CEDDL E

->OW 0 t- -WD 0 0O4LEC ED - Cl'-- -0- - WaMM VD-'0 0 UJ~ O -0C
o---l D C 0 iiDE D -C r-uC VQ ~ 0 C 3 OW0 r P-Q- v u~l C ED C

0-c CQL -C L.0 - C O D---00 L -C ODED CC M-.'QE C0C0-Q

0 . f. Q. 4) Z h ) ( E 1- r uu 43 n t

_ .4, 4, r4

0 4 ,1 L41 .EZ 1LMa r M- 1



0.4 0 2. Uk v~ - 0

It 0C & D o 0 0. -- C0
c 00 - > 0 u r 0- 0 4 40 C V0 - 0

in - z r( C Z 0 V - 0 a 0 a, 1 U) 0
E0 v-w f - .$ C , C- C- 00 a0 40 u >x. 0 C C 0 0

bc 10 Cm a -. C 0G W -L E > C~ L- .- f0 MCr- " -0 aU--31
0 n 0L - -o 4 LO * L to a 0 00 U 0 0 L c I

a- 0'A - 4D >. -0 fl-.-- -) L - -,MOO0 4) M V) C- > C - e 0- - d - 0 L -1
E ' - a E o -0 a > - -. C 0 c w- C0 - L -0 0 C

0L L- In In 0 O 0- 0 A -1- X->-0 u 0-O> ~E -
- M) LL * 0 C *.- n0 C D L- 0 O

CO 10 c~ 03 0- - w 0 c 0 f 7L) ch 0- 0 q C 4uV0-0

C ~ 0 30 -0- C C 4 U C0 -C_ F LO 4 -0a

10 om 0 -CuC0 C 0-- -O :E "D - 02 0 0- L
m0 -C. *- 0 O0 -00 -N t- - > a C-.E u .C L E0

0 u 40 o1 0 GA U 0L L L- L W o-0 J 0~ m '.UC 00
0 < - U0-C,0 L CO Q 0 00l f% T4 L)0 L ~ C

C Ix 0L cEO 0 0 00 100 _ 0- C U L 0 4 L0 D Uc a
-00 CO to- *0U mC 00 41' 0 J.. -4 0*-c

m0 00- JfO. W00- -L. 0- 0) a) 0 g
c C>O S-- -CU C 0 C MC V L 00 00f0 C-

CPI 4 D 00zL to~ 7 0 m -P 0 U)C- CExL E

-U TU L- - * C 0 0 0 o - *0C) X)-,- 0W - &>-'
EL40 0 - . - t) - u--U.C 0 mJ0 m E c u )1 0 LI-.-. i 0- 0 c-

