PASSAIC RIVER BASIN
LOWER HUDSON RIVER AREA

POTAKE LAKE DAM
ROCKLAND COUNTY, NEW YORK
INVENTORY NO. N.Y. 970

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

NEW YORK DISTRICT CORPS OF ENGINEERS
AUGUST 1981
This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization.

Examination of available documents and a visual inspection of the dam and appurtenant structures did not reveal any conditions which constitute an immediate hazard to human life or property.
Using the Corps of Engineers screening criteria, it has been determined that the dam would be overtopped for all storms exceeding approximately 56 percent of the Probable Maximum Flood (PMF). The spillway is, therefore, adjudged as "inadequate."

Current inspection and maintenance procedures by the owner are adequate, but need to be documented. Monitoring of the reservoir levels should be expanded to include readings during peak flow periods. A warning system and emergency action plan should be developed and put into operation to notify residents downstream in the event of an impending dam failure.

The following remedial measures must be completed within one year:

1. The spillway approach and discharge channels are restricted enough to limit the full capacity of the spillway and should have all trees, boulders, and areas of high ground removed to facilitate the discharge of storm flows.

2. The animal burrows, depressions, and tire ruts on the crest of the dam should be filled, compacted, and seeded.

3. All brush should be cut over the entire dam. All trees on the embankment should be cut at ground level. All trees with a trunk diameter greater than 3 inches should have their root systems removed. All resultant areas of erosion and cavities should be filled, graded, compacted, and seeded.

4. The 3-foot diameter culvert in the discharge channel should be sloped correctly.

5. The spalling and deterioration of the low section of the concrete weir should be repaired.

6. Install a staff gage to monitor reservoir levels above normal pool.
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
POTAKE LAKE DAM
I.D. No. NY 970
DEC DAM No. 196A-307 PASSAIC RIVER BASIN
LOWER HUDSON RIVER AREA
ROCKLAND COUNTY, NEW YORK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>OVERVIEW PHOTOGRAPH</td>
<td></td>
</tr>
<tr>
<td>1 PROJECT INFORMATION</td>
<td></td>
</tr>
<tr>
<td>1.1 GENERAL</td>
<td></td>
</tr>
<tr>
<td>1.2 DESCRIPTION OF PROJECT</td>
<td></td>
</tr>
<tr>
<td>1.3 PERTINENT DATA</td>
<td></td>
</tr>
<tr>
<td>2 ENGINEERING DATA</td>
<td>5</td>
</tr>
<tr>
<td>2.1 GEOLOGY</td>
<td></td>
</tr>
<tr>
<td>2.2 SUBSURFACE INVESTIGATION</td>
<td></td>
</tr>
<tr>
<td>2.3 DAM AND APPURTenANT STRUCTURES</td>
<td></td>
</tr>
<tr>
<td>2.4 CONSTRUCTION RECORDS</td>
<td></td>
</tr>
<tr>
<td>2.5 OPERATION RECORDS</td>
<td></td>
</tr>
<tr>
<td>2.6 EVALUATION OF DATA</td>
<td></td>
</tr>
<tr>
<td>3 VISUAL INSPECTION</td>
<td>7</td>
</tr>
<tr>
<td>3.1 FINDINGS</td>
<td></td>
</tr>
<tr>
<td>3.2 EVALUATION</td>
<td></td>
</tr>
<tr>
<td>4 OPERATION AND MAINTENANCE PROCEDURES</td>
<td>9</td>
</tr>
<tr>
<td>4.1 PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>4.2 MAINTENANCE OF THE DAM</td>
<td></td>
</tr>
<tr>
<td>4.3 WARNING SYSTEM</td>
<td></td>
</tr>
<tr>
<td>4.4 EVALUATION</td>
<td></td>
</tr>
<tr>
<td>5 HYDRAULIC/HYDROLOGIC</td>
<td>11</td>
</tr>
<tr>
<td>5.1 DRAINAGE AREA CHARACTERISTICS</td>
<td></td>
</tr>
<tr>
<td>5.2 ANALYSIS CRITERIA</td>
<td></td>
</tr>
<tr>
<td>5.3 SPILLWAY CAPACITY</td>
<td></td>
</tr>
<tr>
<td>5.4 RESERVOIR CAPACITY</td>
<td></td>
</tr>
<tr>
<td>5.5 FLOODS OF RECORD</td>
<td></td>
</tr>
<tr>
<td>5.6 OVERTOPPING POTENTIAL</td>
<td></td>
</tr>
<tr>
<td>5.7 RESERVOIR EMPTYING POTENTIAL</td>
<td></td>
</tr>
<tr>
<td>5.8 EVALUATION</td>
<td></td>
</tr>
</tbody>
</table>
6 STRUCTURAL STABILITY 15
 6.1 EVALUATION OF EMBANKMENT STABILITY 15
 6.2 STABILITY ANALYSIS 16
 6.3 SEISMIC STABILITY 16

7 ASSESSMENT/RECOMMENDATIONS 17
 7.1 ASSESSMENT 17
 7.2 RECOMMENDED MEASURES 17

APPENDIX
 A. PHOTOGRAPHS
 B. VISUAL INSPECTION CHECKLIST
 C. HYDROLOGIC/HYDRAULIC DATA AND COMPUTATIONS
 D. REFERENCES
 E. DRAWINGS
 F. BACKGROUND DOCUMENTS
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Potake Lake Dam
(I.D. No. NY 970)
State: New York
County: Rockland
Dates of Inspection: 6 March 1981
9 March 1981

ASSESSMENT

Examination of available documents and a visual inspection of the dam and appurtenant structures did not reveal any conditions which constitute an immediate hazard to human life or property.

Using the Corps of Engineers screening criteria, it has been determined that the dam would be overtopped for all storms exceeding approximately 56 percent of the Probable Maximum Flood (PMF). The spillway is, therefore, adjudged as "inadequate".

Current inspection and maintenance procedures by the owner are adequate, but need to be documented. Monitoring of the reservoir levels should be expanded to include readings during peak flow periods. A warning system and emergency action plan should be developed and put into operation to notify residents downstream in the event of an impending dam failure.

The following remedial measures must be completed within one year:

1. The spillway approach and discharge channels are restricted enough to limit the full capacity of the spillway and should have all trees, boulders, and areas of high ground removed to facilitate the discharge of storm flows.

2. The animal burrows, depressions, and tire ruts on the crest of the dam should be filled, compacted, and seeded.
3. All brush should be cut over the entire dam. All trees on the embankment should be cut at ground level. All trees with a trunk diameter greater than 3 inches should have their root systems removed. All resultant areas of erosion and cavities should be filled, graded, compacted, and seeded.

4. The 3-foot diameter culvert in the discharge channel should be sloped correctly.

5. The spalling and deterioration of the low section of the concrete weir should be repaired.

6. Install a staff gage to monitor reservoir levels above normal pool.

SUBMITTED:
Granville Kester, Jr., P.E.
Vice President
MICHAEL BAKER, JR. of New York, INC.

APPROVED:
Colonel W.M. Smith, Jr.
New York District Engineer

DATE: 14 Aug 81
Overall View of Dam
Potake Lake Dam
I.D. No. NY 970
9 March 1981
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
POTAKE LAKE DAM
I.D. No. NY 970
DEC DAM No. 196A-307
PASAIIC RIVER BASIN
LOWER HUDSON RIVER AREA
ROCKLAND COUNTY, NEW YORK

SECTION 1: PROJECT INFORMATION

1.1 GENERAL

a. Authority - The Phase I Inspection reported herein was authorized by the Department of the Army, New York District, Corps of Engineers, to fulfill the requirements of the National Dam Inspection Act, Public Law 92-367.

b. Purpose of Inspection This inspection was conducted to evaluate the existing conditions of the dam, to identify deficiencies and hazardous conditions, to determine if these deficiencies constitute hazards to life and property, and to recommend remedial measures where required.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam - Potake Lake Dam is an earthfill dam with a height of 11.4 feet and a total length of 350 feet. The embankment has an average crest width of 20 feet. The average side slope of the upstream face of the dam is 1V:1.6H (Vertical to Horizontal) and the average side slope of the downstream face of the dam is 1V:2.9H. The upstream face of the dam is protected by riprap from below the water line to the crest of the dam. Plans for reconstruction of the dam prepared by Hazen and Sawyer, Engineers, dated 23 September 1968, show a rock corewall with a clay membrane and rockfill on the downstream side of the dam. The spillway, which has a crest length of 154 feet, is a broad-crested weir on natural ground at the left side of the dam.

The outlet from the reservoir consists of a 12-inch cast iron water supply line with valves on the upstream and downstream side of the dam. A tee and valve at the toe of the dam comprise the blow-off line which provides the means to draw down the reservoir.
b. Location - Potake Lake Dam is 1 mile southwest of Sloatsburg, New York. The dam is in Rockland County, New York. The reservoir is in Rockland County, New York and Passaic County, New Jersey. The coordinates of the dam are N 41° 08.5' and W 74° 12.7'. The dam can be found on the Sloatsburg, New York, USGS 7.5 minute topographic quadrangle. A location map is included in Appendix E.

c. Size Classification - Potake Lake Dam is 11.4 feet high and the reservoir storage capacity at the crest of the dam (elevation 618.8 feet M.S.L.) is 1149 acre-feet. Therefore, the dam is in the "intermediate" size category as defined by the Recommended Guidelines for Safety Inspection of Dams (Reference 13, Appendix D).

d. Hazard Classifications - Cranberry Lake Dam is one mile downstream from Potake Lake Dam. Sloatsburg, New York is 3500 feet downstream from Cranberry Lake Dam. Cranberry Lake Dam has previously been classified as a "high" hazard dam. There is danger of loss of life from large flows downstream from both dams. Potake Lake Dam is, therefore, considered in the "high" hazard category as defined by the Recommended Guidelines for Safety Inspection of Dams.

e. Ownership - The dam and reservoir are owned and operated by the Ramapo Land Company, Inc., P.O. Box 45, Sloatsburg, New York, 10974. The contact person is Mr. Scott Vanderhoff (telephone 914-753-5228).

f. Purpose of the Dam - The dam and reservoir are used as a water supply source for Sloatsburg, New York.

g. Design and Construction History - No specific design and construction history is available. The dam was originally built in the early 1800's. The designer and contractor are unknown.

