ARMY MISSILE COMMAND
REDSTONE ARSENAL AL
ADVANCED S--ETC
F/G 17/9
TERRAIN MASKING ANALYSIS FOR WHITE SANDS MISSILE RANGE EAST CEN--ETC(U)
JUL 81 S O DUNLAP
UNCLASSIFIED
DRSMM-RE-81-25-TR
SBIE-AD-850 156
NL
TECHNICAL REPORT RE-81-25

TERRAIN MASKING ANALYSIS
FOR WHITE SANDS MISSILE RANGE
EAST CENTER 50 AND WEST CENTER 50

Samuel O. Dunlap
Advanced Sensors Directorate
US Army Missile Laboratory

July 1981

Approved for public release; distribution unlimited.
DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.
An analysis was made of terrain masking for selected ground radar test locations at White Sands Missile Range. Digitized terrain altitude data are reformatted to allow calculation of straight line masking along radial profiles from the radar site. These data are then displayed in the form of maps of the illuminated terrain and altitude profiles.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>II. DESCRIPTION OF TERRAIN</td>
<td>5</td>
</tr>
<tr>
<td>III. MASKING ANALYSIS</td>
<td>7</td>
</tr>
<tr>
<td>IV. RESULTS</td>
<td>8</td>
</tr>
<tr>
<td>V. CONCLUSIONS</td>
<td>10</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>45</td>
</tr>
<tr>
<td>APPENDIX. COMPUTER PROGRAMS</td>
<td>47</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>General map of test area</td>
</tr>
<tr>
<td>2</td>
<td>Radar masking definitions</td>
</tr>
<tr>
<td>3</td>
<td>Masking diagram</td>
</tr>
<tr>
<td>4</td>
<td>Illuminated region from EC 50, 40-foot radar height</td>
</tr>
<tr>
<td>5</td>
<td>Illuminated region from EC 50, 34-foot radar height</td>
</tr>
<tr>
<td>6</td>
<td>Illuminated region from EC 50, 9-foot radar height</td>
</tr>
<tr>
<td>7</td>
<td>EC 50 elevation profile, -10° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>8</td>
<td>EC 50 elevation profile, -15° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>9</td>
<td>EC 50 elevation profile, -20° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>10</td>
<td>EC 50 elevation profile, -25° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>11</td>
<td>EC 50 elevation profile, -30° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>12</td>
<td>EC 50 elevation profile, -35° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>13</td>
<td>EC 50 elevation profile, -40° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>14</td>
<td>EC 50 elevation profile, -45° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>15</td>
<td>EC 50 elevation profile, -50° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>16</td>
<td>EC 50 elevation profile, -55° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>17</td>
<td>EC 50 elevation profile, -60° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>18</td>
<td>EC 50 elevation profile, -65° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>19</td>
<td>EC 50 elevation profile, -70° azimuth, 40-foot radar height</td>
</tr>
<tr>
<td>20</td>
<td>Illuminated region from WC 50, 9-foot radar height</td>
</tr>
<tr>
<td>21</td>
<td>Illuminated region from WC 50, expanded scale, 9-foot radar height</td>
</tr>
<tr>
<td>22</td>
<td>Illuminated region from WC 50, 9-foot radar height, 9-foot fence height at a 100-foot range</td>
</tr>
<tr>
<td>23</td>
<td>Illuminated region from WC 50, expanded scale, 9-foot radar height, 9-foot fence height at a 100-foot range</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>24</td>
<td>WC 50 elevation profile, 5° azimuth, 9-foot radar height</td>
</tr>
<tr>
<td>25</td>
<td>WC 50 elevation profile, 10° azimuth, 9-foot radar height</td>
</tr>
<tr>
<td>26</td>
<td>WC 50 elevation profile, 15° azimuth, 9-foot radar height</td>
</tr>
<tr>
<td>27</td>
<td>WC 50 elevation profile, 20° azimuth, 9-foot radar height</td>
</tr>
<tr>
<td>28</td>
<td>WC 50 elevation profile, 25° azimuth, 9-foot radar height</td>
</tr>
<tr>
<td>29</td>
<td>WC 50 elevation profile, 30° azimuth, 9-foot radar height</td>
</tr>
<tr>
<td>30</td>
<td>WC 50 elevation profile, 35° azimuth, 9-foot radar height</td>
</tr>
<tr>
<td>31</td>
<td>WC 50 elevation profile, 40° azimuth, 9-foot radar height</td>
</tr>
<tr>
<td>32</td>
<td>WC 50 elevation profile, 45° azimuth, 9-foot radar height</td>
</tr>
<tr>
<td>33</td>
<td>WC 50 elevation profile, 50° azimuth, 9-foot radar height</td>
</tr>
<tr>
<td>34</td>
<td>WC 50 elevation profile, 55° azimuth, 9-foot radar height</td>
</tr>
<tr>
<td>35</td>
<td>WC 50 elevation profile, 60° azimuth, 9-foot radar height</td>
</tr>
<tr>
<td>36</td>
<td>WC 50 elevation profile, 65° azimuth, 9-foot radar height</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