c 0 VI CO Cfl 0-0L E0 C (0 0 0 C U C C-- EO P U 0 0
C- CZ 'n 00 C--f CCE O- C, 000 C- 0 w~ L -

- ~~~ 00 7000~ CC0 o -~~ 0 a 00.- O O
-- fl. 004 C -- - 00 0 U M 0 --. C 1 .- - 0 Q) L- 0 0-)

C L ~ C - -.. 0- 0 L 0 0- -- 00 0 0 0C E r u L > - - D C :OC U . L
Q 0 00 0> - C- u - 0 c z 00 0.- 410 - ( 0 m-- 4 0>-C

LOC c C 00 >@ CL -EDz-C-CC - X - f- r0 - 0 C 10 C- C U
0, dlO 0 Cl CL' .Ito- Q M ,Lt) n 40>- L.- - a WI Z L0

L-D70LU CN 0 ) d 1E 0 0- UC, - >D CLD - 0 - 4' ) r0 Ld-EW
J.- Co C- U L 0 r.- .0 VO .- O'C0 - (h'.O 0 -J

0-.- ( a' 00 CV 04CU C 0k M-0~- thC I-> OC L
COO ~ ( z-~ C> 0 .- CC 0 C0 W - 0 C0 CO(D0 0

L-M E a - 0 -3 -a -Oc - E C c- (n W 0.-fOJ. cE C4, > CEC0 U
0" In00 D lxc,- > 0 -- 0 0 LJ0 MO > Ul 00 ~ f-0--

C-(--~. -Z - CC .C3,0- E :; CO000>- -0. L -

0 0 0 a
0 4 ) E: L 41 4, >41 r __0 M O

0 m- a 0 Z). C M-4 -. 0 OLIn- a T L---1
V - 0mmcc 1 CV - O - (1(a- 0 c 30 4 U 4

0 0 0 0 > 00C4W - - D0 0 n - C 0 4)E-. l )
*-0 0C 0 wCn-o 4 t )-M - D D 0 M - 0 in Wo 0. M- - n 00 t0 :

L0 L. M '0 z - 0 .cw .- 0 00 E Z -- )(
mL- O -- c rQ 3U 0 E 0 0C > OJ L M- - C )4C10 O N (a r -' u- 0 F

-J 0 W -- 0 >.'0E t -C- LC >C0 = MW 0 M ! >0 <-0c v

CCD0 C70 - AU 0- a0 0-:. 00 a..0 C->0 rr
000 _C3- 0 ui 0 >0 ' O 0 f - .- C z n - 0 x 0 OC

in0 0c- - > OL .U C - 4 0 0 L a) 4)

C, C O - CL 0 L 0 .T- 'ND - - - LL m;0 c i ;-0
(D 0 cC 0 d- z wa)0 d 0 0 0 m0 0 L00 CU a'

Co D OC E 0 - C - 3 -00>0) 0EC-N 0 L O- 0 c OCC>
0) L-O 0 -0 '- -D>OC 3- C - C q C wL - 0Q 4- NI Q) u0

u a) D 4) " CD C- 0 C- L-M COL .0 >00Z4 Z~ >1 CC00
0- 0 C UL O 0 L> >L - C D- f-lOUCLO 0 _ (_ '. 0CLC L 0 C-
-C-La t 4 V 0CD (a 0 - 0 -OO C ON -Cc 00-0- r->.00

In O 'a -C C, 0- LCOU- 0 -0 fl- C -- CC.
;:-00 - M M0 -.0 0i - £0- C 0 al-0 C- 00 -t

CC- -WO 0 0O U 0 L-- - '- -i0 c
C c-n t-0: 0 - 00 LL L CC C- ~- 0

0 ~ ~ ~ ~ ~ ~ 0 CC UC b-4)Dc W L0 )0 0nI 0-Cn 0 Q.-0-aa@m00
O0 - E -La 00a 0, E. UL i.C00 - O L- > t- a ( -c0- L -'A1 )c c 0

L>O-0L 0 r EC( -00 .1U.0 0 u- >( . J 0. M,

fc>0 'n - o 0 -oe )O0 L 0 .0 > 0. 00(<0>' 0-L C L -PCL -
V) C >C- C- L Di 30 0 L -N fu wC--tf)Vl-ULO4- 0'.. 0 ()

c mT 0- 0 - 0..-a '-C C- C.- 0 0 0 ID 0 L0 Go-0 4N
E0L L EO 0 cU C O OCGO-W0> -4 = -)O- 0

UL0 00 00 -4 u C -> 00 00'~ CM 0LtCO
0"c LO 00 C-u 0 -'- 0 -0- aC-WL 0L

0-00 -U 0 W 0000- 000 .- O0 6CL - 0 . UC
C,0- m C m *0'- C- - C-CL - C 0 NOc- C

*E 0-CO.w W- - - -- 0 0 W00 0,- U ', L O 0 4 0 L- W

M IL do - r '0-J 0 0 00-U . 0 C in v)am LU9

-0- 0- (a 0 dW P) QV -L lfl- C -Q -C ,a 0 0 .2L 00) CQ4- -0 0
00 T -MC) 'AD4 0 - -£ 0 L C- 0 M DO -C-0OOOC
0 : C-0O C C 1 C: - 0 d) D- 0-0 0 CC- L 3 1L d -O O O C

O0 L - L- l E >0 clu 0 u m1:L0LW -w - -- 0- 0 -((0E
L 0 C 'A 0 0-0 0~. 04-~ 00CC CA >> um ) 0, C ad) (_

L ID - U L ::J.'t - c00 - Q. 050C t- '- - 0

C0 L COV f ML WCOL 0100> 0 0Q C X 40 - UCOOO4-0 CLI:C c a

rC E

0 4p E go c a 4 00L



B-9

a0. 6- a . * L .c 40

0 L4, 40 E 0 CU 41iC 41 0
c411 U-' 0 0-14 0 C

L1 LC10 m> E CD C 0& L -0 01J 0.1 4-
40. -41>- 0 1- 0 04 1 0 1 aJ E 041 do ta 5c4

'- c- PO s 41410 0oa a - o - o- ,-.
41411U1 r-- 0 3O1 -' 1 4o 04 tol4V1 -4 ~ -

m Z-' -cLn- - r41l *f c 40 V 41'~
o0 m1 D~i 41'UIf 4 >. -Cif0 E1 0 D C *t-

m Eu 41 3 0 m- - C~ 0 U1Ac4-0E
0414100* ~ ~ C 0 011-~ 4- l'Dc -cc n

1 -f 4 4 -
C1~ C.-~ 0 - 0- f ->-U C L-1L

1 -- '40 -l 0. -l -0 a D1114 L U - 4 U VI

3-. 0; 4 0 41 L f, 0 -'0 L. -4 M 01 -- - 004414
in1L O CE-P.-0 a -o. C 4 L 0.o 0o3.9 1 OfGoc 0D
vi X, 3 - 1 C 41 0- .41V:O-

41 'D u.-0-4 %X -4014.

V11411 r' ~L 0 r (- - Cl. Z1G ACC L C CU
-n Go! 41X M' ~V . 0 41-1 J C -C c 10- , ,- c toC- >
0a U C " >1f 4LAc o> 41 41 0) 4- C 0WQ)-C L M 40 a- C
41 04&l0 L. 34m0 E1 Z 1C- 4 0 M4(f) *U r-0 M G 0EuOa

to10 M1 -d0t- C 30. 4 - c 00 0 04"m1 -C. 01- C4N 0-4 a
3141- :: 4 .(N C-'0> 04 L ELJ- 0 .NC - - -

u 0 (1)41k 04 03 CLfO4CI OD N a.O LE 0E"

0u Q 4 L 4 C1 41 41 40. >1VZ44 0.Cl

-Q Coca-EQ - 1 31 11 M1 c> OC fl4 1 1 41~

o~G m10 J l . -' i *E C4~ 0 *- 4 4 C - . 01 0

C, U C . 41 -V C414-> 14 C - 0-CL)Z1O 00--:3 -"Go 6
041 0 -t f - C 41 0 E 0in0-0U 41c c- 4 41- Ei 010'

41- ?14 --. >! 21 1fG4~. E1 U 4 0 4D411

41.-.~~- ;;.' (A U r.~ -J i -. 41;; -OC ' - C d)OC
41 ~ IC 41m, 10 -' I C '41'I ~ >>3 0 Q4 4 > 1

-414m '9 m Lo~ 4-) z a, I 41fl -. ? 0m- m-1- c-

EJ~ X1> a- A >C C104C1O -C -C w E0 -- 4L4.-'

M11 C -4> 0 to -141-i4 MiLC 4-1Q4J> - c'

0 D L Q4 Lj.J 0~ In--- 414 CLJ1 L-aI)- 01 r o V. 01

amcX n I * -CIMC U I

C,4 
(D 10 d L f

.-1 'a !!4' : ! ) C L 41*0 0 c 0 - 4V 4 .4
oc 00 L - .- 0 N Vo 01 W- C- 0 CC-4 41 )Q 0 LcC

= 03 0 1 4 -- > 0 4101 4 0 . 041 i
0- c 1 41 4. i3 0n U 0V U rf '-- -. '1 1

x440 Go ) 0- c-41C41VV -a,4 x1 -L - C04L'I-.-4 L
4a .' > 440 0 ECM0' U444 L 41 -. .14447

4.4'- 4- - 3 J341 fi0 --0c 4-1C C) C- L>41 z 0CO: E 0 Do C

(a1C 04 0 c 41 C Q 0.4 404-0 00- C 0 c o 4-1- - cr 3

041E -40 40) 4-- -1'.- VC a,00 DrC~~ Ip4044 i inG0>>L

4141-~~0 i V C) 4iCI/ -V 41 01 0J 0144)

4 1 ) i . ' n- 0 1 Vc > '- 0 M 0 -M l 1 4 4 -- 4 0 E. MR D1 ' 4 4 a B m CU0 G o C c w - >
Cac UV01' UC- -41 c40-4 a-J J ovo C >-0

z41 InC 01O wO 41-- -- 4 D1 m1 01 0 ID~2C4 LC~'- 0 .04
w (.0> .-14 e'1C i 1 00 4- 1- 0 C

41 I0 -E M Dl41 L c1 cCr40 0' ') -L L- Q i. 4) --0 0

10 i c 1 w 0 CDC4m10-

0 'ML L u- C41'c
07 _ L >InL-~ >4N.4" C LC-. -- 04 N 41 4144W coOLO-4

C O"E 0a' - *OQCD-4J 4000.41 a CL-- m-. -04 c v v
L - U 0- L > a J.'1' 04 0.'.-IniC.- I -- 0 -4'-L'-.00(N414 MM1 a 00.110 c -I'

2 WL oatoCA Q 0c F0C Wp- 41J 0.D -44O O 4 CD C0 0 O U CL C m4 C0

0 Q L.- 1-0. C0 *040L~D4 V1011 1 ' -. @-l4-

CI 10a c n c - -.-.- :> C 1Cif4 1C 1> 00 C. U1 iLO 4 CQ L
- 0 0 -1 14 4 OD 

C'r 4 4 0- 0 n - Z-- 0 1 0 ' 0 i - - 44

0)0c - 6 E 7i 00. 0 D 0 a)-4a)4Go
In1U)11-C J >J10 L.- 414 Q 4-J00 r4) 0-D 40 c

.- 0 C 1 L- CL'4 C-0 V) L->C C -M 11L- E CP . O- - 1l 0- OW41. cM- 0
Lo --44 O-q0> M1L0C-4 Lr~ .0 0 rnco>0 l) - too L 041m-OCOa4U

.-1.i -f E m a 0 1 - c 4 4 UQCC'.- - 0 -4 1UJ - 1 U1 0
doU 0toQc- C4D- 0-- o>. C, >, cm cQ 44100.41 '

c-41QC0 011A 01-V *0-4JO > c x 131-1- 4C.4) -41 D 4

0 0 -0 A W0 41 DCO w ' ' . Q- 41441 CD - 4.41 go- u a) O 4W 1iE;>; -OD
U L141. iCC 0 m c-41-0 In c c - 0 E 1 O OC- - 3 101C

al - 3 m 41v4 41 Co- .- cU4r - crc- . v11 -0- >-- VB- 0 -
QV ~ L U .91fl-1 U- ~44-.)0i4 044--4- C1 0. D-4VJ OD404411

A 41- a, - d 3 CcC C-' - -fLIc - 0.4 D-- 1 4 1-- -104

M C - 1 41 4 ) V -) C ,0 1 1 1 U1 4 4 L a1 C 1 0 --U L 6) -

0 UJ114f 0 Q L W c 0 1 v -'D41 3 4- - 1 4'in -46103 mG 6g- V0 I 00 c 11-U0 Wc;w# 05 -- 4 -400

414 41~4 04 U- - a4tOU c ID CU- 4pC 04W41 .- B4 0

*r' -L 10 41 1 C icl 0- N U V4 1C C 1 0 - 0C 04 -- - c C4 L OL * i-)

40 WE-D -0 < .
M- ,-14' U_ -- aLI



B-10

*~~~. L0O .00~ D

:031 u 10 GE- E 0 .10 >r Lu .

4-L 0E-On -EGEIE0c 00 O
SA) I )- a#C~G 010 0G C-CO4E 8 4O 0 L 4 4G~0 OC

LEAVu - c 4)EL - 0 U- .'. - 1 c - Ca -L.' C
E>OE-0' 31i .G-- CQ 00 E c~I 4- N C-(C O 0 r U

E,-L -fa CL0.0a4A X 0-0E - 4 C> 0- 60 *l-~ -o .4 0- 4 0 E a

D c m 0 0)- LOS O r-- a.0 !C U 2C J 0 -G !r->u O
4, L4I JO Go >0 -- EcU0 c,7 4'CI '0-AE - S

E N( 4C EE .- Jq11 iu -C- 0 L. GO-Q C - C L 0-0L

-4 CCE0 V 0 0- L u-4 o-E-- CrrG C L-UO - t Ec- ri-f m -01 u ECEwUO4JCm-v-6
X C2 CEUC- V t kE>P4EC -U>QL (D QC 0 3 a DE V)CD- -> GE0 > a- L 1

EUI- CO -- E -C 31 EGE -1 - U E 'O L V)
-) >E -EU 01, I~ c0..0 AG 0 oG-'~-G - -ull It U3 14c,"10

EUC InEUEUOc 0 0 ) 0E E-r -G a) m.t EN..IE G a;-

CE0 -0 4) ; C 0 C It 4 0.0E- C - Go W- 0 - ".m---CC10L 0Z O J G E~ -0
-0U r -JO--iW do-00 E- *' 0l - 40 E)LU r 0 C s0 W C 44P4> ---

4L> C ' 'E C- 'j EO- 'UrUU O>..' c L w U V)- LGE0

D- 44 f0 CU OCUE DVG i'GEO -E -E? ZC- 0--E i
EUOE' 000 ECEL '- CEr> G-0 4' >0~ GL>LE 0-E)U4

L-L - -0 -- G 0 C X EUm 4C-0 0 - zcm 3Z04 ODC- L 0 U 0 V.- C- -00 >0
'g _f> > a C EL C EEO _.>r.O >30 t - 0)4'U N mI E) 4-

I.t LEGC MO C r _JE C C. C CE 4). a04' C, ~ c EOVUE~
OGE Z Z- - C-' C0 o- adEMUr -- V C 00O d)- Ou) L E G EL>0;

QC P m- w0 *0 -O0 c-C0 C e 0) EO-E C-f -q U ZD ) 30 - CUE >JE 'A
Z'~C *CP - 0--- OL 0 - W uEOO>UC' 00. 0 LIE. doEU--o L-

0>-C~.-0 00EU L C-EUG L.- C-G E0 >.-- 3c 0;60).- L0 O *

E M-1COw QOO-w00 LEU 0 CN E--(n M_ 0 C-) 0203 C C Ur- E c -

CI fl > 3CL 00 1( 00 .-. 00L - - 0 - : -C- %0 0. >04.'. ZE LG GEC -Efl

M 0 -4) V C; - CQ) M- C2 M5a > U a,3 I4 Q U 1 - 0 V) O1- Z 0 L 0 > -:: L L- E

M _. - I>>- aO
En4 Z1-~l >_V En :0

1 C 0;(v >C 0 l E C 000 0 L

U ~ --- 0 4 .- L- 0 V I
0 Ul 0C 0 W EU 0 GEy C f )( -t

L C2 -EE -V) E) CID Z- "V 0' C u3d - U X )4
