CORRELATION OF INSTANTANEOUS IMPACT DRAG COEFFICIENTS FOR VERTI-ETC(U)

JUN 80 C W SMITH

NSWC/TR-80-243
CORRELATION OF INSTANTANEOUS IMPACT DRAG COEFFICIENTS FOR VERTICAL WATER ENTRY

BY CHARLES W. SMITH

UNDERWATER SYSTEMS DEPARTMENT

JUNE 1980

Approved for public release, distribution unlimited.
A theoretical model for predicting the height of the heaved water surface about a cone during vertical water entry was developed. The successful comparison of the predictions of the theoretical model with experimental data encouraged an extension of the model to include a method for predicting the impact drag force during vertical water entry. Experimental data for cones, ogives, cusps and sphere were successfully correlated indicating the usefulness of the model for correlating impact drag forces for a wide range of configurations.
FOREWORD

This report is a result of the continuing effort of the Naval Surface Weapons Center in the understanding of water-entry phenomena. The research reported herein was supported entirely by NAVSEA Code 63R31 under task SR0230100. The author would like to acknowledge Dr. Thomas Pierce of NAVSEA for his advice and interest in this program.

F. B. SANCHEZ
By direction
NSWC TR 80-243

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>THEORETICAL MODEL FOR THE HEAVED FREE SURFACE</td>
<td>7</td>
</tr>
<tr>
<td>MODEL FOR THE IMPACT DRAG FORCE</td>
<td>10</td>
</tr>
<tr>
<td>COMPARISON WITH EXPERIMENTAL DATA</td>
<td>14</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>19</td>
</tr>
<tr>
<td>APPENDIX A - POTENTIAL FLOW SOLUTION FOR THE AXIAL MOTION OF ELLIPSOIDS OF REVOLUTION</td>
<td>26</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
</tbody>
</table>

TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

A DEPTH OF PENETRATION OF ELLIPSOIDAL MODEL
A_1, A_2, A_3 EMPIRICAL CONSTANTS FOR IMPACT DRAG COEFFICIENT
a HALF-LENGTH OF THE AXISYMMETRIC ELLIPSOIDAL MODEL
b MAXIMUM RADIUS OF THE AXISYMMETRIC ELLIPSOID, RADIUS OF WATER-ENTRY BODY AT WETTED PERIMETER WITH THE HEAVED FREE SURFACE
C_d INSTANTANEOUS IMPACT DRAG COEFFICIENT
C_dmax MAXIMUM VALUE OF INSTANTANEOUS IMPACT DRAG COEFFICIENT
C_p PRISMATIC COEFFICIENT OF WATER-ENTRY BODY, VOLUME/π r^2 h
F INSTANTANEOUS DRAG FORCE
H DEPTH OF PENETRATION OF THE WATER-ENTRY BODY
h HEIGHT OF THE WETTED PERIMETER (WITH THE HEAVED FREE SURFACE)
 AS MEASURED FROM THE SUBMERGED TIP OF THE WATER-ENTRY BODY
K_i INERTIAL FACTOR FOR AXIAL MOTION OF ELLIPSOIDS
M 'ADDED MASS' OF THE WATER-ENTRY BODY
P AXIAL MOMENTUM OF THE FLUID
r RADIAL COORDINATE (CYLINDRICAL)
r_o MAXIMUM OR REFERENCE RADIUS OF WATER-ENTRY BODY
t TIME
U AXIAL VELOCITY (CYLINDRICAL COORDINATES)
w WETTING FACTOR
X AXIAL COORDINATE (CYLINDRICAL), ORIGIN IN THE PLANE OF THE HEAVED FREE SURFACE
NSWC TR 80-243

LIST OF SYMBOLS (Cont'd)

\(Z \)
AXIAL COORDINATE (CYLINDRICAL), ORIGIN IN THE PLANE OF THE ORIGINAL UNDISTURBED FREE SURFACE

\(\alpha \)
CONE ANGLE OF WATER-ENTRY BODY

\(\alpha_0 \)
ELLIPSOIDAL CONSTANT

\(\varepsilon \)
ANGLE SUBTENDED BY THE ARC OF CURVATURE OF THE WATER-ENTRY BODY (NEGATIVE VALUE FOR CUSPS)

\(\Gamma \)
MOMENTUM CORRECTION TERM

\(\gamma \)
FINENESS RATIO OF ELLIPSOIDAL MODEL

\(\Delta \)
DENOTES CHANGE IN VALUE OF

\(\eta \)
HEIGHT OF THE HEAVED FREE SURFACE

\(\lambda \)
EQUIVALENT INERTIAL FACTOR FOR AXIAL MOTION OF WATER-ENTRY BODY

\(\rho \)
MASS DENSITY OF WATER

SUPERSCRIPTS

\(\cdot \)
DENOTES DIFFERENTIATION WITH RESPECT TO \(t \)

\(' \)
DENOTES DIFFERENTIATION WITH RESPECT TO \(h \)

\(\text{--} \)
DENOTES AVERAGE VALUE OF TEST DATA
INTRODUCTION

The development of naval weapons requiring delivery through an air-water interface necessitates an understanding of the various water-entry phenomena which have a predominant influence on the trajectory of a water-entry vehicle from initial impact until the attrition of the water-entry cavity. To address this need the large Hydroballistics Facility and Associated Pilot Tank were constructed at the Naval Surface Weapons Center/White Oak Laboratory specifically for the study of water-entry phenomena. A program was initiated in 1967 to obtain basic vertical water-impact acceleration data for conical shapes. This effort was later extended to include ogives, cusps and the sphere. A digital program, Reference 1, has recently been written to predict the forces during water-entry. This code requires the use of approximate procedures for estimating the wetting factor (height of the heaved water surface wetting the cone) and for estimating the shape of the cavity.

