MISSOURI-KANSAS CITY BASIN

AD A105890

COLUMBIA MUNICIPAL GOLF COURSE DAMS
BOONE COUNTY, MISSOURI
MO 10895
MO 11068

PHASE 1 INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

PREPARED BY: HOSKINS-WESTERN-SONDEREGGER, INC.
FOR: STATE OF MISSOURI

SEPTEMBER, 1978
Phase I Dam Inspection Report
National Dam Safety Program
Columbia Municipal Golf Course Lake Dams
Boone County, Missouri (MO 10895) & (MO 11068)

Hoskins-Western-Sonderegger, Inc.

U.S. Army Engineer District, St. Louis
Dam Inventory and Inspection Section, LMSED-PD
210 Tucker Blvd., North, St. Louis, Mo. 63101

UNCLASSIFIED
Approved for release; distribution unlimited.

This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.
INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473. all technical reports prepared by or for DoD organizations.

CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and databases, it should be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate symbol.

COMPLETION GUIDE

General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank.

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave Blank. This space is for the use of the report recipient to assist in future retrieval of the document.

Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000). If the report has a subtitle, this subtitle should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a title in a foreign language, translate the title into English and follow the English translation with the title in the original language. Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers are used, leave this space blank.

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding/sponsoring agency. For definition see DoD Directive 5200.20, "Distribution Statements on Technical Documents."")

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Block 17. Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of the report). Insert here the applicable distribution statement of the abstract from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with... Translation of... (or by)... Presented at conference of... To be published in...

Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST), AD-672 000, can be helpful.

Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report should consist of publicly-releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000.
PREFACE

DIVISION I OF THIS REPORT IS THE PHASE I INSPECTION REPORT FOR COLUMBIA MUNICIPAL GOLF COURSE LOWER LAKE DAM.

DIVISION II IS THE PHASE I INSPECTION REPORT FOR COLUMBIA MUNICIPAL GOLF COURSE UPPER LAKE DAM.

APPENDIX A, APPENDIX B, APPENDIX C & APPENDIX D CONTAIN INFORMATION PERTINENT TO BOTH DAMS.
DIVISION I OF II
COLUMBIA MUNICIPAL GOLF COURSE LOWER LAKE DAM
BOONE COUNTY, MISSOURI

MISSOURI INVENTORY NO. 10895

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM.

Columbia Municipal Golf Course Lower Lake Dam (MO 10895) and Columbia Municipal Golf Course Upper Lake Dam (MO 11068), Boone County, Missouri. Phase I Inspection Report.
PREPARED BY
HOSKINS-WESTERN-SONDEREGGER, INC.
CONSULTING ENGINEERS
LINCOLN, NEBRASKA

UNDER DIRECTION OF
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
FOR
GOVERNOR OF MISSOURI

SEPTEMBER 1978
SUBJECT: Columbia Municipal Golf Course Lower Lake Dam
Phase I Inspection Report

This report presents the results of field inspection and evaluation of
the Columbia Municipal Golf Course Lower Lake Dam:

It was prepared under the National Program of Inspection of Non-Federal
Dams

This dam has been classified as unsafe, non-emergency by the St. Louis
District as a result of the application of the following criteria:

1) Spillway will not pass 50 percent of the Probable Maximum Flood
2) Overtopping could result in dam failure.
3) Dam failure significantly increases the hazard to loss of life
downstream.

SUBMITTED BY: ____________________________ 12 MARCH 1979
Chief, Engineering Division

APPROVED BY: ____________________________ 5 MAR 1979
Colonel, CE, District Engineer
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
COLUMBIA MUNICIPAL GOLF COURSE LOWER LAKE DAM
MO 10895

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PARAGRAPH NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessment Summary</td>
<td>AS-1</td>
</tr>
<tr>
<td></td>
<td>Overview Photograph</td>
<td>OP-1</td>
</tr>
</tbody>
</table>

SECTION 1 - PROJECT INFORMATION

1.1 General
1.2 Description of Project
1.3 Pertinent Data

SECTION 2 - ENGINEERING DATA

2.1 Design
2.2 Construction
2.3 Operation
2.4 Evaluation

SECTION 3 - VISUAL INSPECTION

3.1 Findings
3.2 Evaluation

SECTION 4 - OPERATIONAL PROCEDURES

4.1 Procedures
4.2 Maintenance of Dam
4.3 Maintenance of Operating Facilities
4.4 Description of Any Warning System in Effect
4.5 Evaluation

SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

SECTION 6 - STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 Dam Assessment
7.2 Remedial Measures

TC-1
<table>
<thead>
<tr>
<th>PLATE NO.</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>Vicinity Photography*</td>
</tr>
<tr>
<td>A-2</td>
<td>Location Map*</td>
</tr>
<tr>
<td>B-1</td>
<td>Photos 2 through 4 (Lower Dam)</td>
</tr>
<tr>
<td>B-2</td>
<td>Photos 5 through 7 (Lower Dam)</td>
</tr>
<tr>
<td>B-3</td>
<td>Photos 8 through 10 (Lower Dam)</td>
</tr>
<tr>
<td>B-4</td>
<td>Photos 11 and 12 (Upper Dam)</td>
</tr>
<tr>
<td>C-1</td>
<td>Phase I - Plan, Profile and Section (Lower Dam)</td>
</tr>
<tr>
<td>C-2</td>
<td>Phase I - Plan & Centerline Profile (Upper Dam)</td>
</tr>
<tr>
<td>C-3</td>
<td>Phase I Max. Cross Section, Emergency Spillway Section & Profile (Upper Dam)</td>
</tr>
<tr>
<td>D-3</td>
<td>Inflow Hydrographs (Lower Dam)</td>
</tr>
<tr>
<td>D-4</td>
<td>Rating Curves (Lower Dam)</td>
</tr>
<tr>
<td>D-5</td>
<td>Inflow Hydrographs (Upper Dam)</td>
</tr>
<tr>
<td>D-6</td>
<td>Rating Curves (Upper Dam)</td>
</tr>
<tr>
<td>D-7 through D-10</td>
<td>Input Data (PMF 0.5 PMF & 100 year)*</td>
</tr>
<tr>
<td>D-10 through D-13</td>
<td>Reservoir Routing (PMF)*</td>
</tr>
<tr>
<td>D-14 through D-16</td>
<td>Reservoir Routing (0.5 PMF)*</td>
</tr>
<tr>
<td>D-17 through D-19</td>
<td>Reservoir Routing (100 year)*</td>
</tr>
</tbody>
</table>

*Lower and Upper Dams
Name of Dam: Columbia Municipal Golf Course Lower Lake Dam
State Located: Missouri
County Located: Boone County
Stream: Tributary to Harmony Creek
Date of Inspection: September 13, 1978

Columbia Municipal Golf Course Lower Lake Dam No. Mo. 10895 was inspected by an interdisciplinary team of engineers from Hoskins-Western-Sonderegger, Inc. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

The guidelines used in the assessment were furnished by the Department of the Army, Office of the Chief of Engineers and developed with the help of several Federal and State agencies, professional engineering organizations, and private engineers. Based on these guidelines, this dam does not meet the requirements as a small size dam. However, there is a high downstream hazard associated with this dam. Because of this high downstream hazard and a dam immediately upstream of Mo. 10895, the safety of Columbia Municipal Golf Course Lower Lake Dam has been addressed and documented in this report. Failure would threaten life and property. The estimated damage zone extends one-half mile downstream of the dam. Within the damage zone are six to eight houses and one state highway crossing.

Our inspection and evaluation indicates that the spillway does not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. Since the dam has a low height and small storage capacity, the spillway should be capable of passing one-half of the Probable Maximum Flood. The spillway will pass 10% of the Probable Maximum Flood without overtopping the dam. Also the spillway will not pass the 100-year flood without overtopping of the dam. The Probable Maximum Flood (PMF) is defined as the flood that may be expected from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the region.

Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These analyses should be obtained in the future.
Deficiencies visually observed by the inspection team were inlet channel to the spillway overgrown with trees and shrubs and the channel downstream from outlet end of spillway badly overgrown with trees and shrubs.

Several items of preventive maintenance need to be initiated by the owner. These are described in detail in the body of the report.

Harold P. Hoskins, P.E.
Hoskins-Western-Sonderegger, Inc.
Lincoln, Nebraska

AS-2
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
COLUMBIA MUNICIPAL GOLF COURSE LOWER LAKE DAM
ID NO. NO. 10895

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of safety inspection of dams throughout the United States. Pursuant to the above, the St. Louis District, Corps of Engineers, District Engineer directed that a safety inspection of Columbia Municipal Golf Course Lower Lake Dam be made.

b. Purpose of Inspection. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

c. Evaluation Criteria. Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in "Recommended Guidelines for Safety Inspection of Dams". These guidelines were developed with the help of several Federal agencies and many State agencies, professional engineering organizations, and private engineers.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances.

