LITHIUM-ALUMINUM ALLOY ELECTRODES IN LITHIUM CHLORATE. (U)
JAN 81 D H SHEN, D N BENNION
N00014-80-C-0345
Lithium-Aluminum Alloy Electrodes in Lithium Chlorate

by

David H. Shen and Douglas N. Bennion

Prepared for Publication in the Journal of the Electrochemical Society

Brigham Young University
Department of Chemical Engineering
Provo, Utah 84602

January 1981

Reproduction in whole or in part is permitted for any purpose of the United States Government

This Document has been approved for public release and sale; its Distribution is unlimited
To prevent lithium dendrite growth during cycling of Li electrodes in molten LiClO₄ at 140°C, a Li-Al electrode in cells of the type Li/LiClO₄/Li-Al has been investigated. Two discharge plateaus, one about 0.42V and the other about 0.20V versus a lithium wire, were obtained. No lithium dendrites were observed. Continued cycling caused the lithium-aluminum electrode to break down to particles or grains. The corrosion of isolated Al grains during operation of a Li-Al electrode was confirmed using atomic absorption spectrophotometer (AA) analysis on a white precipitate formed where the alloy electrode had been.
Lithium-Aluminum Alloy Electrodes in Lithium Chlorate

by

David H. Shen¹) and Douglas N. Bennion²)

Chemical, Nuclear, and Thermal Engineering Department
University of California, Los Angeles 90024

Abstract

To prevent lithium dendrite growth during cycling of Li electrodes in molten LiClO₃ at 140°C, a Li-Al electrode in cells of the type Li/LiClO₃/LiAl has been investigated. Two discharge plateaus, one about 0.42 V and the other about 0.20 V versus lithium wire, were obtained. No lithium dendrites were observed. Continued cycling caused the lithium-aluminum electrode to breakdown to particles or grains. The corrosion of isolated Al grains during operation of a Li-Al electrode was confirmed using atomic absorption spectrophotometer (AA) analysis on a white precipitate formed where the alloy electrode had been.

¹) Present address: Jet Propulsion Laboratory, Pasadena, Calif.
²) Present address: Chemical Engineering Dept., Brigham Young Univ.

Provo, Utah 84602
Introduction

A battery system using a lithium negative electrode, an electrolyte of molten lithium chlorate, and an inert nickel positive electrode has been identified (1). In this study, the investigation was focused on using a lithium alloy electrode to stop lithium dendrite formation during lithium deposition. In the operating temperature, 140°C to 150°C, lithium metal is solid. A film exists on the lithium surface which prevents the lithium from contacting the electrolytic solution directly. During charging, lithium ions transfer through the film. The lithium ion transfer rates are different in various places on the film, apparently due to nonuniform thickness of and cracks in the film. The favored lithium deposition sites appear to be the cause of dendrite initiation. An approach to stopping dendrites is to reduce the activity of the deposited lithium by alloying with aluminum and causing the lithium to diffuse into the base material 2, 3, 4.
Experimental

LiClO$_3$ was prepared from Ba(ClO$_3$)$_2$ and Li$_2$SO$_4$ as described by Campbell and Griffiths (5). After dehydration in an argon atmosphere glove box at 50 μm Hg pressure for four weeks at 130°C, the water content in LiClO$_3$ was reduced to less than 0.5%. The final melting point of LiClO$_3$ was between 126°C and 128°C.

Aluminum foil, 99.999% pure, 0.005 inch thick, was purchased from Research Organic/Inorganic Chemical Corporation. It was used for preparing Li-Al working electrodes. Nickel screen, 16 mesh, 0.012 inch wire diameter, was used as the current collector of the working electrode. Lithium ribbon used for both the counter and the reference electrodes was purchased from the Foote Mineral Company. Nickel sheet was used as the backing material for the counter electrodes. Titanium foil was used as lead material for the reference electrode.