A concurrent program was also initiated in 1967 to study the behavior of the water-entry cavity. In a recent study, Reference 2, an analytical model was developed to predict the dynamic behavior and shape of the water-entry cavity, neglecting the effect of the free surface. This model successfully predicts the frequency response of the cavity which occurs after cavity closure. The model was developed from energy considerations and assumed that the fluid velocity was in a direction normal to the velocity of the water-entry vehicle. Near the free surface this is obviously not true. The compliance of the free surface results in a large vertical velocity component as evinced by the heaving of the free surface and the splash that occurs in the neighborhood surrounding the point of water impact. In extending the study to include the effect of the free surface, a theoretical model for predicting the heaving motion of the free surface was developed. This model successfully predicts the wetting factors for cones obtained experimentally as reported in Reference 3. The use of this model in the digital program of Reference 1 should eliminate the need for the approximate methods presently employed.

The ability of the model to predict the wetting factors for cones encouraged an extension of the model to include a method for predicting the impact drag force during vertical water-entry. Successful correlation of the cone data reported in Reference 3 was obtained after incorporating a momentum correction to the theoretical model. Only two empirical constants were necessary to correlate the cone data reported in Reference 3 (10, 15, 20, 30, 45, 60, 90, 120 and 140 degree cones). The model was then extended to incorporate a changing prismatic coefficient (for displaced volume). Experimental data for the sphere, Reference 4, and for ogives and cusps, Reference 5, were then correlated. For the sphere and each ogive and cusp, a different set of empirical constants was required. The author's hope that one set of empirical constants might correlate all geometries was not realized. Correlation of the empirical constants appears to be a possibility, however, test data for additional geometries must be obtained and correlated before this can reasonably be attempted.

3 See footnote 3 on page 5

THEORETICAL MODEL FOR THE HEAVED FREE SURFACE

Shiffman and Spencer, in Reference 6, employed an approximating ellipsoid to obtain an expression for the wetting factor and drag coefficient for the vertical water-entry of cones. Their model assumed that the approximating ellipsoid should have a fineness ratio, γ, such that:

$$\gamma = \frac{a}{b} = \cot \left(\frac{\theta}{2} \right)$$

This assumption implies that the velocity of the approximating ellipsoid is equal to the velocity of penetration of the cone. In modifying Shiffman and Spencer's analysis to obtain better agreement with the experimental data for cones in Reference 3, no assumption was made for the fineness ratio of the ellipsoid. Figure 1 defines the nomenclature used to describe the geometry of the cone and ellipsoid. In this figure, the depth of penetration of the ellipsoid is defined:

$$A = a - (h-H)$$

and the velocity of penetration is obtained by differentiating equation (2):

$$\dot{A} = \dot{a} - (\dot{h}-\dot{H})$$

To account for the compliance of the free surface it was assumed, as did Shiffman and Spencer, that the heaved free surface:

$$\eta (r, t) = -z$$

is located in the equatorial plane of the ellipsoid ($x = 0$). In this plane the velocity of the fluid, and therefore the free surface, is vertically upward. On the intersection of the heaved free surface with the ellipsoid, the fluid velocity, from equation (A-29) of Appendix A, is:

$$\dot{h} - \dot{H} = \eta \Big|_{r=b} = K_1 \dot{A}$$

where K_1 is defined in Appendix A, equation (A-20).

A third equation is obtained by performing a mass balance:

$$2\pi \rho \int_b^\infty \eta r dr + \rho b^2 (\dot{h}-\dot{H}) = \rho b^2 C_p \dot{h}$$

where it is assumed that the correlation factor, C_p, is the prismatic coefficient of the entering body.

FIGURE 1 ELLIPSOID FOR WATER ENTRY MODEL
Equation (6) can be written, after substituting equation (A-35) from Appendix A for the first term:

\[\dot{A} + (h-H) = C_p \dot{h} \]

(7)

Since, for an arbitrary configuration, \(b \) and \(C_p \) can be written as functions of \(h \), it is more convenient to use \(h \) as the independent variable. Equations (3), (5) and (7) then become, respectively:

\[A' \equiv a' - (1 - H') \]

(8)

\[1 - H' = K_1 A' \]

(9)

\[A' + (1 - H') = C_p \]

(10)

To obtain an expression for \(a' \) and \(\gamma \), \(A' \) from equation (8) is substituted into equation (10):

\[a' = \frac{C_p}{p} \]

(11)

integrating:

\[a = \int_0^h C_p \, dh \]

(12)

and dividing by \(b \):

\[\gamma = \frac{a}{b} = \frac{1}{b} \int_0^h C_p \, dh \]

(13)

To obtain an expression for \(h-H \) and the wetting factor, equation (9) is integrated:

\[h - H = \int_0^h K_1 A' \, dh \]

(14)

Substituting equation (9) for \((1 - H') \) into equation (10):

\[(1 + K_1) A' = C_p \]

\[K_1 A' = \frac{K_1}{1 + K_1} C_p = \frac{a_0}{2} C_p \]

(15)
where \(\omega \) is defined in Appendix A, equation (A-22), as a function of the fineness ratio, \(\gamma \). Equation (14) can now be written:

\[
h = H = \frac{1}{2} \int_{0}^{h} \frac{a_{o}}{C_{p}} \, dh
\]

(16)

and the wetting factor:

\[
\omega = \frac{h}{H} = \frac{1}{1 - \frac{1}{h} \int_{0}^{h} \frac{a_{o}}{2} C_{p} \, dh}
\]

(17)

For a cone, \(C_{p} = 1/3 \), \(b = h \tan \left(\frac{\gamma}{2} \right) \) and equation (13) becomes:

\[
\gamma = \frac{1}{3} \quad \frac{h}{b} = \frac{1}{3} \cot \left(\frac{\gamma}{2} \right)
\]

(18)

For a given cone angle \(\alpha \), \(\gamma \) and \(a_{o} \) are constants and equation (17) becomes:

\[
\omega = \frac{1}{1 - \frac{a_{o}}{6}}
\]

(19)

The calculated wetting factors, using equation (19), are tabulated in Table 1 and compared with the experimental data from Reference 3. The predictions are in good agreement with the experimental results and well within the variation of experimental results.