0U 4# r z- CU -mCY 01 0W EU - U I) 30 C -_ -E(

C-- C LUG LUC 0 C~ CO WE .' 0UV T. W >L4 ;C' U)0 C-
C0 0 U 0.. 00" -0E)C' C C- ~ -' CU 0 G>Da#

C: UC C IV OCX L -fQ>( 3- -C- I . U-
0LW E O U( -0 G .(- -L ---- ECUOC'ap )OG 0 C

allE GEE -Q c - i.E. aOO.-f' WE E' 10500

0 -Ei j>W M- - EU -( V C L~
>@.V > EI' ) Q -U m c G a - C L -t- 0 E 0 C -i -. OVE L.- CL

.> 3N C r LE ,CO-.-0E CD 4- En- (0 E OOCUE U "-o'U.'0(L , _
U.-~~: 0.( >U- (0.- -qi. U C 0 ro.*qcd.-O ' 3 .

mC V03 -- Dh-J CEQ-UO C O) C C 00 0 m U
CO )CQL IG L ?( (5 Li C -0 -0Z0M0-U010 0 4)1- EC -0 - 0 C:)

-D >Z 1 J a 0f W_ £ - 0 4 1 'EUC EU C-j C - - 1 V a )c- Ww
C1~~ ~ CE( C.- C-L~ UC1 - - 0 XECr 1 41 41-U4'-

.- > L'0 W O cc-''O Li It)CC - D 04 Z E3 OCE t I LCnGEC

> C/L 4 ' ) Z 0--1 > 4- Q - 0 0-OC U .0 0 4 -OC-0--Ola-M0 a
Z)0 4 CL( -- A--0 3- -- 0 EU 0 .l0r - .- 0--EUU ELGE to x uz fECiri

C' CC 00 0.a. O-GE'E C A O- .O U G-GO

m M L10. u. 400V -LG CO d? V)41Oa CC L 3 GEE- 0L-

4> -- f- 100ELGE-.'r Tu m 0 m. L0 0 CL > 04
f-0 CW.O. l 0 4CU . . 0L C 0 00mm.01LWEU *EUGEOLLEUO N

. ! 1012 -D 0 CG4 GE EU GE OL 0CC E O-f

M-C-~ c C- 0L CL J L V .:-E U C

L 0 to v0 -- CGEG- 0 .XLGEO0 CCo - C- C. 10 C JG Q - E0

L-C(. - -EITM I- 0O--E-V) U 0> m c ( 10 -E-VC- 0EE VEAE L C0

D c0- V).3 C VCE0 1->C)I C-E c 0 L WCC V) CLOS1: 0u CC XC.) CL U L~4Z)U-0lEG Eg~n-u- 0EUaUC-

Ln :3. 0 q w0 0 c-0- -DL0 4V
m L! C a ME c u Ol a 0

> c 1E Z LV)-C-r - - -I



l ak I I
L Lt 0 ) 6- 0 L

0. CI L l 10 *1 0C@]O ,- - 0 - L
-- 0 0 C., , L IA0 -2 ±., 4l 0*flCin :€ ,L 0>,10) @ 60 O . 0 £0'- -. qO )--c-- 0I{.

LEO00- *-0@ £-C----DJ .- o -.- C)--,,L. "0 C C XEC CC'4£
3 0 1- ..0) 0 U2 C , CC . .,) 3 -0 > 0

L - E- C.- 0:- 5 OQ LE OEC .. 0 0 4) - --M
S." 0 0 41- C .E cc 0-0 -4) 0 -- E . 100 0 C -- 0

>C r-- ., @ U , L,. . o-- L do-L. E IsC' {. D -- Z 9- D ZOU.-- - - ,0- ,,3 w V --- o, a. ,O Q 010 . C i0 )  . D r C Go: z. 41.04
M.- Ec 0'OIV Z- r4 L C W WL L E V m C £fN0cO CD*.

C EO _.0) U 03 C; 0) L 0 0 10 0O.O 0 O - 1 c- 00 '-D-LU.-1 0 Y 0O -. *0 0- O L 0 0 a L- 0 0 t- L . C CCm DE L .L U -) O1 L - U o > t.- C,- 0 C V E0Wn L-- U E 0 Z U L 0

L. t 0 0 --w L 0 ---O U 0 . 0 0 D ; - 3 a t a1-- -- l ; 0 L"ID

IC QZ V - 4 )i - - L. - *Z -- O- 0 11 U -- 0, L E , - W- 0- MI

0I Cl- 0 -- w O -  0¢I , . 0 C -.3 L - E O E -O M w 0 U) - A . t

L o C L U C L >00-- ) t- L 0 3 . ) C - N) >- z n x 0 > L IL C L 0
a z #a- Z~ £ L E L N - ou- MD0 0)- -'0-0 W- W0'0 bl Oj .'C

10 > mc a c m U- 0 0-fV 1 vf T )- U 'o f )0 0 'oc U 1 V. L 9)t-
o). L L 0 ( 0 00 :: -U)a, 0 L - - fG - C :C L -0L. 40 L 1 4. M a.-- Moo"O r- C t-
LC o - EO0)£LL£.-O 0 0 C-E 3 U0) O mx£c-cNLrT m EL1t E 0)

0 0- oD L 3 L 0L C0 L- I; 0) U . .
-.C -- L LM-Z M 0 L-0 W C. -cc TE -E 4 0) 0 -O O1i 0) 0 1 L 0 r--' >,eLI 0 z104

r - w 0- - - 0 -0 T" .0 0 L L 0 0 0 0-- 0O 0r 0 #A
V) .1.C 0 - L V - U E Q E I .- -0 Q > EQ a o'U)C m O CE • VLM 0- W4)E EN E -E. (0 x .O E "-C n0 3 EE S
IL- 0 0 00 U00 - 10 04 :- E 10z - 10 , C 0 f c q . L

0 0 D E n E L .n 0.0 e -.1 1nV , -- 0 0 E in " ) 0 - nCL
- E c c m 0 CCDd d -l l .. _ . L M 0 L > l -D0 O C -- C ) L C U E > 4 0

O E E O " L -m m 0 0 w m 0 >C mm-0- > L 0 Z 0E M 0 - -1 C
00 " ) -E 0) - - OC- a- OE ' : c- UC C _ -, -- .? I 0
) r *0 - ' 0 1" 1 jo 0 - - - . O 0 -o m -0 r, .> C0 V C: : -u V) - c E-

70 W Cf L . C- L- T C M2 M) 0 E. - - 0- C L O 00 a to-
MWM - to r-060 --U 0- -n.-E- ..0 *- 00-L fC - 0 L 12 D V -')) 3.0 .- QD£ to Ci U a Uc0) LOE D fE M .0 13

Q"-- - - -0 0 0 > 0 V m .- E"-. m -) Q) ) V- 0- E 0 WL0 m E CL c E 0
) 0 L U - L >0L0r- - D- ( mN C '- V U --E)0 - M : -(A m toU.. I0 0 U 0 0 a 0 W IL 'D .- 4 L t L 0 .Z W0 - C .00.trmn Q 0 C . ,

M ?o 0~0 Ei -- E0) 0-- IL >E) ~ .OO Q 0 C 0 ~0 -
C'- 0- - m - C D.- O > @ 0 L- .-- 0- - > ,- m u - ...) *I ,-MEC W0 OlC O.C 0 L C L C C- (ZC- 13 fL Md)0 : N E V) O Q- L C - CC L

-EOO m 0--ODO0EM 3 - 0).-' (J-3-__ _ - -0O-0 0 - 0 r '-0 *ZO0
I.- u - Z 0 0 -- C U - ) - >

1M M 0L1- X- 0! *0 0 c *c) 1mC)'- M 0 .0- C xO C :1 z- 3
a QU 0- co ) 0C L.-Ln(.-)1W L.cj1 (UU C) L >O0 . V')> C 3 U L C
Qa - in ic )0EOUN 0-w00.'Et7 0 U0)L- L 0 L OZ 3 L0Z
M E- - ---- - 001 U00 -- 0- C 01- W 'DU V13 U)- 4) C 3Q 3 0) (D0)c -Da

I-. C c0 )-QQ 0 :3 a E 0Q-MC I ADLt E01 3 1---D)W)DlC M E UI--1)E - ) ON UC .-. 34 0-13
ClQO-n L QC0 C C Cl0) t'. ,, i---O>0)40) £0 W)0 W-flo 00 C -C L ",L C

U) I>Ud)4- V ,1 Z 73 0U0 L- 34-

o a zn

o 0 0 L >
- C'-C 0 -lb 0)0 a Co L 9 ao

o Di W -V 0 0 4) - 0 L*U C 0 > W L 0 c- 0
m 4, 0) - L 'n C ) C - COL U. LC a) -0 4-0O 0) 0 L

z- U ) 7 0 WE-. - - U IDWD 0) rn Co. --LC-'O->- C.

z 10 0 OC) 0 E 0 1) 3-z - :.C-EOMC0 V00E 0 000- 0)W0 0 - 0) E 3 0
- u 'L N C0 (D E - .. U -00 0OcEQE > i.'-.0 M 0 Z IV 4,E

1 -- .'EV0I. D 14 U0 G1( -- L ) E 0 0 WL CD L - Z U)
C C ' L,0)0)E L C L''l-- LU BL > -I : -. -W . CA

:3 .4 CCL ID C > .- T-! c 0) - ) L 'D tn M W M 0 )0) 0 00 a C > > -CL
* E <4) 0)0o- V Q 10 7-DO0 E > W)u'0 E 0 > E."- - C OD 0 .- 10z-0)

C. ~--- 0On.-' -I -O.-E-l a0)- L U -'- U 0 L
a - L A 0 0 L 0 - O C: C 30CJ u E> C;0 (p M )4) 00 in-..'
E 0 If) £- Q Q-UEL m 0 :) U) -> mc *-E> :L ZE L- 0 LI§U 4
0 E Cl Q .'f ) fG-0I 0 C-Q-:;LO0LUE C Cr 03 *.' L .1-LV m lo E 0L ) - .- *.. D E; L U C 0 --.- ' - C .c fC
0p0) L - M te)0$- L - L 14 Q 0-0 LM -E >D c CC 0 0 0 m -00) 0

C CEMW - D C L -Q a 0, C C ID r- : w 0f D E fD a, r01UU0) 11 -Z CO2D
> *' 100) 7 - E- m 0-U- 4i m)G ot-E- -£ -0 £0Lt-

0 m!)0)D-4 L3O C. ' O ai M. -- r3 O 101 0).0t. ' 0n OL t-
V c a0) to C L-.- 2 C0)0-. E00) (A01 4, M-D - O I C 0, 00 M -. ' OW Q0 O! > (ofl.I

ID -E U- >'z f w->1 ' *-. U) ) tV - 100) C N L c )1- C,-l-w
S 1012-.E UO - .) 4 -O0 o10M f 0) 0 )- (IO>0a EC 0 r C- U0,- 0U I'-- w -E 0-0 0 o0 1 nLc00>fl0L£0) r0OI-DL 00) qc 1
10 L0u.- c 0 -- L -D- >0i ) 4O-ID C )E C'' Z 010>aE -MWV 3.-UU- V
L w D 0t M C 0 - 1 0 Q , . - 0 4 1 -0 3 0 ) - C 0 1 - 0 1 L E M - 0 0G o . E 0 - v L

U 0V- CU-CC) L Q0)>o- nW-C C 1. C L 0)f Z) '.- U-L 0 0 0 40 -O
to- I 0 r C-0 L - U- vfl0 _~f tO - O0 ?C _ 2EXLV- 0Q CD4-nI

U 0-OCnVQnO'.COC.-.0 C 0.OMQE£C-Om) O 0 E.- 0~ L10 E
-0 l >C)0 >0- 00 fl't" c M C - D: 3C)10- -L-LE£"to 3

S 0 - -- 4LL 0 0 :3--inl0 D) m O LL ..- u'-.-w> -cC 0 (0 - -- 0a C . - - 0
03 C 0 0 Q 0 0 C - D 0 . V C 0' F 0 - 0 )VV-004) MVD 0) 0.-' L )V X

C ) - L iO.rI0E - C~ C)- C E--C LE C D-4)£ - C01 0) ~0 Cc L- 0)S) E tO . 0 In:n4 0 IC L L 1 00-'- -)- ;- V'- Z :'

L 0)- 0 W do L0 V x c a 1) 0 0-f - -0 v ) ' a0 U 0CL
0 00 - -L 0 .%0 fl)IU 1011Cn OLE 0 0- Z-0 - 0 L VCO*-4

c Ul-'- z-- 0 0)061-01&06 600 ) -Q E - E - C C - 0 ) VC-.-
100~ ~ 0E1I- 360 fl00). 0.- t6- * 61 0 0)0) X10 IE0 -11

CO )U100C.' Uffl CZ)00 :10- -- )1010)) 6
C- 0 1 0)>0 0 4)E f " 0 U: U'D- .Z0).-' 010 0))) CQL 0

U - -.-4 EQ -- OQUCIDm .- 0 E -O0 0 - E l> 0 .Qa -fl- 00 3,C0 -0CU
L ? ----~>l~ n0O1 .' 1- ! .n3nCL 0CU >L nL C D 41 10. 4 *CU

g 9. gl0~ oflD6E40 -. 6a)w ~04-U~4 0'.0E. V C1010 u 112-0

c l 10 L Un ) - U -a -- EMV V) P4 a- 3

E 44 'n L- 10X: >

L) E- U-' 10 L - E-IDc0Qc0 um l 1U 03t



B- 12

c0 0 CC-C 60 0 )k

6. L0 OC - C-C -C C 9:A

0 a) 0 0* --- 0 - - £

- C 'L10 o.:-. 04- CC *0 a C-L "

ID u SC. .C .7, .L go 00.' 202
1,0 0 'A 04 - -. . 4-0.S - 0 ko 13 1m

j 0O 0 4a4 t20 . C 0 - 24 0 O0
L :3C 01 0 00 .AC Q C :3 C- UM C nO

C - C- CC 0uJ- 4 a - O 20 00>S 3 0 ;ccaoci - xc a0 0

11 0 m CU'I 0 4,zn D 9 OlGPGL C *Q U 0 U4 - 7--C"41 2r a P
IV 0 _ l 0 _0000E C

rd 0000 QC 0 ,0 4.-LE 4
EN~ ~~ £2 0- l 0 -. 2 0 -0 U - '0 n 0~ W £

.'0 0, -o '-00 2' a20 - Q - 0 0 4C-Vr

61, C- E0 CL C v 4O . -0 ECO00 -U V) C0 £ o cCI0
04 0 0. M 0- 10 -0 E 0EVU Ok 04- m u .'

0 '0 0 * "~ w- 20 ,- O -a U In0 0 0 0-C- -

v "0 a- 0 ! -002 0a~ '-C 0 2 8 w- .u
4- - f0 0 0 L IC-fl- -- U - 0 - 0 U -- a

2 N C L to0 O- D -Q I 00 -2 000 E -C UE 40
0 .'C 04 0 m-> In uC 00£. E- .0 0 - 0 00 ; Q Q

00 4 x0 0 LO 0 M a CO Q 0 2~0 to 0 CQ 0 al-u .-mL>c Cl

a- t 0- (DN c- EZ l.CO 0a : G E£4 a.I 0 cc -U 0 C 0C

:3 r~ 0 -£0- _OC- -)0£-.' C0C00C a0L Wlt-'O 000
2N. C > E I > 1O 0 M 3 -U L E >0-- L0 C 'A E 00 -

.. N 0 4 10 CD.~ L.- C M~ 4)QL4 C 0 -- 0- L- - U
Or- C- ." ME * 0 m0 a 10 aL 10 , to C)-'Q C rC£C c m CL
2 0 2 -- ' rE(2£ 000 ECtCCUI- -COn-COnC-dn EL-- 0OC- DLr-

C- 0 -1 - U0mIn m u 0 cto004 0. -acm 3D ( 0 - oc lb 0 M0a
- 0 .000 ) D to -00 0-C- OL - 0 - > > N0~ C4 0c - C 0 *- c U -

4) -- %' (X 0.~1I- aO0 m ' .- W E .DDDlfCO '0 E Oc" 0 000

CC) 0 E 00 3 o10 Lcl- 0 0C > 0 0000- 00 u Z O

C r ~ mO CE D -4 CQ) Q)0 0 >OI.v C rO 0a) -C-C;xC a ,, 0
C > >I *0 E' u0 U ( UEwCfl Q 0 - u