(1) The dam is a small earth fill located along the west boundary of the municipal golf course in Columbia, Missouri. Another golf course dam and lake is located about 700 feet upstream from this dam. The crest elevation of the upper dam is 18 feet above the crest elevation of this (the lower) dam. Land surrounding the lake and dam is gently rolling and utilized as a park and golf course.

(2) The uncontrolled spillway consists of a 24 inch diameter corrugated metal pipe approximately 20 feet long located on the left (south) abutment. (¶ station 0+00)

(3) Pertinent physical data are given in paragraph 1.3 below.

b. Location. The dam is located in the central portion of Boone County, Missouri, as shown on Plate A-2. The dam and the lake formed by the dam is shown on Plate A-1 in the E 1/2 of Section 3, T48N, R13W.
c. Size Classification. Criteria for determining the size classification of dams and impoundments are presented in the guidelines referenced in paragraph 1.1c above. Based on these criteria, this dam and impoundment does not meet the classification as a small size dam.

d. Hazard Classification. Guidelines for determining hazard classification are presented in the same guidelines as referenced in paragraph c above. Based on referenced guidelines, this dam is in the High Hazard Classification. The estimated damage zone extends one-half mile downstream of the dam. Within the damage zone are six to eight houses and one state highway crossing.

e. Ownership. The dam is owned by the City of Columbia, Missouri, Parks and Recreation Department, P. O. Box N, Columbia, Missouri 65201, Attention: Dick Green, Parks and Recreation Director.

f. Purpose of Dam. The dam forms a 5 acre lake used as a fairway water hazard and for irrigation of the greens.

g. Design and Construction History. No design or construction data were available for this dam. It was reported that the dam was built in the 1950's.

h. Normal Operating Procedures. There are no controlled outlet works for this dam. It was reported that water flows through the spillway 2 or 3 times every year. It was also reported that water flows over the north end of the dam (about § station 2+50 – see Appendix C) in the spring of almost every year. The overtopping of the dam occurs when the emergency spillway is operating on the upper dam.

1.3 PERTINENT DATA

a. Drainage Area - 150 acres. (Total equals 104 acres lower dam + 46 acres upper dam.)

b. Discharge at Damsite.

(1) All discharges at the damsites are as follows:

(a) Lower Dam (#MO 10895) - All discharge is through an uncontrolled 24 inch diameter corrugated metal pipe culvert principal spillway set at grade.

(b) Upper Dam - All discharge reaches the lower dam through an uncontrolled 6 inch diameter cast iron pipe principal spillway and a grassed earth channel ungated emergency spillway. Division II of this report covers the Phase I inspection of the Upper dam.
(2) Estimated maximum flood at the lower damsite - 215 c.f.s. outflow or overflow estimated from statements by owners. A flood of this magnitude has occurred more than once in recent years according to statements by the owner.

(3) The lower damsite principal spillway capacity varies from 0 c.f.s. at its crest elevation (718.5 M.S.L.) to 13.1 c.f.s. at the minimum dam crest (elevation 720.7 M.S.L.).

c. Elevations (Feet Above M.S.L.).
 (1) Top of dam - 721.0.
 (2) Principal spillway crest - 718.5.
 (3) Emergency spillway crest - none.
 (4) Streambed at center line dam - 705.9.
 (5) Maximum tailwater - 715± for 1/2 PMF.

d. Reservoir. Length of maximum pool - 800±.

f. Reservoir Surface (Acres).
 (1) Top of dam - 5±.
 (2) Principal spillway crest - 3.3±.

g. Dam.
 (1) Type - earth embankment.
 (2) Length - 320 feet ±.
 (3) Height - 15 feet ±.
 (4) Top width - 11 feet ±.
 (5) Side slopes.
 (a) Downstream - 2.3 to 2.5H on 1V (measured).
 (b) Upstream - 2.5±H on 1V (measured).
 (6) Zoning - unknown.
 (7) Impervious core - unknown.
 (8) Cutoff - unknown.
 (9) Grout curtain - unknown.
 (10) Wave protection - none.
h. Diversion Channel and Regulating Tunnel - None.

i. Spillway.
 (1) Principal.
 (a) Type - Uncontrolled 24 inch diameter corrugated metal pipe culvert set at grade. The inlet is a simple sharp edged protrusion of the pipe into the approach channel with no headwall or other improvements.
 (b) Crest (invert) elevation - 718.5. Outlet - 717.7.
 (c) Length - 20 feet ±.
 (2) Emergency - None.

j. Regulating Outlets.
 (1) Principal spillway - None.
SECTION 2 - ENGINEERING DATA

2.1 DESIGN

No design data were available for this dam.

2.2 CONSTRUCTION

No construction data were available. It was reported that the dam was constructed in the 1950's.

2.3 OPERATION

No data on the operation of the spillway were available. It was reported that the spillway operates every year and that the dam overtops many years as discussed in Section 1.2, paragraph h.

2.4 EVALUATION

a. Availability. No data were available.

b. Adequacy. The field surveys and visual observations presented herein are considered adequate to support the conclusions of this report. Seepage and stability analyses comparable to the requirements of the guidelines are not on record. This is a deficiency which should be rectified.

c. Validity. Not applicable.
SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General. A visual inspection of the Columbia Municipal Golf Course Lower Lake Dam was made on September 13, 1978. Engineers from Hoskins-Western-Sonderegger, Inc., Lincoln, Nebraska making the inspection were: Rey S. Decker, Geology and Soil Mechanics; Garold Ulmer, Civil Engineer; Gordon Jamison and Richard Walker, Hydrology. The following personnel from the City Parks and Recreation Department accompanied the inspection party: Bill Lockwood, Bruce Murray and Bill Ricks. Specific observations are discussed below.

b. Dam. The embankment slopes are well vegetated with adapted grasses. Soils in the embankment and abutments appear to be lean clay (CL). No cracks, slips or abnormal deformations were noted on the embankment or abutments. No seeps were apparent on the downstream slope or along the downstream toe. No significant wave erosion was noted on the upstream face of the dam.

Rough measurements along the center line of the dam indicate that the right (north) end of the dam is one foot or more lower in elevation than the remainder of the dam. (See Appendix C).

c. Appurtenant Structures. The spillway consists of a 24 inch corrugated metal pipe approximately 20 feet long located in the left abutment at station 0+00. The invert elevation of the spillway is approximately 2.5 feet below the top of dam. The forebay or inlet channel to the spillway is badly choked with trees and shrubs.

d. Reservoir Area. No excessive wave wash or erosion or slides were noted along the shore of the lake.

e. Downstream Channel. The spillway discharges into an earth channel that is badly overgrown with trees and shrubs. The channel passes under State Highway E in a concrete box (approximately 5.5' x 6') some 50 feet downstream from the dam. The channel below the roadway is also overgrown with trees and shrubs. Several homes are located along a street which runs westward almost perpendicular to the center line of the dam downstream from the right end of the dam (about station 3+00). The back yards of these homes encroach upon the outlet channel for the spillway.
3.2 EVALUATION

The spillway will not pass the floods to be expected every one to two years. However, there was no evidence of flood damage on or below the dam from the frequent overtopping that reportedly occurs. Additional studies would be required to determine flood damages from overtopping by the probable maximum flood. Removal of trees and shrubs from the inlet section and from the outlet channel would improve the operation of the spillway.
SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

There are no controlled outlet works for this dam. The pool level is controlled by rainfall, evaporation and the capacity of the uncontrolled spillway. It was reported that the spillway operates every year and that the dam overtops almost every year.

4.2 MAINTENANCE

The heavy growth of trees and shrubs in the inlet and outlet section of the spillway indicates the lack of regular maintenance in those areas.

4.3 MAINTENANCE AND OPERATING FACILITIES

No operating facilities exist at this dam.

4.4 DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT

There is no warning system in effect for this dam.

4.5 EVALUATION

A serious potential of failure may result if the deficiencies in reservoir storage and spillway capacity are not corrected.
SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 EVALUATION OF FEATURES

a. **Design Data.** No hydraulic or hydrologic data were available from the owner. All computations are based on the survey made during the inspection and upon information taken from the 7 1/2' quadrangle sheet. These are summarized and attached in Appendix D.

b. **Experience.** The drainage areas and elevation-area-storage curves were developed from the USGS Columbia, Missouri 7 1/2' quadrangle sheet. The hydraulic computations for spillway and dam overtopping ratings were based on data taken during the inspection field survey. Both the lower dam (MO 10895) and the upper dam on the watershed were surveyed during the inspection.

c. **Visual Observations.**

(1) The principal spillway is in fair condition. The short approach channel has trees and brush growing in it. The culvert pipe itself has a very shallow cover and could move or be washed out at high flows overtopping the crest.

(2) The box culvert under the road immediately downstream from the dam could result in ponding against the downstream toe of the dam. An estimate has been made of the maximum tailwater at 1/2 PMF (Section 1.3 c 5).