MODEL FOR THE IMPACT DRAG FORCE

To obtain the impact drag force, the principle of conservation of momentum is employed. Due to rotational symmetry, the total momentum of the fluid is directed vertically downward. From equation (A-40) of Appendix A:

\[
P = M\dot{H} = 2\pi p \int_{0}^{H} \int_{r} \frac{1}{r} \, dr \, dx = \frac{2}{3} \rho b^{2} \pi a K_{1} A
\]

(20)

An expression for the 'added mass' is obtained from equation (20):

\[
M = \frac{2}{3} \rho b^{2} \pi a \lambda
\]

(21)

where:

\[
\lambda \equiv K_{1} \frac{A}{H} = \frac{K_{1} A}{H}
\]

(22)

The force on the body entering the water is directed vertically upward and is equal to:

\[
F = \frac{\dot{F}}{H} = \frac{M}{H} = \frac{a^{2}}{H}
\]

(23)

3See footnote 3 on page 5
TABLE 1
WETTING FACTORS FOR CONES, \(w = h/H \)

<table>
<thead>
<tr>
<th>Cone Angle, (\alpha) Degrees</th>
<th>Experimental Results, Ref. 3</th>
<th>Predicted Values Eq.(19)</th>
<th>((w-\bar{w})/\bar{w})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average (\bar{w})</td>
<td>Variation, (%)</td>
<td>(\bar{w})</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>1.0275</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
<td>1.0465</td>
</tr>
<tr>
<td>20</td>
<td>1.0609</td>
<td>10.39</td>
<td>10.34</td>
</tr>
<tr>
<td>30</td>
<td>1.1038</td>
<td>11.42</td>
<td>1.1018</td>
</tr>
<tr>
<td>45</td>
<td>1.1290</td>
<td>7.71</td>
<td>1.1507</td>
</tr>
<tr>
<td>60</td>
<td>1.1661</td>
<td>11.73</td>
<td>1.1937</td>
</tr>
<tr>
<td>90</td>
<td>1.2406</td>
<td>13.11</td>
<td>1.2687</td>
</tr>
<tr>
<td>120</td>
<td>1.3101</td>
<td>11.45</td>
<td>1.3381</td>
</tr>
<tr>
<td>140</td>
<td>1.3977</td>
<td>13.35</td>
<td>1.3858</td>
</tr>
</tbody>
</table>
where it is assumed that the velocity, \(\dot{H} \), is a constant. The instantaneous impact drag coefficient is defined:

\[
C_d = \frac{2F}{\rho \pi r_o^2 H^2} = \frac{2M'}{\rho \pi r_o^2 H} = \frac{4}{3} \left(\frac{b^2 \alpha}{r_o^2 H} \right) ^{
}
\]

(24)

For a cone, \(\lambda \) and \(\gamma \) are constants, \(b = h \tan \left(\frac{\alpha}{2} \right) \), and equation (24) can be written:

\[
C_d = \frac{4}{3} \frac{\lambda \gamma}{H} \left(\frac{b}{r_o} \right)^2
\]

(25)

The maximum impact force occurs when \(b = r_o \):

\[
C_d = \frac{4}{3} \frac{\lambda \gamma}{H} \left(\frac{b}{r_o} \right)^2
\]

(26)

The maximum impact drag coefficients reported in Reference 3 for cones could not be adequately correlated with the use of equation (26). To obtain a model for correlating impact drag data, a momentum term was added to equation (20). In Figure 1 the expanding geometry of the water-entry body was neglected. To accommodate the increasing radius of the water-entry body, a radial velocity field proportional to \(\dot{b} \) is required. To create this local radial velocity field it was assumed that an augmented vertical velocity field proportional to:

\[
U = \sqrt{(\dot{b})^2 + (\dot{H} - \dot{\hat{H}})^2}
\]

is deflected by an additional impact force. As shown in Figure 2, the change in the vertical velocity field is proportional to:

\[
\Delta U = \sqrt{(\dot{b})^2 + (\dot{H} - \dot{\hat{H}})^2} - (\dot{H} - \dot{\hat{H}})
\]

(28)

and the total momentum of the fluid is now assumed to be:

\[
P = A_1 M \dot{\hat{H}} + A_2 P \Delta U = M \dot{\hat{H}} \left[A_1 + A_2 \left(\frac{\Delta U}{\hat{H}} \right) \right]
\]

(29)

where \(A_1 \) and \(A_2 \) are empirical constants to be obtained through the correlation of experimental data. The total impact force on the water-entry body becomes:

\[
F = \dot{P} = M \dot{\hat{H}} \left[A_1 + A_2 \Gamma \right] + A_2 M \dot{\hat{H}} \dot{\Gamma}
\]

\[
= \dot{H}^2 \left[M \left[A_1 + A_2 \Gamma \right] + A_2 M \Gamma \dot{H} \right] / \hat{H}
\]

(30)

where:

\[
\Gamma \equiv \left(\frac{\Delta U}{\hat{H}} \right) = \left\{ (\dot{b})^2 + (1 - \dot{H})^2 - (1 - \dot{H})^2 \right\} / \hat{H}
\]