The dam was reconstructed in 1974. Hazen and Sawyer, Engineers, 360 Lexington Avenue, New York City, New York, designed a new spillway and widened the embankment with a 2.0-foot thick clay membrane next to the existing stone wall with rockfill on the downstream side of the dam. The contractor is unknown.
h. Normal Operating Procedures - The reservoir level is normally maintained at the spillway crest. The dam and reservoir are visually inspected daily. Maintenance is performed as needed.

1.3 PERTINENT DATA

a. Drainage Area (acres) - 532.0

b. Discharge at Dam (c.f.s.) -
 Spillway Capacity (at Minimum Top of Dam Elev. 618.8 ft. M.S.L.) 863.0
 Reservoir Drain at Normal Pool 5.0

c. Elevation (Feet Above M.S.L.)¹ -
 Minimum Top of Dam 618.8
 Normal Pool (Spillway Crest) 616.6
 Streambed at Toe of Dam 607.4

d. Reservoir Surface (Acres) -
 Top of Dam (Elev. 618.8 ft. M.S.L.) 95.5
 Spillway Crest (Elev. 616.6 ft. M.S.L.) 87.2

e. Reservoir Storage Capacity (Acre-Feet) -
 Top of Dam (Elev. 618.8 ft. M.S.L.) 1149.0
 Spillway Crest (Elev. 616.6 ft. M.S.L.) 948.0

f. Dam -
 Type: Earth fill
 Length (Feet) 350.0
 Height (Feet) 11.4
 Average Top Width (Feet) 20.0
 Side Slopes - Upstream 1V:1.6H
 Downstream 1V:2.9H
 Core Wall - Masonry with clay membrane

g. Spillway -
 Type: Broad-crested concrete weir
 Crest Length Perpendicular to Flow (Feet) 154.0
 Crest Width Parallel to Flow (Feet) 6.0
 Crest Elevation (Feet M.S.L.) 616.6

¹All elevations are referenced to the spillway crest, elev. 616.6 ft. M.S.L., as shown on material obtained from the owner and included in Appendix E.
h. Reservoir Drain -

Type: 12" Cast iron water supply line with a tee and valve at the toe of the dam for a blow-off line.

Control: Manual control valves on upstream and downstream sides of dam.
SECTION 2: ENGINEERING DATA

2.1 GEOLOGY

Potake Lake Dam is located in the Hudson Highlands section of the New England Uplands physiographic province. The Hudson Highlands are characterized by strong topographic linearity in which the majority of the ridges and valleys follow the northwest-southwest strike of the metamorphosed rock.

Bedrock in the dam area is described on the Geologic Map of New York (Reference 2, Appendix D) as quartz plagioclase gneiss and subordinate biotite mesoperthite gneiss, locally interlayered with amphibolite. Although these metamorphic rocks are of uncertain origin, they are of the Middle Proterozoic Era. The bedrock is blanketed with deposits of glacial till as the result of Wisconsin glaciation.

The geologic map does not indicate any faulting at the dam site. However, there are two subparallel northeast-southwest trending faults within 3 miles of Potake Lake Dam; the closest fault is located about 2 miles to the northwest, whereas the other is about 3 miles to the southeast.

2.2 SUBSURFACE INVESTIGATION

No site specific subsurface information was available for this investigation. Because the dam site is covered by glacial till, no bedrock outcrops were observed during the inspection. However, according to the Interim Soil Survey for Rockland County (Reference 3, Appendix E), soils of the Hollis-Charlton Association normally range in thickness from less than 1 foot up to 10 feet; therefore, the depth to bedrock is anticipated to be relatively shallow at the dam site. The soil cover is well drained, sandy, and extremely stony. (Numerous glacial boulders were observed in the emergency spillway.)

2.3 DAM AND APPURTENANT STRUCTURES

A sketch of the dam, prepared for the owners by Hazen and Sawyer Engineers, was available for review during these investigations. The sketch illustrates the
original dam features as well as improvements to increase its stability, completed in 1974. This sketch is included in Appendix F. The dam was originally built in the 1800's.

The structure consists of an earth embankment. The original structure consisted of an earth embankment with a near-vertical masonry wall on the downstream slope. In 1974, a 2-foot thick clay membrane was placed next to the masonry wall, and a rock with soil cover embankment was placed to form a new downstream slope. A concrete spillway is located to the left of the embankment. A 12-inch inside diameter pipe serves as the dam outlet. Two valves, one on the upstream side and one on the downstream side of the dam, control flow in the pipe. The pipe outlets at the water plant near Sloatsburg. The existing dam is illustrated in a Field Sketch, included in Appendix F.

2.4 CONSTRUCTION RECORDS

No information concerning construction of the structure is available other than the 1974 sketch for improvements as discussed above.

2.5 OPERATION RECORDS

Water levels are measured daily from a ramp extending from the upstream face near the center of the dam. The readings are recorded by Ramapo Land Company personnel to monitor water availability. While water readings are made, a visual inspection of the dam is also made. The valves controlling discharges through the 12-inch pipe are checked periodically. Maintenance is performed as needed.

2.6 EVALUATION OF DATA

The background information collected during the investigation was obtained from Mr. C. Scott Vanderhoff of the Ramapo Land Company, Inc. Though limited, the available engineering data are considered adequate and reliable for Phase I Inspection purposes with the exception that foundation characteristics are not well known.

1Looking downstream.
SECTION 3: VISUAL INSPECTION

3.1 FINDINGS

a. General - The visual inspection was performed on 6 March 1981. The weather was sunny, and the temperature was in the mid 30's. The water surface was 2.0 feet below the spillway crest. There were 2 to 3 inches of snow on the dam. A follow-up inspection was made on 9 March 1981 to take photographs and observe conditions without snow cover. Deficiencies found during the inspection will require remedial treatment. A Field Sketch of conditions found during the inspection is included in Appendix F. The complete Visual Inspection Checklist is presented as Appendix B.

b. Spillway - The spillway is on natural ground at the left side of the dam. The spillway has a small amount of spalling and deterioration on the center low flow section. The approach channel has large rocks and brush upstream from the spillway. The flow capacity of the concrete weir is reduced by natural ground that encroaches upon and is higher than the spillway crest, large boulders, and trees (Photo 6, Appendix A). Downstream, 150 feet from the spillway, the discharge channel passes through two culverts under a road. These culverts consist of a 3-foot by 4-foot box culvert and a 3-foot diameter culvert with a reverse grade.

c. Embankment - No evidence of sloughing or subsidence was observed on the upstream or downstream slopes. On the upstream face, riprap was in place and no problems were observed. No seepage was observed on the downstream side of the dam.

During the visual inspection of the embankment:

1. One animal burrow and three depressions were found on the crest of the dam (see Field Sketch Appendix E).

2. Tire tracks 0.4 feet deep were found along the crest on the left side of dam.

3. On the downstream face of the embankment are three 3-inch diameter trees, a 12-inch diameter tree, and a 24-inch diameter stump. Near the
left abutment on the crest of the dam is a 36-inch diameter stump. Brush was growing on the upstream and downstream faces of the dam.

d. Outlet Works - The outlet works consist of a 12-inch water supply line with upstream and downstream valves. The upstream valve is located at the end of a foot walk which extends into the reservoir. The downstream valve is at the toe of the embankment. A blow-off line and valve are set off from the water supply line with a tee. The valves were reported to be operable.

e. Downstream Channels - The spillway discharge channel flows down a narrow, rocky creek bed to Cranberry Lake 1 mile downstream from Potake Lake. The town of Sloatsburg, New York is 3500 feet downstream from Cranberry Lake.

f. Reservoir - The reservoir slopes are steep and wooded. There are no signs of instability and sedimentation was not reported to be a problem.

3.2 EVALUATION

Visual inspection revealed several deficiencies in this structure. The following items were noted:

1. There are three depressions and an animal burrow on the crest of the dam;

2. Trees and brush are growing on the upstream and downstream face of the dam;

3. The spillway discharge channel has trees, boulders, and natural ground which restricts flow over the spillway weir.

4. A 3-foot diameter culvert in the discharge channel has the downstream end higher than the upstream end;

5. There are tire ruts 0.4 foot deep on the crest of the dam;

6. There is a small amount of spalling and deterioration of the low section of the concrete weir.
SECTION 4: OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

There are no formal written instructions for operating the reservoir. A watchman who lives in a home adjacent to the dam checks the reservoir level and visually inspects the dam daily.

The reservoir is normally maintained at the spillway crest, but due to the season, it was 2.0 feet below the crest at the time of inspection.

4.2 MAINTENANCE OF THE DAM

Maintenance of the dam is the responsibility of the Ramapo Land Company, Inc.; it is considered fair and performed as needed. The grass on the crest is mowed regularly, and the downstream slope is mowed once a year. The valve on the water supply line is operated periodically. No records of examinations or maintenance are maintained.

4.3 WARNING SYSTEM

At the time of the inspection, there was no warning system or emergency action plan in operation.

4.4 EVALUATION

Maintenance and operating procedures for Potake Lake Dam are considered adequate, but the past activities have not been documented. A checklist should be compiled by the owner or the owner's representative to document the findings made during periodic inspections and the completed maintenance items. A warning system and emergency action plan should be developed and put into operation to notify residents downstream of an impending dam failure. A staff gage should be installed to monitor reservoir levels above normal pool.
SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 DRAINAGE AREA CHARACTERISTICS

Delineation of the watershed of Potake Lake Dam was made using the USGS quadrangles for Sloatsburg and Ramsey, New York. The drainage basin consists of moderate to steep slopes, well covered by forests and ground vegetation. The total drainage area is 532 acres.