(3) The lower dam has been overtopped numerous times during its existence. The overtopping occurs along the crest near the right abutment (according to the conference with the owners). However, the field inspection showed no evidence of damage to the gravel surfaced golf cart pathway on the crest. The obvious frequency of overtopping from the hydrologic computations summarized below would be a matter of concern.

(4) The upper dam is of importance in the hydrologic analysis of the overtopping potential of the lower dam. The hydrologic effect of the upper dam has been considered in all routing computations summarized below.

d. **Overtopping Potential.** The spillway is too small to pass the PMF, 1/2 PMF, or 100-year flood without overtopping. The spillway will just pass 10% of the PMF without overtopping. This 0.10 PMF flow has a greater frequency (lesser return period) than the 100-year flood. The results of the routings
are tabulated in regards to the following conditions. The flows tributary to the upper dam on the watershed were (see Map Plate A1) routed through storage of the upper dam and then combined with flows tributary to the lower dam alone to form the inflow hydrographs to the lower dam.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Peak Inflow Discharge c.f.s</th>
<th>Peak Inflow Discharge c.f.s</th>
<th>Maximum Pool Elevation M.S.L.</th>
<th>Freeboard Top of Dam Min. Elev. 721.0</th>
<th>Time Dam Overtopping Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-Year</td>
<td>245</td>
<td>235</td>
<td>721.5</td>
<td>-0.5</td>
<td>5.2</td>
</tr>
<tr>
<td>1/2 PMF</td>
<td>660</td>
<td>640</td>
<td>722.0</td>
<td>-1.0</td>
<td>9.2</td>
</tr>
<tr>
<td>PMF</td>
<td>1490</td>
<td>1470</td>
<td>722.5</td>
<td>-1.5</td>
<td>16.0</td>
</tr>
<tr>
<td>0.10 PMF</td>
<td>89</td>
<td>38</td>
<td>721.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

According to the recommended guidelines from the Department of the Army, Office of the Chief of Engineers, this dam is classified as having a high hazard. Since the dam has a low height and small storage capacity the spillway should be capable of passing one-half of the Probable Maximum Flood.

The St. Louis District, Corps of Engineers, in a letter dated 11 August, 1978 has estimated the damage zone extending one half mile downstream of the dam. Within the damage zone are six to eight houses and one state highway crossing. Field inspection of the downstream damage zone showed that at least these number of structures were exposed to hazard.
SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations. The dam appears to be structurally stable. The embankment slopes should provide adequate safety factors against shear failures for a dam of this height. There were no seeps, slides or deformations noted on the embankment or abutments. Additional studies would be required to determine the affects of overtopping on structural stability.

b. Design and Construction Data. No design or construction data were available.

c. Operating Records. There are no controlled operating facilities for this dam.

d. Post Construction Changes. The inspection team is not aware of any post construction changes on this dam.

e. Seismic Stability. This dam is located in Seismic Zone 1. An earthquake of the magnitude predicted in this zone is not expected to cause a structural failure of this dam.
SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Safety. Floods caused by 10% of the maximum design flood (PMF) will overtop the dam. The effect of such overtopping on the structural or erosional stability of the dam and on potential damages downstream from the dam is not known.

b. Adequacy of Information. Due to the lack of engineering data, the conclusions in this report are based upon performance history and visual observations. Seepage and stability analyses comparable to the requirements of the guidelines were not available, which is considered a deficiency.

c. Urgency. The remedial measures recommended in paragraph 7.2 should be accomplished in the near future.

d. Necessity for Phase II. Phase II investigation is not considered necessary.

e. Seismic Stability. This dam is located in Seismic Zone I. An earthquake of this magnitude is not expected to be hazardous to this dam.

7.2 REMEDIAL MEASURES

a. Alternatives

(1) Additional information should be obtained on the topographic characteristics of the reservoir area to determine the increase in the size of the spillway and/or the height of the dam that is necessary to pass the probable maximum flood without overtopping the dam. If the height of the dam is increased, additional investigations and analyses should be conducted to determine the structural characteristics and stability of the present embankment and the stability against seepage and shear failure of the modified dam. The services of an engineer experienced in the design of dams should be obtained to evaluate the present dam and to design the new structure and/or spillway.
b. O & M Maintenance and Procedures

When remedial measures to prevent overtopping of the dam are completed, a schedule of regular inspection and maintenance should be initiated. This maintenance schedule should be designed to control vegetation on the structure.

Trees and shrubs presently growing in the inlet and outlet channels of the spillway should be removed and measures taken to prevent their recurrence.
DIVISION II OF II
COLUMBIA MUNICIPAL GOLF COURSE UPPER LAKE DAM
BOONE COUNTY, MISSOURI

MISSOURI INVENTORY NO. 11068

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

PREPARED BY
HOSKINS-WESTERN-SONDEREGGER, INC.
CONSULTING ENGINEERS
LINCOLN, NEBRASKA

UNDER DIRECTION OF
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
FOR
GOVERNOR OF MISSOURI

SEPTEMBER 1978
SUBJECT: Columbia Municipal Golf Course Upper Lake Dam
Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Columbia Municipal Golf Course Upper Lake Dam:

It was prepared under the National Program of Inspection of Non-Federal Dams:

This dam has been classified as unsafe, nonemergency by the St. Louis District as a result of the application of the following criteria:

1) Spillway will not pass 50 percent of the Probable Maximum Flood
2) Overtopping could result in dam failure.
3) Dam failure significantly increases the hazard to loss of life downstream.

SUBMITTED BY: ____________________________ 3 MAR 1979
Chief, Engineering Division Date

APPROVED BY: ____________________________ 5 MAR 1979
Colonel, CE, District Engineer Date
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
COLUMBIA MUNICIPAL GOLF COURSE UPPER LAKE DAM
MO 11068

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PARAGRAPH NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessment Summary</td>
<td>AS-1</td>
</tr>
<tr>
<td></td>
<td>Overview Photograph</td>
<td>OP-1</td>
</tr>
</tbody>
</table>

SECTION 1 - PROJECT INFORMATION

1.1	General	1
1.2	Description of Project	1
1.3	Pertinent Data	2

SECTION 2 - ENGINEERING DATA

2.1	Design	5
2.2	Construction	5
2.3	Operation	5
2.4	Evaluation	5

SECTION 3 - VISUAL INSPECTION

| 3.1 | Findings | 6 |
| 3.2 | Evaluation | 6 |

SECTION 4 - OPERATIONAL PROCEDURES

4.1	Procedures	8
4.2	Maintenance of Dam	8
4.3	Maintenance of Operating Facilities	8
4.4	Description of Any Warning System in Effect	8
4.5	Evaluation	8

SECTION 5 - HYDRAULIC/HYDROLOGIC

| 5.1 | Evaluation of Features | 9 |

SECTION 6 - STRUCTURAL STABILITY

| 6.1 | Evaluation of Structural Stability | 11 |

SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

<p>| 7.1 | Dam Assessment | 12 |
| 7.2 | Remedial Measures | 12 |</p>
<table>
<thead>
<tr>
<th>PLATE NO.</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>Vicinity Photography*</td>
</tr>
<tr>
<td>A-2</td>
<td>Location Map*</td>
</tr>
<tr>
<td>B-1</td>
<td>Photos 2 through 4 (Lower Dam)</td>
</tr>
<tr>
<td>B-2</td>
<td>Photos 5 through 7 (Lower Dam)</td>
</tr>
<tr>
<td>B-3</td>
<td>Photos 8 through 10 (Lower Dam)</td>
</tr>
<tr>
<td>B-4</td>
<td>Photos 11 and 12 (Upper Dam)</td>
</tr>
<tr>
<td>C-1</td>
<td>Phase I - Plan, Profile and Section (Lower Dam)</td>
</tr>
<tr>
<td>C-2</td>
<td>Phase I - Plan & Centerline Profile (Upper Dam)</td>
</tr>
<tr>
<td>C-3</td>
<td>Phase I Max. Cross Section, Emergency Spillway Section & Profile (Upper Dam)</td>
</tr>
<tr>
<td>D-3</td>
<td>Inflow Hydrographs (Lower Dam)</td>
</tr>
<tr>
<td>D-4</td>
<td>Rating Curves (Lower Dam)</td>
</tr>
<tr>
<td>D-5</td>
<td>Inflow Hydrographs (Upper Dam)</td>
</tr>
<tr>
<td>D-6</td>
<td>Rating Curves (Upper Dam)</td>
</tr>
<tr>
<td>D-7 through D-10</td>
<td>Input Data (PMF 0.5 PMF & 100 year)*</td>
</tr>
<tr>
<td>D-10 through D-13</td>
<td>Reservoir Routing (PMF)*</td>
</tr>
<tr>
<td>D-14 through D-16</td>
<td>Reservoir Routing (0.5 PMF)*</td>
</tr>
<tr>
<td>D-17 through D-19</td>
<td>Reservoir Routing (100 year)*</td>
</tr>
</tbody>
</table>

*Lower and Upper Dams
Columbia Municipal Golf Course Upper Lake Dam No.11068 was inspected by an interdisciplinary team of engineers from Hoskins-Western-Sonderegger, Inc. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

The guidelines used in the assessment were furnished by the Department of the Army, Office of the Chief of Engineers and developed with the help of several Federal and State agencies, professional engineering organizations, and private engineers. Based on these guidelines, this dam is classified as a small size dam with a high downstream hazard potential. Failure would threaten life and property. The estimated damage zone extends one-half mile downstream of the dam. Within the damage zone are Columbia Municipal Golf Course Lower Lake Dam, six to eight houses and one state highway crossing.