A recent test involving an air defense missile system required the consideration of low altitude target detectability and clutter and multipath effects for both the ground-based fire control radar and the missile RF seeker. A visit to the test site at White Sands Missile Range (WSMR), New Mexico, and discussions with personnel familiar with the area suggested that the targets might indeed be flown below the radar horizon in some regions of interest, and that portions of the terrain, masked from the radar or seeker, might change clutter and multipath predictions.

An initial analysis was done using contour maps of the region, followed by a visit to the site. These two approaches did not exactly agree, since the on-site examination indicated a more severe problem than predicted from the contour maps. This may have been due to difficulty in comparing the contour data representing fairly large intervals to the visual impact of the site. Some difficulty was noted, however, in comparing the map features with the actual terrain. In any event, a more exact method was required and the availability of digitized terrain elevation data suggested a computer masking analysis.

A set of computer programs was implemented to reformat the data and perform a line-of-sight masking analysis. This document presents the results of a radar masking investigation of two separate locations at WSMR. Described in the following sections are the terrain type and location, and data analysis and manipulation. Results are presented in the form of ground masking plots. A sample computer program is included in the Appendix.

II. DESCRIPTION OF TERRAIN

The testing area is located within the White Sands Missile Range, New Mexico. The two radar locations considered are marked EAST CENTER 50 (EC 50) and WEST CENTER 50 (WC 50) on the map of Figure 1. The sector of interest was roughly rectangular in shape and bounded by 106°16' and 106°26' longitude, and 33°8' and 33°25' latitude. These limits are indicated in Figure 1. Target flights were to be, in general, along north-south paths within this region. The locations of the two sites, as used in the analysis, are given in Table 1.

<table>
<thead>
<tr>
<th>Location</th>
<th>Longitude</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 50</td>
<td>106°17'31"</td>
<td>33°8'21"</td>
</tr>
<tr>
<td>WC 50</td>
<td>106°26'11.5"</td>
<td>33°8'43"</td>
</tr>
</tbody>
</table>

The surface characteristics of the test site region were described in three forms:

- Visual from a visit to the site
Figure 1. General map of test area.
(Scale: 1 in. = 13,750 ft)
Geological survey topographic maps

Defense Mapping Agency (DMA) terrain altitudes on magnetic tape.

Each data source aided in estimating the radar coverage.

Gross terrain features are indicated in Figure 1. The terrain for both sites is gently rolling to flat within most of the test region. A Malpais region exists to the north, with the San Andres Mountains to the northwest. A dry stream bed runs north to south over part of the western edge of the area. A gentle rise was visually noted at 5 or 6 miles from the radar site at EC 50 and appeared to mask much of the terrain in the test area. This was not evident on the contour map and led to concern over the extent of masking and other possible "hidden" regions. These questions led to the analysis of DMA digitized terrain data on a CYBER 74 digital computer.