(31)

\[\text{See footnote 3 on page 5.}\]
\[U = \sqrt{(b)^2 + (h - \dot{h})^2} \]

\[\Delta U = U - (h - \dot{h}) \]

FIGURE 2 VELOCITY FIELD DEFLECTION
and the instantaneous impact drag coefficient becomes:

\[C_d = \frac{2F}{\rho \pi r_0^2 \frac{1}{2} H} = \frac{4}{3r_0^2 H} \left\{ A_1 + A_2 \Gamma \right\} \left(a^2 \frac{1}{\lambda} \right) + A_2 \left(a^2 \lambda \right) \Gamma' \]

(32)

An argument can be made for introducing the additional impact force in the following manner:

\[F = A_1 \ddot{\mathbf{H}} + A_2 \ddot{\mathbf{U}} = \ddot{\mathbf{H}} \left[A_1 + A_2 \Gamma \right] \]

(33)

This assumes that the additional impact force is simply a surface or splash correction. If this is assumed, the last terms in equations (30) and (32) drop out. For this reason equation (32) is written in a more general manner by introducing a third empirical constant \(A_3 \), such that:

\[0 \leq A_3 \leq A_2 \]

(34)

equation (32) is rewritten:

\[C_d = \frac{4}{3r_0^2 H} \left\{ A_1 + A_2 \Gamma \right\} \left(a^2 \frac{1}{\lambda} \right) + A_3 \left(a^2 \lambda \right) \Gamma' \]

(35)

In summary, from equations (9) and (15):

\[H' = 1 - K_1 A' = 1 - \frac{\alpha_o}{2} C_p \]

(36)

from equation (22):

\[\lambda = \frac{K_1 A'}{H} = \frac{\alpha_o}{2} \frac{C_p}{1 - \frac{\alpha_o}{2} C_p} \]

(37)

and \(a, \Gamma \) and \(\alpha_o \) are defined by equations (12), (31) and (A-22) respectively. The radius, \(b \), and the volume or prismatic coefficient, \(C_p \), are obtained from geometrical considerations.

COMPARISON WITH EXPERIMENTAL DATA

The drag coefficient for the cone reduces to a simple parabolic equation:

\[C_d = \frac{4}{3} w \left(w - 1 \right) \left[A_1 + A_2 \Gamma \right] \left(\frac{b}{r_o} \right)^2 \]

(38)
where:

\[\Gamma = \sqrt{(w \tan \frac{\alpha}{2})^2 + (w - 1)^2} - (w - 1) \]

(39)

\[w = \frac{1}{H^1} = \frac{1}{1 - \alpha_o/6} \]

(19)

\[b = h \tan \frac{\alpha}{2} \]

(40)

\[\gamma = \frac{1}{3} \cot \frac{\alpha}{2} \]

(18)

The test data in Reference 3 for the impact drag force exhibited this parabolic behavior. It was necessary, therefore, to correlate only the maximum drag coefficients:

\[C_{d_{\text{max}}} = \frac{4}{3} w (w - 1) [A_1 + A_2 \Gamma] \]

(41)

The results of the correlation, with \(A_1 = .447 \) and \(A_2 = 2.1052 \), are tabulated and compared with experimental data in Table 2. The correlation is in good agreement with the experimental results and is well within the variation of the test data.

Test data for the sphere, obtained from Reference 4, were correlated. Two correlations were obtained and tabulated in Table 3 for comparison with experimental results. Both correlations, the first with \(A_3 = 0 \), and the second with \(A_3 = A_2 \), are in good agreement with the test data (generally within 2.2%). The data were correlated, using least-square-fit, for penetration depths up to \(H = .40 r_o \). At this penetration depth the heaved surface on the sphere is located at \(h = .658 r_o \), where the slope on the sphere is 20 degrees. Experimental data, according to Hsu-Perry and reported in Reference 7, indicates that flow separation occurs in this neighborhood. When separation occurs, the impact drag force coefficients are no longer applicable. The drag force goes through a transition phase, from impact drag to cavity-running drag.

The method used to define the geometry of ogives and cusps is shown in Figure 3, and is given the name: \(\alpha/\beta \) ogive. The hemisphere can be defined as a 90/90 ogive and the cone can be defined as a \(\alpha/\beta \) ogive.

3 See footnote 3 on page 5

4 See footnote 4 on page 6

TABLE 2
MAXIMUM IMPACT DRAG COEFFICIENTS FOR CONES, $C_{d_{max}}$

<table>
<thead>
<tr>
<th>Angle, α Degrees</th>
<th>Experimental Results, Ref. 3</th>
<th>Eq. (41)</th>
<th>$\frac{(C_{d_{max}} - \bar{C}{d{max}})}{C_{d_{max}}} %$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>$C_{d_{max}}$ Lowest Highest</td>
<td>$C_{d_{max}}$ $%$</td>
</tr>
<tr>
<td>10</td>
<td>.0221</td>
<td>19.5 19.1</td>
<td>.0221 + .4</td>
</tr>
<tr>
<td>15</td>
<td>.0427</td>
<td>9.3 9.3</td>
<td>.0425 - .4</td>
</tr>
<tr>
<td>20</td>
<td>.0696</td>
<td>11.1 14.5</td>
<td>.0677 -2.7</td>
</tr>
<tr>
<td>30</td>
<td>.1277</td>
<td>5.2 7.7</td>
<td>.1331 4.2</td>
</tr>
<tr>
<td>45</td>
<td>.2858</td>
<td>8.6 7.1</td>
<td>.2733 -4.4</td>
</tr>
<tr>
<td>60</td>
<td>.4608</td>
<td>8.5 9.4</td>
<td>.4766 +3.5</td>
</tr>
<tr>
<td>90</td>
<td>1.175</td>
<td>5.3 4.9</td>
<td>1.187 +1.0</td>
</tr>
<tr>
<td>120</td>
<td>2.840</td>
<td>7.2 9.7</td>
<td>2.815 - .9</td>
</tr>
<tr>
<td>140</td>
<td>5.547</td>
<td>4.8 3.9</td>
<td>5.483 -1.2</td>
</tr>
</tbody>
</table>