Our inspection and evaluation indicates that the spillways do not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. Since the dam has a low height and small storage capacity the spillways should be capable of passing one-half of the Probable Maximum Flood. The spillways will pass the 100 year flood (flood having a one percent chance of being exceeded in any year) without overtopping the dam. The spillways will pass 35% of the Probable Maximum Flood without overtopping the dam. The Probable Maximum Flood (PMF) is defined as the flood that may be expected from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the region.

Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These analyses should be obtained in the future.

No other deficiencies were observed by the inspection team.
No preventative maintenance items are called for in the report. The dam is well maintained on a regular basis.

[Signature]

Harold P. Hoskins, P.E.
Hoskins-Western-Sonderegger, Inc.
Lincoln, Nebraska
1.1 GENERAL

a. Authority. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of safety inspection of dams throughout the United States. Pursuant to the above, the St. Louis District, Corps of Engineers, District Engineer directed that a safety inspection of Columbia Municipal Golf Course Upper Lake Dam be made.

b. Purpose of Inspection. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

c. Evaluation Criteria. Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in "Recommended Guidelines for Safety Inspection of Dams". These guidelines were developed with the help of several Federal agencies and many State agencies, professional engineering organizations, and private engineers.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances.

(1) The dam is a small earth fill located in the southwestern section of the Columbia Municipal Golf Course, Columbia, Mo. The golf course lower dam and lake, MO 10895, is located about 700 feet downstream from this dam. The crest elevation of this dam is 18 feet above the crest elevation of the lower dam.

(2) The principal spillway consists of an ungated 6 inch diameter cast iron pipe with a hooded inlet passing through the dam at about ξ station 2 + 15.

(3) A vegetated earth emergency spillway is cut into the left abutment.

(4) Pertinent physical data are given in paragraph 1.3 below.
b. **Location.** The dam is located in the central portion of Boone County, Missouri, as shown on Plate A-2. The dam and the lake formed by the dam is shown on Plate A-1 in the E½ of Section 3, T48N, R13W.

c. **Size Classification.** Criteria for determining the size classification of dams and impoundments are presented in the guidelines referenced in paragraph 1.1c above. Based on these criteria, this dam and impoundment is in the small size category.

d. **Hazard Classification.** Guidelines for determining hazard classification are presented in the same guidelines as referenced in paragraph c above. Based on referenced guidelines, this dam is in the High Hazard Classification. The estimated damage zone extends one-half mile downstream of the dam. Within the damage zone are the Columbia Municipal Golf Course Lower Lake Dam, six to eight houses and one state highway crossing.

e. **Ownership.** The dam is owned by the City of Columbia, Missouri, Parks and Recreation Department, P.O. Box N, Columbia, Missouri 65201. Attention: Dick Green, Parks and Recreation Director

f. **Purpose of Dam.** The dam forms a 7 acre recreational lake (based on elevation of principal spillway).

g. **Design and Construction History.** No design or construction data were available for this dam. It was reported that the dam was constructed in the early 1950's. The downstream slope of the dam was rebuilt in 1976.

h. **Normal Operating Procedure.** There are no controlled outlet works for this dam. It was reported that the emergency spillway operates almost every year and that spillway flow from this dam usually causes overtopping of the lower dam.

1.3 **PERTINENT DATA**

a. **Drainage Area.** 46 acres (determined by consultant)

b. **Discharge At Damsite.**

(1) All discharges at the damsite are as follows. All discharges to the lower damsite (MO 10895) are through an uncontrolled 6 inch diameter cast iron pipe principal spillway and a grassed earth channel ungated emergency spillway in the left abutment hillside.

(2) Estimated maximum flood at the upper damsite 50 c.f.s. outflow or overflow estimated from statements by owners. A flood of this estimated magnitude has occurred more than once in
recent years according to statements by the owners. Maximum pool of the upper dam is considered to be minimum crest elevation 738.4 Feet M.S.L.

(3) The principal spillway capacity varies from 0 c.f.s. at its crest elevation 735.8 M.S.L. to 1.5 c.f.s. at the minimum top of dam.

(4) The emergency spillway capacity varies from 0 c.f.s. at its crest elevation 736.7 M.S.L. to 89.0 c.f.s. at the minimum top of dam.

(5) Total spillway capacity at the minimum top of dam is 90.5 c.f.s. ±

c. Elevations. (Feet above M.S.L.)

(1) Top of dam - 738.8 Feet M.S.L.
(2) Principal spillway crest - 735.8
(3) Emergency spillway crest - 736.7
(4) Streambed at centerline - 722 ±
(5) Maximum tailwater - 722 ±

d. Reservoir. Length (feet) of maximum pool - 900 ±

e. Storage (Acre-feet).

(1) Top of dam - 51.1
(2) Principal spillway crest - 28.5

f. Reservoir Surface (Acres).

(1) Top of dam - 9 ±
(2) Principal spillway crest - 7 ±

g. Dam.

(1) Type - Earth embankment
(2) Length - 490 feet ±
(3) Height - 17 feet ±
(4) Top width - 14 feet ±
(5) Side slopes.
 (a) Downstream - 4.5H on 1V (measured)
 (b) Upstream - 3.7H on 1V (measured)

(6) Zoning - unknown

(7) Impervious core - unknown

(8) Cutoff - unknown

(9) Grout curtain - unknown

(10) Wave protection - none

h. **Diversion Channel and Regulating Tunnel.** None

i. **Spillway.**

(1) Principal
 (a) Type - uncontrolled 6 inch diameter cast iron pipe placed through the dam on a grade of about 13 percent. The inlet is an angled cut on the end of the pipe (hooded inlet).
 (b) Crest (invert) elevation - 735.8 (M.S.L.)
 Outlet - 722 ± (M.S.L.)
 (c) Length - 104 feet ±

(2) Emergency
 (a) Type - vegetated earth
 (b) Control section - 18 feet bottom width; 2H on 1V side slopes; approximately 80 feet long from inlet to exit section
 (c) Crest elevation - 736.7 feet, (M.S.L.)
 (d) Upstream Channel - None direct to reservoir
 (e) Downstream Channel - vegetated earth which outlets into the lower lake

j. **Regulating Outlets.** None
SECTION 2 - ENGINEERING DATA

2.1 DESIGN

No design data were available for this dam

2.2 CONSTRUCTION

No construction data were available. It was reported that the dam was built in the early 1950's and that the downstream slope was rebuilt in 1976.

2.3 OPERATION

No data were available on spillway operation. It was reported that the emergency spillway operates almost every year.

2.4 EVALUATION

a. Availability. No data were available

b. Adequacy. The field surveys and visual observation presented herein are considered adequate to support the conclusion of this report.

c. Seepage and stability analyses. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record.

d. Validity. Not applicable.
SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General. A visual inspection of the Columbia Municipal Golf Course Upper Lake Dam was made on September 13, 1978. Engineers from Hoskins-Western-Sonderegger, Inc., Lincoln, Nebraska making the inspection were: Rey S. Decker, Geology and Soil Mechanics; Garold Ulmer, Civil Engineer; Gordon Jamison and Richard Walker, Hydrology. The following personnel from the City Parks and Recreation Department accompanied the inspection party: Bill Lockwood, Bruce Murray and Bill Ricks. Specific observations are discussed below.

b. Dam. Soils in the embankment and abutments appear to be lean clay (CL). The embankment slopes are well vegetated with adapted grasses and are well maintained. No cracks, slips or abnormal deformations were noted on the embankment or abutments. No seeps were apparent on the downstream slope or along the downstream toe.

c. Appurtenant Structures.

(1) The principal spillway ("trickle tube") consists of a 6 inch diameter cast iron hooded inlet pipe located through the dam at about station 2 + 15. The invert elevation of the pipe inlet is about 2.6 feet below the top of the dam. The flow from the pipe spillway discharges into the lower lake through a well stabilized grassed waterway.