5.2 ANALYSIS CRITERIA

A hydrologic analysis of the watershed and hydraulic analysis of the dam was conducted using the U.S. Army Corps of Engineers' Flood Hydrograph Package HEC-1 DB computer program (Reference 11, Appendix D). The unit hydrograph was defined using the Snyder's Unit Hydrograph Method. Estimates of Snyder's hydrograph coefficients were developed from average coefficients from the Hydrologic Flood Routing Model for Lower Hudson River Basin (Reference 14, Appendix D). Precipitation data was taken from Hydrometeorological Report No. 33 (Reference 7, Appendix D). Rainfall losses were estimated at an initial loss of 1.0 inch and a constant loss rate of 0.1 inch per hour thereafter. The hydraulic capacity of the dam, reservoir and spillway was determined by incorporating the Modified Puls Routing Method. All flood routings were begun with the reservoir at normal pool level. Outlet discharge capacity was computed by hand. The Probable Maximum Flood (PMF) and 1/2 Probable Maximum Flood (1/2 PMF) were developed and routed through the reservoir.

5.3 SPILLWAY CAPACITY

The spillway is on natural ground at the left side of the dam. The flow capacity of the spillway weir is presently reduced by natural ground at each end of, and immediately downstream of, the spillway. This area at the ends of the spillway is higher than the spillway crest (Photo 6, Appendix A). All calculations are based on the assumption that these areas of high ground have been removed to allow the free discharge of flows from the spillway.

The spillway capacity at the minimum top of the dam is 863 c.f.s. There is no auxiliary or emergency spillway at Potake Lake Dam.
5.4 RESERVOIR CAPACITY

The storage capacity of Potake Lake Dam at normal pool is 948 acre-feet. The storage capacity of the reservoir at the minimum top of dam is 1149 acre-feet. Therefore, the flood control storage of the reservoir between the spillway crest and the top of the dam is 201 acre-feet. This volume represents a total runoff of 4.5 inches from the drainage area.

5.5 FLOODS OF RECORD

On 30 May 1968, after a 6-inch rainfall, the dam was nearly overtopped and the culverts in the discharge channel were washed out. As a result of this rainfall, the spillway was changed to its present configuration.

5.6 OVERTOPPING POTENTIAL

The maximum capacity of the spillway is 863 c.f.s. to the minimum top of dam. The peak outflows of the PMF and 1/2 PMF are 1727 c.f.s. and 740 c.f.s., respectively. Therefore, the spillway is capable of passing 56 percent of the PMF before overtopping would occur.

5.7 RESERVOIR EMPTYING POTENTIAL

The reservoir can be drawn down by means of a 12-inch cast iron blow-off line at the toe of the embankment. Neglecting inflow, the reservoir can be drawn down from normal pool in approximately 103 days. This is equivalent to an approximate drawdown rate of 0.1-foot per day, based on the hydraulic height measured from normal pool divided by the time to dewater the reservoir.

5.8 EVALUATION

Potake Lake Dam is an "intermediate" size - "high" hazard dam requiring the spillway to pass the PMF. The PMF and 1/2 PMF were routed through the watershed and dam.

It was determined that the spillway weir section is capable of passing 56 percent of the PMF before overtopping the dam. The spillway is, therefore, judged to be "inadequate." However, the flow capacity of the concrete weir is presently reduced by natural ground in the approach and discharge channels that encroaches upon and is higher than the spillway crest. The downstream channel was evaluated and found to pass flood flows from the 1/2 PMF but not the PMF.
Conclusions pertain to present conditions and the effect of future development on the hydrology has not been considered.
SECTION 6: EMBANKMENT STABILITY

6.1 EVALUATION OF EMBANKMENT STABILITY

a. Visual Observations - No signs of potential instability were observed during the visual inspection of Potake Lake Dam. Minor problems which could affect the stability of the structure include:

1. Three depressions and an animal burrow were found on the embankment crest.

2. Four trees, larger than 3 inches in diameter, and two stumps located on the embankment and the left abutment and should be removed.

3. While the downstream face of the embankment was uneven, it appeared to be the result of poor grading or possible settlement of the soil cover into voids in the rock embankment, and not a sign of potential instability.

The owner reported that some seepage occurred before the reconstruction work was performed in 1974. No seepage was observed by the owner since then or by the inspection team at the time of the inspection.

b. Design and Construction Data - No design information regarding the stability of the structure was available.

c. Operating Records - The valves controlling flow through the 12-inch pipes are periodically operated. The structure is visually inspected, usually every day by the watchman living next to the dam. A rainfall of 6 inches occurred on May 30, 1968 and, reportedly, almost overtopped the dam due to insufficient spillway capacity, with no apparent adverse effects on the dam. The spillway capacity has since been increased.

d. Post Construction Changes - The structure was built during the early 1800's. In 1974, the spillway capacity was increased and the downstream face was reconstructed by decreasing the slope and the addition of a 2-foot thick clay membrane.

1Looking downstream.
6.2 STABILITY ANALYSIS

The results of previous stability analyses, if any, were not available for Potake Lake Dam.

The original dam appears to be a relatively homogeneous embankment composed largely of sandy, silty clay (estimated to be ML-CL Group Soils - Unified Classification System). Potake Lake Dam is 11.4 feet high with an average crest width of 20 feet. The upstream slope of the embankment is 1V:1.6H, while the downstream slope is 1V:2.9H. The upstream slope is protected by riprap from below the water line to the crest. The reconstruction plans, prepared by Hazen and Sawyer Engineers, indicate that the dam contains a masonry wall on the downstream side of the crest, covered by a clay membrane and a rock fill. The dam is not subject to rapid drawdown (greater than a 0.5-foot drop in the reservoir level per day) as determined by hydraulic calculations made during these investigations.

There are no signs of major instability, based on the visual inspection. Therefore, based on the overall condition of the dam as observed during the visual inspection, a stability analysis is not considered necessary.

6.3 SEISMIC STABILITY

The dam is located in Seismic Zone 1, which presents no hazard from earthquakes according to the Recommended Guidelines for Safety Inspection of Dams. This determination is contingent on the requirements that static stability conditions are satisfactory, and conventional safety margins exist.
SECTION 7: ASSESSMENT/RECOMMENDATIONS

7.1 ASSESSMENT

a. Safety - In the Phase I Inspection of Potake Lake Dam, the hydrologic and hydraulic analysis revealed that outflows from any storm in excess of 56 percent of the PMF will overtop the dam. Therefore, the spillway is "inadequate," based on Corps of Engineers' screening criteria.

b. Adequacy of Information - The information available and the observations and measurements made during the visual inspection are considered sufficient for this Phase I Inspection Report.

c. Need for Additional Information - No additional investigations are considered necessary at this time.

d. Urgency - The problem areas listed below must be corrected within one year of notification.

7.2 RECOMMENDED MEASURES

The regular inspections and maintenance procedures presently being conducted appear to be adequate, although some form of documentation is needed. A thorough checklist should be compiled by the owner or the owner's representative, and completed during each inspection. Maintenance items should be completed annually. A warning system and emergency action plan should be developed and put into operation to notify residents downstream of an impending dam failure.

The following remedial measures must be completed within one year:

1. The spillway and discharge channels are restricted enough to limit the full capacity of the spillway and should have all trees, boulders, and areas of high ground removed to facilitate the discharge of storm flows.

2. The animal burrows, depressions, and tire ruts on the crest of the dam should be filled, compacted, and seeded.
3. All brush covering the embankment should be removed. All trees on the embankment should be cut at ground level. All trees with a trunk diameter greater than 3 inches should have their root systems removed. All resultant areas of erosion and cavities should be filled, graded, compacted, and seeded.

4. The 3-foot diameter culvert in the discharge channel should be sloped correctly.

5. The spalling and deterioration of the low section of the concrete weir should be repaired.

6. Install a staff gage to monitor reservoir levels above normal pool.
APPENDIX A

PHOTOGRAPHS
CONTENTS

Photo 1: Downstream Face of Dam from Left Abutment
Photo 2: Crest of Dam from Right Abutment
Photo 3: Spillway from Left Abutment
Photo 4: Spillway Discharge Channel from Spillway
Photo 5: Spillway Discharge Channel from 100 Feet Downstream of Spillway
Photo 6: Natural Ground Restricting Spillway Weir Flow Capacity

Note: Photographs were taken on 9 March 1981.
POTAKE LAKE DAM

Photo 1. Downstream Face of Dam from Left Abutment
9 March 1981

Photo 2. Crest of Dam from Right Abutment
9 March 1981
Photo 3. Spillway from Left Abutment
9 March 1981

Photo 4. Spillway Discharge Channel from Spillway
9 March 1981
Photo 5. Spillway Discharge Channel from 100 feet Downstream of Spillway
9 March 1981

Photo 6. Natural Ground Restricting Spillway
Weir Flow Capacity
9 March 1981
APPENDIX B

VISUAL INSPECTION CHECKLIST
VISUAL INSPECTION CHECKLIST

1) Basic Data
 a. General
 Name of Dam: Potake Lake Dam
 Fed. I.D. #: NY 970
 DEC Dam No.: 196A-307
 River Basin: Passaic River Basin
 Location: Town: Sloatsburg
 County: Rockland
 Stream Name: None
 Tributary of: Ramapo River
 Latitude (N): 41° 08.5'
 Longitude (W): 74° 12.7'
 Type of Dam: earth dam
 Hazard Category: High
 Date(s) of Inspection: 6 March 1981 and 9 March 1981
 Weather Conditions: clear, 35°F
 Reservoir Level at Time of Inspection: 614.8 Ft.
 b. Inspection Personnel: Terry S. Hawk, Gary W. Todd, Larry A. Diday
 c. Persons Contacted (Including Address & Phone No.): 914-753-5228
 Scott Vanderhoff
 Ramapo Land Company, Inc.
 P. O. Box 45
 Sloatsburg, New York 10974
 d. History:
 Date Constructed: about 1800
 Date(s) Reconstructed: 1974
 Designer: unknown
 Constructed By: unknown
 Owner: Ramapo Land Company, Inc.
2) Embankment

a. Characteristics

(1) Embankment Material earth core

Upstream slope is rock lined, downstream is rock covered with topsoil.