$A_1 = 0.4470$
$A_2 = 2.1052$
<table>
<thead>
<tr>
<th>Depth of Penetration</th>
<th>u / u_0</th>
<th>C_d</th>
<th>C_{d*}</th>
<th>C_{d*}/C_d</th>
<th>$C_{d*}/(C_{d*}-C_d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>.94</td>
<td>.975</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>.10</td>
<td>.94</td>
<td>1.04</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>.15</td>
<td>.954</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
</tr>
<tr>
<td>.20</td>
<td>.954</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
</tr>
<tr>
<td>.25</td>
<td>.962</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
</tr>
<tr>
<td>.30</td>
<td>.977</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
</tr>
<tr>
<td>.35</td>
<td>.977</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
</tr>
<tr>
<td>.40</td>
<td>.977</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
</tr>
<tr>
<td>.45</td>
<td>.977</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
</tr>
<tr>
<td>.50</td>
<td>.977</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
<td>.997</td>
</tr>
</tbody>
</table>

Table 3: Impact Drag Coefficient for Sphere, C_d

- $A_1 = .5254, A_2 = .882, A_3 = 0$
- $A_1 = 1.262, A_2 = A_3 = 1.083$

Correlation, Eq. (35)
OGIVE: $\beta > 0$

CUSP: $\beta < 0$

\[R_o = r_o/2 \sin \left(\frac{\theta}{2}\right) \sin \left(\frac{\beta}{2}\right) \]

\[r = R_o \cos \theta - \cos(\alpha + \beta)/2 \]

\[y = R_o \left[\sin(\alpha + \beta)/2 - \sin \theta \right] \]

FIGURE 3 GEOMETRY OF OGIVES AND CUSPS
The test data for ogives and cusps, obtained from Reference 5, were correlated and tabulated in Tables 4 thru 7 for the 88.4/32, 60/43, 88.84/-31 and 59.94/-43.4 ogives. The correlations with $A_3 = 0$ and $A_3 = A_2$ appear to be comparable. For the ogives, both correlations are in good agreement with the test data and, excluding one data point, are well within the variation of the test data. The correlations for the cusps, although not always within the variation of the experimental data, appear to be reasonably good.

The empirical constants obtained from the least-square-fit of the impact drag force data are tabulated in Table 8. The empirical constants for $A_3 = 0$ are also plotted in Figure 4. Correlation of the empirical constants appears to be a possibility, however, test data for additional geometries must be obtained and correlated before this can reasonably be attempted.

CONCLUSIONS AND RECOMMENDATIONS

The successful correlation of the experimental data for the impact drag coefficients for cones, ogives, cusps and the sphere indicates the usefulness of the drag model for correlating the impact drag coefficients for a wide range of water-entry configurations. The data base for water-entry forces should be extended and correlated. Hopefully, this would lead to the successful correlation of the empirical constants. The usefulness of having a general correlation model for predicting the impact drag forces during water-entry is obvious. Impact drag forces, for which there is no test data, could then be predicted with reasonable confidence in the results. A method for predicting the drag force in the transition phase, from impact drag to cavity-running drag, should also be developed. A drag model for the cavity-running phase has previously been developed and reported in Reference 8.

5See footnote 5 on page 6

Table 4

Impact Drag Coefficient for 88.4/32 Ogive

<table>
<thead>
<tr>
<th>Depth of Penetration</th>
<th>Experimental Results, Ref. (5)</th>
<th>Correlation, Eq. (35)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Variation, %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\bar{C}_d Lowest Highest (+)</td>
<td>$A_1 = .273$ $A_2 = 2.22$ $A_3 = 0.$ $A_1 = 1.03$ $A_2 = A_3 = 1.91$</td>
</tr>
<tr>
<td>H/r_o</td>
<td></td>
<td>C_d $C_d - \bar{C}_d$ C_d $C_d - \bar{C}_d$ C_d $C_d - \bar{C}_d$ % % %</td>
</tr>
<tr>
<td>.22</td>
<td>.316 17.7 13.0</td>
<td>.312 -1.3 .312 -1.3</td>
</tr>
<tr>
<td>.352</td>
<td>.511 11.8 12.2</td>
<td>.508 -.5 .508 -.5</td>
</tr>
<tr>
<td>.4847</td>
<td>.624 8.3 9.5</td>
<td>.630 .9 .630 +1.0</td>
</tr>
<tr>
<td>.6167</td>
<td>.673 3.9 8.0</td>
<td>.676 .4 .676 +.5</td>
</tr>
<tr>
<td>.6607</td>
<td>.678 4.4 8.0</td>
<td>.677 -.2 .677 -.2</td>
</tr>
<tr>
<td>.7067</td>
<td>.674 5.8 8.4</td>
<td>.671 -.5 .671 -.5</td>
</tr>
<tr>
<td>.7933</td>
<td>.638 11.0 11.0</td>
<td>.644 +1.0 .642 +.7</td>
</tr>
</tbody>
</table>
TABLE 5