0 E 'Z > -L .0 L -O ' ~ C -4-. 0- 0 u-c DL m 0 a 0 .-. 0 E301D-0

C ( ~ 0 V ."JI(CM ]C1 r.C CI U L 0LIn cC CCLMC-0 .9 0 , LT 0 L .r:C- * - 'C ">2

0 n 00L I DC-.- 0C (A1 -02 000 0 0 I E-a a f E C ->'W0 U to W

w u0 L4'J IC- 'JO -'0 u Cu L r!E C Oc.V 5l -0 -"t-> > I-a#-'3L0a
- C I-CN MEO - M Wc4o a0 00 CQ C C M CC CO-- .-- u1--- a)U0n

CO L-ON tr-I.. u -L fC4U.C- ( w0C0n40 C0 -2"-aCa-z > (D

C- uf ,-CC E<d

* m co

0 L Sz
41 0 In L00

O > - .E -l E 0-- *-20
L, w- m, 0 0EO lb1 CC 0 0 V G--q1

100'- 0 - - -- >. -'O L n00 0 - U C.-C-: 4 .- 0 >C
23 In 020 -l COO L -00- OC - C) O C-- In -

D-0 fl.>0 m O>- - U - 4-L 4 -
v)"-- C C -- c ln' -2 - - u - -u

0 IC 04-0 In i0 mCL -L 0 I O r- U) >-k L-
W-0r,~ V) OC L) 400 cc 0 0) 0 wU to 4-0 V)

- 0) L> 0" ((U 0 4 L> 'o - C- o a, Vo zC O
u--. al 0 0 - OL L 00 0In C >-Q 3--.40 '-L 4Dc >-0 0 wD.4E0)L L- a WC- >00 In C-to 0m C-S

r2'.E -L--C: 0 4- C'. In 0>' 10 rCaC C 0 - 0 r O -0-S1 D
(0 00 00 ;- C .-0- 0,f o. .- 0" O - 4-'. 0)N I L '- L 0

q-c L-'2 L VE E -o 011E0l 0- 7; 00 O200m0D0a

D0 q :3 c 2C0 C alL C 10 0-C L£OC C CO 9) C- 0 a > 0CC
cc- r'> - m ( 4-0 L -E L L LC 4 - -C- 40 LN -2If2i-0
N- ' UV)rIZC DC L - - D .>2 0 W E. Q' 4C a) >2 :3t->,

113 0CQ"-4C 00- 2c 0 . In- -O 0 '-N--£CC 0
0Q0-C 1> - 0 V-L C- L C E E (- C )0w :2 M V0C1 M-Q 0

0 1)c- CC L00 Z- d)£ - 1C- 0 -'L C - 0 00 Z) r)
OX C - C-C a .0 .-'>,C 0 L0.' O V .C0 C-'(- '0 u -- XC-rO

L L (u >E-C4 o- m t - 0 -W C N EC VCN . to L Z U N
C 0 0C.'EJO E mCUV'-I ' M0 "0n- 00-n)EC*

14Eu-E-v E0E do -Ca- C2'.-4-'7 0 20) LO 2.- C E-4- 2 CN-
0 MAn a0. 0 D ML E-LU00 3 0 0 10 -0 '4 C0-L0 ODm ( ja U N C-

1 CC 'CL -C-a 4,> L (D 0-E 0 40 0 -XC NOO .- tOGI-Lmr) r-- -C0 - a L

40 Cn -o C 0 r L Ml .M0 C -C-COU CDn Z fUON ' '"'(-0T 0

-0'OC- CCE0- C- 40C L n). -E LO DC n " -
r LC0C 2 O- > I O 2 n E 0LC -0 In O>O c0 -m> mZ>7 0 4- 0 - E

-aEC- 0 a' 02' .C -V_ *.- C-EL C -L'0 "-v0 ' - )
a-. 0- 0 c 0 CO C-4 0 20 0'- C- in ( 04 N 0 0

Co 0 W U3 3V-0 Lv L-1CA ) L> NO O E " C 41C4 N -M C 'C - -4

L0 0 U11 Cr--0 C 4 0)0 0" 0- U- 4-.- 0 &
00 ) a 0 wQ1 Cfl00C-nfl. >4 C- f C 2 0 C a) In4)l>- N C C pVC- , N- c-0 C -.

40 1 r 0 L c 0 *- 0w .
c ~ ~ 02~> 00, O' D002

fC- C4 -- C ! 000 O l~ 20. 20 00 C- S 00 00a
-O OC O U 00 OC- CO U4"- 0 EOC CM 10 LO 0000 : 10 u LM 0 so 01U4-

aC- >a-4- 4) c- 0 - -. UO- 100 ) C--J 2
3 L I- - -C '- L- -0 - 1 i -L ; 1C:-In0C-OC '-NC0-a) a ;: C-.- -0a >CO0

- 1 0 '- , 1-i0C > c -' O> c -> - 'C". - z -OC
>Cf- C3- 4? d -Cc0 . -c 1 '0.0 ty 2 0- 4 O( V'3 - -0 '-. I I-'Sr(0WUJ -C-' An -
.- 0 -"2 - .- C4--C-;0 -i-0 - a, -E DL:00"OE -Jn.D0 0 -E 3- 4  -vo0@

ix E U 0 A W 4 -- 4 4 V)



B- 13 -

ON 00 -U 0-C- -to 1- 0-3
r L 0 f- ? CL VI L &~ C4-

C 0.V0 -~ >0. -1 -L.C 00

V D u- cU'a" E - 4 ti4 0inI0 C' >Ct)4C L ~ .4 . C
-0 U-o- a f 0. D -fl DU 4 In40 0 0 zi- C_
0 incO~ c o01x U c 0o 0 E - .- 2 *fC40 CO 0 '

-- a, Ic 1co 0 00 V E .0 & 0 Go0 0 0 4) U C
a u 10 M C. D~ LE Z CL .0 -U-CUM.-'M C, OEC 10 - - . I

C -r 000o- U 00in00 M 4D - - 40 0 D L. a
c m c - .~O C-.~ D. ' a 0. 10 - 0 0 cm

0 o Ltl £0- >O V 0 ~ ra >- 0 a 0.>Cd

CC O c -Cn 0' o '. a, >m 0.'_ MN CL c E: D rC4'd0

:3 D 0- E*uO - 0 - u O- mU k - c'~- 0 0 N e'.

10 t * x 4) 4) - 4 0 -Oc00V -U a 0 01 .' Vc D - *U
00 al- c a 0 E L. J- .> L W - -- EOC -40-O- *U. l C 0.0D.

LOJ 10o C~ )C0 v-a xL'-0 '0c f 0 -0 0 1DO

1 0o D - 0 4) 4 0cC >OC c0 1000 m #Lo-- C 3
OL C I0 ED 0 '0 a.0 0..00 L LOLtOQ i 0- U 00 0L

AC o'c 1o0.o . o 0 to, 0 - O. toE -> .U 0 a L . v
Lw ww C. -E 0U.0 LE -W. E - -~".0 -- - ,

m Lnc >.-' *> 0 V)0 00 C- Q L C. u x. 0 0 t :. (x( -L i
cC, - 40 ~ jo0 0C .- Va ?' t--I~ CfI~W 4

'A 0> 0 0 o u u 10. - 0 U '- L 0 C.- cX -C. -0 3 to wC-U401
-O rE - - a '>0 - -Or n - C- 0- C. 0 GoO - ID

> 0 0 4)- W w c.-'--.E0CCE 01L -C c 0- 00-' fl1 0
C-LO~. 00 0OOUf --Ca~~.L 0 00.

a ~ O C... Q EL :- o': vc c -0-C. 4 ) - - 0:- L- I GG QL-WO - -C

C o W30 ) 0 P M >a L c -. 0 £0 ON >£ 0 V.OC -C',0
>-'0C _?-r E0- a- 0 0 Co -m o 0 i CLrt ?- 1o-

QL a) - L O O W k c -) 0 . 0. - - 0 0..C 0 C4 0 E L m D 0 UD
A E 0 - - L' C O 4) >c c v Lc M o c a c- 0 - Q (D >

t'~ U.cf- 0 >0 U 4 V0 ~ 01-cc 4 L 0- C 0 0 c
fL ~0f9 -1 M7 ~ 0~ a- r-) EC>C L0 C0~~ M Ea

>C.L j f, ? -4 O0 fO(D0. ~ m.0 t- E UOt' ML 3 0'>0
LO VoE--0 c o~-t-- >00 t- 3- . -00 WC -~f0:

0- jo0~ 0 l C..L aL -0 0 Z-0 0 L0 £a*- *.1 '

no-'o .01~ o.EP-C-0 0 n 0 Lc - -r- :3 0 Ec0 0 C z 0

LU'W00D E-t- 4 .- U UOVC t4-U43404-0.C.aU l>0D-

4) 1fl (D I 0 tM L 0 3-LZ--0000 z- CL oD4D . - C(0

0 D0 qu- ,0Q 1g - 0 '0LWM C 0

0* EE c0 > oUzL 4)4 C
u~ W go0 -o >c v -m

Voc £r to-hL300 1 m~0 30 0 L Mo 0 M £0-0L0 ID' , 4O
L - E 0 0 4 t-- 0'0' QI M~- 0DC44-U-_

5- E UU - fo a00 c 10 C- vI34 -E D 0al
c io 0 L 4 Ca L c 0 t- E0 C 0 .2 LO' 0)0

o:~o u ' 01 0O >D -M t'' a 3 V03.4 0-- c U a ~ a a 4 .-

004-0~~~~ E1 -1 C.3'. U> 0 - 'a O . . OZ .

Uv o~ 0 -t) 31 0 C1-0 00. "- U -- 400
C 40 c >0c4 C. 3 0 ~ 0o-- -C ~ t Z> W,03 0Drmc Uj r

A-..- 00 1- a-.~ 0 - do 000.O' . - U 0f .20 r )L
00 0 'Eo - -, 40 0 >_UacEW a 0 0'

a L. > 0 U) -U-U -tO C 40. -UO t :; X0 0 0 0

U - oo-o a- c .~0 > E O w-0-- 0 U 0 .- a ) Ito Oc

Z.-L C_ Mi.U- 4)c > Op 00 x' C. E c > C.Jto aU

coocoW 0-?- .0) E >'C -4 00 00- L .>.t 'C

a- Cc,. '--0 0 >£ 00- ccc-")-- m0 0; c ) C1 1 0U
O 0'M0 C -0 C 0L40 M. Wc *W o- 0 40 M . E c0 00 Go u

'I Itoa L-a c n") -0E f m Omm 0 (D o-C o-
-o~T 1- 0 >0 -- L >..> .-. , . 0- 0.uO

,c .0 0- ct C. ;L =-.-f r- C.L c 4' C. -)

uV 00 L - t - 3 L C 00 73 00 aEmcm I -u 0-03v 00
o o~ cW O~i L >-00 L 0 M0> -uu (D 0 4UJ tcoU4

- U- zO~- OO4(" C. .00 L.w C . 0-- m *-'.-D

UE-~~~~o0 0 OLO. >.O.E)0-(~-V- - 40 UO- 0
00 0 0C..0 cmo cc xO. .- c-- cMU E ac-cx>0cm u C

w-COO C ~C), c.-3..L'- : 0n ~C L . o c 0*oo-LE - U 19 c0L 0L0 14C

. 0 1D_ .- 0 _.O 0-4 0 00 la)000 .I ' -M.0 - 4 0- CGoU-
p 0 00 C C' c04 U) so~ w - Dc 0 EOC in

0 .0 E D' - N 00 2 L- V.C40 . L- co CC 
0 . 0 00 c~

.- 0000a ~ ~ ~ ~ 1 0- M -0 L. .-UU Q.O VaL. 0 0 031
u 4 -u (on 0 oE- - . .- 0..94 043*) rnO w -cc ouu. C. 3CJ0 40

w 10 0 l0 o c 0.C-- c r00- t- 01-- 00 0 *U4'O'-.
- - (D C 00L - 0 x OC.C - CLO 40- to m 0 0 4)OUL

icI c00.00 M0 4 0 3 C04 -- c--C - fl .UO D10 -Cut 0U
In c c ) 0 u 00 00)3 m~-'- 0 0 0 L00*'0C J

4) C. C -0 00 - ccv c C 3 LC

oU 00 ,'c D~C) 0 - .CC.. Le r 0 C 0 a' - 4
0-~4 LC.-Co - 0u 0 r4 ~---.~ 0-C U 40 Go"*U~eV

r0 *- -40 0-O0Lo 0.C C 0C > OC 4 L.4 u 0 01
3- UOU0C *o40c r~LO0UL .-- C.-a.07 .0 4- .~c-

LO'.-~ CLCf0. t00r.- ~04~0~-."4 U Lo' L - L 3 A 004'
FP 2- 1

4- &* ;- - 4 - W u '
4, - a c; 3
44 - 4



B- 14

N 0 * 0I-~ L

0-o nIto-I C 0 ~ 0- 1-n Q) Wi L. 0C
C---~~1 0- 0 a.-' Cn' -E - - -

u #A u Co)- 0'-- -0- W) x 0 0 - DC'-O>u-uflw~ .-Ci- 0
410Ci-1 W 0 -O C -C-)OL '-V~ r O O.DN D 0 03 >n ~- 0

L> 2' - L- 0- x~ 0 'D v C) 00 0 C CL- 00 13 L U
L-O ELDO 00x u W- mC Lin. Ln-C~~ 0.0 O L)L O V- -L~ 0 - DA a C-a

L UC:41 0Z >~W ro - L) V- u - uC I :3 j-

003 00 ()C > 0i M 0 r-n' >h~ LO Ci ') CiWn(A

Ci 1 u) L' V) 'AC JC-D - i -" ' C 0 '0 c-'.i . LO- int O
UC~1 i~-- 0- L 0 01WP L~n * - ::) C C O 00-

E m C 0i- w-.m C> U-i Cj L EL L - a0,)Q Ci WE 0r > -) U4 c cr ~ Ic0
0 0 > ncl ~ 0C~ 0 - m*-0Ci . c C iON V LC0i ' C > - #A WOci

'.-CC--O---nnl~~~~~~~~t C'C- -t *. -f3iWfl~J-cU n-' Q -

q w 7 g 10 a infl' -. W W~.'..' W O--Ci U C- L -O WD0 in(A - 0o - 3D
uC 0CCC E 0-- c-cO 0 .'-. >Ciu l0 (A a L 4Fh-

- )C MV -0 L - 0C uC -I a)inO Ic 0 DC - - -4 -i- - C 0 00
w c 00C Lnc-.-Cim V)4r~W W~n -C 0 ' (nrn> Li t- D M:.>% - -

Ci -. i"- 010- --- -3 in -q nD 3~ 0~ n~ cCC
W-- W c-C0---0C :3f wc4.' CiOi iCii0 Ci D- ci in i 0

70 0 .C 0 M in Ciinq ii')0 i W.-C - 0) DWCW -i.i UO1>m w -w 0 m -m - (
EO 0 00 W rni~i - M- t i - 0 W 0 0 M-*L L 4 4 MCD 104 Cfl cn -P > a

0 LC >W O CO r- Ci Ci C 0i i -L Ew Mi 1 -C r -0' l 0)::0 ; -0
*C- CI1~ 0 C-cl4 CC--.' c-0 zCC >~ C 0 - C r - V

0 ~C W n 100 - 01 a)Ci.-i a)n )0 (A 0 al- 'CO > - n -in a -

.- iC E L M 0 C U 0 Ui- M r-- Cjo -OC mc 0 70 W 0 m 9) m0 Ci t- ( C
CiOiL- 0 0 CO )o W0- MC ML r- CW > - - >-. - 0 0'0C Wi0- 0 >.C * -n

0 V L00E C- -' n> i w0 E V)-' £0- CE 0 -L- LUVM 0 C-C--'U (A0>Ci
L 1 -W O t LG~n i C:- - ) ,W- L - Cf C O- MCiU0V -O ~ cD ii O V L

0 a. 1.3I )a -01
0-- >A >- CA V- >r-0 n L. 0 .a 7c: S' ,a ,- 0 Oj >

CTCi -C - na () 0C -M 0 >-

N i -16 C- - ? -UQ -VU ( >0 m C
a) z C) 0i -m CO 0 -' 0 OC Ui~ a C OO .1 -

E W LN L WL) M C 0 Z*- -- JC > .4L -C *- Q) Ci' VWCN0 .- 'C
mD Vn- 0 m LC Cu-am u i - C-v IXO -- 0) 3io -r 1 rW-Ci4n