III. MASKING ANALYSIS

The DMA terrain data consisted of terrain elevation above mean sea level (MSL) truncated to the nearest meter. The data files are arranged into 1-degree by 1-degree geographic areas, with each file containing samples falling into a single 1-degree square. The reference for each file is the southwest corner of the degree square. Each file contains 1200 data records, each having a constant longitude value. The first value in each record is the southernmost elevation within the square; the last value is the northernmost elevation. Each such record contains 1200 values so that the terrain elevation is sampled on 3-second intervals in longitude and latitude. On an earth model with a 4,000-foot MSL elevation, this sample spacing is approximately 250 feet in longitude and 300 feet in latitude for the region of interest. These data require several transformations to be useful for a radar terrain analysis.

Consider the radar radial elevation cut of Figure 2. Transformation of the terrain elevation to radial elevation cuts allows a rather simple algorithm to search for the masked regions, shown as shaded areas, and to store the start and stop ranges of masking. Repeated radial profiles then produce a map similar to Figure 3 where the shaded regions now represent the surface area illuminated by the radar. The negative of this presentation could also be used to represent the masked area.

The data transformation and manipulations required are listed below:

- Transformation from geodetic coordinates (latitude, longitude, elevation) to geocentric coordinates (Xc, Yc, Zc).
- Transformation from geocentric coordinates (Xc, Yc, Zc) to tangent plane coordinates through a point on or above the surface.
- Reverse order the data left to right (EC 50 only).
- Interpolate in three dimensions to produce radial elevation profiles.
- Masking algorithm along radial elevation profiles to locate masked regions.
The two transformation algorithms were taken from Reference [1] and applied directly to the data. No difficulties were encountered; however, it should be noted that the Cartesian systems are "left-handed." For example, in the tangent plane system, the X-axis lies along a north-south line through the tangent point and is positive north of the point; Z is altitude normal to the tangent plane and positive up; and Y is positive to the east. The ellipsoidal earth model used was the Clarke Spheroid of 1866 with semi-major axis 20,925,832,136' and eccentricity (e) 0.0822718536.

Item 3, reversal of the data, is required for EC 50 due to the order of the data. The DMA data start in the southwest corner of the region, hence the regions at longest range from the radar appear first on the tape. The data were reordered such that near ranges were physically located first on the data file. The interpolation routine could then read a pair of records, perform the required interpolation to convert X, Y, Z to range, azimuth, elevation, store these values, and read in the next set of elevation data. The mask algorithm was then used to search along constant azimuth profiles for hidden elevation regions and the results plotted with routines developed locally and reported in Reference [2].

The WC 50 data did not require reversal, so Item 3 was not used. The remainder of the analysis was identical.

IV. RESULTS

The graphic presentations of radar masking resulting from this analysis are given in two forms: the range-azimuth "map" described earlier, plus a series of elevation profiles to aid in interpretation of the map and estimation of masked flight altitudes for the targets. Three radar altitudes of interest are also presented; each represents the height of the radar antenna center above the local terrain. Figures 4, 5, and 6 are maps for EC 50 of illuminated regions for the three heights for the azimuth coverage of -5° to -70°. Range
coverage was 0 to 100,000 feet, with the cross range dimension limited to 70,000 feet for this presentation. Azimuth increments were 1 degree; range increments 50 feet.

As expected, reduction of antenna height significantly reduces the illuminated terrain area. Clutter would be reduced somewhat for medium ranges, but the mountain ranges at long range might still produce significant clutter.