A glass pocket cell is shown in Fig. 1. The alloy working electrode and the lithium counter electrode were held in their respective compartments, one inch depth, 3/16 inch and 1/16 inch width respectively. The two compartments contain 1.72 cm3 and 0.57 cm3 molten electrolyte respectively. The reference electrode was a lithium wire. A glass rotating disk cell, shown in Fig. 2, was used to conduct the polarization experiments. The Li counter electrode and the Li reference electrode were held in the two glass tube arms of the cell. The aluminum rotating disk was made of a 0.3175 cm (1/8 inch) aluminum rod, with a glass tape sleeve. All experiments were run inside an argon atmosphere glove box. A Perkin Elmer 606 AA spectrophotometer was used to analyze the white precipitate formed on the surface of the alloy electrode. Further details are given elsewhere (6).
Figure 2. The cell used in all rotating disk experiments

1. glass cylinder 4. sintered glass 7. Li counter electrode
2. glass tube separator 8. Li reference electrode
3. glass tube 5. Al rod 9. LiClO₃
6. glass tape sleeve
1. glass cell container
2. sintered glass separator
3. pyrex glass block
4. sintered glass block
5. Li counter electrode compartment
6. Li-Al working electrode compartment
7. Li reference electrode compartment

Figure 1. The cell used in all cycling tests.
The alloy electrode used in cycle tests was initially an aluminum foil, 0.05 inch thickness, 1.62 cm x 1.62 cm area, held by two layers of nickel screen, one with a 7 cm long nickel wire as an electrode lead. The pure aluminum electrodes were alloyed electrochemically with lithium. Lithium-aluminum alloy electrodes of four different lithium contents were prepared (A-30%, B-34%, C-51.1%, and D-61.9% lithium on a molar basis) by cathodically charging lithium into the aluminum electrode. The current density for most of the forming was 7.63 mA/cm². The potential between the Li-Al working electrode and the lithium reference electrode was measured as a function of time at constant current.

Results and Discussion

The equilibrium emf values of the electrochemically formed lithium-aluminum alloy electrodes (vs. Li⁰/Li⁺) in molten lithium chlorate electrolyte are given in Fig. 3 as a function of alloy composition (in atom percent lithium).

Electrode C, 51.1% Li, was studied first. During cycling, 600 microequivalents per half cycle, the alloy working electrode was electrically grounded and the current density was 7.63 mA/cm². A charge plateau between 0.31 V and 0.33 V was observed. A discharge plateau between 0.37 V and 0.41 V was obtained. After 350 microequivalents charged out of the 8th discharge, the potential rose rapidly to more than 2 V. The electrode had failed. A typical cycle is shown in Fig. 4. Electrode C with 51.1% Li is just into the γ phase region; therefore, both the charge and discharge potential are within the α + γ phase potential. At failure, the discharge potential rose above the potential of the α + β phase indicating that the lithium content
Figure 3. Emf-Composition diagram of lithium-aluminum alloy in molten LiC\textsubscript{3}O\textsubscript{3} electrolyte at 418°K
Figure 4. Galvanostatic charge and discharge curves for the cell Li/LiClO₄/AI (Electrode C, 5110/o Li, 600 microequivalents per half cycle, cycle 2, i=363 mA/cm²).
in the Li-Al alloy was below 8.5%

Cycling tests for a type D electrode; 61.9% Li, showed two plateaus during charge and discharge (Figure 5 and 6). The two plateaus imply that the lithium-aluminum alloy is in the α + β phase or β + γ phase. The initial discharge curve at about 0.2 V is characteristic of the β + γ phase. As cycling progressed, lithium was lost due to corrosion and the composition began switching from β + γ to α + β phase as shown by the 5th discharge cycle in Figure 5. By the 8th discharge, a large part of the cycle was in the α + β region characterized by a plateau near 0.4 V. Similar characteristics are demonstrated in Figure 5 for charging, only the curves are shifted a little more negative due to overpotential. The 2nd charging curve is mainly at 0.5 V characteristic of the β + γ phase between 60 and 63 atom percent lithium. The 6th charging cycle is in between. But by the 9th charge curve much of the charging is at 0.3 V characteristic of the α + β phase between 8.5 and 50 mol percent lithium. Only near the end of the charge was the composition approaching the β + γ composition at the alloy surface. By the 9th cycle, most of the excess lithium initially charged in was corroded away. The length of time required to reach equilibrium was longer after charging than discharging. This result indicates that the surface composition of Li stabilizes faster following discharging compared to charging.