01 W OWWC>nOCWC -01C--W-CM W WD > 4 Ci -'c - C-PW~ 01- i DO--I-
C t C -- Oii - 0C-ICc L- LiCC-l Cf (DC 0c M- cL'()I

in. 0~~D'- M IC -C MO '-'0 0£ C C.ii-.'' 0- 0 r-n
0 CL O iOCl 0-- Ci Cl QC Dmin C= <-' -E r- na z- VCO 0 )C - D040

U~0 C - 0 - C -i1-'~CC> ncC-m .t- 0 10l I-c W

0~~~ ~~~~~~~~~~~ 0 iJ-0'iO 0 C ''C O C -Ci Dic-C0 U .C '0

c-c'ii'''i C C Win 0 1 ii- 0 -' 0 0 c no EiLU)
-C !! . cn " L- 9 0 -_ c ->i - wCn-- 0 T) MWOC--

-1-C c- L ai L Z ZniU - 0 i 2.!n~i m-.C m- V) WQ
OLC Z -3 4) I. - -- C 41 C -. >- t-.o x -to0 Ti *.- a) C-'- r

I-rV u .~0- C c a-4 0 ) C En -- i- c- -)m0 1C>-0an0~ c 0 V- n0CC'5- inio- M PC-C 3 ' 0 >

(n c.Vc-- C- .c CRWn~- - 4 -.- -iiO~ (D aC -n V-
G)c4 DCi m i~c 0-~ni tor' 0C0c-i--WJ C'- >-- WL : -0 c13iu)3m

a D (D f: c-cm :3 > i - C-V Ci0 0> -- C La
L - m X-'-CLU Li Eif-- -'-- W :;- 0) in .::- .

Q 0 - 4)im-C 0 Oi9c) 0n->E C'M Ci '00 D EC 0-00 A V. CxV-
ClW- L C 3~ Cr L -nCO E~N 0'. -, mCiwEx"-m 0 n OW -. i L NCW 3 0

Lc- E nc N -W 0 m Q m- .)-(n - c-C L-)> X.'' E D.- > m cci
O'.-Ci>l- L~ - W~n1 C--f >C -VuLi

CiW -C~i. CLW cN CO0 ) - L u D 0c-
-0 Cc-f LD 0 C E' CL~ E ->1DN cE- i LID E0 c-
OWc 0O>c E VID ) inin 'C - W -.- nmi U - m rNW 0 0 41 ' 0 FA ~0
-C D in CW -r-N " cm O m - 71 !-E i C i W -- I>- L : - 0 -- LU O0
4L' ZL LW 0 WE q>OO CCO- U- C -CC WD 0 mi 0 C, 0- L - 0u~
CW - (P'~ ac- -- 0~r-- c inC Vn C-tC - I.? Q
LW J O--i 0i cD. ICDOLL(1 n L NON4 - - 0) 0 in m i ED L,) . 'DVC
0U W L-N~- 10L L>l0 . - (AinO Cl -OL N * r - C ini- L L'C)f5 0 --- Ci.

. i. D C inN WU C -c--LMZ Mw I - 0 0 Li 0W ci C> wc-- . mc- o

fa CC- c11 E 1 ' Lf CEi-- - Z 4C~OiC 0 l c-E-CL>c

0 L. C I) >.-cc005- -4 IQ

0 oE00E- A0- (A CL -A :;. 141an a D fa
L > :1 0 0 aMLC"a40 Q, C4 V) L L 40m0E 4

clIm -,i
c D D: -;. l -L>- ,L u V 7



B-I15

1 00 0 a "- -0 .o 0
v E z N >- 2 -8 60 . 4oo * 1

I Q~ 0 CL 41 40M 0it' )0
c m 3 c 0 LQ 40 4 C LC V OC4 0 4I'o -a 0 c al- L -G L to.'I 0 .O -C - 0 ICAV- 0C OR~ C C 0 0P L4L O C - S 0) fG

go rC 4) L-WC M :OL VO C0 MO EL CC W - a
0 U C **-C C4C DVOOI L 0" 0D Cl -O CO

0D > -C .- E 0- 0EO0> LL-0- C t - o0 03 Ca. C C L -D L
- )0 cC - u~ D m L 0-L > 0- ap E - UC'in -C LCM>-M

L-. F4 CC~ C -0 -MV W 3W T U

M -WCC--CM 0 LW' C- -r U GoM0WWo0)3 4 W-C-. C0 3 U #
L LL) mL *- EOC U C -L(D4 L 0> a, Cr .

a,-r 594EV ' U -LV C, 'I -C CP CC0Z.' C C
w- w I rLC m-C -C0C C- OC L >.-NU C - L OZOE0C" - - 0-C

X V--C M C-> U U to .ID i U 0 C OC C- 0 a 4)t 0L C * L

C LOLJcC .9UM 0C 41 xZ ~ O C 41 CL 4- to 0 pC o M a oW l C C ()
La 0C--O m DU.'VOC ::r C)I LLNc V 0 -O- 4 W4 0 00 M G)

C uC) Wr C CC 0- cE - CO-C to xl C - C0 O
a C I0 >C-CU COE CEV C- C-v '-C M.'- -D

0 - C -0 0 U0 LD4 L C>0CC L ZOCO 0 C C C 0
9X -- CL MC.'-' M C LE0C -CCLZ)- UELV -CC-EWC.-C

CC 0 toU MC C- IC-O- YV 0 L - a)- CCVOcWV-0C 4d m. uC I.- 'UC - L C C C 0C~- '-L0 >rmC-Q- >cL M 4 3
E- C O GO *~ L W C - Z -C2 U -0)E0 C M- 0(7 L- . .0 

N 0 0) - QC ) C W .-L0-L L -CM 3 L '.- CO LC tO .- L 0DC - c
0 CC, ' L1 0L U> CC -CI 0 'o LC 0 L CW

-- '0- a-> - >C C C Z> to>0) c-C ~ .cfL C C
o 1 C W -- CL 1 C:LL L-t--flCWtod M L"~ W tl1 .C E OCC-o ) mua r- 4C0 z -- O ) CC EO L -- (1) a a_- 4 C-~-OZCZ Z 0 C C C- -
O - LL)V * h. C L EW-COC 0E (DEC0 c --. C C LW a ) --C C 3. - C C - Co-
O0 0(0 4 -- : L C 0-C 4 Q- 1a - C-0-C .- C 0 -0 ~ m -V C 0WC -O- 00 L

r- 0 ) 10 f0 0 0 Q bM
0) 0 0 n w -X

0 alU 0-4 a M * ) M C - - W>

- ct 4)L u EL V)- 0r0V) c 0u uE 4 ( C . C -3>E 4 ) 0 rCC CO uC - L O NO5 -P -COc-ww E z2 G ;U 0 3- C - L (
0 oC 0 C m0 C, -W C 4O-C L L.-- L *-'C C -L - - L~C) mC
uO4 4 4LE 0 U. CO rm C m .- 0XE Q L W - - 0l) - C -aL.-'-1 40(3

LW >' C > - ~ C.i j C OCW *E EL >, -CCI - 4 MV 10- L C 
> V) G) 0 LC--C -M C Z CL D LV, 0 CC M 0i 0 4 ).~

0C C x 0 0 C-0-CCCCC' c cC3 C V V C ~ NU C

w.Q--E V3 VN ~ , -E C-0 -V m L- LCC . (DOO C D NL - -
L C C C C aCC -V m CJ -COC U) C 0- W C.
OW--C - 0 -C'mV--C CE.-op' 8 r- 1 C ' EUC C- o- 0 .- m-U EV)CC>

to L 4) C c c0 OLO O nmCC 0 m >r OVC."0 -L E W' ) ZL - Z COC
CC 0- - 0 - ~- U'DO C N > 4C >>V -C . C C 4 - ) - MC V > CL 0.

0LL 'A M C)-C LW
' C -> L W0 3 C C) to>L CO C - - C

CO.E C Co El- C 0 m n 0n 0fC-C -- V- I W -L -

x Q'.L. E - LC O L > u2 LCE C>QV-L
2

a.-L' 0 : 0 ? M5
OCm O- C Cr cl-C- CCO L'o -AC -a. 4CL LCON L

LGCO~ ~~~~ LL E CE- O -0- CE CCL4C r 10C-J-* - 0 C
0 -D -,o C -L OE 11-.ZCU ML C>.31 L CO CC0 *C) CC: V

CC 0 C: C4a CO a)C CL U VIx IC)> CcC
DC- - 40 8 0C~ C C)SWu..CLC0C 0CW 01') - C- t - - C

C0 C W u - 4ZE--VL - - - C - -V u~ 000 0
-C L Cx :3C L CCCO.A 0 MC43 ' -- 4-) f-'-~ CO-C LOWQL: 0 C

-4 5 .4 --C .-' c EC>Q E fCL CaCC - C C CQ.- -1 -E .
- oE C- m>C -D 0 O OL > LLO Q) ~ ~ C *-V.-' - CPE ADc L -l CO E - 0 - U Z5 W-S.10 z 4 .-. 0 a) M04) Z Q)E4

CL-CM-C E OC.-' cW -C--- L~- ~ W
02 -C L- - L ->U.) c 0C LCU CL)D-< C- C-10 M.-C c c

0 C-L -E E Ca C E> > C- o 0 OC- O - - M CC -CX - Y)L - C-C
InW0V D LC)- CE C- UOO CO C- Z)V L CO C-, EOOO0C L VDW CC-V-C - -- L 0> 0 0~U.' O C0 00 OL *C0)~O
LCE@C 3--L 0 -u m3~-C m-OC -- CE v L OCCACM> d -Ul 2

GO L CC - MO0C0L C E W >Z CU) L VC -M4 C .: . ~CL -C-0CV>

totnL --u J- ZC0 U C I-3 VC -J4- 'L 10 0V0Cn Q
n M 3 -n' LC M-U C C Q - aU~. C. CU WC -ccCA CC L*00>.-DLou uEc 0C

aC 0c > u L -OiOCC fr - . C) V)In , C--t-L IV 2'-l>--'4o (0LWC D

Z 4 4 4 4
C- L1 -- (A .- 9) 19 L 4 - ta L m o >af f SL: 0C>E0 9 00 D Cd X->U (

41 xEU>C S! D0I LL>i



B- 16

o 0
0 D. a N 1 0 0 C - 4

a? 0 1 s.. *-. Go - C. C - I
Go 0 LQ C -0 (. a- C- C 140 41 0

a IA >0 00.- 0 t 0 13 u~ * u L0 0 u q ) 0
W m' L-Eo1-.041Ca'- 0 uC P-i' .4 u ( i

L -. , L d)'C. Q :- 2U - 410 C C' E 0u
r 50: >-- o -t 1 O mc C > 0, 41. 4'x-.r(I 414> LO -0 M- C C >4 -o1m E O U ~

0~~~ 41'L> . m m 0 L -. ' L 4
L) 1 I.0.0 ; 'I cc0 0 >O L. L o rl m

4) 41 C -- 0C 0 0 -4 0- W th > ZOcV Lq Df L -L a()41
o - a,4 r1 to- -- 4 -> ~0 c- M >u a LOL E-

c V- C LO 0 41.-': I E U -U-4 0) - al f1
0 -- c- m-. C4- C- r. -- LL M04 In M10. 0-1' r, L'

41 -00 vC'I Ur .u L - L 0 4 01f0.- E> U' :)-- L1
E 4)- 0.0?--.L4 w~ -40 '-~C - 0 -Q 4D -U

* no mmu (n 413 La 1 0: - 4 Oy M L 'E L C - > 0-
c a --4 3M1 0 0 a-4 C o1-4 0.' z- :; E

0D 41 ->~ > fo-4 U - -U *- L - - -' e-.U 41-00-a
0 C uW -no -o-- nl -c U2 000L04MoX - O Cd

a- -r-- - 40-- m2 ~0 > 0 a>0 0 0 -LU u c~o* 40-,U M - L MC WE 0 -C . :3-'0 C C 0U OD - c- L u40 Go.'W

LZ 014 4 0- E > 0 L 0C~ U U LC-' U4 '41 0 ! M-M'V
W'C 74,(4N0. VOLOO C -O E 41m a0 c- m- > Uo .- CON

0.1 EO' 4D a >UOLL 000 - W 0 w-' EO0 - E-> E-00 D- '- .
m1 >1 kn C- . L 1 10 0 0 0 -n0 CVC-- z >0 . 0 U L C a)

O -- a, N - 03 -0 L M1 0~ .4 a)-.E40- o -
0- C 410 -C)N4 000 4-'z1I --.'C M>.(,.- L-.. C '~l E

In -u (a >L OnEUL u- -LAa t-& tr an 40 0t -oo: OL f ) -E E
0E C C 4 1> 40 0 0 41 ,Z. O4-- 41 - 1

-3 01~ 0 'c-2E aE'-3'fl> LOU<) CO.- 0 EC0 10 .- 0 c-
0 010 L)-0 0 04141 0 c q-->.' 01 _4C -4-olO- 00 Cc, '.->-m AC
LE L - L I - J.-.0'- U L C >0- a,- 3LC) -.--- ) 0- 000 4)L 1 0

O ~-4 -1E-')EQO-- -- '- In.4' m--- - D .- C c r'-
-41 *-'v' a- E n 1 M 4- > -C- - 0 -L 0 r 0) to~- 0 4104 0-D L C-4

z~-N~O044f 0 4)U c q -0>3V C- :1CUQQUO
1U C0 L 0 >0 (1~4 0X (-? Q) m- L 1 0- 01 .D -4-

00 u - E C- V - -E.'> 0 O - .04142-41C0La(4-no0- 0 0 LOU4
C ~~~ .)- M> a, 0-(l- 000 U :NC - O- 4n C O 1 N- 1-

C-r L 0~0 - 01 -- rC' -CO D C'v EX(D041r 0 -0> 0- 41) 2 L C. ! -
u CL 1-. Cf C 0000 L 0 CQU mL -0 n110 In2 --- 2O 0.-r3 10 o - ~ 0W41. D-0w40 m0) C-.a -- 41>41 L-'COO

-0-.-; z IL - 11 o - 0 c 041.-40-- -- 000 C 4-04 _-0
c- --- 'C- 041 -UQ) C 0-- r C(V -0-' 0 40.' M00 -4 3IU -t-0

j -- 2: x " - . 0 - 0I- C 0 m. C I 10 L- 011 0 00 il0 u LE(

O *- -a E1 x1 u1 ( l Ea D1
a) C 0- Mu~ L0 -) mw X -) C.- LTVn4 z W:3om

00 E u4 D E0 v10 0 M 0O D C0 M(14 U4 -0
C, - 7, wOO 0 (0c0 w LL 41 c44 0 0

LU0 o >CV1OOI'G 4V 0 A 0 E04 10 o0 E*- 04 01-

f0 140000 Elnm U1 0 v - c CA mo- 0-woo a

D(U Cu - . 0O -4 -Z1 -C -- 0 - 000. 0 -- E 0-

ON~ ~ ~ ~ ~ ~~( 004-UO-'CO' CLO 0 -O01O a E04 EL'
r .- 0M CL O -~ 10 U L -0L 111 0 0

L0 a(CQ U 410 LE4' .3 *-mE-414) to 00--41000a
LQ -U UL -4-0 -- DC->U 0 '.1-L 4''L UIQ OD 0- -0 f4 U L4) do0 Go-L CUNa O m L1 L 0

.0 COEd M- CLM'L' 0 WE->L- 0 C 1O LE OC MJ- -L 0'.-42U.--0.0DL CD 0 - - M ()C CU C CU.C-Mm01 - 1= a0- In aCa-41 0NwC 0f 0 00 4 1-41-C0 C I m0OcU 0 M mC 0- W L'
0Cr4 W L - 0O LUN-4L44 0 0 -'UCZL 0410 C ~ --- M 0 E

at- I~0-0 ~ l 0 - L-- 0 -0, L) CE 0 CC-- C--mE UCCU) n
asE m14 U41CEOO ( COO CL- U - M ) - C~ m4A--E-tM0M 00C 41- C :

> L'?- -EC.M 4)0 C L L-i U E-41- U10 V)