(2) The emergency spillway consists of a well vegetated earth channel cut through the abutment on the left end of the dam. This spillway has an 18 foot bottom width and side slopes of 2H on 1V. The elevation of the control section is approximately 2.1 feet below the top of the dam. Flow from the emergency spillway discharges into the lower lake through a stable, grassed waterway.

d. Reservoir Area. No excessive wave wash, erosion, or slides were noted along the shoreline of the lake.

e. Downstream Channel. All spillway discharges from this lake flow into the lower lake through stable grassed waterways which traverse the fairways of the golf course.

3.2 EVALUATION

The dam and appurtenances appear to be in excellent condition. Renovation of the downstream section in 1976 resulted in abnormally flat slopes (4.5H on 1V) for a dam of this height and apparent composition. The factor of safety against shear failure of this dam must be relatively high.

-6-
The excellent grass cover and apparent materials in the dam indicate that minor overtopping of the dam would not endanger the safety of the structure.
SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

There are no controlled outlet works for this dam. The pool level is controlled by rainfall, evaporation, and the capacity of the uncontrolled spillways.

4.2 MAINTENANCE

The dam, appurtenances, and reservoir shoreline are subject to regular and careful maintenance as integral parts of the golf course.

4.3 MAINTENANCE AND OPERATING FACILITIES

No operating facilities exist at this dam.

4.4 DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT

There is no warning system in effect for this dam.

4.5 EVALUATION

There does not appear to be any serious potential of failure of this structure.
5.1 EVALUATION OF FEATURES

a. Design Data. No hydraulic or hydrologic data were available from the owner. All computations are based on the survey made at inspection or are taken from the Columbia, MO. 7½' quadrangle sheet. These are summarized and attached in Appendix D.

b. Experience. The drainage area and elevation - area - storage curves were developed from the USGS Columbia Quadrangle 7½' sheet. Some specific guidance was given by the St. Louis District Corps of Engineers which resulted in the power curve method being used to extend the elevation storage curves below normal pool elevations. The hydraulic computations for spillways and dam overtopping ratings were based on data taken in the inspection field survey. Both the lower dam (MO 10895) and the upper dam (MO 11068) on the watershed were surveyed during the inspection.

(1) The principal spillway is in good condition but it has a very small hydraulic capacity relative to the 100 year flood.

(2) The emergency spillway is in good condition but it also has a small hydraulic capacity relative to the 100 year and dam overtopping floods.

(3) The pool of the lower dam would extend up to the toe of the upper dam at all inflows greater than ½ PMF.

(4) The emergency spillway operates at least once a year according to statements of the owners representatives. It does not appear to have lost any of its vegetative cover subsequent to this frequency of operation.

d. Overtopping Potential. The spillways of the upper dam are too small to pass 50% of the PMF without overtopping. The spillways will pass 35% of the PMF without overtopping. This 35% of the PMF has a lesser frequency (greater return period) than the 100 year flood. The flows tributary to the upper dam on the watershed were routed through storage of the upper dam and then combined with flows tributary to the lower dam to form the total inflow hydrographs to the lower dam. The results of the routings through the lower dam are given in the report on the lower dam (MO 10895). (See Division 1 of this report.)
The results of the routings are tabulated in regards to the following conditions:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Peak Inflow Discharge c.f.s.</th>
<th>Peak Outflow Discharge c.f.s.</th>
<th>Maximum Pool Elevation M.S.L.</th>
<th>Freeboard Top of Dam M.S.L.</th>
<th>Time Overtopping Dam HRS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 year</td>
<td>96</td>
<td>35</td>
<td>737.6</td>
<td>+0.8</td>
<td>0</td>
</tr>
<tr>
<td>1/2 PMF</td>
<td>232</td>
<td>180</td>
<td>738.8</td>
<td>-0.4</td>
<td>2.0</td>
</tr>
<tr>
<td>PMF</td>
<td>445</td>
<td>445</td>
<td>739.1</td>
<td>-0.7</td>
<td>4.8</td>
</tr>
<tr>
<td>0.35</td>
<td>156</td>
<td>90</td>
<td>738.4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

According to the recommended guidelines from the Department of the Army, Office of the Chief of Engineers, this dam is classified as having a high hazard rating and a small size. Therefore, 50% of the PMF is the test for the adequacy of the upper dam and its spillways.

The St. Louis District, Corps of Engineers in a letter dated 11 August 1978 has estimated the damage zone as extending one half mile downstream of the lower and upper dams. Within the damage zone are six to eight houses and one state highway crossing. Field inspection of the downstream damage zone showed that at least these number of structures were exposed to hazard, because of their close proximity to the stream channel.
SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observation. The dam appears to be structurally stable. The embankment slopes should provide adequate safety factors against shear failures for a dam of this height. There were no seeps, slides or deformations noted on the embankment or abutments. Additional studies would be required to determine the effects of overtopping on structural stability. However, it appears that the safety of the dam would not be impaired by minor overtopping.

b. Design and Construction Data. No design or construction data were available.

c. Operating Records. There are no controlled operating facilities for this dam.

d. Post Construction Changes. It was reported that the downstream section of the dam was flattened in 1976. This work was apparently done to repair some minor slip areas and to facilitate regular mowing and maintenance on the slope.

The post construction changes appear to have alleviated any previous problems of slope stability and maintenance.

e. Seismic Stability. This dam is located in Seismic Zone 1, an earthquake of the magnitude predicted in this area is not expected to cause structural failure of this dam.
SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. **Safety.** Using the approximate data available for analysis, the dam will be overtopped 0.4 foot by one-half the Probable Maximum Flood. The effect of such overtopping on the structural or erosional stability of the dam is not known.

b. **Adequacy of Information.** Due to the lack of engineering data, the conclusions in this report are based upon performance history and visual observations. Seepage and stability analyses comparable to the requirements of the guidelines were not available which is considered a deficiency.

c. **Urgency.** There does not appear to be an immediate urgency to accomplish the remedial measures recommended in paragraph 7.2.

d. **Necessity for Phase II.** Phase II investigation is not considered necessary.

e. **Seismic Stability.** This dam is located in Seismic Zone 1. An earthquake of this magnitude is not expected to be hazardous to this dam.

7.2 REMEDIAL MEASURES

a. **Alternatives.**

(1) Additional information should be obtained on the topographic characteristics of the reservoir area to determine the increase in the height of dam or the size of the spillway that is necessary to pass one half the Probable Maximum Flood without overtopping the dam. The services of an engineer experienced in the design of dams should be obtained to evaluate the present reservoir storage capacity, to provide seepage and stability analyses of the present dam, and to design protective measures, if required.
PHOTO NO. 2
DOWNSTREAM SLOPE
TAKEN FROM RIGHT (NORTH)
END.

PHOTO NO. 3
LOOKING UPSTREAM
AT CORRUGATED METAL
PIPE SPILLWAY.

PHOTO NO. 4
LOOKING DOWNSTREAM
AT OUTLET CHANNEL.
PHOTO. NO. 5
LOOKING DOWNSTREAM FROM STA. 2+50 AT HOUSES IN FLOOD PLAIN.

PHOTO. NO. 6
LOOKING UPSTREAM ACROSS LAKE FROM STATION 2+50.

PHOTO. NO. 7
UPSTREAM FACE OF DAM TAKEN FROM LEFT (SOUTH) END.
PHOTO. NO. 8
CREST OF DAM
TAKEN FROM RIGHT
(NORTH) END.

PHOTO. NO. 9
LOWER GOLF
COURSE LAKE
TAKEN FROM
UPPER DAM.

PHOTO. NO. 10
LOOKING UPSTREAM
AT UPPER DAM
SPILLWAY.
PHOTO NO. 11
UPSTREAM SLOPE OF
UPPER DAM LOOKING
FROM RIGHT TO LEFT.

PHOTO NO. 12
DOWNSTREAM SLOPE
OF UPPER DAM LOOKING
FROM RIGHT TO LEFT.
Crest Elev. 736.7
Emergency Spillway

Note: Avg. Dam Crest Elev. 738.8

Min. Crest Elev. 738.4

W.S. Elev. 735.0
13 Sept. 1978

Crest Elev. 735.8

PROFILE OF DAM
Horiz. Scale: 1"=100'
Vert. Scale: 1"=10'

PLAN OF DAM
Scale: 1"=100'

COLUMBIA MUNICIPAL GOLF COURSE UPPER LAKE DAM
NATIONAL DAM SAFETY PROGRAM
PHASE I
PLATE C-2
APPENDIX D
HYDROLOGIC COMPUTATIONS
HYDROLOGIC COMPUTATIONS

1. The Mockes dimensionless standard curvilinear unit hydrograph and SCS TR-20 computer program were used to develop the inflow hydrographs (See Plates D-3 and D-5). The inflow hydrograph for the 100-year flood was also generated by the TR-20 program.

 a. Six-hour, twelve-hour, and twenty-four hour 100-year rainfall for the dam location was taken from NOAA Technical Paper 40. The 24-hour index probable maximum precipitation was taken from curves of Hydrometeorological Report No. 33 and current Corps of Engineers, St. Louis District, policy and guidance for hydraulics and hydrology.

 b. Drainage area = 0.234 square miles total. This includes 0.072 square miles tributary to the upper dam alone and 0.162 square miles tributary to the lower dam alone.

 c. Times of concentration (tc) = 0.27 hour upper dam alone and 0.25 hour lower dam alone. These were computed using the Kirpich Formula.

 d. The antecedent storm conditions were heavy rainfall and low temperatures which occurred on the previous 5 days (SCS AMC III). The initial pool elevations were assumed at the crests of the principal spillways which were 735.8 M.S.L. and 718.5 M.S.L., respectively for the upper and lower dams.

 e. The total 24-hour storm duration losses for the 100-year storm were 1.36 inches. The total losses for the PMF storm were 1.47 inches. The total losses for the PMF storm were 1.52 inches. These data are based on SCS runoff curve number 76.0 and antecedent moisture conditions from SCS AMC III.

 f. Average soil loss rates = 0.08 inch per hour approximately.