(2) Cutoff Type unknown

(3) Impervious Core Clay blanket installed in 1974 along downstream face.

(4) Internal Drainage System none observed

(5) Miscellaneous Covered with 2" to 3" of snow on 6 March, reinspected on 9 March 1981 at which time the snow was melted.

b. Crest

(1) Vertical Alignment good

(2) Horizontal Alignment fair to good

(3) Surface Cracks None observed at time of inspection

(4) Miscellaneous Three depressions and one animal burrow were found on the crest. A large stump is located on the left end of the crest. A set of tire ruts are near the center of the crest.

c. Upstream Slope

(1) Slope (Estimate) (V:H) 1 : 1.6

(2) Undesirable Growth or Debris, Animal Burrows Brush was growing on some areas of the slope, mostly near the crest.
(3) Sloughing, Subsidence, or Depressions Some minor erosion was observed at the top of slope.

(4) Slope Protection The rip rap areas observed were in good condition.

(5) Surface Cracks or Movement at Toe Unobservable at time of inspection.

d. Downstream Slope

(1) Slope (Estimate - V: H) 1: 2.9

(2) Undesirable Growth or Debris, Animal Burrows Three trees over 3" in dia. and brush are growing on the slope.

(3) Sloughing, Subsidence or Depressions None observed at time of inspection. Slope was uneven but appeared to be the result of poor grading.

(4) Surface Cracks or Movement at Toe None observed at time of inspection.

(5) Seepage None was observed at time of inspection.

(6) External Drainage System (Ditches, Trenches, Blanket) none

(7) Condition Around Outlet Structure No outlet structure.
(8) Seepage Beyond Toe
None was observed at time of inspection.

e. Abutments - Embankment Contact
Appeared good at time of inspection. There is a tree and an old stump on the left abutment and a stump on the right abutment.

(1) Erosion at Contact
None was observed at time of inspection.

(2) Seepage Along Contact
None was observed at time of inspection.

3) Drainage System
a. Description of System
None

b. Condition of System

c. Discharge from Drainage System

4) Instrumentation (Monumentation/Surveys, Observation Wells, Weirs, Piezometers, Etc.)
None
5) Reservoir
 a. Slopes Slopes are steep and wooded.

 b. Sedimentation Owner stated that there have been no problems with sedimentation.

 c. Unusual Conditions Which Affect Dam None observed at time of inspection.

6) Area Downstream of Dam
 a. Downstream Hazard (No. of Homes, Highways, etc.) Cranberry Lake Dam is located one mile downstream of Potake Lake Dam. Sloatsburg is 3500 ft. downstream of Cranberry Lake Dam.

 b. Seepage, Unusual Growth None observed at time of inspection.

 c. Evidence of Movement Beyond Toe of Dam None observed at time of inspection.

 d. Condition of Downstream Channel Channel is filled with brush, trees, and rocks.

7) Spillway(s) (Including Discharge Conveyance Channel)
a. General Concrete spillway is spalling and the upstream side is blocked by some brush, rocks, and natural ground.

b. Condition of Service Spillway The flow capacity of the concrete weir is reduced by natural ground that encroaches upon and is higher than the spillway crest, large boulders, and trees.

c. Condition of Auxiliary Spillway none

d. Condition of Discharge Conveyance Channel Large boulders and trees are located in the channel. A dirt road passes over the channel and has two culverts underneath, one with a reverse slope.

8) Reservoir Drain/Outlet

Type: Pipe X Conduit Other

Material: Concrete Metal X Other

Size: 12" Length over 1300' (runs to water plant).

Invert Elevations: Entrance unknown
Exit unknown

Physical Condition (Describe): Unobservable X
Material: __

Joints: ___________________________ Alignment ______________________

Structural Integrity: __

__

Hydraulic Capability: __

__

Means of Control: Gate ______ Valve ______ X ______ Uncontrolled ______

Operation: Operable ______ X ______ Inoperable ______ Other ______

Present Condition (Describe): Both downstream and upstream valves
appear ok and are operated by the owner to assure their working
condition. The blow-off pipe outlet could not be located.

__

9) Structural - Not Applicable

a. Concrete Surfaces ___

__

b. Structural Cracking __

__

c. Movement - Horizontal & Vertical Alignment (Settlement) ___________

__

d. Junctions with Abutments or Embankments _________________________

__
e. Drains - Foundation, Joint, Face

f. Water Passages, Conduits, Sluices

g. Seepage or Leakage

h. Joints - Construction, etc.

i. Foundation

j. Abutments

k. Control Gates
1. Approach & Outlet Channels

2. Energy Dissipators (Plunge Pool, etc.)

3. Intake Structures

4. Stability

5. Miscellaneous

10) Appurtenant Structures (Power House, Lock, Gatehouse, Other)
a. Description and Condition none
APPENDIX C

HYDROLOGIC/HYDRAULIC DATA AND COMPUTATIONS
<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK LIST FOR DAMS</td>
<td>1</td>
</tr>
<tr>
<td>DRAINAGE AREA AND CENTROID MAP</td>
<td>5</td>
</tr>
<tr>
<td>HYDROLOGIC AND HYDRAULIC DATA</td>
<td>6</td>
</tr>
<tr>
<td>TOP OF DAM PROFILE AND CROSS SECTION</td>
<td>7</td>
</tr>
<tr>
<td>SPILLWAY PROFILE AND CROSS SECTION</td>
<td>8</td>
</tr>
<tr>
<td>SPILLWAY RATING</td>
<td>9</td>
</tr>
<tr>
<td>SPILLWAY RATING SUMMARY</td>
<td>12</td>
</tr>
<tr>
<td>12" DIA. PIPE OUTFLOW RATING</td>
<td>13</td>
</tr>
<tr>
<td>SPILLWAY CAPACITY ANALYSIS</td>
<td>14</td>
</tr>
<tr>
<td>HEC-1 COMPUTER ANALYSIS</td>
<td>15</td>
</tr>
</tbody>
</table>
CHECK LIST FOR DAMS
HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

AREA-CAPACITY DATA:

<table>
<thead>
<tr>
<th></th>
<th>Elevation (ft.)</th>
<th>Surface Area (acres)</th>
<th>Storage Capacity (acre-ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Top of Dam</td>
<td>618.8</td>
<td>95.5</td>
<td>1,149</td>
</tr>
<tr>
<td>2) Design High Water (Max. Design Pool)</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3) Auxiliary Spillway Crest</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4) Pool Level with Flashboards</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5) Service Spillway Crest</td>
<td>616.6</td>
<td>87.2</td>
<td>948</td>
</tr>
</tbody>
</table>

DISCHARGES

<table>
<thead>
<tr>
<th></th>
<th>Volume (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Average Daily</td>
<td>0</td>
</tr>
<tr>
<td>2) Spillway @ Maximum High Water - Top of Dam -</td>
<td>863</td>
</tr>
<tr>
<td>3) Spillway @ Design High Water</td>
<td>--</td>
</tr>
<tr>
<td>4) Spillway @ Auxiliary Spillway Crest Elevation</td>
<td>--</td>
</tr>
<tr>
<td>5) Low Level Outlet</td>
<td>5.4</td>
</tr>
<tr>
<td>6) Total (of all facilities) @ Maximum High Water</td>
<td>868</td>
</tr>
<tr>
<td>7) Maximum Known Flood</td>
<td>Unknown</td>
</tr>
<tr>
<td>8) At Time of Inspection</td>
<td>0</td>
</tr>
</tbody>
</table>
CREST:

- **Type:** Earth embankment
- **Width:** 20 ft.
- **Length:** 350 ft.
- **Spillover:** Broad-crested weir
- **Location:** On natural ground on left bank

ELEVATION: 618.8 ft.

SPILLWAY:

<table>
<thead>
<tr>
<th>SERVICE</th>
<th>AUXILIARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation: 616.6 ft.</td>
<td></td>
</tr>
<tr>
<td>Type: Concrete weir</td>
<td></td>
</tr>
<tr>
<td>Width: 6 ft.</td>
<td></td>
</tr>
<tr>
<td>Type of Control:</td>
<td></td>
</tr>
<tr>
<td>X Uncontrolled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controlled:</td>
</tr>
<tr>
<td></td>
<td>Type:</td>
</tr>
<tr>
<td></td>
<td>(Flashboards; gate)</td>
</tr>
<tr>
<td></td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td>Size/Length</td>
</tr>
<tr>
<td></td>
<td>Invert Material</td>
</tr>
<tr>
<td>Anticipated Length</td>
<td></td>
</tr>
<tr>
<td>of Operating Service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chute Length</td>
</tr>
<tr>
<td></td>
<td>0.5 ft. Height Between Spillway Crest & Approach Channel Invert</td>
</tr>
<tr>
<td></td>
<td>(Weir Flow)</td>
</tr>
</tbody>
</table>
DRAINAGE AREA: 532 acres

DRAINAGE BASIN RUNOFF CHARACTERISTICS:

Land Use - Type: Wooded with good vegetation

Terrain - Relief: Moderate to steep

Surface - Soil: Well-drained

Runoff Potential (existing or planned extensive alterations to existing surface or subsurface conditions)

There were no known plans for altering the existing runoff patterns at the time of the inspection.

Potential Sedimentation problem areas (natural or man-made; present or future)

None observed. All slopes well-vegetated.

Potential Backwater problem areas for levels at maximum storage capacity including surcharge storage:

None observed at the time of inspection.

Dikes - Floodwalls (overflow & non-overflow) - Low reaches along the Reservoir perimeter:

Location: None

Elevation:

Reservoir:

Length @ Maximum Pool 5,050 ft.