L 0 41> A:OO)))0-r01 L 3-- L4300- - U -- U4C03-i1 OUX. 0' 41 U -0f
- C N C -L M 4.'nC 414 C L 0 -)n 0WE- L 4(14C10 f'

00413-0 .4014> O O 0L c 4 W -C D7 0 LU 41[I -' 00 0
Ca "2 E - 0-'4 0 C '0 (V N V) 10 L4 ~ Co) a-fl c1 L- ' 0 -

0> 7 N, --. Z -0--- -uo 410- . L C 0 U C0 E 40 -'m-0 0 a)-'41-)V-(AE> m
U-, (D c 0 01.- - 0~4 410 to zCO- ! -410'- ) 0 W4 U 0 t414: V30 n -

C r0 41- -OL- X - C 4 0 0 >--4 9)U3 : v' - WUOC o 0 04UL10- m
0 C1 G)- L riOUCE u -C' 0-4.'- nn , U U 0440 U01- ECOOVOl

41 U >0 0 -C--G4140011 L-0 4- -- >_ .-.Um- 0 m 0-O w Z c
3 C ON OC r_:2 0-110 MLC -0 015

GP-a - (m- L) - C Z: C W -C o (0 Gi> C4 4 0 - coo-a D U41W :
u-C C > C1 4100 -- 41c 00 > L i. -UC-vT - -- m wmOAO-10

c- 0V 0- cv0 0 n C o0(1uC -00 x --- cL L - M 0 0 .-v41041

L 4 1 - 0 C 0 4 3 ~ 1 U4 0-0 4 0 1 L -

.0 0m a-C c0 00 c0101 : 410 4 40(0 04141 0-00- a UC
oL Tc --- ON C c- o L--M 0U 0 -----m L( - 4)- 10-L-m >0 c0 E lo-

M- - -u- m U 00~1m0 L : E.0L0- 41 LC Q C WaU -C - 00 a

V 0 IL U w LVU--(D(D 0i U C L U 'n a (00M U Q41- 0z r WL4 0410 tz . 0'
L- Lc' UL m0U 004101L C-4~ C0 - QL4 J C
0) Z. :-V-' Wm4 >-- LE--acm -. ~ - -3 ) > C 0 ro -020 F

0C(L00000a0'-0-ON 0 1-1-41'-412 C E0---1 0 0
c -W ' U4 .- - A 0 4--aUOUU 0CL~ C L 0 0C

in00 Q 0N L0(D -C 0 -u-uE: 0c j- 0L. r -LL L ai 0

Z z. ! Dr 1 p3z m u' 91(01' pInS C 0I



B-17

0 41

0 D - SD a. 10v a0
C .C CS 001 4- 2' 5 r 0 £

a 0~ 10 10 C1 CC 4-' C~ .. Go C 0 1
to do L' 0 M -rI t14 -- )E p0 .c L 0 .9

Co er -). L QL - 1) E3 :: ~ -L .-4 t to 10 - 0 ; V
to 0- -141 r 1 D MI CO0 0; XI X o . -'-a'L C

3 -C L -11 LI S 41 C~1 U U- E 0C M -> oa'V -0U1A0
40 z ? 41--I u- c- 0 C- 0D E- U 4~10 0

- U 14o >0 41- 0C: g 10 4 10 £"V-L - 0 C
E 44 c- I 'o 10I O £ .0- > 4C 10 4 C 1 -C 14 L4 M 3G

- ~ ~ - - L-L U ('W -~ v-Lf 4 L0 V0- E1V1 0 14
L- C 0 w 1 .4r- 0 Q D -£ a1 0 0 D1 M.- - 0 0 0 ; 0 U.

go 0L 0 OU)1C04 a- CL .0 w - 00 a1 >I 0- .X 41. 4104
41 4 - CJ 0 0 .- -d c 1. u L41 E D0 >Iu4 >40.' U

v~1 CI1f.- U144S - to- &01- E- LO1Z s 441
L. J9I C 4) 0 0 0 r- - > -'0 0 M 0-v c1-f 41) 0 c

10 41 0-CC>- 0 C V 0 .0- 10 L O 0 .- 4MIM
41~~Z ;.z 0J'--M .'.L 04 c1- 10 .% o --c4 V 0 > V C

C0 L ML.C M14 0£) CL )-MI -- 01C 4-MWM
0 4 M1 0 a t1o u >-UIV0 c. 0. - 4 0- ~ -0 11D 0 r O D -

- ~ 1 U- 10 U~1 . UU '-0 0 EM ODI VQ)LJ - - 410

>C1MIE Q E-- C Mr,0 'f 01 UV -MEci >-C' .1
C- C1 4QC004 114-0 0 40 (D V-M C L004 *.LC 0 M 4,c to

o j UCZ .0 4) -U4 1-- 0 c- 0 c t 100V)414> 40 OL fOCMu1011
(A 0fl 0 -CI'' a'l~ Z) L C . C -4 D 0 E- 1U:6- *0(D (DW - L O 1.
au .U 40U1M V u1 M 41000 E 0 W C'L -4

C 0 0Mi a)0)01010 L)(1 >C411 MI C'A 410 c 0 DU.4UO L.CO.-' C
U VC0 a4>1- M E1~'1 do4-' U- 4) 0 E c a,- N 0U--C 0-

0 aULn WVo L. - )mI1M CL >. E~ 01-44 u1 -OE-Ca1CCN * 0 -O-
4141 .'MI---a)>' t0 U1 41 0CC -.- ! C- Q.0I '1.-L - Q -0 ~ ll

4100 0I SCI> .0CMQ4UL~ Q)0cO0>I1' L- O'0C 00O-.0~C - 0 10 >. -- M £U.t -41vL*-C -Z 00 - C a
N 1.- 410u- r 4- - ch D V)I 0MI~ *- U) £00 .CL 4 0 c , r-M c z1M10 r z L

v - -M l3: V) 44C434Q 0 M0E' 0-'r'-- 41 C1 x- MU- )- 0 u C- Ni 0>'
100 41 D. EEC LUI U)l UO- - 0 411 E c c4 f- 0 >

. 3*ZQ 4 '-'-C wUCMEIA40 00 M w>C0-E7 - - _ W .. 1 EM 1
(D : C-C E 0 04LU 0 c £0 ou - - E 10)' EI( c a)41 - 41)c£

L z *CL - c001.) £V- 10 0 ,1 u-.-a. C- 0 ;- ECC 1 C W -C 10Q I E 101-

U - 00 41 W1 a)MI C1- - 0 - 1 00 C 0 0 MI C - -- 41 3
o1 4-0 - 4 I I o> E 0-1 O- L r 0n 0 -LU- C-1 .-- l
0 VI M -V no-M l 0 0 - 0 L 0-.4 V)- u 0- OV -'4 0V-1 D 1)0 M M>1M01U0 0)4 41 0

E -L a0M10 E z 01 > CU-4) > L CCf- L c 0 c CO - *4> -4 -4CVO
.. .1 0 aL1 £ 4 L -0 .. 011Q1 L> C' .0o<X10M L V- £C 0

IX W " M - L0 1 U I £C . L > DG l 1 0 . 4 0 0a0a 4 ' . 0 0 C C , 0 £ 0 OL>
0 1 MI~ ~ -- a M t W-- C- 0 0) >14 UC' 1. 0 u 4 w.al- CU-.-

0 *)-aC- 0 *- (A4 I )cc ,cu X 2a 4 0t

MI~~ .'' '

C ~ ~ 4.- 415 I - 0 -1-
10 w. 0- >MI 10 10 44 - 1 MLM 0

V4 0) M-4 0)1 4)1£ 4- 41 MI 39 E.0 L 0

0 C ~ -Mc1 z0-4 C 40 'A - M. .-C to
c -M00- ..-oM 4- u r£ C L 10 0 - 0

C 0. ! 1-I1I 4)a r0C0 cI 0.-' t'oL 0 3- c-- 4- 410
41 10 10O0411021 -10- 410 0 1 0  C £ LOMCI0

C ) ) 0 (a ) UI 411 OI MI C 4C E C4 c C (a £1 4-30 4 4
--V 13C 0) D r M M L 4) V V)M 10L 41~0 C)0 -14E'-

L - u M 10COCCU C ccz : ut 0 - - O 0 E IQ m1L0oMIuu804

u - L MOcO10M. 4 UMIU a 0 0 - 41 0 . 3 0£ .L> C 10 10

Ij-U -N 0E,~' MC -U 4- -C ! 1 L: C 10>1c 01M L
-. WV 41-0 , :3 VCV.0-a c M' 0 U4 M Q MI L O

0 -1 '10-D 1 to0u41C10U )10 0-- a)tr t 41 -41 UQ L0P 10-0Mc !O o : u - V-- to
10 W. . W- Q.'fL !2.C -1- 0 -C C - M 0 -41C3 rw X-

W~1  E~~'L Q1 E ~ 01~ 0~ ' -0-'

31 0 h cE -ICUC1 10 0 U1£0 -- -1 3X * - - .- -
x -0 > v C--4 041 - V a .- 0C- to L0C~ 0 M L10- t

0 C 3 W.0>41'M M- MI10' a 1- w - 0 4) 0 0 -~ M141MI MII-- CC 10
-iu C-0U1-£C- 34 4 1; ;0 C 0 c 41M0 00 .- 0

0~~~~--~~ C1 L L04.--I 0EN'-0 - ~ 4 £OM

rNT LC D- c10C1 LC0--1 - 1. 41 -MC 4 4'-

-05 L 11.41- 10 w .4 L- -- L 1
o T2 CC -10 UO 3 11. 0144 1 2 0 I4'1

0 0-0 .- (-01) Q (D Q) L 0 MO M10C MI 43 -Cd£ 4 2

ra 04 >.rU1 414 LCS a >-od

1-1 0 01 FM 0 - L 40 . 0L I 4 - OCO -I L 20 0>- 0

>J4J1 "- ;MI-2LU CLp01 >0MW>1- 0 MW M0 n4 -JU. N
0 41MI L .4 D-0'1''1 0. 10M.- -MI IU 411

ut 4) E CL4 >0 U

c ocuJ D z0i *- M r-- 6E E c
1- Mn I- u o-4 ;

2I 6 2, U;zc 0 L-4



* D IA 0

c C 0 L -C M r L Go-12. 4- 0 L2 C. 0. 0 C 40

CL -- - 0 0.- V > m 40 >O 0 -) U) C C -C C C 0) LI6A 3 L.L- C 0 L-9 L US -0ALA OL n 0 0 0 0- -
*D .O - 40 0 04n' 'US :S- !! C 4NC IOu 0a 0 W0 to. C E 0VAUI- C* 3S O0 - >U. C. I C

£ L. LO 00) ) I o - LL.-.O.M '31 >'UmA--.. IL -0U 41C IU-USOUSE0
o Or 0LC.-1C IAUS 0 O 0 3C C U .C C UU) D LO0 C ! Z 0 L- CO £-4SEI

V -O rV -CL C .L(.Q LC_- - M LCVSUSC
11C US. L-. J O C 3 0 E 3 CQ Oh sC-' N~- m to U C D C.O

M ~C Vf~-CE-OAU COU-VC -C-U LS Icrl 4-S, 10- 3 ZC 7W0 V UU--r- c V.- 1C- LI~L U M Ck LC 10O A
Q d E - £E - c Z 0-fl .- D- £O C -- 0 0 -CL

" I..) O cCUf Z)OUS3O- L- a uS - LUO 0.'UL. U - w0, - ..E - duSC.
o Wo~ C r.> *u L VZ . AJ-0C> C.00.>L-US0 M -US E C C t0. J >S UC-0.

6) 0 L 0 o, LAU 0- '- L) -U. 3 m U~ mA 000Q5CG0 2 A CrQ E C 0

rUS GoC3 C..0 US.CU> -'C > LOL C -C a ,O, -IaC

CL1 0:- Z -- L L E S E OC flLWM C 0-SSUO L ~ LCsL C :3 0 V oCal
L C - 0 L0 M C U E' -M ' OC->UOC - to SACS UU Uc'UC m

U4 00 - C 0 0 C 0.S W -. 0 EUS 0.W0L S C
1f-A U 0 >AU uA 0~CC.-~ MUS- ' s - u- a) I ! LCE-rC41*

w m 0 aU~U - (t,-- O CL a)o D -o- U CL _0 0) SCf- E oW - 0: r -SA0.i- Z.-
1- Q> l) 00 O - VSr'US in E~l U) Cor >-nw mWC - C -O 0 COu.J - C - 20
00- CD U (n W US0 JW 00 0 0--1to k a C W Y) C - M -W tSC C W V 000 SUCSZ

-- U 'DS A VSC .D''I-cSfVV O 0 .) U -C.0 JC.-'D US.0 O J n . US CU . C
ui0.' C0 *C0L OL. 13-- 0 wiOio EE .u A a-m 0 - UL OSC-~l10 r C-O -4, .

-E 9)Cr0~ E> L_-L~l -Q EC C D a) L A S u 0i cuLgmw toC
>- 0 0 W E o *Efl 0-ZCM :; VUS -L--.-'J mC C o 0- -C 0 - -- a) -0>4z

L V- U 0 U - )- D V C V) 0 j L M - U-W CO C M0. C.- C,) --
doV (0 - Q . Sx0oL0V) VULSC 0 T) 0(0( 5) CL m Z U Q 0 -CEE U.-C

'8.-3 CCJ A 0 rO E-'x- V C -aw 0 L- 0 (3-(USa C-Z

'(D --. C > O OQ O O-SC: L A - rS C (n C7- :3.C0 0UCS 81FoO

41 M
2- U) L- 5 U) CCL lL )0 F0 0

0 E E.W 0 m 1

I U 0
C 0 C, D- E C0 ES E- -

0 CC G)C 10 0 a- C3 0 M VU 0 C1M) USClg C > m. C V) 0 0a
L 0- ~LAS ; 0 0IA z0oL!t) m ' >4 (A

C c - M -O )C Ld U0 C0. U> M' q U L InCM - a .' 0 T)LC. 00
0 1L 3Z I - J I- 0 C - IA-I IA C. C' C5 W3 3 a, nx(

<0 S- >5'. U .- ' 10-SUC f_ C mC 0 a O-- a 1 L - CL <0m.< - > 401 C(

LN E
C~ COO a, (7 C 0'0.- 4> IA - L *

> L~SD SA0g IA-O. w t- o~ - 0 -) 0
JC to LC CL--f- - g.UQ Q 'U -M u~- U

>. ---C. W C >-S >-- 3 U- (C u W 4A
D - 0 CLC0OMLV)-)Q) 41 C UW- fl 0i 00 0 U Z05-0 a N

-o 0 inC~ r.- w.S OJA W 00C CI C V) 10 > 0 -
OW ~ ~ ~ g DC 0.-.- X C.O 40C) ''0D 0 $a

US - C C C S £- > -~ .0 4U -J IA 1-W 0 C WX .> 0-U 00 C U C0 m-' mmN C. m
to 4n -z)SCC L.- 0~ C--CZ'.. C0 w V)- .- 10

L i3 (D U CCOO aC I5 0(0 Z.A go' IA-_ 0-L 4
C. a, ON 1. 0' O 0 m.C 'D - EN 0(0 c _ W>a A. o V

00 >O C.I. USC 00- IA CC W_% C. Vn 0USJ 0 w 0 0

Z- 0 N9

C .r 0 -> m U- ->0 0 -I CO 00) 'U z'~ -U .-
0 0 m 4-E3C CC. ( : - to L- TO' -E5 OD- C- _'J 0) -IA

-'U J C 0L C a Q~r aO~ 00> 0.- : n , m CI in z SIE u. *0
'U 0~C > ' lb U -- A wON EZ D~ E -- C')c

(- 1 - C -- W S CL--a) a.S0 Or- * u-0 DID 0 r

Ew S-lCUS- L A' w CJ' U--sC -31. .ta-S 0 a--) US _ju-C L c - > .' 'A IV '0 w COX' AO>0 OD'N 5--U 0 ONL100 r rEU J- -AA gU0 0 1C0 w-Cf4 (AV)- E4 --- a a)

- *- Q . ? 0 r



B-19

z th c 6 a L E a CPO*
4 0 41 c r L 0 6 C 4 V 40

D u a 0 0 - 40 > 40 " 5 :: - 0
