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ABSTRACT

In this dissertation, the design of transmit and processing
waveforms is used to maximize the signal-to-interference ratio (SIR) to
improve the detectability of a doubly spread target return in the
presence of volume and/or surface reverberation plus white Gaussian
noise. The SIR is dependent upon target and reverberation scattering
functions and the cross—ambiguity function of the transmit and process-
ing waveforms. Volume reverberation, target, and surface reverberation
scattering functions are derived. Volume reverberation is modelled as
the spatially uncorrelated scattered field from rahdomly distributed
point scatterers in deterministic plus random translational motion. A
single scattering approximation is used and general, frequency dependent
transmit and receive arrays are included in all derivations. The doubly
spread target is modelled as a linear array of discrete highlights in
deterministic translational motion. A target scattering function is
obtained from the general bistatic volume reverberation scattering
function by appropriately specifying the volume density function of the
discréte point scatterers for a monostatic geometry. A surface rever-
beration scattering function dependent upon the directional wave number
spectrum is derived for a bistatic geometry using a generalized
Rirchhoff approach. This approach uses a Fresnel corrected Kirchhoff
integral and the Rayleigh hypothesis that a scattered field can be
represented as a sum of plane waves travelling in different directionms.
No small slope approximation is made. All three scattering functions

predict spreading in both time delay and frequency.
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Three optimization problems concerning the maximization of the
SIR for a doubly spread target are formulated. Each problem is ex-
pressed in terms of an equivalent nonlinear programming problem
defined on a real space by restricting the transmit and processing
waveforms to be complex weighted, uniformly spaced pulse trains.
Each subpulse can be different in shape and can occupy the entire
interpulse spacing interval. The first two optimization problems
involve maximization with respect to the complex weights. The
third problem involves maximization with respect to the subpulse
parameters (for example, frequency deviation, swept bandwidth, etc.).
Of the three optimization problems, maximization with respect to the
subpulse parameters is the most interesting and significant one.
However, even with several simplifying assumptions, it is shown to

be a difficult nonlinear programming problem. No numerical results

are obtained for the various optimization problems.
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CHAPTER 1
INTRODUCTION

The purpose of this introductory chapter is threefold: (1)
to state the problem considered in this dissertation, (2) to high-
light the contents and assumptions in each chapter, and (3) to
summarize the significance of the results contained herein. Since
this dissertation includes several unique (although related) topics,
detailed discussion of relevant literature is reserved to the in-
dividual chapters themselves.

This dissertation is concerned with the detection of a doubly
spread target return in the presence of volume and/or surface rever-
beration plus white Gaussian noise. The particular approach taken is
to maximize the signal-to-interference ratio (SIR) via design of the
transmit and processing waveforms. Previous research efforts have
been devoted mainly to either the slowly fluctuating point target or
singly spread target problems. The basic philosophy adopted is to
treat both the ocean medium and the target as linear, time-varying,
random filters.

Accordingly, Chapter II discusses the fundamentals of linear,
time~varying, deterministic and random filters. Throughout this
dissertation, the terms filter, system, and channei are used inter-
changeably. Four system functions which are used to characterize
linear, time-varying filters are introduced. These functions are
(1) the time-varying impulse response, (2) the time-varying frequency

response or transfer function, (3) the spreading function, and (4)




the bi-frequency function. It is shown that these four system func-
tions and their corresponding autocorrelation functions are related
to one another via Fourier transformations. In addition to various
input-output relationships, expressions for the output power spectrum
for both deterministic and random systems are derived. The important
channel property of uncorrelated spreading is also discussed. The
discussion on uncorrelated spreading introduces the concepts of the
wide-sense stationary uncorrelated spreading (WSSUS) communication

channel and the scattering function along with its various Fourier-

transforms. The scattering function determines the average amount

of spread that an input signal's power will undergo as a function of
round-trip time delay (range) and frequency.

A brief discussion of two different ways of characterizing a
time-varying channel via its scattering function concludes Chapter II.
The first method involves interpreting the scattering function as a
joint density function since it is real, non-negative; and can'be
normalized to integrate to unity. Thus, first and second order
moments of the round-trip time delay (range) and frequency spread can
be computed. The second method is concerned with the finite extent
of the scattering function in the range-frequency plane. As a result
of this approach, the concepts of an underspread and an overspread
channel are defined. Criteria for avoiding spreading in range and/or
frequency are formulated in terms of the duration and bandwidth of
the transmit signal and the extent of the scattering function in the
range-frequency plane.

Chapter III introduces the problem of detecting a doubly

spread target return in the presence of reverberation and noise. A
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doubly spread target return is one which exhibits a spread in both
round-trip time delay and Doppler shift values. Chapter III begins
with a brief discussion of the complex envelope notation for bandpass
signals since the binary hypothesis testing problem is formulated in
terms of the complex envelopes of the target, reverberation, and noise
signals. Both the target and reverberation returns are modelled as

the outputs from linear, time-varying, random filters which are assumed
to be WSSUS communication channels.