Length of Shoreline (@ Spillway Crest) 11,550 ft. (2.19 mi.)
HYDROMETEOROLOGICAL GAGES:

Type: None

Location:

Records:

Date:

Max. Reading:

FLOOD WATER CONTROL SYSTEM:

Warning System: None

Method of Controlled Releases (mechanisms):

12" dia. cast iron pipe at toe of the embankment.
DRAINAGE AREA

Ramsey Quad: 3.72' x 17.376' = 5.79 in² = 0.03 mi²

Shawneetown Quad: 13.65

Surfase Areas

Lake Surface C1 116.6 - 3.34/5 = 0.95 in² = 87.2 Ac = 0.14 mi²

C1: 1160 - 3.34/3 = 1.09 in² = 100.1 Ac = 0.16 mi²

C1: 140 - 4.18/5 = 1.46 in² = 134.1 Ac = 0.21 mi²

C2: 2.0 C2: 0.63

\[T_p = \frac{C_2}{C_1} \left(\frac{L \times 60}{A} \right)^{0.3} \]

\[= 2.0 \left(\frac{1.05 \times 0.2} {0.03} \right)^{0.3} \]

Watershed Lengths

\[L = 9.750 \text{ ft.} = 1.85 \text{ mi.} \]

\[L_c = 4.350 \text{ ft.} = 0.82 \text{ mi.} \]

Precipitation Data

HMR-33 ZONE 1

PMP 24 hr. 200 mi² = 21.9 inch

D.A. Less than 10 mi²

<table>
<thead>
<tr>
<th>Duration</th>
<th>% of 200 mi²</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 hr PMP</td>
<td>111</td>
<td>24.3</td>
</tr>
<tr>
<td>12 hr PMP</td>
<td>123</td>
<td>26.9</td>
</tr>
<tr>
<td>24 hr PMP</td>
<td>133</td>
<td>29.1</td>
</tr>
<tr>
<td>48 hr PMP</td>
<td>142</td>
<td>31.1</td>
</tr>
</tbody>
</table>

TR-40

100% 24 hr. Rainfall = 7.5 inches

" 12 hr " 6.4 "

" 6 hr " 5.3 "
Top of Dam Profile (looking downstream)

Length of Dam: 350 feet

Elevation (ft MSL):
- 620
- 610
- 600

Horizontal Station

- 0+100
- 0+200
- 0+300
- 0+400
- 0+500
- 0+600

Typical Cross Section at Station 1+70

- Elev. 610
- Elev. 600

- IV: 1.6 H
- IV: 2.9 H

Toe of Dam
- Elev. 607.4 ft.
MICHAEL BAKER, JR., INC.
THE BAKER ENGINEERS
Box 280
Beaver, Pa. 15009

Subject Potage Lake Dam
Spillway Profile and Cross Section
S.O. No. Sheet No. 3 of 21
Drawing No. Computed by WLT Checked by Date 3-12-81

Spillway Profile

ELEVATION (ft MSL)
620
49.5'
16.9'
22.2'
19.8'
5.5'
SPILLWAY CREST
ELEV. 610.6 FT.
DISCHARGE CHANNEL
BLOCKED

G10
DISCHARGE CHANNEL
BLOCKED
5+50
5+00
4+50
4+00
HORIZONTAL STATION

Spillway Cross Section

ELEVATION (ft MSL)
620
SPILLWAY CREST ELEV. 610.6 FT.
FLOW

G10 0+00 0+30 0+60 0+90 1+20 1+50
HORIZONTAL STATION
Typical Weir Cross Sections

\[Q = CLH^{1/2} \]

- \(Q \) varies with \(H \) and is an estimate taken from comparisons with a broad-crested weir table 5-3 and Fig. No. 5-16 Table 5-15, Bentley & King.
- \(C \) varies with section
- \(L \) varies from 0 ft. to 4.4 ft.

| STR. 4+12 TO STR. 4+18.5 | | | | |
|--------------------------|----------------|----------------|----------------|
| ELEVATION (FT) | \(C \) | \(L \) (FT) | \(H \) (FT) | \(Q \) (CFS) |
| G17.7 | 0 | 5.5 | 0 | 0 |
| G18.0 | 2.60 | 5.5 | 0.3 | 2.3 |
| G18.5 | 2.65 | 5.5 | 0.8 | 10.4 |
| G19.0 | 2.65 | 5.5 | 1.3 | 21.6 |
| G19.5 | 2.65 | 5.5 | 1.8 | 35.2 |
| G20.0 | 2.66 | 5.5 | 2.3 | 51.0 |
| G21.0 | 2.66 | 5.5 | 3.3 | 87.7 |
STR. 4+18.5 TO STR. 4+38.3

<table>
<thead>
<tr>
<th>ELEVATION, (FT)</th>
<th>C'</th>
<th>L' (FT)</th>
<th>H' (FT)</th>
<th>Q (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>617.5</td>
<td>0</td>
<td>19.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>618.0</td>
<td>2.9</td>
<td>19.8</td>
<td>0.5</td>
<td>20.3</td>
</tr>
<tr>
<td>618.5</td>
<td>2.95</td>
<td>19.8</td>
<td>1.0</td>
<td>58.4</td>
</tr>
<tr>
<td>619.0</td>
<td>2.98</td>
<td>19.8</td>
<td>1.5</td>
<td>108.4</td>
</tr>
<tr>
<td>619.5</td>
<td>3.00</td>
<td>19.8</td>
<td>2.0</td>
<td>168.0</td>
</tr>
<tr>
<td>620.0</td>
<td>3.03</td>
<td>19.8</td>
<td>2.5</td>
<td>237.2</td>
</tr>
<tr>
<td>621.0</td>
<td>3.08</td>
<td>19.8</td>
<td>3.5</td>
<td>399.3</td>
</tr>
</tbody>
</table>

STR. 4+38.3 TO STR. 4+60.5

<table>
<thead>
<tr>
<th>ELEVATION, (FT)</th>
<th>C'</th>
<th>L' (FT)</th>
<th>H' (FT)</th>
<th>Q (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>617.1</td>
<td>0</td>
<td>22.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>617.5</td>
<td>2.9</td>
<td>22.2</td>
<td>0.4</td>
<td>16.3</td>
</tr>
<tr>
<td>618.0</td>
<td>2.95</td>
<td>22.2</td>
<td>0.9</td>
<td>35.9</td>
</tr>
<tr>
<td>618.5</td>
<td>2.98</td>
<td>22.2</td>
<td>1.4</td>
<td>109.6</td>
</tr>
<tr>
<td>619.0</td>
<td>3.00</td>
<td>22.2</td>
<td>1.9</td>
<td>174.4</td>
</tr>
<tr>
<td>619.5</td>
<td>3.03</td>
<td>22.2</td>
<td>2.1</td>
<td>250.1</td>
</tr>
<tr>
<td>620.0</td>
<td>3.04</td>
<td>22.2</td>
<td>2.9</td>
<td>333.3</td>
</tr>
<tr>
<td>621.0</td>
<td>3.11</td>
<td>22.2</td>
<td>3.9</td>
<td>531.8</td>
</tr>
</tbody>
</table>

STR. 4+60.5 TO STR. 4+77.4

<table>
<thead>
<tr>
<th>ELEVATION, (FT)</th>
<th>C'</th>
<th>L' (FT)</th>
<th>H' (FT)</th>
<th>Q (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>618.6</td>
<td>0</td>
<td>16.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>617.0</td>
<td>2.60</td>
<td>16.9</td>
<td>0.4</td>
<td>11.1</td>
</tr>
<tr>
<td>617.5</td>
<td>2.67</td>
<td>16.9</td>
<td>0.9</td>
<td>38.5</td>
</tr>
<tr>
<td>618.0</td>
<td>2.65</td>
<td>16.9</td>
<td>1.4</td>
<td>74.2</td>
</tr>
<tr>
<td>618.5</td>
<td>2.65</td>
<td>16.9</td>
<td>1.9</td>
<td>117.3</td>
</tr>
<tr>
<td>619.0</td>
<td>2.66</td>
<td>16.9</td>
<td>2.4</td>
<td>167.1</td>
</tr>
<tr>
<td>619.5</td>
<td>2.66</td>
<td>16.9</td>
<td>2.9</td>
<td>222.0</td>
</tr>
<tr>
<td>620.0</td>
<td>2.68</td>
<td>16.9</td>
<td>3.4</td>
<td>283.9</td>
</tr>
<tr>
<td>621.0</td>
<td>2.74</td>
<td>16.9</td>
<td>4.4</td>
<td>427.4</td>
</tr>
<tr>
<td>ELEVATION (FT)</td>
<td>C</td>
<td>L (FT)</td>
<td>H (FT)</td>
<td>Q (CF/S)</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>G 17.2</td>
<td>0</td>
<td>49.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G 17.5</td>
<td>2.9</td>
<td>49.5</td>
<td>0.3</td>
<td>23.6</td>
</tr>
<tr>
<td>G 18.0</td>
<td>2.95</td>
<td>49.5</td>
<td>0.8</td>
<td>104.5</td>
</tr>
<tr>
<td>G 18.5</td>
<td>2.98</td>
<td>49.5</td>
<td>1.3</td>
<td>218.6</td>
</tr>
<tr>
<td>G 19.0</td>
<td>3.00</td>
<td>49.5</td>
<td>1.8</td>
<td>358.6</td>
</tr>
<tr>
<td>G 19.5</td>
<td>3.03</td>
<td>49.5</td>
<td>2.3</td>
<td>533.2</td>
</tr>
<tr>
<td>G 20.0</td>
<td>3.04</td>
<td>49.5</td>
<td>2.8</td>
<td>705.0</td>
</tr>
<tr>
<td>G 21.0</td>
<td>3.11</td>
<td>49.5</td>
<td>3.8</td>
<td>1,140.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELEVATION (FT)</th>
<th>C</th>
<th>L (FT)</th>
<th>H (FT)</th>
<th>Q (CF/S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 17.6</td>
<td>0</td>
<td>40.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G 18.0</td>
<td>2.10</td>
<td>40.1</td>
<td>0.4</td>
<td>29.4</td>
</tr>
<tr>
<td>G 18.5</td>
<td>2.95</td>
<td>40.1</td>
<td>0.9</td>
<td>101.0</td>
</tr>
<tr>
<td>G 19.0</td>
<td>2.98</td>
<td>40.1</td>
<td>1.4</td>
<td>197.9</td>
</tr>
<tr>
<td>G 19.5</td>
<td>3.00</td>
<td>40.1</td>
<td>1.9</td>
<td>315.1</td>
</tr>
<tr>
<td>G 20.0</td>
<td>3.03</td>
<td>40.1</td>
<td>2.4</td>
<td>451.8</td>
</tr>
<tr>
<td>G 21.0</td>
<td>3.08</td>
<td>40.1</td>
<td>3.4</td>
<td>774.3</td>
</tr>
</tbody>
</table>
Spillway Rating