IMPACT DRAG COEFFICIENT FOR 60/43 OGIVE

<table>
<thead>
<tr>
<th>Depth Of Penetration, H/r₀</th>
<th>Experimental Results, Ref. (5)</th>
<th>Correlation, Eq. (35)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Variation, %</td>
</tr>
<tr>
<td></td>
<td>̅Cd</td>
<td>Lowest (-)</td>
</tr>
<tr>
<td>.242</td>
<td>.143</td>
<td>14.4</td>
</tr>
<tr>
<td>.3873</td>
<td>.228</td>
<td>8.5</td>
</tr>
<tr>
<td>.5333</td>
<td>.277</td>
<td>5.1</td>
</tr>
<tr>
<td>.680</td>
<td>.299</td>
<td>3.3</td>
</tr>
<tr>
<td>.7267</td>
<td>.302</td>
<td>3.4</td>
</tr>
<tr>
<td>.7733</td>
<td>.300</td>
<td>3.1</td>
</tr>
<tr>
<td>.8733</td>
<td>.293</td>
<td>3.3</td>
</tr>
<tr>
<td>.9667</td>
<td>.279</td>
<td>2.8</td>
</tr>
</tbody>
</table>
TABLE 6

IMPACT DRAG COEFFICIENT FOR 88.34/-31 OGIVE

<table>
<thead>
<tr>
<th>Depth Of Penetration</th>
<th>Experimental Results, Ref. (5)</th>
<th>Correlation, Eq. (35)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Variation, %</td>
</tr>
<tr>
<td>H/r_o</td>
<td>C_d</td>
<td>Lowest (+)</td>
</tr>
<tr>
<td>.28</td>
<td>.061</td>
<td>46.2</td>
</tr>
<tr>
<td>.452</td>
<td>.201</td>
<td>14.0</td>
</tr>
<tr>
<td>.624</td>
<td>.617</td>
<td>4.6</td>
</tr>
<tr>
<td>.7933</td>
<td>1.83</td>
<td>4.7</td>
</tr>
<tr>
<td>.8533</td>
<td>2.38</td>
<td>4.2</td>
</tr>
</tbody>
</table>

NSWC TR 80-243
TABLE 7

IMPACT DRAG COEFFICIENT FOR 59.94/-43.4 OGIVE

<table>
<thead>
<tr>
<th>Depth Of Penetration (H/r_o)</th>
<th>Experimental Results, Ref. (5)</th>
<th>Correlation, Eq. (35)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average (\bar{C_d})</td>
<td>(A_1 = 2.23 \ A_2 = 2.62 \ A_3 = 0.)</td>
</tr>
<tr>
<td></td>
<td>Variation, % (C_d)</td>
<td>(A_1 = 2.80 \ A_2 = A_3 = 1.53)</td>
</tr>
<tr>
<td></td>
<td>Lowest (-) (C_d - \bar{C_d}) %</td>
<td>(C_d)</td>
</tr>
<tr>
<td></td>
<td>Highest (+) (\bar{C_d} - C_d) %</td>
<td>(\bar{C_d})</td>
</tr>
<tr>
<td>.598</td>
<td>.0206</td>
<td>.016</td>
</tr>
<tr>
<td></td>
<td>75.8</td>
<td>-22.2</td>
</tr>
<tr>
<td></td>
<td>268.5</td>
<td>.017</td>
</tr>
<tr>
<td></td>
<td>.064</td>
<td>.082</td>
</tr>
<tr>
<td></td>
<td>65.4</td>
<td>+27.7</td>
</tr>
<tr>
<td></td>
<td>82.3</td>
<td>.086</td>
</tr>
<tr>
<td></td>
<td>.269</td>
<td>.306</td>
</tr>
<tr>
<td></td>
<td>11.4</td>
<td>+13.7</td>
</tr>
<tr>
<td></td>
<td>20.2</td>
<td>.310</td>
</tr>
<tr>
<td>1.1867</td>
<td>.064</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.06</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>- 4.7</td>
</tr>
<tr>
<td></td>
<td>7.8</td>
<td>1.01</td>
</tr>
<tr>
<td>1.480</td>
<td>.149</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>+ 1.7</td>
</tr>
<tr>
<td>1.580</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>+ 1.7</td>
</tr>
</tbody>
</table>
TABLE 8

SUMMARY OF EMPIRICAL CONSTANTS

<table>
<thead>
<tr>
<th>Ogive</th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$A_3 = 0$</td>
<td>$A_3 = A_2/2$</td>
</tr>
<tr>
<td>α/β</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.94/-43.4</td>
<td>2.2334</td>
<td>2.5897</td>
</tr>
<tr>
<td>60/0</td>
<td>.447</td>
<td>.447</td>
</tr>
<tr>
<td>60/43</td>
<td>.3967</td>
<td>.7309</td>
</tr>
<tr>
<td>88.84/-31</td>
<td>2.1726</td>
<td>2.7841</td>
</tr>
<tr>
<td>90/0</td>
<td>.447</td>
<td>.447</td>
</tr>
<tr>
<td>88.4/32</td>
<td>.2729</td>
<td>.6785</td>
</tr>
<tr>
<td>90/90</td>
<td>.6254</td>
<td>.9111</td>
</tr>
</tbody>
</table>
FIGURE 4 EMPIRICAL CONSTANTS (WITH $A_3 = 0$) VS $\sin \beta$
APPENDIX A

POTENTIAL FLOW SOLUTION FOR THE AXIAL MOTION OF ELLIPSOIDS OF REVOLUTION

Semi-elliptic coordinates \((\mu, \zeta, \omega)\) are defined in Reference 9 in terms of the cylindrical coordinates \((x, r, \omega)\):

\begin{align*}
x &= E \mu \zeta \\
r &= E \zeta \sqrt{1 - \mu^2} \\
\omega &= \omega
\end{align*}

Where \(E\) and \(\xi\), defined in Table A-1, are introduced to alleviate the need to distinguish between ovary and planetary ellipsoids.