The particular receiver structure used is a correlator followed
by a magnitude squared operation. The magnitude squared output from
the correlator is tested against a threshold determined from a proba-
bility of false alarm constraint in a Neyman-Pearson test.

Having specified both the binary hypothesis testing problem and
the receiver, the signal-to-interference ratio (SIR) for a doubly
spread target is derived. It is shown to be dependent upon the target
and reverberation scattering functions and the cross-ambiguity function |
of the transmit signal and the processing waveform. It is also demon-
strated that the more familiar SIR expression for a slowly fluctuating
point target can be obtained from the general SIR expression for a
doubly spread target.

The final discussion in Chapter III is devoted to the question
of receiver optimality, i.e., when is our choice of receiver an optimum
or sub-optimum receiver for detecting either a slowly fluctuating point
target or a doubly spread target. The discussion on optimality intro-
duces the performance measure A which is shown to be equal to the

SIR. The performance measure determines the probability of detection
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for a given probability of false alarm in the important case of
Gaussian statistics. In the case of Gaussian statistics, maximizing
A 1is equivalent to maximizing the probability of detection and it
is noted that this can be achieved by proper signal design.

In order to maximize the SIR for a doubly spread target via
signal design, one must be able to specify both the target and rever-
beration scattering functions. 1In general, the reverberation return
is a composite of volume, surface, and bottom reverberation returns.
ﬁowever, only volume and surface reverberation are considered.

In Chapter IV, both a volume reverberation and a target scatter-
ing function are derived. In the past, assumed functional forms for
the reverberation (clutter) scattering function were used in order
to calculate the SIR.

Volume reverberation is modelled as the scattered acoustic
pressure field from randomly distributed discrete point scatterers in
deterministic plus random tramslational motion. The point scatterers
are distributed in space according to an arbitrary volume density
function with dimensions of number of scatterers per unit volume.

The two-frequency correlation function representing the volume
reverberation communication channel is derived for a bistatic transmit/
receive planar array geometry. A single scattering approximation is
used and frequency dependent attenuation of sound ﬁressure amplitude
due to absorption is included. The scattered fields from different
regions within the scattering volume are assumed to be uncorrelated.
The relationships between the two-frequency correlation function,

coherence time, coherencz bandwidth, and frequency and time spreading




are also discussed. The volume reverberation scattering function is
obtained from the two-frequency correlation function via a two-
dimensional Fourier transformation. The volume reverberation
scattering function derived in Chapter IV is shown to include
explicitly all the important system functions and physical parameters
as opposed to having them lumped together and accounted for by a
single random variable as was common practice in the past. A proba-
bility density function of random Doppler shift due to the random
motion of the scatterers is also derived. 1In addition, the average
received energy from volume reverberation is computed from the volume
reverberation scattering function. Using several simplifying assump-
tions, it is shown to reduce to the sonar equation for reverberation
level.

The doubly spread target is modelled as a linear array of
discrete highlights in deterministic translational motion. The target
scattering function is obtained from the monostatic form of the volume
reverberation scattering function by appropriately specif&ing the
volume density function of the highlights.

Computer simulation results for both the volume reverberation
and target scattering functions are presented as examples involving a
monostatic transmit/receive array geometry. Computer plots of the
probability density function of the random Doppler shift are also
presented for a monostatic geometry as a function of the standard
deviation of the random motion of the scatterers.

Chapter V is devoted to the derivation of a surface reverbefation

scattering function. The underwater acoustic propagation path between
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transmit and receive arrays via the surface of the ocean is treated as
a linear, time-varying, random WSSUS communication channel. The
random, time-varying surface reverberation transfer function is derived
for a general bistatic geometry using a generalized Kirchhoff approach.
The generalized Kirchhoff approach uses a Fresnel corrected Kirchhoff
integral and the Rayleigh hypothesis that the scattered acoustic
pressure field can be represented as a sum of plane waves travelling

in many different directions. Also, no small slope approximation is
made.

The transfer function obtained in Chapter V is shown to be
greater in magnitude than those transfer functions previously derived
by the classical Kirchhoff approach, especially for the specular and
backscatter geometries. This is encouraging since results based upon
a classical Kirchhoff approach have predicted values for the scattering
coefficient that were smaller than experimental values. In addition,
a Gaussian functional form for the projected transmit beam pattern was
commonly assumed for mathematical convenience. The fact that the
actual projected transmit and receive beam patterns are not likely to
be Gaussian when doing experimental work leads to a major source of
error when comparing theoretical predictions with experimental results.
As a result, the transmit and receive directivity functions included
in the derivation of the transfer function in Chapter V are kept as
general, frequency dependent expressions. The necessary transfor-
mation equations which will project both directivity functions
exactly are provided.