2. The principal spillway inlet control/full pipe flow rating for the upper dam was computed using standard formulas and criteria from the USBR publication "Design of Small Dams" for the inlet control phase of the rating up to the stage shown on the rating curve (Plate D-6). Above this stage the standard orifice flow formula $Q = 0.6 \sqrt{2gH}$ was used with a coefficient taken from the Corps of Engineers publication "Hydraulic Characteristics of Reservoir Outlet Works". The principal spillway inlet control/full pipe flow rating for the lower dam was computed using criteria from the American Iron and Steel Institute publication "Handbook of Steel Drainage and Highway Construction Products" for the inlet control phase and SCS criteria for the full pipe flow phase. (Plate D-4)
The emergency spillway rating for the upper dam was computed by determining the location of the control section, determining critical depths for the range of discharges, and computing water surface profiles upstream into the reservoir to establish the rating. The resulting curve is shown on Plate D-6.

The flows over both dam crests were based on the broad crested weir equation \(Q = CLH^{3/2} \), where \(H \) is the head on the dam crest; \(L \) is the effective weir length and the coefficient \(C \) which varies with head was taken from the USGS publication "TWRI, Book 3, Chapter 5, Measurement of Peak Discharge at Dams by Indirect Methods". (See Plates D-4 and D-6)

The maximum tailwater against the downstream toe of the lower dam was computed by taking \(1/2 \) PMF outflow from the dam; assuming negligible storage between the dam and the road crossing; taking inlet control conditions to prevail in the box culvert under the road and broad crested weir flow to occur over the road. (See Section 1.3c5 of Division I of this report)

3. Floods were routed through the reservoir using the TR-20 program, which uses the "Modified Puls" method to determine the capabilities of the spillways and dam embankment crest. The outflow from the upper dam was routed into the lower reservoir using the convex method of reach routing which is incorporated within the TR-20 program. The reservoir and channel routing interval was selected as 0.25 hour after studies with the TR-20 program showed that a further decrease of the routing interval did not change the results. The peak attenuation and time translation effect of these routings were negligible due to the short reach length between reservoirs. The storm rainfall patterns, inflow hydrographs and routed outflow hydrographs are shown on Plate D-3 (Lower Dam) and Plate D-5 (Upper Dam).
COLUMBIA MUNICIPAL GOLF COURSE
LOWER LAKE DAM
MO. 10895
SPILLWAY AND DAM OVERTOPPING
RATING CURVES
SEPT., 1978
PLATE D-4
Table: Tabular Data Follow

<table>
<thead>
<tr>
<th>STRUCTURE NO. 1</th>
<th>ELEV</th>
<th>Q (cfs)</th>
<th>V (ft)</th>
<th>LOWER DAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>710.5001</td>
<td>0.0000</td>
<td>9.3400</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>710.7501</td>
<td>0.6000</td>
<td>10.2000</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>710.7501</td>
<td>1.1000</td>
<td>11.1000</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>710.7501</td>
<td>2.5000</td>
<td>12.5000</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>710.7501</td>
<td>3.0000</td>
<td>13.0000</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>710.7501</td>
<td>5.0000</td>
<td>15.0000</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>710.7501</td>
<td>7.0000</td>
<td>17.1000</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>710.7501</td>
<td>11.7000</td>
<td>19.1000</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>712.0000</td>
<td>13.1000</td>
<td>19.6000</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>712.0000</td>
<td>20.4000</td>
<td>21.0000</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>712.0000</td>
<td>24.3000</td>
<td>23.1000</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>712.0000</td>
<td>26.4000</td>
<td>24.0000</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>712.0000</td>
<td>31.0000</td>
<td>24.7000</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>712.0000</td>
<td>36.6000</td>
<td>26.1000</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>712.0000</td>
<td>45.5000</td>
<td>27.0000</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>712.0000</td>
<td>74.5000</td>
<td>29.5000</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>724.0000</td>
<td>1083.032</td>
<td>36.1000</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>724.0000</td>
<td>874.032</td>
<td>42.9000</td>
<td></td>
</tr>
</tbody>
</table>

Upper Dam

- **Elevation:** 710.500
- **Transformed Volume:** 9.3400 ft³
- **Storage Volume:** 8.6000 ft³
- **Required Dead Storage:** 1.7400 ft³
- **Freeboard:** 0.75 ft
- **Inflow:** 1.10 ft³/s
- **Flow Rate:** 0.25 ft³/s

Executive Control-Care

Starting Time: 10:00 AM
Time Increment: 0.25
Terminal Time: 10:00 AM
Control Input: 0.25

Executive Control Care

Operation Phase: 0.25
Operation Control: 0.25
Operation Control: 0.25
Operation Control: 0.25

- **Rain Depth:** 1.00
- **Rain Duration:** 1.00
- **Rain Table No.:** 1
- **Soil Coefficient:** 3

Subroutines

Runoff Structure 2
- **Area:** 0.07
- **Input Runoff Curve:** 76.0
- **Computed Curve No.:** 0.0
- **Time of Conclusions:** 10:00 AM

Peak Discharges
- **Peak Flow:** 3.00
- **Peak Discharge:** 3.00
- **Peak Discharge:** 3.00
- **Peak Discharge:** 3.00

Plan Elevations

<table>
<thead>
<tr>
<th>Time</th>
<th>Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.33</td>
</tr>
<tr>
<td>1.00</td>
<td>2.14</td>
</tr>
<tr>
<td>2.00</td>
<td>3.15</td>
</tr>
<tr>
<td>3.00</td>
<td>4.03</td>
</tr>
<tr>
<td>4.00</td>
<td>4.85</td>
</tr>
<tr>
<td>5.00</td>
<td>5.67</td>
</tr>
<tr>
<td>6.00</td>
<td>5.67</td>
</tr>
<tr>
<td>7.00</td>
<td>5.67</td>
</tr>
<tr>
<td>8.00</td>
<td>5.67</td>
</tr>
<tr>
<td>9.00</td>
<td>5.67</td>
</tr>
<tr>
<td>10.00</td>
<td>5.67</td>
</tr>
<tr>
<td>11.00</td>
<td>5.67</td>
</tr>
<tr>
<td>12.00</td>
<td>5.67</td>
</tr>
<tr>
<td>13.00</td>
<td>5.67</td>
</tr>
<tr>
<td>14.00</td>
<td>5.67</td>
</tr>
<tr>
<td>15.00</td>
<td>5.67</td>
</tr>
</tbody>
</table>

Inflow

- **Total Water:** 30,500
- **CIS:** 15,742.9
- **MIS:** 11,742

Subroutine Reservoir Structure 2
<table>
<thead>
<tr>
<th>TIME (min)</th>
<th>DISCH (ft³/s)</th>
<th>FLEV</th>
<th>PEAK DISCHARGE (ft³/s)</th>
<th>PEAK ELEVATION (ft)</th>
<th>DELTA T (°F)</th>
<th>IN-DRAINAGE AREAS (Acre-feet)</th>
<th>OUT-DRAINAGE AREAS (Acre-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>735.50</td>
<td>735.50</td>
<td>735.50</td>
<td>0.00</td>
<td>735.50</td>
<td>735.50</td>
</tr>
<tr>
<td>10.66</td>
<td>0.00</td>
<td>735.50</td>
<td>735.50</td>
<td>735.50</td>
<td>0.00</td>
<td>735.50</td>
<td>735.50</td>
</tr>
</tbody>
</table>

TOTAL WATER: IN INCHES ON DRAINAGE AREAS = 28.8357 CFS-INS = 134.535 ACRE-FT = 111.16

SUBROUTINE
RIDGE CROSS SECTION LENGTH = 600.00
INPUT COEFFICIENT = 0.2000
INPUT RUNOFF CURVE = 0.00
AVG. WATER VELOCITY = 0.000
RUNOFF COEFF = 0.2000
MODIFIED COEFFICIENT = 0.755

NULL STRUCTURE...NO ELEVATIONS GIVEN.