The surface of the moving ellipsoid, \(\zeta = \zeta_o\), is defined:

\[
\left(\frac{\xi}{a}\right)^2 + \left(\frac{\zeta}{b}\right)^2 = 1
\]

Substituting for \(x\) and \(r\) from equations (A-1) and (A-2), the following values for \(\zeta\) and \(\xi\) on the surface of the ellipsoid are obtained:

\begin{align*}
\xi_o &= \frac{a}{E} \\
\zeta_o &= \frac{b}{E}
\end{align*}

The line elements in semi-elliptic coordinates have the value, Reference 9:

\[
ds_u = \frac{E \sqrt{\frac{1}{1 - \mu^2}}}{1 - \mu^2} d\mu
\]

TABLE A-1

NOMENCLATURE FOR OVARY AND PLANETARY ELLIPSOIDS

<table>
<thead>
<tr>
<th></th>
<th>Planetary, (b > a)</th>
<th>Ovary, (a > b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e^2)</td>
<td>(\pm (b^2 - a^2))</td>
<td>(-(b^2 - a^2)) (A-4)</td>
</tr>
<tr>
<td>(\xi^2)</td>
<td>(\xi^2 + 1)</td>
<td>(\xi^2 - 1) (A-5)</td>
</tr>
<tr>
<td>(\nu^2)</td>
<td>(\xi^2 + \mu^2)</td>
<td>(\xi^2 - \mu^2) (A-6)</td>
</tr>
<tr>
<td>(f(\xi))</td>
<td>(\cot^{-1} \xi)</td>
<td>(\frac{1}{2} \ln \frac{\xi + 1}{\xi - 1}) (A-7)</td>
</tr>
<tr>
<td>(F(\zeta))</td>
<td>(\frac{2}{\zeta} - 2 f(\xi))</td>
<td>(\frac{2}{\zeta} - 2 f(\xi)) (A-8)</td>
</tr>
<tr>
<td>(G(\gamma))</td>
<td>(\frac{\cos^{-1} \gamma}{\sqrt{1 - \gamma^2}})</td>
<td>(\frac{\ln \left[\gamma + \sqrt{\gamma^2 - 1} \right]}{\sqrt{\gamma^2 - 1}}) (A-9)</td>
</tr>
</tbody>
</table>
Where \(v \) is defined in Table A-1. The velocity components, in terms of the velocity potential, \(\phi \), are:

\[
\begin{align*}
V_\mu &= -\frac{\partial \phi}{\partial \mu} = -\frac{\sqrt{1 - \mu^2}}{E \nu} \frac{\partial \phi}{\partial \mu} \\
V_\zeta &= -\frac{\partial \phi}{\partial \zeta} = -\frac{\xi}{E \nu} \frac{\partial \phi}{\partial \zeta} \\
V_\omega &= -\frac{\partial \phi}{\partial \omega} = -\frac{1}{E \xi \sqrt{1 - \mu^2}} \frac{\partial \phi}{\partial \omega}
\end{align*}
\]

The velocity potential for the axial motion of an ellipsoid in an infinite inviscid fluid is well known, Reference 9. The velocity potential can be expressed:

\[
\phi = E K_1 \mu \zeta F(\zeta)/F(\zeta_o) \tag{A-19}
\]

Where \(K_1 \) is the inertial factor for axial motion:

\[
K_1 = \frac{a_o}{2 - a_o} \tag{A-20}
\]

and:

\[
a_o = \zeta_o \xi_o^2 F(\zeta_o) \tag{A-21}
\]

or, in terms of the fineness ratio, \(\gamma = \frac{a}{b} \):

\[
a_o = \frac{2}{1 - \gamma^2} \left[1 - \gamma G(\gamma) \right] \tag{A-22}
\]

\(F(\zeta) \) and \(G(\gamma) \) are defined in Table A-1.

Substituting equation (A-19), for the velocity potential, into equations (A-16) thru (A-18), the velocity field is obtained:

\[
V_\mu = -\frac{K_1 A}{F(\zeta_o)} \frac{\sqrt{1 - \mu^2}}{\nu} \zeta F(\zeta) \tag{A-23}
\]

\(^9\) See footnote 9 on page 26
\[V_\zeta = - \frac{K_1 A}{F(\zeta_0)} \frac{\mu E}{\nu} \left[F(\zeta) - \frac{2}{\zeta \zeta' z} \right] \] (A-24)

\[V_\omega = 0 \] (A-25)

It is assumed that the plane of the heaved free surface:

\[\eta (r, t) = -z \] (A-26)

is in the equatorial plane of the moving ellipsoid:

\[\mu = 0 \] (A-27)

In this plane the velocity of the fluid, and therefore the free surface, is vertically upward (see Figure 1):

\[\dot{\eta} = \frac{\partial \eta}{\partial t} = -v_\mu \bigg|_{\mu=0} = K_1 A \frac{\dot{F}(\zeta)}{F(\zeta_0)} \] (A-28)

On the intersection of the heaved free surface and the ellipsoid, \(\zeta = \zeta_0 \):

\[\dot{\eta} = \dot{\zeta} \bigg|_{\zeta=\zeta_0} = K_1 A \] (A-29)

The mass flow rate at the heaved free surface can be expressed:

\[\dot{m} = 2\pi \rho \int_{b}^{\infty} \dot{\eta} r dr \] (A-30)

An expression for \(r dr \) can be obtained from equation (A-2):

\[r dr = \frac{E^2}{\zeta} \left[(1 - \mu^2) \zeta d\zeta - \zeta^2 (1 + \mu) d\mu \right] \] (A-31)