Radial elevation profiles for EC 50 are presented in Figures 7 through 19 for the 40-foot radar altitude only. Other altitudes may be investigated by
shifting the left hand altitude scale. The mountains appear quite abrupt due to the difference in scale factors on the two axes. Also, note the "tilt" of flat areas due to earth curvature. In the region -20° to -40° a target would have to be below 75 feet to 100 feet altitude for a 40-foot radar altitude in order to be masked, and then only at ranges of 55 to 65 kilofeet; however, for a 9-foot radar altitude, the same target would be masked at about 125 feet altitude. These boundary altitudes between masked and unmasked could be significantly higher when vegetation is added to the terrain and other propagation problems are considered.

A similar set of data for WC 50 is given in Figures 20 through 36. For this location, only the 9-foot antenna height was used, and an investigation of clutter fences was done for this site. Figures 20 and 21 are illuminated regions in two scale factors without the fence, while Figures 22 and 23 show the effects of a circular section clutter fence whose location was 100 feet from the radar and whose top was the same as the antenna feed, 9 feet. The reduction of close-in illuminated area is significant, without noticed increase in long-range masking. Figures 24 through 36 are radial altitude profile cuts similar to those for EC 50.

Note that in Figures 20 through 23, the algebraic sign of the cross range axis has been changed to facilitate plotting. The sign conventions of section 3 were used in developing the figure.

The possibility of terrain masking of low altitude targets is lower for this site. For most of the sector, the long range clutter problem has been significantly reduced since the long range mountain slopes only appear almost due north from the site. In this sense, WC 50 presents a more typical clutter environment than EC 50.

Some caution should be exercised in using the results, in particular the clutter fence data. The computer algorithm calculated line-of-sight masking in which the edge diffraction effects were ignored. Therefore, to a certain extent, many of the shadow regions will be partially illuminated. This is believed to be an insignificant effect for the terrain masking, since many other factors, such as surface roughness and vegetation, will reduce the abruptness of the edge. This is not the case for the conducting clutter fence. A recent analysis of this problem [3] indicates that no more than a few dB's reduction of the clutter energy should be expected for this geometry. Therefore, the clutter fence was not constructed and no evaluation is possible.

V. CONCLUSIONS

The slight rise evident from visual inspection was quite obvious on the DMA data and did mask much of the region from 20 kilofeet range out to the mountains at 60 to 80 kilofeet for EC 50. This feature is not that evident on the contour maps, so that the computer analysis did predict some of the masking evident in actual flights. Target altitudes for masking did not agree as well as expected, but vegetation effects were not included in this analysis and the precision of reported target altitude is unknown.
Figure 4. Illuminated region from EC 50, 40-foot radar height.
Figure 5. Illuminated region from EC 50, 34-foot radar height.
Figure 6. Illuminated region from EC 50, 9-foot radar height.
Figure 7. EC 50 elevation profile, -10° azimuth, 40-foot radar height.
Figure 8. EC 50 elevation profile, -15° azimuth, 40-foot radar height.
Figure 10. EC 50 elevation profile, -25° azimuth, 40-foot radar height.
Figure 11. EC 50 elevation profile, -30° azimuth, 40-foot radar height.
Figure 12. EC 50 elevation profile, -35° azimuth, 40-foot radar height.
Figure 14. EC 50 elevation profile, -45° azimuth, 40-foot radar height.
Figure 15. EC 50 elevation profile, -50° azimuth, 40-foot radar height.
Figure 16. EC 50 elevation profile, 55° azimuth, 40-foot radar height.
Figure 17. EC 50 elevation profile, -60° azimuth, 40-foot radar height.
Figure 18. EC 50 elevation profile, -65° azimuth, 40-foot radar height.
Figure 19. EC 50 elevation profile, -70° azimuth, 40-foot radar height.
Figure 21. Illuminated region from WC 50, expanded scale, 9-foot radar height.
Figure 23. Illuminated region from WC 50, expanded scale, 9-foot radar height, 9-foot fence height at a 100-foot range.
Figure 24. WC 50 elevation profile, 5° azimuth, 9-foot radar height.
Figure 25. WC 50 elevation profile, 10° azimuth, 9-foot radar height.
Figure 27. WC 50 elevation profile, 20° azimuth, 9-foot radar height.
Figure 28. WC 50 elevation profile, 25° azimuth, 9-foot radar height.
Figure 29. WC 50 elevation profile, 30° azimuth, 9-foot radar height.
Figure 30. WC 50 elevation profile, 35° azimuth, 9-foot radar height.
Figure 31. WC 50 elevation profile, 40° azimuth, 9-foot radar height.
Figure 33. WC 50 elevation profile, 50° azimuth, 9-foot radar height.
Figure 34. WC 50 elevation profile, 55° azimuth, 9-foot radar height.
Figure 35. WC 50 elevation profile, 60° azimuth, 9-foot radar height.
Figure 36. WC 50 elevation profile, 65° azimuth, 9-foot radar height.
REFERENCES