<table>
<thead>
<tr>
<th>Elevation (ft)</th>
<th>1 (cfs)</th>
<th>2 (cfs)</th>
<th>3 (cfs)</th>
<th>4 (cfs)</th>
<th>5 (cfs)</th>
<th>6 (cfs)</th>
<th>Total (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>616.6</td>
<td>0</td>
<td>11.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>617.0</td>
<td>11.1</td>
<td>38.5</td>
<td>23.6</td>
<td>12.4</td>
<td>23.6</td>
<td>12.4</td>
<td>78.4</td>
</tr>
<tr>
<td>617.5</td>
<td>12.4</td>
<td>57.8</td>
<td>74.6</td>
<td>104.5</td>
<td>104.5</td>
<td>209.0</td>
<td>287</td>
</tr>
<tr>
<td>618.0</td>
<td>10.4</td>
<td>109.6</td>
<td>117.3</td>
<td>218.6</td>
<td>101.0</td>
<td>419.6</td>
<td>615</td>
</tr>
<tr>
<td>618.5</td>
<td>21.0</td>
<td>174.4</td>
<td>167.1</td>
<td>341.5</td>
<td>197.9</td>
<td>539.4</td>
<td>1038</td>
</tr>
<tr>
<td>619.0</td>
<td>25.2</td>
<td>250.1</td>
<td>222.0</td>
<td>523.2</td>
<td>315.1</td>
<td>838.3</td>
<td>1554</td>
</tr>
<tr>
<td>620.0</td>
<td>51.0</td>
<td>333.3</td>
<td>285.9</td>
<td>705.0</td>
<td>451.8</td>
<td>1156.8</td>
<td>2062</td>
</tr>
<tr>
<td>621.0</td>
<td>87.7</td>
<td>519.3</td>
<td>427.4</td>
<td>1140.4</td>
<td>774.3</td>
<td>2914.7</td>
<td>3361</td>
</tr>
</tbody>
</table>

Note: The controlling section of the discharge channel is 72 feet downstream from the dam. The controlling section is a trapezoidal channel with a bottom width of 20 feet, side slopes of 1V:3H and a depth of 4 feet. The slope of the discharge channel is 0.024 ft/ft. Calculations made show that the discharge channel will pass storm flows from the spillway.
Pipe Flow

\[Q = \frac{A (2.28H)^{0.5}}{0.79 (2.28)(2.89H)^{0.5}} = 0.79 (2.28)(2.89H)^{0.5} \]

\[Q = 1.645 H^{0.5} \]

Pipe is 12" Dia. Cast Iron Pipe

\[A = \pi R^2 = \pi (0.5)^2 = 0.79 \text{ ft}^2 \]

\[V = 32.2 \text{ ft/sec} \]

\[H = \text{head measured from the top of pipe @ outlet (est. @ 607.0 ft)} \]

\[L = 360 \text{ ft (estimated)} \]

\[K_e = 0.78 \text{ pg. 5.5-6 SCS Mtn.-5} \]

\[K_b = 0 \text{ pg. 5.5-10 SCS Mtn.-5} \]

\[K_c = 0.0363 \text{ pg. 5.5-6 SCS Mtn.-5} \]

\[\mu'' = 0.014 \text{ (uncoated cast iron pipe)} \]

<table>
<thead>
<tr>
<th>Elevation (ft)</th>
<th>(H) (ft)</th>
<th>(Q) (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>608.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>609.0</td>
<td>1.0</td>
<td>1.64</td>
</tr>
<tr>
<td>610.0</td>
<td>2.0</td>
<td>2.33</td>
</tr>
<tr>
<td>611.0</td>
<td>3.0</td>
<td>2.05</td>
</tr>
<tr>
<td>612.0</td>
<td>4.0</td>
<td>3.29</td>
</tr>
<tr>
<td>613.0</td>
<td>5.0</td>
<td>3.68</td>
</tr>
<tr>
<td>614.0</td>
<td>6.0</td>
<td>4.03</td>
</tr>
<tr>
<td>615.0</td>
<td>7.0</td>
<td>4.35</td>
</tr>
<tr>
<td>616.0</td>
<td>8.0</td>
<td>4.65</td>
</tr>
<tr>
<td>616.6</td>
<td>8.6</td>
<td>4.82</td>
</tr>
</tbody>
</table>
UNIT HYDROGRAPH

SPECIFICATION

<table>
<thead>
<tr>
<th>AC</th>
<th>NPW</th>
<th>AMIN</th>
<th>END</th>
<th>1PM</th>
<th>EMIN</th>
<th>MLIN</th>
<th>1PIT</th>
<th>EPHN</th>
<th>ASHN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

PLAN

- **PLAN DATE**: 05/11/81
- **TIME**: 11:20

RECENT PLAN ANALYSES TO BE PERFORMED

- PLAN: 1
- RATE: 4

HYPOTHETICAL HYDROGRAPH

<table>
<thead>
<tr>
<th>TSS</th>
<th>LCLP</th>
<th>TELPA</th>
<th>ITAPE</th>
<th>1CLP</th>
<th>TAPL</th>
<th>IMAPE</th>
<th>IMAPE</th>
<th>LCLPA</th>
<th>LCLPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>SPW</th>
<th>PMT</th>
<th>RES</th>
<th>FRQ</th>
<th>RAC</th>
<th>MAV</th>
<th>DAU</th>
<th>RTA</th>
<th>ISMA</th>
<th>KAPE</th>
<th>LCLPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

ECO DATA

<table>
<thead>
<tr>
<th>LRP</th>
<th>SRRK</th>
<th>GERK</th>
<th>KLPA</th>
<th>LRIE</th>
<th>SNAM</th>
<th>SRRK</th>
<th>SRRK</th>
<th>LRIE</th>
<th>ASHP</th>
<th>ASHP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

RECESSION DATA

<table>
<thead>
<tr>
<th>SHEL</th>
<th>-12.5</th>
<th>GCSN</th>
<th>-6.05</th>
<th>RILE</th>
<th>2.09</th>
</tr>
</thead>
</table>

UNIT HYDROGRAPH 24 HOURS

<table>
<thead>
<tr>
<th>0.00</th>
<th>48.6</th>
<th>93.3</th>
<th>132.1</th>
<th>140.6</th>
<th>131.4</th>
<th>100.0</th>
<th>68.3</th>
<th>67.2</th>
<th>53.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>3.0</td>
<td>2.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATION</td>
<td>STATION</td>
<td>AREA</td>
<td>PLAN RATIO</td>
<td>RATIO 1</td>
<td>RATIO 2</td>
<td>RATIO 3</td>
<td>RATIO 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH 47</td>
<td>1</td>
<td>0.83</td>
<td>1</td>
<td>1857</td>
<td>1421</td>
<td>943</td>
<td>593</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-133</td>
<td></td>
<td></td>
<td>51.033</td>
<td>44.221</td>
<td>42.086</td>
<td>42.086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REUSED 10</td>
<td>1</td>
<td>0.83</td>
<td>1</td>
<td>1767</td>
<td>1260</td>
<td>795</td>
<td>694</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-133</td>
<td></td>
<td></td>
<td>51.033</td>
<td>44.221</td>
<td>42.086</td>
<td>42.086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVENT</td>
<td>TIME</td>
<td>LOCATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

JSS SPECIFICATION

<table>
<thead>
<tr>
<th>H5</th>
<th>MPG</th>
<th>HNP</th>
<th>HNP+</th>
<th>TARK</th>
<th>TARK+</th>
<th>TARK+</th>
<th>TARK+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MULTI-PATH ANALYSIS TO BE PERFORMED

SUB-AREA RUNOFF COMPUTATION

NULL RUNOFF HYDROGRAPH TO DAY

<table>
<thead>
<tr>
<th>EVENT</th>
<th>TIME</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>INPUT</th>
<th>IONT</th>
<th>TANLX</th>
<th>SHAP</th>
<th>EPSA</th>
<th>EPSF</th>
<th>BATL</th>
<th>Baltic</th>
<th>ISAC</th>
<th>ISAC2</th>
<th>ISAC3</th>
<th>LOCAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

INPUT HYDROGRAPH

<table>
<thead>
<tr>
<th>EVENT</th>
<th>TIME</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D
REFERENCES
REFERENCES

7. HMR 33, "Seasonal Variations of Probable Maximum Precipitation, East of the 105th Meridian for Areas 10 to 1000 Square Miles and Durations of 6 to 48 Hours," (1956).