On the surface, \(\mu = 0 \), equation (A-31) becomes:

\[r dr = \frac{E^2}{\zeta} \zeta d\zeta \] (A-32)

Substituting equations (A-32) and (A-28) into equation (A-30):

\[\dot{m} = 2\pi \rho E^2 \frac{K_1 A}{F(\zeta_0)} \int_{\zeta_0}^{\infty} F(\zeta) \zeta d\zeta \] (A-33)
Since:
\[\int_{\zeta_0}^{\infty} F(\zeta) \, d\zeta \frac{d}{d\zeta} \zeta = \frac{2 - \alpha_o}{2 \zeta_0} \quad (A-34) \]

and from equations (A-21), (A-20) and (A-12) respectively:
\[F(\zeta_0) = \frac{\alpha_o}{\zeta_0} \quad , \quad K_1 = \frac{\alpha_o}{z - \alpha_o} \quad , \quad b^2 = E^2 \zeta_0^2 \quad (A-35) \]
equation (A-33) becomes:
\[\dot{m} = 2\pi \rho \int_{b}^{\infty} \rho \zeta \, d\zeta = \frac{\rho \pi b^2}{b} \quad (A-35) \]

Due to rotational symmetry, the total momentum of the fluid is directed vertically downward:
\[P = M \dot{H} = 2\pi \rho \int_{-1}^{1} U \, dz = -2\pi \rho \int \frac{\partial \phi}{\partial z} \, dz dx \]
\[= 2\pi \rho \int_{-1}^{1} \left[\phi \right]_{-1}^{1} \, dz + 2\pi \rho \int_{-1}^{1} \left[\phi \right] \, dz \quad (A-36) \]

On the surface \(x \to \infty \) and on the heaved free surface, \(\mu = 0 \), the velocity potential is zero \(\phi = 0 \) and equation (A-36) becomes:
\[P = M \dot{H} = 2\pi \rho \int_{-1}^{1} \phi \, dz = \frac{\rho \pi b^2}{b} \quad (A-37) \]

On the surface of the ellipsoid, \(\zeta = \zeta_0 \), equations (A-19) and (A-31) become, respectively:
\[\phi \big|_{\zeta = \zeta_0} = E \zeta_0 K_1 A \mu = a K_1 A \mu \quad (A-38) \]
\[r \, dr = -E^2 \zeta_0^2 \mu \, d\mu = -b^2 \mu \, d\mu \quad (A-39) \]
Substituting into equation (A-37):

\[P = \mathfrak{M} H = 2\pi \rho K_1 \mathring{A} \hat{a} b^2 \int_0^1 \mu^2 \, d\mu = \frac{2}{3} \rho \pi b^2 a K_1 \mathring{A} \]

(A-40)
BIBLIOGRAPHY

DISTRIBUTION

<table>
<thead>
<tr>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commander</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Sea Systems Command</td>
</tr>
<tr>
<td>Department of the Navy</td>
</tr>
<tr>
<td>ATTN: SEA-09G32</td>
</tr>
<tr>
<td>SEA-03B</td>
</tr>
<tr>
<td>SEA-880, T. Pierce</td>
</tr>
<tr>
<td>Washington, DC 20362</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 N. Quincy St.</td>
</tr>
<tr>
<td>ATTN: Code 438</td>
</tr>
<tr>
<td>Arlington, VA 22217</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Library of Congress</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN: Gift and Exchange Division</td>
</tr>
<tr>
<td>Washington, DC 20540</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defense Technical Information Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameron Station</td>
</tr>
<tr>
<td>ATTN: Distribution Statement A</td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Director of Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>600 Independence Avenue Southwest</td>
</tr>
<tr>
<td>Washington, DC 20546</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NASA Scientific and Technical Information Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Office Box 33</td>
</tr>
<tr>
<td>College Park, MD 20740</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alden Research Laboratories</td>
</tr>
<tr>
<td>Worcester Polytechnic Institute</td>
</tr>
<tr>
<td>Holden, MA 01520</td>
</tr>
</tbody>
</table>
Applied Physics Laboratory
The Johns Hopkins University
Johns Hopkins Road
ATTN: Document Librarian
Laurel, MD 20810

Applied Research Laboratory
The Pennsylvania State University
Post Office Box 30
ATTN: Library
Dr. J. W. Holl
State College, PA 16801

Superintendent
U. S. Naval Postgraduate School
ATTN: Library
Monterey, CA 93940

Commanding Officer
U. S. Naval Air Development Center
ATTN: NADC Library
Warminster, PA 18974

Director
U. S. Naval Research Laboratory
ATTN: Library
Washington, DC 20390

Commanding Officer
David Taylor Naval Ship Research and Development Center
ATTN: Library
Bethesda, MD 20084

Commander
Naval Ocean Systems Center
San Diego, CA 92132

Commanding Officer
Naval Underwater Systems Center
Newport, RI 02840

Commander
Naval Weapons Center
ATTN: Library
China Lake, CA 93555

Harry Diamond Laboratories
2800 Powder Mill Rd., Adelphi, Maryland 20783

Hydronautics, Incorporated
Pindell School Road
Laurel, MD 20810
TO AID IN UPDATING THE DISTRIBUTION LIST FOR NAVAL SURFACE WEAPONS CENTER, WHITE OAK TECHNICAL REPORTS PLEASE COMPLETE THE FORM BELOW:

TO ALL HOLDERS OF NSWC TR 80-243
by Charles Smith, 023

DO NOT RETURN THIS FORM IF ALL INFORMATION IS CURRENT

A. FACILITY NAME AND ADDRESS (OLD) (Show Zip Code)

NEW ADDRESS (Show Zip Code)

B. ATTENTION LINE ADDRESSES:

C. REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.

D. NUMBER OF COPIES DESIRED