As shown in Tables 1 and 2, the amount of lithium in the forming half cycle and the depth of discharge are the main factors which influence the "life" of a lithium-aluminum electrode. Deep cycles cause more rapid break up of the alloy into small grains and increased corrosion of both the Li and Al by LiClO₃.
Figure 6. Galvanostatic charge curves for the cell Li/LiClO₄/LiAl (Electrode D, 61.9 a/o Li), 600 microequivalents per half cycle, 2nd, 6th, and 9th charges, i=7.63 mA/cm².
Table 1. Cycling tests for electrodes B, C, and D with 200 microequivalents per half cycle.

<table>
<thead>
<tr>
<th>Li atomic content in Li-Al alloys after initial forming half cycle. (a/o Li)</th>
<th>electrode</th>
<th>electrode</th>
<th>electrode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>α+β phase</td>
<td>34.0 a/o</td>
<td>51.1</td>
<td>61.9</td>
</tr>
<tr>
<td>β phase</td>
<td>34.0 a/o</td>
<td>51.1</td>
<td>61.9</td>
</tr>
<tr>
<td>β+γ phase</td>
<td>34.0 a/o</td>
<td>51.1</td>
<td>61.9</td>
</tr>
</tbody>
</table>

Initial forming charge size (microequivalents)	1667	3260	5413
Capacity used for each charge and discharge half cycle (microequivalents)	200	200	200
% of discharge depth, i.e., 200 microequivalents divided by initial forming charge size	12.0%	6.1%	3.7%
Total amount of charge in (microequivalents)	2675	8406	17813
Total amount of charge out (microequivalents)	1134	5124	12438
Total amount of charge out divided by total amount of charge in times 100%	42.56%	60.96%	69.83%
The number of full cycles	5*	24	59

*: The Li-Al electrode could not charge out 200 microequivalents in the 6th discharge half cycle.
Table 2. Cycling tests for electrode D with various depth per half cycle.

<table>
<thead>
<tr>
<th>Li atomic content in Li-Al alloys after initial forming half cycle. (a/o Li)</th>
<th>electrode D</th>
<th>D</th>
<th>D</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta+\gamma$ phase</td>
<td>61.9% a/o Li</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Initial forming charge size (microequivalents) | 5413 | 5491 | 5413 | 5658 |

| Capacity used for each charge and discharge half cycle (microequivalents) | 200 | 600 | 1200 | 2400 |

| % of discharge depth, i.e., 200 microequivalents divided by initial forming charge size | 3.7% | 10.9% | 22.2% | 42.2% |

| Total amount of charge in (microequivalents) | 17813 | 10945 | 10213 | 5058 |

| Total amount of charge out (microequivalents) | 12438 | 5640 | 5115 | 4796 |

| Total amount of charge out divided by total amount of charge in times 100% | 69.23% | 51.53% | 50.96% | 59.29% |

| The number of full cycles | 59* | 9 | 4 | 1 |

*: The Li-Al electrode could not charge out 200 microequivalents in the 60th discharge half cycle.
During cycling, the aluminum structure broke down to grains which lost electrical contact to other grains. A white precipitate was found on the surface where the aluminum foil had been. According to the results of chemical analysis and AA spectrophotometer measurements, the white precipitate is aluminum oxide. The reaction is

\[
\text{Al} + \text{LiClO}_3 \rightarrow \text{Al}_2\text{O}_3 + \text{LiCl}
\]

An \(\text{Al}_2\text{O}_3 \) film formed on the surface of the aluminum electrode. During charging, the volume of the electrode expanded to expose more fresh aluminum surface, more \(\text{Al}_2\text{O}_3 \) formed and lithium corrosion rates increased and more \(\text{Li}_2\text{O} \) and \(\text{LiCl} \) formed tending to isolate Al particles. Once the Li corroded out of an isolated particle, the cathodic protection of the lithium was lost and there was nothing to prevent \(\text{LiClO}_3 \) attack on the Al. Apparently \(\text{Al}_2\text{O}_3 \) is very insoluble in \(\text{LiClO}_3 \). Thus, the aluminum can not be replated.