CONTENTS

Location Plan
Watershed Map
Plate 1: Field Sketch
APPENDIX F

BACKGROUND DOCUMENTS
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

DAM INSPECTION REPORT
(By Visual Inspection)

<table>
<thead>
<tr>
<th>Type of Construction</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth w/concrete spillway</td>
<td>Water Supply</td>
</tr>
<tr>
<td>Earth w/drop inlet pipe</td>
<td>Power</td>
</tr>
<tr>
<td>Earth w/stone or riprap spillway</td>
<td>Recreation</td>
</tr>
<tr>
<td>Concrete</td>
<td>Fish and Wildlife</td>
</tr>
<tr>
<td>Stone</td>
<td>Fish and Wildlife</td>
</tr>
<tr>
<td>Timber</td>
<td>No Apparent Use-Abandoned</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Impoundment Size</th>
<th>Estimated Height of Dam above Streambed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5 acres</td>
<td>Under 10 feet</td>
</tr>
<tr>
<td>5-10 acres</td>
<td>10-25 feet</td>
</tr>
<tr>
<td>Over 10 acres</td>
<td>Over 25 feet</td>
</tr>
</tbody>
</table>

- Condition of Spillway
 - Service satisfactory
 - In need of repair or maintenance

- Condition of Non-Overflow Section
 - Satisfactory
 - In need of repair or maintenance

- Condition of Mechanical Equipment
 - Satisfactory
 - In need of repair or maintenance

Evaluation (From Visual Inspection)
- No defects observed beyond normal maintenance
- Repairs required beyond normal maintenance

Hazard Class, if Necessary: B-C
Development Potential: Repaired in 1974
Recreational Use
- New concrete on open spillway
- Embankment widened
- New valve placed upstream
<table>
<thead>
<tr>
<th>Dam Number</th>
<th>River Basin</th>
<th>Town</th>
<th>County</th>
<th>Hazard Class</th>
<th>Date & Inspector</th>
</tr>
</thead>
<tbody>
<tr>
<td>317</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stream = "K" To "R" Owner =

Type of Construction
- [x] Earth w/Concrete Spillway
- [] Earth w/Drop Inlet Pipe
- [] Earth w/Stone or Riprap Spillway
- [] Concrete
- [] Stone
- [] Timber
- [] Other

Use
- [] Water Supply
- [] Power
- [x] Recreation - [] High Density
- [] Fish and Wildlife
- [] Farm Pond
- [] No Apparent Use-Abandoned
- [] Flood Control
- [] Other

Estimated Impoundment Size [] Acres

Estimated Height of Dam above Streambed 10 Ft.

Condition of Spillway
- [x] Service satisfactory
- [] Auxiliary satisfactory
- [] In need of repair or maintenance

Explain: ____________________________

Condition of Non-Overflow Section
- [x] Satisfactory
- [] In need of repair or maintenance

Explain: ____________________________

Condition of Mechanical Equipment
- [x] Satisfactory
- [] In need of repair or maintenance

Explain: ____________________________

Siltation
- [] High
- [] Low

Explain: ____________________________

Remarks:

Evaluation (From Visual Inspection)
- [] Repairs req'd. beyond normal maint.
- [x] No defects observed beyond normal maint.
Fill out a form as complete as possible for each dam in your district and send to State Conservation Commission, Albany, N.Y.

1. Name and address of owners: Ramapo Mfg. Co.
2. Date of construction: about 1800
3. Uses of impounded water: as a lake and reservoir, for use if needed
4. Character of foundation bed: rock
5. Material of waste spill: no spill, runs out of brook outlet
6. Length of waste and depth below dam: some distance from dam
7. Total length of dam including waste: about 300 feet
8. Material of dam: rock & earth; no waste, asbestos gate about 3 ft. diameter other than brook outlet
9. Discharges, size and location: below sketch section of waste and section of dam, with greatest heights and top thickness and bottom thickness. On opposite side sketch general plan of dam and give distance from a bridge or from a tributary stream.

The water runs out of brook outlet so that is the waste. The earth dam is about 10 feet and very wide being a road way and stone walls on both sides. Has been as now for about a hundred years.

Aug 20, 1912
Ramapo Mfg. Co.
Ramapo
Rockland Co.

(Signature, address and date.)
Mr. S.A. Wyle
Ramapo Land Co., Inc.
Sloatsburg, New York 10974

Potague Dam; Cranberry Dam

Dear Mr. Wyle:

Referring to your letters of June 11 and June 25, 1968, we have inspected the dam twice at Potague Lake and once the spillway and dam at Cranberry Reservoir in Sloatsburg. The scope of our assignment, as confirmed in our letter of August 1, 1968, is to investigate the conditions of the Potague and Cranberry dams from point of view of safety, and to suggest improvements, if necessary. Our findings and suggestions are condensed as follows:

a) Potague Dam and Spillway

The dam is a low earth dam of about 14 to 15 feet of maximum height and with 14 feet of crown width. Length of the dam is about 350 feet. The upstream side of the dam is sloping and has a rip-rap protection with about 1 to 1 slope.

The downstream side of the dam is nearly vertical, perhaps a slope of 1 horizontal to 8 to 10 vertical, and is retained by a rubble wall with large, open joints.

In the middle of this dam a 14" diameter intake pipe penetrates the dam. Intake valve in the lake is not accessible and is inoperable. A second valve downstream could be closed,
if necessary. Two 10 to 12" thick concrete walls around the intake pipe serve as water stops or collars to prevent seepage along the pipe. Actually, there is a certain seepage which could be observed and which make the vicinity of the intake pipe swampy, but it could not be observed whether this seepage come through the dam or from the leaking intake pipe or leaky drain valve.

On both sides of the dam causeway 10 to 12 large tree trunks could be seen. The top of the dam was decorated with trees and only a few years ago, these trees were cut down. It was feared that the dam would be broken if a storm would fell one of these trees. The tree trunks, however, could not be grabbed because this would mean the destruction of the dam. On the other hand, the remaining large tree roots will decay sooner or later, and form natural seepage tubes which could cause the failure of the dam.

The reservoir has a 10 ft+ long spillway which was barely sufficient to prevent from overflowing of the dam on May 30, 1968, after a 6" rain. The top of the spillway is about two feet lower than the crown of the dam.

The tailrace of this spillway seems to be a former creek bed towards Beaver Pond. A dirt road crosses this creek bed about 50 feet downstream from spillway. The road has a crude culvert formed from large stones. This culvert has a waterway section of 4' x 4' - 6" or about 18 square feet area, and may have a maximum capacity of 300 to 400 cfs. The road was washed out on May 30, 1968 here as well as at the outlet of the Beaver Pond.

The spillway length and capacity has a theoretical value only, because the vicinity of the concrete spillway is low and as the water level rises, more and more width is used for overflowing, and on May 30, 1968 probably 100 to 120 feet wide overflow has alleviated the precarious plight of the dam.

The capacity of this natural, additional spillway is probably not very much because part of its length is almost as high as the dam and because this additional length was grown full with weeds and bushes. As the cheapest means of increasing the spillway overflow capacity, it was suggested to clear the vicinity of the existing spillway, and this was also done.
The drainage area of the Potague Lake is small, somewhat less than one square mile. Almost one third of this drainage area is the lake itself where no percolation may occur, the runoff on the lake area equals with the precipitation.

Various hydrological handbooks give runoff figures for a one square mile area as 1,400 to 4,500 cfs. Our hydrological analysis shows that much greater storms and runoff discharges may occur in the future than the torrential storm of May 29, 30, 1968 has produced. Our reduced, less than maximum, computed runoff figure is 3,750 cubic feet per second.

We have worked out a computer program for reservoir routing for another dam and reservoir, and this program could be applied to Potague Lake as well.

Reservoir routing means that a storm runoff must fill up the lake first, and if a rain storm is not of long duration, the outflow from the lake will be much smaller, more evenly distributed in time, than the inflow from the lake is. Condition is, that the spillway capacity must be adequate.

We have assumed a stepped-up spillway, as it is shown on Sketch No. 473-1, with a total length of 150 feet. We have also assumed, that the top of the existing spillway is 2'-0" below the top of the dam crest.

A theoretical runoff hydrograph was computed and it was assumed that the storm duration will be six hours.

We could measure the lake area at Elevation 618 and 620 from the blown-up print of the U.S.G.S. map which you have loaned to us, and have assumed - for the sake of computation - that the increase in lake surface area is directly proportional with the elevation increase.

Since there is no detailed topographical map or plan available around the Potague dam and vicinity, we have assumed that the top of the existing spillway is at El. 618.0, and the crest of the dam at El. 620.0.
The flood routing (Exhibit "2") for Spillway Type "A" shows that, after the assumed six hours of torrential rain, the lake level would rise 1.62 feet to El. 619.62. The maximum inflow of 3,750 cfs was assumed to occur after two hours and the maximum outflow on the spillway would be 560 cfs after six and a half hours.

The dampening effect of the large reservoir is clearly noticeable. The dam would have a 0.4 ft. (about 4-1/2") freeboard, which is very little, but still better than it had on May 30, 1968.

We have tried a 150 feet long spillway which had a level crest at assumed elevation 618,0 and have let run our flood routing computation with this increased spillway capacity. The lake level rose only to elevation 619.22 but the maximum outflow was 711 cfs.

Since our aim is to preserve the dam with the least possible inconvenience for the downstream areas, we suggest to use the first, stepped-up spillway. The maximum discharge over this new spillway will presumably be much larger than it is now, but this must be taken in consideration if the overtopping of the dam must be prevented.

As far as the dam stability is concerned, the present earth dam with the rubble stone facing is standing up since several decades, since sixty years as we were told. The remaining tree roots, however, after they decay, will form tubes across the dam and this may become a dangerous situation.

The tree trunks with their roots cannot be excavated without lowering the lake level below intake pipe, and even then it would mean almost the total destruction of the present dam. For this reason, another method must be found to make the dam safe after the decayed tree trunks will form many pipes across the dam.

It would be difficult and costly to install a waterproof membrane in the front of the dam, in water, we would not recommend it.

We propose to place rock fill on the dry side face of the dam, which would greatly increase its stability. Since, however, this rockfill would not be stable without the existing dam,
the existing earth dam must be preserved. In order to prevent piping or washing out earth material from the existing dam, a min. 2 ft. thick clay membrane may be placed and compacted between the old stone face and new rock fill, if clay is readily available.