0 0 E C lx D E C 0 a a 6" 0 u r L

- 4) h M V) 40) 0 Go
:3 C in L 0 0 3 ch 40 . u ,

C 0 Q 4 0 L u in u L 0 a L 0 In 41 0 4 0
- m 

E L.
41 1 T 4 M 0 t 3 cc L u 4

z 
0 0ev > 4D Q I >- to CD io 4 'A

cl - 0 0) - I L L - a C 010
L. z u Q? L 0- m X - U) Q - 0- 0

V) I CD a C L E I E W > 0 0 E - L M A D Q 0 0 C > ID 4) z D C
M E -:) 0.1 40 L - T) co L 2 C Z 0 L o- C 0 (n 0 cz M -
r F - E 0 C L r in a Ly. C - T3 f: L M I

jo M u u 0 M U E
U) M C) T.) 0 0, 4) M M 0.0 E L In Qj 0 Z) u to
E Go 0 a) ix - (A - C ID 1 0- 0 - > U) > L 0 IN 0 C > - L C I > 0

L Lq fo V) C M 10 0) to jo -V) - - 3.- Go 0.- W 0
to . C (n C x Z " a, 0 0 V- z 0 T

IA L D z ic 0 0 1 D (N C IX X E: N D 40 f- - Z L 0 C C 4u
I - - 0 p

to u .- E 0 0 Q 1 0) =) L u C u Q. I ft
0) If.! D 40 L L ::7 41 z Ll C - z r 10 C M 0 9) U) E 4 c

I.G _ > a) I tn 0 u 0 > L V
u 'n > - 'a V) C > Go M . X) 00

L :3 M 0 V) 0) M n C 10
a Ul LU o- W > 0) 0) E E 0 0) z :3 1 C M 0 0 E ; Z - C

M L 3 0 C n C 00 U) 10 L C - L I E 0 L 2 :3 - - Q I to 5 z
M 0 M ix - z - M L to x I ic M I -- L - cl 0 :3 0 L 0

10 uj .- M 0 08
u - 'n ID C.) L a u > cl 0 z E 10 0 C 0 C 00

(D in (n C 0 C W E C - C E M_ L M >1 o- 0 L 0
M tn 'D n '- C V) M L 0 U) M aD u 1 0 W (A ; > - - , U) -- L E v V) u 0 C

C) M U C N 4, L :3 V) L f C r CL 0 0) io
I C? 4) :1 z 10 0 ka (A 4) a 0 C M 1 07- -- (X- - a 0; u too
a a' L 0 u W) V) E .0 :c, ct 0) (V > CD u - M 0 u Z3 V) ic M 0
r C M C) 0 u a) 10 C a u Q, m E L U 10 Q)
0 - - L - _ L

OD to - ic 4) cr - C I M CL - 0 r 0 0 a C 0
E u z - - 0: u a) z: U 0 V) 0 0 w r M 40 1 > c 0 0 0, -0

u to cr tn (n I E O .- U- > L 0 - L 0 5 U) 1,
L 0 T tn V) ul u I a to 1 (7)
2- L 0 1 C Z -4 3 0 (n 5 r3 CC# . v, L E.C E &n 0 E U4)' LD u CL E > C I - I-

'L 0 LI 0, L, M L C L L -1 - M C V) C 1 0 0 x u 1C C

- - < .5_ a, _ 2 T F ; C L CI- 1 4) - 4) ri u - DON
L 0 . - M M C L 0 - Z E n a 'z a, c I M - M C14 1 10 E 4) - -

C V) Ln :3 q) x (n - I - 'D Z) M L - 0 0 - > Cl V) C W CY M 0 - C I V)
1 0 V) 0 D r <- 0 L V) U U'U 1- 0 a C M .! - .0 2-, 1 _j .- T 0 - 3 0)
W Q ci 0- -_ < M 2 :3 C U 13 Q) 0. w u 0 L Z 10 0lp cl 0: 0 < 2 M f= C c - Q L C

-S 0 IS :3 0 tn m M U)

12 V) 000 L :r Ll OL - L 10 (:nl ui Q) 0 U M I L U > C - I M E
co 3: L :3 - M - C 0 (310 CA 0 E 1 3

a (D 1 :3 w CL D 0 M E :3 a U CA 0. V a E 4 U a - Q -1 w w - C 3 z: - U
E > U.0 M M D E CC r ir C 0 0) C 0 0 0 (n C 0 . Z 0.0 r 0 0 0 L a L I C0 w 1 0 0 tn
U 10 L L 0 < 'I u 4 t U - E V 'D -i D E 4 .4 cl in M Q. z :3 E -4 'u 3 D 0 V) 0

co m
ly

- a) 10 41 0. C
0 1C C a) r 4) 1 0 > Ln

0 to ic C > 1C 0 0 'A ME
(a 4)

L C C, X 'D yr I to x m Z) w 10 1 M 3 M M U) U C_ C 3 0

0 0 L. 1 ID C - > - CL E 4) JC 0 0 C do
I (on 41 C cm W - .C 0 Go C C 0 to C 0 E I Ja u r 1C 0 ul
r Ir (a 4) E do M - C A 0 M A E .00 M - 0 a E z 0 oz 0
-Z U2 V E 'C 0 L Z , O.X - 4, 0 u 0 39 E C 0 3 CL

0 1 C C L 0) L - - 0 C L L W7 0 0 'C M 0 M L. C C - A L
IP a . 41 . - 0 U) 0 0 4) '0 10 C t" 0 _ w OL 0 LD c c L u a I I M 0) 3

V) I 
I 1 01 

cn E X) LL

a) E tn E u - C 0 >,C C I >1 - - M 3 a .4 C 0) 0) 1 a
I r U a E (1) C L Q) C Ul 0) L :3 - :f 9, L X U 0 10 > L CT,C 0) Q. M CL C 0 V 0 C 0 M C C D.2 U. IA (X > 41 (1 L - E .9 M 10 C4 C W L U Q
0- :3 M L I In 0 U D cl u I (In <a,- C 00 X I - u 1 10 1 C M (a o- L
1 0 C c > > t) 0,M W 0 1 - 1 0 a C C 70 a) L) -v r C C > N C Z; > -C > 0 4)
D u 0 1 V) - - 'D w :3 0 C cl L 2 ':) - L < ME C u .11- 0- w 0 C
0 0 M - 10 (1) - L L 'n L U .0 M ? I C, E 0 V) 0 a 0 C M . C I
at 0 in L) r D M 0 0 0 - . * - - f T L 0.- - M D

V) > QJ L 0 - C 4) 3 0 - I
0 E C C jo I V) u - - T-) a- 0 C 1 V) - L - a, 0 to E 0 t) I U 0 L 0 0 C - L CP

10 M L - (u M Ln c- E C C C C 0 E W Ir L u a, C > W L M U - ,
1 0 u - M D w 0 CN 0 r .0 41 L - M L > M V) 2 T M (11
w .. - 10 (V L 3 jC 3 U - - 0 L V) 1 0. C (D E C Q) L: M C CL :3 C L M - E Cl E L C

C u CL L M u E 0 Q) T - a) - .- M 3 - ! E I0 a I a 11' W L 0 a' 2 -% 0 (X >1 L) 11' L Ln L ou n L: M
1: M V) 10 0 1 (n cp 0 m- M M C - V) 0 10 V) x 4, 3n M

Ln IL jC :; r 11 V, - - 1 :3 .9 u L - 'r C (n T3 w 0 cl u :3 ic a) u (a W > W, C
0 U) 3 0 1D 0 - 10 0 C - 4) Z 04 L > fP - 0 L M 0 0 C 0 C fQ

C "1 0 :3 " 4) D C., IC 1C M 0 - 10 r 0 in - - n 0- M C 10 r Ic a E C
0 cm f: (n 2 L L 0 4) 4) - E C L C .0 D -,cn 'a > :3 - 39 U) 3 ! 1D 0) M C 0 M C-
E u V) 4) _ 0 _ L 4) V) - " 0 r c V 0 to M u 0 0 0 11 1- 1; 0 L 0 11CL E Cc _% N 3 L :3 10 0 1 C L U 0 Ln 'C - - M 0 1 0 0 4) c

2 ! -.1 'L Z 0 C 18 0 C. C jC r , " (5 L L. M > L L L E > E 0 3
0 0 C V) 10 0 10 M N - 4) 4) 0 1 0 -

40 0 3 to > c u 0 1 C 0 1 E- > 40 E jC - 3- E 41 _ C 0 L to
> >. 4) E L - GO C 10 V 10 FA 'D 4 10 0) 0 :3 4- L L - L - - W 0- L 1 0 JO - L N
41 Ln cic 01 01 E L 0 0 0 U) 0 C I > 4) U -V) 0 4) x M 1 4) 41 0 0 > U to M - 4) a,
v T) r- 3 GOP L - C E u JD M L U)O 0 - T) - - C - a V) - I L,) D E0) V) C 0- - MCC L 0 M - % 2 -4 0.5 C CP 0 L

Z r- - - - - 0 00 E L 02 CC 00 0 m6 .0 n 0 u C _ to a) M 1 0
C 2 10 , C E L 0 M in 0 L - 0 0 - D- L > _% Cl >. f-
Go M E 40 - L 11 C C 0 u clo Inj c - od's Go Z, T cv C L - M 0 .0 0 9) C lu C to 2

U - -i M -J L 0 0 0 0 L . ;: > W 1 4 L C 10 W 90 0 U U 1 0 C 4 Z L I V) >, L - L C
40 L ai u a a Go - - 1 1010 E - a - M C 0 C 0 1c) U - C , 4) '0 41 C 0

: 2 4, C C. .9lz a ow Go x 41 C 19 - to M M - - a D 4 V, > M (V 17 LL - > 0 to E 0,0 . W x C U U :3 - cc
> L 0 V E: E co j 0 E - 4) Z, 0 M M - 4) L 0 - L

IA 3 M 0 M L - L L J:) LO 0 Ln L 8 - 'I r C 0 L JD Q V) k L 0 .0 ; IC D 41 0
-1 .2 Z N -1 U L r 3 0 0 1 0 M C 4 C4 > " 4) L I lu In M I E - - I E 3

X 0 L Z L 41) a EL V) U 0 D 0 0 Q > 4) Q. Q. C :3 0) Z C 3c 0 0 C L 0 0
0 4) 0 jC > 1 0) 1 to M 0 (-.40 0 '1 L > 0 0 C C 0 :3 c M 0 Go C >

IA cc E 10 u V) w E M I- V D a a L 4 OD U -4 a V) - . I E M '0 - V) " a 10 - L 0 0 0 C

40 
IL 3 10-9 da 4



B-20-

,a 0 c .
c 4 0 0 641 LO - Cz- 0. lo3.41- : 4

L C a g. D a- 10 a4u- 0 0 . >. -ML- -0 0 u D. f- V 0.4D-00- 0 ) 0 -U
L4.- 0 ) CU 0 L -a Z Olt) C a0-"

W-'U CD u1- C- E 1 OC doC V- ' 41"dc. c 0
L c 0 c 6 m *UI o 0 0 DilO 41 -In 41 u C OL-fl

O 0 4'( 0 0 41 DV L 3 L0C- - - -l -4 > 4P 14 -0 a ;41~1C T)41L
- 1)z u 4A > -C o 0410 E C a ~ 10c C-C1 C -0D L 1 VC0 M1D0 U10 4P-
44) C, 1 C 0 0 E-TO 0 0 - 0L. DC4 -c -- .' ,; - 4c 0 - 1)

::1 Cr- 1 U-. - LO CCO 0 L- 41 ~ 041 - C D W D ME 3 3

0- Ln I m W 00 ~ . c 0) 1 *>c -u - 0 - 0 0 ci t-a, wl r41 ,- - ZV o,14 )0 -1 E 3 c 1t-.2 c, 0 c
C))40 L- 0 U C ic 'Q ~ .0 - --- . 4-- m1 u- 0 u m r-

LL -- 0 w- -O1 14fl'- - C 3 fQ ) !,-V W L- U fQ0 C 0
a m N. 410-.0 c 0>.-C4. 0 a)-3 E-V I 0.4041) 1m> v - D "
EOI >- >0 I C - Df L ~0 0 L0 L L L L EL > W Op 4L-Go >

a, E r '-- --_ 44 0 - --" 0 CO.-4_ M , a' C' a 0.41L0Va1-41 0u0'. -N - u m u -V u - uDmV o 0 0 1) 0>-N L V)40 40 ' 0 L 041 LC 0
L- 01- 0'- C L C -a,4 >1 'n a)--0->.'-' E1. to14-1
Cl01 E : -- 00 L''1 U. 0 0 ';00 m0 a- 3- 0 0 x > 0 10C L c 41 0

4- 0 0 O-C-4 CL C -11 CC41 L - E- 411 OC _0 3IC ID L 0 n -'.
T:)~ L4 10 i 0 40.--1 . 1- CO- -4) 0 0C c 41-1CN. '
L CW C z - -410 0 C ( C C -V410 - 0 04 0 M0.- M > 0 00- 0

VD t 04 10 c Cu- -141-O1 00 1' E L Q) - E - 1 ' W VV1Z41 C--oC - 41 - II) C EVJCa) c 0 M 1-,m Q -0
a) L- -0 (9 U X-(f r- C -- 4M U WL0 (3 l1 -nto Ol £C CO -'-0 0 LC c to >m w 0

M .It U) - - I- - r, C .QC L -_ c c Cr C -.- z--141 (0 E L - 00 : t
, LCD W 0-. M 3 MO C d, V 4) - 4 0 -o j U LC4 ID4C 4 ).-.- t'-I

w1-- 0 10Z4 a) V -'.'4 w 1 E- i 0 c . -04 O C 3 - c 04 0.-.0 c 0 .
0 - -0 : c E .- - r . 0 -0Z00L'au . 0 00 0 m - 4) m do f I.-
C410-If 0::- . L U-C 74--. OD 0) C Q -411 M-140 -41D - .-) L L - 41

0410 -.- C OOl D m -o C C- " : Z) E]> M ClU 01- ID - 0CLU E m C Q. f CD
>-W4r a, .- O4 Cf >1 --- 00 0 (D _ - EL41 - C -EC-0- !Q41 0 4 in

04) .- 'E -z1 1-4C44C 414101 0C> 1 0 - 1 C1-'4 1 UV3

40CC - L1 41C L .414100C C 0-C r > W r > - V) CO0 : ,/-0 -0i

0 CU-410 w4114 m- x1 -'u In zvmz r 00-D.-- NM C N C C E- rEl u41t.-'Crl o 0 Ln- O4>4f E >C L - 0 0V- C. - c C m40..o 0E 1oC
- L0C 0 -0 :3 .C -E - C--0-41D1 w . >-3 L E 0 )E 0 0 c u m 41 41toE0.

'40 E EJ'-1- 01 1E11 CVLI C41 -'14.C-0---0 Ec.Q-c- Q. -40 fLV
0 ,0C0T; c > E -1--1E -1 4 0 C0 ( . - - 1) 40 1E -i0 "0 >- E z 3

- QL -41C -4-COJ<C0--q CO>E-W 41E0Z4D4 b- -. u E E-CE- 01-04D0DN - U JO

41 I- 1I

a ) . 00 a
cr 4 4 44 (

c 4 10 w ) 01 .- > E 0 014
m1 Z) - t)V- L - . -C ' 40.- CL ECL- . > c.'

o 1 c c XC c 41 41 4' - QC41M140 0 - -414 414E1-02

V) C L40144> -4D4 .'4 C4O L W < 'Z-C - V x.- m 3 L E -'-0f t
Ci C -'OV W1- 04 M14 a)11 0 0) C CW a)11, COU.0-.L 0'o0 M