Lithium in a Li-Al electrode could be corroded by molten \(\text{LiClO}_3 \). This was indicated by the open circuit potential rise during hot stand of the Li-Al electrode in molten \(\text{LiClO}_3 \). The corrosion rate decreased with time because a lithium passive film, \(\text{LiCl} \) and/or \(\text{Li}_2\text{O} \), was forming on the alloy surface and providing partial protection.

Polarization experiments using a rotating disk were conducted to investigate the electrochemical behavior of a lithium-aluminum electrode. The result, shown in Fig. 7, indicates that the lithium deposition is the reaction on the cathodic polarization curve. The anodic polarization curve is more complicated. The first plateau is associated with the lithium discharge reaction. At the potential of 1.0 V, the lithium passivated and current dropped from 35 mA to 0.2 mA. Aluminum dissolution took place at the potential of 1.4 V,
Figure 7. Anodic and cathodic polarization curves of a Li-Al rotating electrode in molten LiClO₃ at 145°C.

ANODIC CURVE
CATHODIC CURVE

Potential vs Li⁺/Li⁰, Volts

Current, mA
which is the second discharge plateau. The third plateau, 3.5 V, is oxygen evolution (1).

Figure 3 shows a cyclic voltammogram on a rotating Li-Al electrode in LiClO₃ electrolyte. The first oxidation peak, 0.60 V, shows lithium dissolution and corresponds to the reduction peak, 0.20 V, which shows lithium plating. The second oxidation peak, 1.90 V, shows aluminum dissolution, and a smaller cathodic peak, 1.45 V, on the return sweep with the rotating electrode indicates that the oxidation product, assumed to be Al⁺⁺⁺ (dissolved), is swept away into the solution (7). The small cathodic peak is the only evidence found to show that Al could be deposited on the Li-Al electrodes.

In order to measure the diffusion coefficient of lithium in Li-Al alloy, a potentiostatic pulse method was used. From Fick's 2nd law:

\[
\frac{3C}{\partial t} = \frac{D}{\partial x^2}
\]

shown below is derived the classic equation

\[
I = A \pi F C_0 \left(\frac{D}{\pi}\right)^{\frac{3}{2}} (t)^{-\frac{3}{2}}
\]

where \(C_0\) is the concentration of lithium in the alloy. The value of \(C_0\) was established by charging Li into a pure Al disk. When the potential versus a lithium reference electrode was 360 mV, charging was stopped and the Li in Al concentration assumed to be 10 a/o (0.0077 mol/cm³) based on the potential composition curve shown in Figure 3. Immediately after charging, the potential was potentiostatically set to insure anodic limiting current dissolution of the Li from the alloy but not sufficiently anodic to allow aluminum dissolution. The resulting electrical current was observed as a function of time. A
Figure 8. Cyclic voltammogram for a redox reaction on rotating Li-Al electrode in molten LiClO₃ at 145°C, sweep rate 12.5mV/sec.
plot of the current versus one over the square root of time yielded a straight line with slope 0.041 C/s^{0.5} (#). From this slope, the value for the diffusion coefficient of Li in Al at 145°C is 2 \times 10^{-6} \text{ cm}^2/\text{s}, in reasonable agreement with other observations (8,9).

Conclusions

Lithium dendrites occurring during charging on the lithium negative electrode in molten LiClO$_3$ near 140°C can be stopped by using a lithium-aluminum alloy electrode. But the limited "life" of the alloy electrode due to the involvement of the aluminum of the alloy electrode in the cell reaction restrict use of the lithium-aluminum alloy electrode as a stable and reversible negative electrode in lithium chlorate. The corrosion mechanism of Al appears to be isolation of Li-Al alloy grains followed by Li corrosion and then corrosion of the Al grains by LiClO$_3$. A way to control aluminum corrosion is needed.

Acknowledgement

Financial support for this work has been provided by the Office of Naval Research through contract number N0014-80-C-0345.

Fig. 21 of reference 6 shows a slope of 0.00714 C/s^{0.5}. An error was found in the data reduction in preparing Fig. 21 of reference 6; 0.041 C/s^{0.5} is the correct value.
References