Several computer programs were developed in the process of evaluating approaches and performing the analysis. In general, the tasks of transformation, interpolation, and masking are the significant steps. Since the transformation programs are documented in the reference they will not be repeated here. The only note of caution to the prospective user is that the sense of the various coordinate systems must be clearly understood.

The interpolation and masking steps will be represented by an example program. This routine used as input on Tape 10 data already transformed to radar tangent plane. The program selects a radial for analysis and interpolates data points in 50-foot increments via subroutine TINTER. After creation of the radial elevation profile, subroutine MASKK is called to do the masking calculations. Start and end points of illumination are connected by a solid line and plotted using subroutine PLTTEK. This utility to produce CRT displays of the data is also documented in the references and not included here.

Outputs from this program include the CRT display of illuminated regions with the same data stored on magnetic tape (TAPE 2) and significant comments concerning the results on OUTPUT.

This description is intended to give the flavor of the computations rather than an exhaustive description. No extensive attempt was made to maximize the computational speed or efficiency of these programs. If their use is contemplated in a production environment, such improvements should definitely be considered.
PROGRAM MASK

1 PROGRAM MASK (INPUT=OUTPUT, TAPE=INPUT+TAPE+OUTPUT,
 TAPE10=TAPE+TAPE2)
 C
 C
 DIMENSION IHEAD(10), XA(340), YA(340), ZA(340), XB(340), YB(340),
 C
 C
 C
 DIMENSION LZ(2)
 DATA PI/3, 14.159/1
 10 WRITE 11
 11 FORMAT(H1)
 READ(10) IHEAD
 WRITE(21) IHEAD
 WRITE 11 IHEAD
 15 FORMAT(1X, 10D10)
 C
 C
 C
 ANGLE IN DEGREES
 C
 20 READ 2, THRAY, HO, CUTS
 21 FORMAT(3F10.2)
 WRITE 2, THRAY, HO, CUTS
 ICUTS = CUTS * 5
 WRITE (2) THRAY, HO, CUTS
 25 C
 C
 DO 100 I = 1, 2000
 100 K(I) = (I-1) * 50.
 LZ(2) = 100*
 30 THRAY = THRAY
 H300 = 340
 N300 = 2000
 L = 10
 LX = THRAY
 LY = 10
 THRAY = THRAY
 LX = THRAY
 LY = THRAY
 35 C
 C
 XMN = 0.
 YMN = YMX
 XMN = 100000.
 DO 50 IRA = 1, ICUTS
 DO 12 I = 2, 2000
 12 H(I) = 0.
 THRAY = THRAY + (IRAY - 1) * H(I)
 REWIND 10
 READ(10) IHEAD
 THRAY = THRAY
 THRAY = THRAY * PI/180.
 TANH = TAN (THRAY)
 COSTH = COS (THRAY)
 SINTH = SIN (THRAY)
 H(I) = 0.
 P(I) = 0.
 WRITE 10, IRAY, THRAY
 40 FORMAT(3F10.2)
 DO 3 J = 1, 200
 3 Y = 1
 READ (10) XA, YA, ZA
PROGRAM MASK