0) 0 - 3 C'E ' m 11~- m-. CD-411-'ZC- COa41 L- EC44 a)-411.

04 wl 41)4 -4U (L'1 ' 0 M 40 EcW-0 Ca I-' -41-C4 -4
rlL . c r ) 41 '-' G 41 41 -4 0 - 41 4 0 41 >4 - 'V) 3

f1 -L) L u 014141 > -> 0 W a-0 _ a CC- c -- w CcQ- (1 0-4)-
10In > Q C 0 M> )- E:Cl 0 C - '- .-. L.Q m .- c0 0) 0 f EL - - 0 - LC 4C C L

c r C - r. O MC V)104 (1 -- Z-- WU M 4111404UC L1 3 Xc > 0-4M 0p.-
-C C4u Q, Q 0 C U u .- In :)) 0- 'n 0 C 04 ap 04 Go- ) C 0

0- i 0 Q 01-- 0- 41 L 4 ->OC - C 4a)L U0 - 1C C C -uC c Q, 00 041 " - o E .p : . L - -40 -.- ' ci C Q -.- 0 o4)4
.41 a a QC -,J.0 L £0 1 a I 410 L1 a) 401-14W 1-.' 4 N u W L- - w E

C E: 0- r 00 0 U D- W1.-E E: c C - -4 1> ~ 0 .- n m11 3 uCL-P
C41 UI O C 0L C4 LE) 000 c, m- -4- C 10 VVa 0.41 04)L - --0-C -4

L) u N 01, O.C C 4 0) . C -' -- z410 V041 214 C-- O '-14

m-L ; 04- 4 41.- f"004)4110 m ."41 - 0 L M VC-- 10 41- a?--- -- iV4

C1- 0 _1 0 0. L: o, V10 0-4 L 1' C L 1- 4 1441 0>0 ci -' C w C 0
L1 .C- C V) a- 41'1...I C-~C -- 0-4 > Z 0 !OCIOwO-'c10 c40
414 C'. 01 -4411 Cw '-04 M L Z C V--0-4M10) 41-- --- C -

V, . U _ L AC Z CC41- C-C 414) 14) %-Er r'>1 41 (-10>01 .D
m 1 fa -4 k - -u 0 LC-441 ooDa 04 C00 C 4 1 0c- - 414414 .2 2 2 t0

0 E E -0 E L C C C'04) -00c 410 Cfl-4 M-- 1 - 'A->0 0- CO10m -
-4-C-4 M- MQUl E. rca - 2C ) 0Q - E1 0~1a~ L- - -- 4 41-

c D10 1 04 - 0--0 ECC MC- U 3L )4) 0 CE U 0 0 41> -I CD . ' U .Nf
> 0 0 u 0 Ino s g w 4)416 -- 0 j10- - - .4. 1 414- > 41C.V...0

> UC L0 r 0' 2 0 c - E U M u- 3 41 - 0 0
4C - M41 0 -V > UC.D- , )> ell 41 - 90-L

.'0 01- X6 (31- -D- 'D

0) L f U - CC U L) -
a_ z'o 4, T o) >- -C1 c

44 4 4c0t 0W0LLC1 030vao N-L(



B3-2 I

10 0a a D U * 0 3

Dl 0. U cL- 0WVI vo CO 13l - * 0
U 0 0 Go0 QD. 10 L v t- 1 (0 - 0

4, WE --- E L C 4- 0 0 1. aI 3 C 0. a
>~~ -~-L 0)U. C00L0O,( - 13 -0 lC 0 a v

D LO 0C- OrIU M -W LC0).-V-CIA 0 0.C 0 L Wl 610 0 C
IL- L 4 .- W) Cof Dr0 0)CO 0) WW O L .- '-0

C E V V U'. to I- L£-E C. C V ) -L(0-O uCac
E) L--0. J0)-. E0 0 ) 01 L- JU CL ~ ( OE 0) 0 3E A>'

0, mC0C rC0 ..- 0 4,0- 0 L E- CO-M 0
C ; I E.- 0 (010.-LcD0- C - a.'--. O E ..>

-: IC. > C)0) 00 )C t . u O C 010 0). 0 - 0
- 0 0 E3 - 0 U C 0 -- 0r)Go

40) a O 0 0) iI LD CL L. E. 4'-L-0) L0 11 0) -4
39 UC 041 DC L)Q) LW W0 00) M'. ) 11 .) L

u m~- - A0 a 0 10.0 V) C) f 0 - >, C CL 0
4,- 1 0 E 0 - - - 01a10 z0).-- 0 M .- UC -ICftOXEOL

LICO0 WU1- -X'. ME0- 0 - 11 U'-4

0) C l.J 0) L 0 in -O 0'- *0 0 Q - L> 0 m u u 2 o e

q) w 00 00DL L)00 t 0)W L0~-)C- E ) M CL
Cl L.. 0E L C L.-W '. O > )W-4'0W Cl0 - C CIOCU -0 CC£UC 0 C

r-o 10- 0)00 (D M 00 0 ( a1 al0-. 0)01-0 -L C
E) 3'-- , U, 0 a >- E m M 00)0 E D-Uo3) C > aam) MW- - 0- -
0) 0.- c zC Q z 0 w w w c m0 ) w w ap .- Z 0-10 0 L L M) 0 M> %LO0

0 0 -1- 0 u 4,OU0) C E a) l'C> a, 3 aN U 0 U 3
c0 )uO L 0 DC -' L 0 3 (D 0 0 V)C-) in0W0 Cl- 501(A04

> U0 0 - E0 0 > c- . l 0>0 r- U> . L :-E0 L Z10L

L0 U, 0 J 0 )-.w ) w0) 0 ) 10w w C 0 0 L .- O !! 0).".--> E. L C 10- c to 00) 4)L- -C-mW U >0 L0

* -D viO I E .4 --- C -l -3~ 8101 L 0 Z- -

L ~C C- U 1 W 10.LW0M AC D- C-Lf 41.) - L 00)-LC al£UU0) ~~ -0 01U00ZC D 0 L0W010,)C-1l

z0s)- c- Q,~ ,.0 E -0)t- E *I OE 0 Q0 -L~j CW CC Cl 0ET LC t

- - 0 - 0 E0E0) - C- .-L0Z 10E -M -0110 ELCC0 0 L L C40
0J0 C') . >- WOO c0- ) 0...LJ1 C0)>W)0100 0

U- 01 01, L> LI C E31 0 Ou>
( 0 r0>0L 0 D> 0C 1 a

4nwE )V o: <Z LI r 4 U A4C

(04 C 0
C 0D 0 (U C 0) 0

0. 0) *E > 3 U U'lf 0-M
0),U) V)0) V01 £1 CL (00)0 CO )L ) - D-00 4D

0 0£ O3r- 0 01 -a 0)11- :30 E0) C m1 0 1O 0
0- ~ -1 a)O - 0 3 010'. 0) 0-U Q. --.-

0>~V 0) -0 .- 00 0 "')* -1.-0-( El -1 0 -0 -C 0
OC 0- 0 0) D.-0)0 4) c Q - 0'-' 0 >1 L.-.C ) >'0) W .L v

00- D00-CW0)-c CC1 0 M D)) 4Em 000 U ti)E. (no1 f CU 0 Z4
a o001. -. C10@ W01 a)O-- L1--C 0) u 0>0). 0)0 CC4

0) 0. 00 0 E-10! )--0 C O 0r(1 ) E) M CDML( - L QE.-U C0)

CL AWO C f-E -0) L 0 010 0 E C E0) C2- --

o w0 c 0 !L0 U- 0 m E L-D )1 L0.-< 0) wU V 0L E11 0 W- - N C-L0 - U1 0 'n C3 w) t-C - 0 a -0)00)11 .)1 C-W

u -1kA> - % m tn- t -01 0o>- - :E 0 0; -0- C.- .- 0--000,9L1
>0 - n) 0 - -u .- D 0) :3 0 m-(W C -%C CN E c 0) 00. M 0 (..- W 0 lb L> , I

Q0) 00 a LZZW 0W L :3f0)10-0M)V1L0 LM . 0C0 .-0-0 - 0 LL ~ 0.'- a a l 0 N
In10 0 C 010-10 0 0l0 D W D L 0D 4U n1)00V10z >00 0 E- E 0

00 r to0 1- 0 - -W001 W0-'0 0) E0- - 0m Nr C L V)- -EU C (n00'L 0 0 '1
0) - C - L C- 0 C UL 0)--0)0 M ZC0) >0 ( -) O 14 0 U L to
LU V ) m S L 00 3))-) - 0 C- WV a)10 0-. ) In C al'. a)N

En z- L1 I0. >'0"- I0- - 01 .- C.- 01.L 3c->, 0W0 ~ 01
"-0 0 Aa C C,. (1

1 0  
-0)U-f Q to0) LI- D- a.a) 0L-

'n (0 01- C '>0 -00 ) 1F 3Lt
0 0 00u 0 0 L-010 0 D-0 Ch Q CO0 ) n E 0o r- u C 0 C OI -XC 0D) WD- A r L- C I

> 0 10- -- -L 0-E0 I- 11 0 U, Q, '-0E L - E ) - m U'
>0) -Jr - T'0 0).-0) z'U0 C LL 03 C-LL 0L ) -

-n 0L10- 100- wOcr E)- --- L .'CIo EL-0 WOOL 0)> E CUT
-) 12 0- CW L CC 0)0) a InI 00Q 0N 0 0 u )0 010)- 0U

-10 00) 10V 4)0.00 L 0 D JO~ 0 LO1 U L, C Cli C1O-0 L.
E a0 -0 0 -000)0 V--')0I V00 C EN t- ~ --- C0 -> C L EL
Q0 0D 0)'.U 0 M- 0E - Z l D.-E0 - 0 0)0 0 -- .----. a 00 > L0).- D .0 O ('

- 00 C >OS0m> L. W 0 C .OD L 0'. -C MIO-C L Ii .LO MC U 0 t

4,> - 0) 10 0'0 w 0)) m .L -ix4 0 f-L> a 0 0-- 00 C U) L LLf C
-1 C 01W01100)4'(0 D o0- 1- C4 L (U- C -"010 WL(0)L CL to0

'. 0 0 0-1 0C-?0OL 0 r c 0VICC z z :E4)L0 1D0 L -0 u E EOWC SO
0) L' cuW "-00 -0 WO -'r r0)- 5 - C0 coU~ C 0N in 0 0- *-

)C co L0 Q i9 LO0) 0 W V)C 0 l C 39 00L) 0) --. - 0 L C100C D 101

0OCC0)0 @.W0 0 U0>L0 LO ~ -U E .EL L 3100 IC - W O-CO>- -0U 0 t
C L' 0 0 C U- C W- 10 CL i 3!!00 (M 0 .. 0 00 --L. 0 UC). a C > 1.4)

,--1 C 0 -'-0 0)1 E -E0 a) D-3PnL-M C n-0a)In . U) 41 1 ap GoD10
> C (N- U L-D1to L-CC0 4 ' CC 4)C-W L C. - X £Cm 0 D->>.)InONCWUWL 0 4S1S0

(yo c c m w o0 -- wf 3uu ,ru DO04NEICJ LZ -4~ ,3' ~ .. I0C 0 41 0 )WU 0



REPORT DOCUMENTATION PAGE

I. Recipient's Reference 2.Originator's Reference 3. Further Reference 4. Security Classification
of Document

AGARD-LS-l 17 ISBN 92-835-1398-3 UNCLASSIFIED

5.Originator Advisory Group for Aerospace Research and Development

North Atlantic Treaty Organisation
7 Rue Ancelle, 92200 Neuilly sur Seine, France

6. Title MULTI-VARIABLE ANALYSIS AND DESIGN

TECHNIQUES

7. Presented
on 28--29 September 1981 in Ankara, Turkey; on 1 -2 October 1981
in Bolkesjo, Norway and on 5 --6 October 1981 in Delft, The Netherlands.

1-8. Author(s)/Editor(s) . .. .... .. . . 9. Date

Various September 1981

IO Author's/Editor's Address II. Pages
Various~172

12.Distribution Statement This document is distributed in accordance with AGARD

policies and regulations, which are oulined on the
Outside Back Covers of all AGARD publications

13. Keywords/Descriptors .

Guidance and Control Computer-Aided Design

Multivariate Analysis Design

Applications of Mathematics Simulation

I5. Abstract

The Lecture Series is intended to provide the basic theories and concepts involved in the

design of advanced guidance and control systems employing state-space and multi-variable

design methods. An intrinsic part of the Lecture Series will be computer-aided and graphical

techniques that can be employed in preliminary design and related analysis methods. This

will provide one document which covers the necessary design background and state-of-the-

art involved in the application of advancing technologies.

Among the main topics to be reviewed are:

Analysis and Synthesis Techniques
Application of Observer and Estimation Principles
Computer-Aided Design and Analysis Methods
System Simulation Techniques
Tests Evaluation and Validation

The material in this publication was assembled to support a Lecture Series under the
sponsorship of the Guidance and Control Panel and the Consultant and Exchange Programme
of AGARD.



'I >

CL0

- 0 -r

u 0

'U L. 0 -- 6 0

0 r-rCU.o0.

CU0~ U

'o ~ ~ ~ Q&W 00

-E ~ E o~ E
v0 -<~ Z C

> Z 7 0 0 -c>-

z, a0'0>

(-
)

U > z , 0)- l

(A 06 -JU-~ C

u a - xL

E > E.E

.2 A

u u

0 -M -C3

-3~

72 0.E

a u -- a I, ---
0)'-~~ -a ~ -

C,-



z))4 u4) a

0U t: C)

r _-

r 3 0 00.

Su a m .s 7

M~~ r- O

*0 45) 7

E '4 E >

o -o .0 0 .c4

'4a oJ s.! ~ -r '4
-E > E E S

4, .2 m r- E .' E

r) E )~C c ' Z 4) CL z 4

vs00 U 4 0

o . -22~,-.
00

~~Ot4  0' t O ~ 0

'4" f-vsO-Z

00 M .cn
C ~ ~~~ 0 L

4) 2

C00
40 z)4~ 40

Z2 0j 4)'C
> -- Cn>

.5 Z

0~.

' 04C *00 7)0 0
00 'o

o0 .- 75 0

In >S 0TS.

E OP

E0 Ca

c 5- 0 r- -r L < ' -

z d .E Q r.I F- ,



DAT

FILMED

ITI