<table>
<thead>
<tr>
<th>TIME (min)</th>
<th>DISCH (ft³/s)</th>
<th>FLEV</th>
<th>PEAK DISCHARGE (ft³/s)</th>
<th>PEAK ELEVATION (ft)</th>
<th>DELTA T (°F)</th>
<th>IN-DRAINAGE AREAS (Acre-feet)</th>
<th>OUT-DRAINAGE AREAS (Acre-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.94</td>
<td>0.00</td>
<td>735.50</td>
<td>735.50</td>
<td>735.50</td>
<td>0.00</td>
<td>735.50</td>
<td>735.50</td>
</tr>
<tr>
<td>29.63</td>
<td>0.00</td>
<td>735.50</td>
<td>735.50</td>
<td>735.50</td>
<td>0.00</td>
<td>735.50</td>
<td>735.50</td>
</tr>
</tbody>
</table>

TOTAL WATER: IN INCHES ON DRAINAGE AREAS = 28.7737 CFS-INS = 134.59 ACRE-FT = 110.75

SUBROUTINE
RUNOFF STRUCTURE: 1 AREA = 0.16
INPUT RUNOFF CURVE = 70.0
TIME OF CONCENTRATION = 0.20
COMPUTED CURVE NO. = 85.6

<table>
<thead>
<tr>
<th>TIME (min)</th>
<th>DISCH (ft³/s)</th>
<th>HYSIDEPH IG. TCR = 2.75</th>
<th>DELTA T = 0.25</th>
<th>IN-DRAINAGE AREAS (Acre-feet)</th>
<th>OUT-DRAINAGE AREAS (Acre-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.41</td>
<td>0.00</td>
<td>3.960</td>
<td>3.960</td>
<td>3.960</td>
<td>3.960</td>
</tr>
<tr>
<td>10.08</td>
<td>0.00</td>
<td>7.927</td>
<td>7.927</td>
<td>7.927</td>
<td>7.927</td>
</tr>
<tr>
<td>14.94</td>
<td>0.00</td>
<td>7.527</td>
<td>7.527</td>
<td>7.527</td>
<td>7.527</td>
</tr>
<tr>
<td>17.87</td>
<td>0.00</td>
<td>9.655</td>
<td>9.655</td>
<td>9.655</td>
<td>9.655</td>
</tr>
<tr>
<td>23.31</td>
<td>0.00</td>
<td>22.066</td>
<td>22.066</td>
<td>22.066</td>
<td>22.066</td>
</tr>
</tbody>
</table>

TOTAL WATER: IN INCHES ON DRAINAGE AREAS = 28.7737 CFS-INS = 134.59 ACRE-FT = 110.75
TOTAL WATER, IN INCHES ON DRAINAGE AREA = 29.3552
CFS/HPS = 4456.01
ACKE-FE = 306.30
Executive Control Card
- **Starting Time:** 0.00
- **Alternate No.:** 2
- **Station No.:** 1
- **Alternate No. 2:** 2

Summary of Deficit Structure
- **Area:** 0.07
- **Input Runoff Curve:** 76.0
- **Time of Concentration:** 0.07

Peak Times
- **5.74:** 19.09
- **6.00:** 19.09
- **6.18:** 19.09

Peak Discharges
- **RUNOFF:**
- **5.74:** 6.00
- **6.00:** 6.00
- **6.18:** 6.00

Peak Elevations
- **RUNOFF:**
- **5.74:** 0.00
- **6.00:** 0.00
- **6.18:** 0.00

Summary of Flood Structure
- **Area:** 0.07
- **Input Runoff Curve:** 76.0
- **Time of Concentration:** 0.07

Peak Times
- **5.74:** 5.74
- **6.00:** 6.00
- **6.18:** 6.18

Peak Discharges
- **RUNOFF:**
- **5.74:** 6.00
- **6.00:** 6.00
- **6.18:** 6.00

Peak Elevations
- **RUNOFF:**
- **5.74:** 0.00
- **6.00:** 0.00
- **6.18:** 0.00

Summary of Reservoir Structure
- **Surf Elevation:** 735.80

Peak Times
- **16.11**

Peak Discharges
- **179.57**

Peak Elevations
- **179.57**

Summary of Reach Cross Section
- **Length:** 600.00
- **Input Coefficient:** 0.2000
- **Input Runoff:** 0.00

Average Water Velocity
- **600.00
- **Input Coefficient:** 0.2000

NULL Structure...No Elevations Given

Plate D-14
Subroutine Runoff Structure 1

| AREA | 0.16 | INPUT RUNOFF CURVE = 0.6 | COMPUTED CURV NO. | 84.6 |

PEAK TIMES

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCHG</th>
<th>PEAK DISCHARGES</th>
<th>PEAK ELEVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(RUOFF)</td>
<td>(RUOFF)</td>
</tr>
<tr>
<td>10.76</td>
<td>399.82</td>
<td>150.301</td>
<td>124.656</td>
</tr>
<tr>
<td>15.97</td>
<td>494.202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.32</td>
<td>124.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HYDROGRAPH, TURB. = 4.75

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCHG</th>
<th>PEAK DISCHARGES</th>
<th>PEAK ELEVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.75</td>
<td>0.00</td>
<td>1.07</td>
<td>1.47</td>
</tr>
<tr>
<td>7.75</td>
<td>21.60</td>
<td>26.15</td>
<td>28.87</td>
</tr>
<tr>
<td>9.75</td>
<td>32.45</td>
<td>35.40</td>
<td>38.72</td>
</tr>
<tr>
<td>12.25</td>
<td>98.41</td>
<td>117.68</td>
<td>122.60</td>
</tr>
<tr>
<td>14.75</td>
<td>197.79</td>
<td>222.43</td>
<td>241.93</td>
</tr>
<tr>
<td>17.75</td>
<td>153.42</td>
<td>146.01</td>
<td>149.23</td>
</tr>
<tr>
<td>22.25</td>
<td>11.42</td>
<td>11.42</td>
<td>11.42</td>
</tr>
<tr>
<td>24.75</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DELTA = 0.25

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCHG</th>
<th>PEAK DISCHARGES</th>
<th>PEAK ELEVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.76</td>
<td>399.82</td>
<td>150.301</td>
<td>124.656</td>
</tr>
<tr>
<td>15.97</td>
<td>494.202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.32</td>
<td>124.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INFLOW = 0.5 PMF STORM LOWER DAM

Subroutine Runoff Structure 1

| AREA | 0.56 | OUTPUT HYDROGRAPH = 7 |

DUE TO STORAGE OVERFLOWS THE SUM OF HYDROGRAPHS 6 AND 5 WAS TRUNCATED HERE TO 100 VALUES

PEAK TIMES

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCHG</th>
<th>PEAK DISCHARGES</th>
<th>PEAK ELEVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.97</td>
<td>657.559</td>
<td>727.09</td>
<td>124.656</td>
</tr>
</tbody>
</table>

HYDROGRAPH, TURB. = 4.75

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCHG</th>
<th>PEAK DISCHARGES</th>
<th>PEAK ELEVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.75</td>
<td>21.60</td>
<td>26.15</td>
<td>28.87</td>
</tr>
<tr>
<td>9.75</td>
<td>32.45</td>
<td>35.40</td>
<td>38.72</td>
</tr>
<tr>
<td>12.25</td>
<td>98.41</td>
<td>117.68</td>
<td>122.60</td>
</tr>
<tr>
<td>14.75</td>
<td>197.79</td>
<td>222.43</td>
<td>241.93</td>
</tr>
<tr>
<td>17.75</td>
<td>153.42</td>
<td>146.01</td>
<td>149.23</td>
</tr>
<tr>
<td>22.25</td>
<td>11.42</td>
<td>11.42</td>
<td>11.42</td>
</tr>
<tr>
<td>24.75</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DELTA = 0.25

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCHG</th>
<th>PEAK DISCHARGES</th>
<th>PEAK ELEVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.97</td>
<td>657.559</td>
<td>727.09</td>
<td>124.656</td>
</tr>
</tbody>
</table>

INFLOW = 0.1 PMF STORM LOWER DAM

Subroutine Runoff Structure 1

| AREA | 0.56 | OUTPUT HYDROGRAPH = 7 |

DUE TO STORAGE OVERFLOWS THE SUM OF HYDROGRAPHS 6 AND 5 WAS TRUNCATED HERE TO 100 VALUES

PEAK TIMES

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCHG</th>
<th>PEAK DISCHARGES</th>
<th>PEAK ELEVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.97</td>
<td>657.559</td>
<td>727.09</td>
<td>124.656</td>
</tr>
</tbody>
</table>