IF(YA(I),LT,0.)GO TO 4
CONTINUE
4 CONTINUE
BACKSPACE 10
IY=IY+1
I=I
YA(I)=YB(I)
WRITE 60,IY
FORMAT(* ZERO COLUMN = *.*15)
DO 30 I=2,4000
PA=(I-1)*50.
XDP=XCOSTH0
10 YDPX=DSINTHR
IF(YO,GT,YB(X),AN,YO,LT,YA(X))GO TO 102
DO 5 J=1,200
JY=J
READ(10,XA,YA,7A)
6 IF(E0F(10))1000,10A
CONTINUE
100 CONTINUE
IF(YA(I),LT,YO)GO TO 6
CONTINUE
8 CONTINUE
BACKSPACE 10
BACKSPACE 10
READ(10,XA,YA,7A)
IF(E0F(10))1000,101
CONTINUE
101 CONTINUE
READ(10,XA,YA,7A)
IF(E0F(10))1000,102
CONTINUE
102 CONTINUE
IF(J,LT,2)WRITE 61,IY,I
FORMAT(* COLUMN *.*15*) CONSFN FOR PASS *.*15)
DO 7 J=1,450
7 J=J
IF(XA(J),GT,XD)GO TO 8
CONTINUE
8 CONTINUE
IX=IX+1
IY=IY-1
9 CALL TINTER(XA,YA,ZA,XB,YB,ZA,IY+1,YX onto YD(I)+340+1)
CONTINUE
100 CONTINUE
GO TO 1002
1000 CONTINUE
WRITE 1001,I
FORMAT(* EOF ENCOUNTERED IN PASS *.*15)
1001 CONTINUE
WRITE(2)THRA,TYPAY,XMN,EMX*YM,MYMX
FORMAT(F10.2)
1002 CONTINUE
WRITE(2)THRA,Y+2000+R,THRA,Y+2000+XCM,A,YMN,YMX)
CALL MASKR(RH+2000+THRAY,XMN,XMX,YMN,YMX)
ENCODC(10,90,451)THRA
FORMAT(F10.2)
CALL PLTEK(R+4,2000+0,LX+LY,L7,XMN,XMX,YMN,YMX)
CONTINUE
110 CONTINUE
30 FORMAT(RE1%.7)
105 CONTINUE
WRITE(2)THRA,Y+2000+R,THRA,Y+2000+XCM,A,YMN,YMX)
CALL MASKR(RH+2000+THRAY,XMN,XMX,YMN,YMX)
ENCODC(10,90,451)THRA
FORMAT(F10.2)
CALL PLTEK(R+4,2000+0,LX+LY,L7,XMN,XMX,YMN,YMX)
CONTINUE
110 CONTINUE
65 FORMAT(RE15.7)
150 CALL FINIT
CONTINUE
STOP
END
51
SURROUTINE TINTER