The proposed section of the new spillway is shown on Sketch No. 473-1. Salvage of the existing broken, cracked, short spillway slab is not warranted.

b) Tailrace between Potague Lake and Beaver Pond.

The tailrace is basically a dry creek bed, with a culvert as a bottleneck at a road crossing. It would be advisable to install one 3' diameter culvert, at a suitable location on one side of the existing culvert, at the upper end of the road, near Potague Lake. Otherwise the road will be washed out again as on May 30, 1968.

c) Beaver Pond

The Beaver Pond forms an intermediate storage between Potague and Cranberry Lakes. The pond is shallow, grown full with reeds, weeds, water lilies. Because of its size, no improvement of the storage capacity is warranted. However, some thoughts should be given to the improvement of outflow conditions towards the new, proposed culverts, towards Cranberry Lake. At this road crossing, new culverts are proposed and will be constructed soon.

d) Cranberry Lake

Our office has already investigated Cranberry Dam back in 1960. The report of Mr. William J. Stein, dated of October 20, 1960, recommends to repair the underside beams of the reinforced concrete Amburssen type dam deck and the clearing and repair of the existing spillway.
In the meantime, about half of the spillway was cleared from trees and bushes but the dam itself was not repaired. The corrosion of exposed reinforcing bars is getting worse from year to year, and the failure of these horizontal beams may mean the failure of the dam. The repair and patching up of these beams is urgently needed. In Appendix "6" we have drafted a specification for this repair work.

The spillway of Cranberry Lake is 205 ft. long and seems to be adequate. It would be necessary to clear the other half of the spillway crest as well.

At one place, the concrete weir of the spillway is broken and a large piece of concrete has fallen out. This portion should also be repaired.

Conclusions

For the Potague Reservoir a new spillway of much larger capacity is needed. In addition, the existing earthfill dam should be reinforced with a downstream rock fill. The area of the future rockfill must be cleared of all trees, fallen, cut-off or still-standing trees. Existing intake pipe must be protected from overload.

An additional culvert is required at the upper end of the road between Potague Lake and Beaver Pond.

Rehabilitation of the Beaver Pond outlet. Culverts below road are assumed to be in process towards installation by the Walsh Construction Company.

Repair of six spalling reinforced concrete beams at underside of Cranberry Dam.

Repair of the Cranberry Lake Spillway.

While there is no emergency which would require an immediate, crash repair program, the proposed improvements and repairs cannot be postponed indefinitely. Torrential rains, as the May 29-30, 1968 was, may occur in any season and the repetition of such a storm would find Potague Dam unprepared. All the proposed repairs and improvements should be executed within two years, or at the latest, until December 31, 1970.

A great impediment of proper planning is that there exists no detailed topographical survey, neither from the Potague Dam vicinity nor from Cranberry Dam and spillway. The proposed
improvements actually could be executed from our sketches with on-the-spot instructions and improvisations. However, the task of preserving two dams from catastrophe is a very important one. Moreover, the most appropriate structures could be designed only if their surroundings are surveyed, and when their proper adaptation into the environments is made possible. The relative elevations of the structures and of the water levels is very important at every hydraulic structure complex. For these reasons, we recommend you to order a surveying of the relevant areas and to order a proper design at least of the Potague Lake spillway.

We have deliberately omitted the question of relocating the supply water intake in front of the dam into a deeper position because this is not connected with the safety of the dam. It was also endeavored to improve the safety of the dams with the least unavoidable aggravation of the tailrace conditions.

Although it is impossible to make a design and quantity take-off without a topographical map of suitable scale, we have tried to estimate the cost of the proposed improvements as follows:

1. New spillway at Potague Dam,
 150 feet long, @ 25.00
 $ 3,750
2. Rockfill addition to dam:
 840 cy. @ 8.00
 240 cy. clay core @ 10.00
 2,400
3. One additional culvert, 36"
 800
4. Rehabilitation of Beaver Pond Outlet
 (estimated)
 2,000
5. Repair of the reinforced beams
 800
6. Repair of Cranberry Lake Spillway
 Cleaning of spillway vicinity
 530
 Total
 $19,000
 Survey and engineering
 2,000
 Contingencies
 1,000
 $22,000
Typical Spillway Section

Scale: ½" : 1'-0"

Spillway Overflow Weir,

Scale Horizontal: 1" : 30'
Vertical: 1" : 3'

Sketch No. 473-1
Spillway Type "A"

<table>
<thead>
<tr>
<th>TIME (HR)</th>
<th>ELEVATION (FT)</th>
<th>INFLOW (CFS)</th>
<th>OUTFLOW (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00000</td>
<td>618.00890</td>
<td>40.00000</td>
<td>14322</td>
</tr>
<tr>
<td>1.50000</td>
<td>618.07133</td>
<td>519.99999</td>
<td>4.56497</td>
</tr>
<tr>
<td>2.00000</td>
<td>618.54238</td>
<td>3749.99990</td>
<td>39.27266</td>
</tr>
<tr>
<td>2.50000</td>
<td>619.11482</td>
<td>1750.00010</td>
<td>215.11708</td>
</tr>
<tr>
<td>3.00000</td>
<td>619.34048</td>
<td>920.00011</td>
<td>341.52793</td>
</tr>
<tr>
<td>3.50000</td>
<td>619.43598</td>
<td>730.82383</td>
<td>406.46349</td>
</tr>
<tr>
<td>4.00000</td>
<td>619.49904</td>
<td>720.900000</td>
<td>449.35081</td>
</tr>
<tr>
<td>4.50000</td>
<td>619.55017</td>
<td>710.76220</td>
<td>496.15685</td>
</tr>
<tr>
<td>5.00000</td>
<td>619.58431</td>
<td>640.00002</td>
<td>527.56573</td>
</tr>
<tr>
<td>5.50000</td>
<td>619.60391</td>
<td>620.00001</td>
<td>545.60324</td>
</tr>
<tr>
<td>6.00000</td>
<td>619.61621</td>
<td>600.00001</td>
<td>556.91519</td>
</tr>
<tr>
<td>6.50000</td>
<td>619.61952</td>
<td>550.00003</td>
<td>559.95658</td>
</tr>
<tr>
<td>7.00000</td>
<td>619.60271</td>
<td>400.00009</td>
<td>544.49699</td>
</tr>
<tr>
<td>7.50000</td>
<td>619.56501</td>
<td>300.00007</td>
<td>509.81443</td>
</tr>
<tr>
<td>8.00000</td>
<td>619.50474</td>
<td>100.00015</td>
<td>454.36269</td>
</tr>
</tbody>
</table>

FLOOD 15:52

SPILLWAY LENGTH = 150.00 FT

CREST ELEVATION = 618.00 FT

Spillway Looking West

Top of present spillway assumed at EL 618.0

OFF AT 15:56

Elapsed Terminal Time = 15 MIN.
FLOOD 16:33 G FRI 09/29/68 Sacketsdv, New York EXHIBIT 3

PETWAY WATER CO.
Petchaer Reservoir **ReGreek** SET 13

Routing

<table>
<thead>
<tr>
<th>TIME (HR)</th>
<th>ELEVATION (FT)</th>
<th>INFLOW (CFS)</th>
<th>OUTFLOW (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>618.00869</td>
<td>40.00000</td>
<td>1.87821</td>
</tr>
<tr>
<td>1.5000</td>
<td>618.06999</td>
<td>519.99999</td>
<td>15.11847</td>
</tr>
<tr>
<td>2.0000</td>
<td>618.52888</td>
<td>3749.99990</td>
<td>182.90438</td>
</tr>
<tr>
<td>2.5000</td>
<td>619.04150</td>
<td>1750.00000</td>
<td>551.52157</td>
</tr>
<tr>
<td>3.0000</td>
<td>619.19206</td>
<td>920.00011</td>
<td>634.01472</td>
</tr>
<tr>
<td>3.5000</td>
<td>619.21897</td>
<td>730.00003</td>
<td>737.69214</td>
</tr>
<tr>
<td>4.0000</td>
<td>619.22231</td>
<td>720.00000</td>
<td>710.63604</td>
</tr>
<tr>
<td>4.5000</td>
<td>619.22313</td>
<td>710.00000</td>
<td>711.35684</td>
</tr>
<tr>
<td>5.0000</td>
<td>619.21581</td>
<td>640.00002</td>
<td>704.91190</td>
</tr>
<tr>
<td>5.5000</td>
<td>619.20112</td>
<td>620.00001</td>
<td>691.96428</td>
</tr>
<tr>
<td>6.0000</td>
<td>619.18504</td>
<td>600.00001</td>
<td>677.83587</td>
</tr>
<tr>
<td>6.5000</td>
<td>619.16478</td>
<td>550.00003</td>
<td>660.00896</td>
</tr>
<tr>
<td>7.0000</td>
<td>619.12311</td>
<td>400.00009</td>
<td>627.73956</td>
</tr>
<tr>
<td>7.5000</td>
<td>619.07340</td>
<td>300.00007</td>
<td>579.59690</td>
</tr>
<tr>
<td>8.0000</td>
<td>618.99829</td>
<td>100.00015</td>
<td>513.66721</td>
</tr>
</tbody>
</table>

AT LINE NO. 2000: STOP END

Top of present Spillway assumed at EL. 618.0

RAN 17.33 SEC

OFF AT 16:06. ELAPSED TERMINAL TIME = 5 MIN
HAZEN AND SAWYER
Engineers
360 Lexington Ave.
New York City

POTHAT WATER CO.
Ranapo Land Co.
Staatsburg, New York.

New York City

Date Sgd: 23rd 68
By RAP Chkd:...
Job #: 473...
EXHIBIT 4

PROPOSED REINFORCEMENT
OF THE POTAGUE DAM.

SCALE: 3/16" : 1' 0"

Assumed original grade:...