HYDROGRAPH, TURB. = 4.75

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCHG</th>
<th>PEAK DISCHARGES</th>
<th>PEAK ELEVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.75</td>
<td>21.60</td>
<td>26.15</td>
<td>28.87</td>
</tr>
<tr>
<td>9.75</td>
<td>32.45</td>
<td>35.40</td>
<td>38.72</td>
</tr>
<tr>
<td>12.25</td>
<td>98.41</td>
<td>117.68</td>
<td>122.60</td>
</tr>
<tr>
<td>14.75</td>
<td>197.79</td>
<td>222.43</td>
<td>241.93</td>
</tr>
<tr>
<td>17.75</td>
<td>153.42</td>
<td>146.01</td>
<td>149.23</td>
</tr>
<tr>
<td>22.25</td>
<td>11.42</td>
<td>11.42</td>
<td>11.42</td>
</tr>
<tr>
<td>24.75</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DELTA = 0.25

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCHG</th>
<th>PEAK DISCHARGES</th>
<th>PEAK ELEVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.97</td>
<td>657.559</td>
<td>727.09</td>
<td>124.656</td>
</tr>
</tbody>
</table>

INFLOW = 0.1 PMF STORM LOWER DAM

Plate D-5
<table>
<thead>
<tr>
<th>Date</th>
<th>Flev</th>
<th>Disch</th>
<th>Flev</th>
<th>Disch</th>
<th>Flev</th>
<th>Disch</th>
<th>Flev</th>
<th>Disch</th>
<th>Flev</th>
<th>Disch</th>
<th>Flev</th>
<th>Disch</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.75</td>
<td>720.10</td>
<td>720.29</td>
<td>720.41</td>
<td>720.53</td>
<td>720.63</td>
<td>720.73</td>
<td>7.0.81</td>
<td>720.94</td>
<td>720.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.75</td>
<td>721.09</td>
<td>721.26</td>
<td>721.35</td>
<td>721.35</td>
<td>721.39</td>
<td>721.43</td>
<td>721.45</td>
<td>721.47</td>
<td>721.51</td>
<td>721.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.75</td>
<td>721.54</td>
<td>721.55</td>
<td>721.71</td>
<td>721.99</td>
<td>721.99</td>
<td>721.90</td>
<td>721.84</td>
<td>721.66</td>
<td>721.65</td>
<td>721.43</td>
<td>721.41</td>
<td></td>
</tr>
<tr>
<td>17.75</td>
<td>721.77</td>
<td>722.59</td>
<td>723.39</td>
<td>722.98</td>
<td>720.59</td>
<td>720.80</td>
<td>720.94</td>
<td>720.43</td>
<td>720.34</td>
<td>720.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.75</td>
<td>721.10</td>
<td>721.06</td>
<td>721.04</td>
<td>721.03</td>
<td>721.02</td>
<td>721.04</td>
<td>721.02</td>
<td>721.00</td>
<td>721.00</td>
<td>721.00</td>
<td>721.00</td>
<td></td>
</tr>
<tr>
<td>22.75</td>
<td>720.33</td>
<td>720.92</td>
<td></td>
</tr>
<tr>
<td>24.75</td>
<td>720.75</td>
<td>720.71</td>
<td>720.66</td>
<td>720.66</td>
<td>720.66</td>
<td>720.66</td>
<td>720.66</td>
<td>720.66</td>
<td>720.66</td>
<td>720.66</td>
<td>720.66</td>
<td></td>
</tr>
<tr>
<td>27.75</td>
<td>720.40</td>
<td>720.36</td>
<td>720.32</td>
<td>720.29</td>
<td>720.29</td>
<td>720.29</td>
<td>720.29</td>
<td>720.29</td>
<td>720.29</td>
<td>720.29</td>
<td>720.29</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL WATER, IN INCHES ON DRAINAGE AREA: 15.5957

CFS-IPS: 2056.50

ACEH-F1: 1647.06
<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCH.</th>
<th>PEAK DISCHARGE</th>
<th>PEAK LREADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.75</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>11.25</td>
<td>0.25</td>
<td>0.27</td>
<td>0.30</td>
</tr>
<tr>
<td>14.25</td>
<td>0.56</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>15.25</td>
<td>28.75</td>
<td>28.75</td>
<td>28.75</td>
</tr>
<tr>
<td>21.25</td>
<td>10.98</td>
<td>11.08</td>
<td>11.08</td>
</tr>
<tr>
<td>23.25</td>
<td>5.50</td>
<td>5.50</td>
<td>5.50</td>
</tr>
<tr>
<td>28.75</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCH.</th>
<th>PEAK DISCHARGE</th>
<th>PEAK LREADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.75</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>11.25</td>
<td>0.25</td>
<td>0.27</td>
<td>0.30</td>
</tr>
<tr>
<td>14.25</td>
<td>0.56</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>15.25</td>
<td>28.75</td>
<td>28.75</td>
<td>28.75</td>
</tr>
<tr>
<td>21.25</td>
<td>10.98</td>
<td>11.08</td>
<td>11.08</td>
</tr>
<tr>
<td>23.25</td>
<td>5.50</td>
<td>5.50</td>
<td>5.50</td>
</tr>
<tr>
<td>28.75</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCH.</th>
<th>PEAK DISCHARGE</th>
<th>PEAK LREADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.75</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>11.25</td>
<td>0.25</td>
<td>0.27</td>
<td>0.30</td>
</tr>
<tr>
<td>14.25</td>
<td>0.56</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>15.25</td>
<td>28.75</td>
<td>28.75</td>
<td>28.75</td>
</tr>
<tr>
<td>21.25</td>
<td>10.98</td>
<td>11.08</td>
<td>11.08</td>
</tr>
<tr>
<td>23.25</td>
<td>5.50</td>
<td>5.50</td>
<td>5.50</td>
</tr>
<tr>
<td>28.75</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCH.</th>
<th>PEAK DISCHARGE</th>
<th>PEAK LREADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.75</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>11.25</td>
<td>0.25</td>
<td>0.27</td>
<td>0.30</td>
</tr>
<tr>
<td>14.25</td>
<td>0.56</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>15.25</td>
<td>28.75</td>
<td>28.75</td>
<td>28.75</td>
</tr>
<tr>
<td>21.25</td>
<td>10.98</td>
<td>11.08</td>
<td>11.08</td>
</tr>
<tr>
<td>23.25</td>
<td>5.50</td>
<td>5.50</td>
<td>5.50</td>
</tr>
<tr>
<td>28.75</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCH.</th>
<th>PEAK DISCHARGE</th>
<th>PEAK LREADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.75</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>11.25</td>
<td>0.25</td>
<td>0.27</td>
<td>0.30</td>
</tr>
<tr>
<td>14.25</td>
<td>0.56</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>15.25</td>
<td>28.75</td>
<td>28.75</td>
<td>28.75</td>
</tr>
<tr>
<td>21.25</td>
<td>10.98</td>
<td>11.08</td>
<td>11.08</td>
</tr>
<tr>
<td>23.25</td>
<td>5.50</td>
<td>5.50</td>
<td>5.50</td>
</tr>
<tr>
<td>28.75</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
</tr>
</tbody>
</table>

TOTAL WATER, IN INCHES ON DRAINAGE AREA: 4.5950
CFS-IRRS: 289.79
ACRE-FT: 16.79

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCH.</th>
<th>PEAK DISCHARGE</th>
<th>PEAK LREADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.75</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>11.25</td>
<td>0.25</td>
<td>0.27</td>
<td>0.30</td>
</tr>
<tr>
<td>14.25</td>
<td>0.56</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>15.25</td>
<td>28.75</td>
<td>28.75</td>
<td>28.75</td>
</tr>
<tr>
<td>21.25</td>
<td>10.98</td>
<td>11.08</td>
<td>11.08</td>
</tr>
<tr>
<td>23.25</td>
<td>5.50</td>
<td>5.50</td>
<td>5.50</td>
</tr>
<tr>
<td>28.75</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
</tr>
</tbody>
</table>

TOTAL WATER, IN INCHES ON DRAINAGE AREA: 5.9550
CFS-IRRS: 620.54
ACRE-FT: 51.108

<table>
<thead>
<tr>
<th>TIME</th>
<th>DISCH.</th>
<th>PEAK DISCHARGE</th>
<th>PEAK LREADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.75</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>11.25</td>
<td>0.25</td>
<td>0.27</td>
<td>0.30</td>
</tr>
<tr>
<td>14.25</td>
<td>0.56</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>15.25</td>
<td>28.75</td>
<td>28.75</td>
<td>28.75</td>
</tr>
<tr>
<td>21.25</td>
<td>10.98</td>
<td>11.08</td>
<td>11.08</td>
</tr>
<tr>
<td>23.25</td>
<td>5.50</td>
<td>5.50</td>
<td>5.50</td>
</tr>
<tr>
<td>28.75</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
</tr>
</tbody>
</table>

TOTAL WATER, IN INCHES ON DRAINAGE AREA: 4.5950
CFS-IRRS: 289.79
ACRE-FT: 16.79