1 SURROUTINE TINTER(XA,YA,ZA,XR,YR,ZR,XI,YI,XD,YD,ZZ,NN+1)
001550
CDEFNSTON XA(NN)+YA(NN)+ZA(NN)+XR(NN)+YR(NN)+ZR(NN)
001560
DELX=XA(I)+XA(I)
001570
DELEY=YA(I)+YA(I)
001580
DELY2=YA(I+1)+YA(I)
001590
DY=YD-YA(I)
001600
DY2=YD-YA(I+1)
001610
AA1=(ZA(I)-ZA(I))**DY1*DELY1+YA(I)
001620
AA2=(ZA(I+1)-ZA(I+1))**DY2*DELY2+ZA(I+1)
001630
10 DX=XD*XA(I)
001640
7Z=(AA2-AA1)*DX/DELX*AA1
001650
IF(7Z+LT.-1000.)WRITE 2,X,Y,XA(I),XA(I+1),XR(I),XR(I+1),
001660
* YA(I),YA(I+1),YR(I),YR(I+1)
001665
* ZA(I),ZA(I+1),ZR(I),ZR(I+1)
001670
* DELX*DELY1*DELY2**DY1*DY2*AA1+AA2+DX*Z7
001675
15
2 FORMAT(1X,2F9.1,1X,2F12.4)
001680
IF(XD.LT.XR(I))OR.XR(I).LT.XD WRITE 10,X,Y
001690
* A1=AA2+AA1+X(A)+Z(A)+X(I)+Y
001695
10 FORMAT(* FIRST ERROR *-2F9.5,5F15.7# PASS *+15)
001700
IF(XD.LT.XR(I))OR.XR(I).LT.XD WRITE 11,X,Y
001705
* A1=AA2+AA1+X(A)+Z(A)+X(I)+Y
001710
11 FORMAT(* SECOND ERROR *-2F9.5,5F15.7# PASS *+15)
001715
IF(YD,GT,YA(I))OR.YD.LT,YR(I) WRITE 12,X,Y
001720
* YA(I)+YA(I)+YD
001725
12 FORMAT(* THIRD ERROR *-2F9.15F15.7# PASS *+15)
001730
IF(YD,GT,YA(I))OR.YD.LT,YR(I) WRITE 13,X,Y
001735
* YA(I),YD(YY(I))+YD(I)
001740
13 FORMAT(* FOURTH ERROR *-2F9.15F15.7# PASS *+15)
001745
10 RETURN
001750
END
001760
52
DISTRIBUTION

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Address</th>
</tr>
</thead>
</table>
| 1 | Naval Research Laboratory
 Code 6625, ATTN: Mr. W. Emerson
 Washington, DC 20375 |
| 5 | Joint Cruise Missile Project Office
 JCM 33, ATTN: Mr. E. Jaxtheimer
 JCM-00Y3, ATTN: COL R. Anderson
 Washington, DC 20375 |
| 2 | Commander
 Pacific Missile Test Center
 Range Instrumentation Department
 Point Mugu, California 93042 |
| 1 | Air Force Test and Evaluation Command
 ATTN: TE
 Kirkland Air Force Base
 Albuquerque, New Mexico 87100 |
| 1 | Headquarters, US Air Force
 ATTN: AF/RDQB
 ATTN: AF/SA
 Pentagon
 Washington, DC 20310 |
| 1 | Central Intelligence Agency
 ATTN: OWL/DSD
 Washington, DC 20310 |
| 1 | Defense Intelligence Agency
 Asst Vice Dir for Estimates (DE-1)
 ASARC/Long Range Threat Division
 1021D PLA1
 Washington, DC 20310 |
| 1 | Defense Intelligence Agency
 Asst Vice Dir for Scientific and Technical Intelligence
 Command and Control Branch (DR-4B)
 Washington, DC 20310 |
| 1 | Under Secretary of Defense for Research and Engineering
 Dir., Dev Test and Engineering
 Room 3E1040
 Pentagon
 Washington, DC 20310 |
| 1 | Lincoln Laboratory
 ATTN: Mr. William Delaney
 Lexington, Massachusetts 02173 |
<table>
<thead>
<tr>
<th>Distribution Details</th>
<th>Number of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRCPM-HAE, Mr. J. Cole</td>
<td>1</td>
</tr>
<tr>
<td>- HAQ, Mr. T. Lambert</td>
<td>1</td>
</tr>
<tr>
<td>DRSMI-YSO</td>
<td>1</td>
</tr>
<tr>
<td>DRSMI-REG, Mr. S. Dunlap</td>
<td>20</td>
</tr>
<tr>
<td>- RDR, Mr. M. Belrose</td>
<td>1</td>
</tr>
<tr>
<td>- RDF, Mr. J. R. Davis</td>
<td>1</td>
</tr>
<tr>
<td>- RPR</td>
<td>5</td>
</tr>
<tr>
<td>- RPT (Record Copy)</td>
<td>1</td>
</tr>
<tr>
<td>- RPT (Reference Copy)</td>
<td>1</td>
</tr>
</tbody>
</table>