Two second order functions are derived from the surface rever-

beration transfer function by assuming that the randomly rough, time-




varying ocean surface is a zero mean, wide-sense stationary, Gaussian
random process. They are the two-frequency correlation function.and
the surface reverberation scattering function. These second order
functions are shown to be dependent upon the directional wave number
spectrum of the ocean surface. Previously published expressions for
the ocean surface reverberation scattering function were based upon
a Fresnel corrected Kirchhoff integral and a small slope approximation.
They pertain only to a specular geometry. In addition, these express-
ions do not include a receive directivity function and a Gaussian
functional form for the projected transmit beam pattern was assumed.
And furthermore, very specific models for the ocean surface were used
~ rather than the general form of the directional wave number spectrum.
The optimization problem of maximizing the SIR for a doubly
spread target via signal design is considered in Chapter VI. Both the
! transmit and processing waveforms are restricted to be pulse trains.
Each subpulse of the transmit pulse train is allowed to be arbitrary
* in shape and can occupy the entire interpulse spacing interval if
desired. This represents a generalization of earlier approaches. The
processing waveform is a time and frequency shifted replica of the
transmit pulse tra’n. Each subpulse of both the transmit and processing
pulse trains is complex weighted. Restricting the transmit and
processing waveforms to be complex weighted pulse trains allows the
integral expression of the SIR to be transformed Into an equivalent
vector-matrix form.

Before the various optimization problems concerning the doubly

) spread target are discussed, the slowly fluctuating point target case




is considered. Although the point target problem is not of primary
concern in Chapter VI,'it is an important and interesting problem in
its own right and is included for completeness since substantial
research effort has been devoted to it in the past. Two different
optimization problems concerning the méximiiation of the SIR for a
slowly fluctuating point target are discussed. The first problem is to
find the optimum, unit-energy, complex processing weighting vector that
maximizes the SIR when the complex transmit weighting vector and the
parameters of the subpulses are given. The second problem is to find
the optimum, -transmit-processing, complex weighting vector pair that
maximizes the SIR when the parameters of the subpulses are given.

- The maximization is subject to unit-energy constraints on both the

transmit and processing waveforms.

Three different optimization problems concerning the maximization
of the SIR for a doubly spread target are discussed. The first problem
is to find the optimum complex processing weighting vector that maximizes
the SIR when the complex transmit weighting vector and the parameters of
the subpulses are given. The maximization is subject to a unit-energy
constraint on the processing weighting vector and a constraint on the
desired amount of reverberation to be removed by the processing weighting
vector. The second problem is to find the optimum, transmit-processing,
complex weighting vector pair that maximizes the SIR when the parameters

of the subpulses are given. The maximization is subject to .a dynamic

range constraint on the transmit weighting vector, a unit-energy con-
straint on the processing weighting vector, and a constraint on the
desired amount of reverberation to be removed by the processing

weighting vector. ‘ 4




And finally, the third problem is to maximize the SIR for a
I doubly spread target with respect to the parameters of the subpulses.
For this particular optimization problem, it is assumed that both the
1 transmit and processing weighting vectors are equal and given, and
that the maximization is subject to a constraint on the desired amount
of reverberation to be removed by the processing waveform and con-
straints on the subpulse parameters themselves.

Since all three optimization problems for the doubly spread
target are originally defined on a complex space, the approach taken
in Chapter VI is to formulate the optimization problems into equivalent

nonlinear programming problems defined on a real space.

- The significance of this dissertation can be summarized by
stating that all the information required to solve the problem of

! - detecting a doubly spread target return in the presence of reverberation

- and noise by maximizing the SIR via signal design is furnished; namely,

the receiver structure; target, volume reverberation, and surface
reverberation scattering functions; and the formulation of the various
SIR optimization problems into equivalent nonlinear programming

problems defined on a real space.




CHAPTER II
FUNDAMENTALS OF LINEAR TIME-VARYING FILTERS

2.1 Introduction

The purpose of this chapter is to introduce some of the basic
mathematical relationships, terminology, and concepts that are part of
linear, time-varying, filter theory. This chapter is divided into two
major sections. Section 2.2 is devoted to deterministic filters, and
Section 2.3 is devoted to random filters. Througﬁout this chapter and
the remainder of this dissertation, the terms filter, system, and
channel will be used interchangeably.

Section 2.2 introduces four filter functions which are used to
characterize linear, time-varying filters. These functions are
(1) the time-varying impulse response, (2) the time-varying frequency
response or transfer function, (3) the spreading function, and (4) the
bi-frequency function. It is shown that these four system functions
are related to one another via Fourier transformations. In addition
to various input-output relationships, an expression for the output
power spectrum is derived which demonstrates the frequency spreading
property of linear, time-varying filters.

Since Section 2.3 is devoted to random filters, the discussion
begins by defining the autocorrelation functions of the four system
functions. It is shown that the system autocorrelation functions are
also related to one another via Fourier transformations. The important
channel property of uncorrelated spreading is considered next. The

discussion on uncorrelated spreading introduces the concept
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of the scattering function and its various Fourier transforms. 1In
addition to various input~output relationships, expressions for the
output autocorrelation function and the output power spectral density
are also derived. Analogous to the deterministic results, the expression
for the output power spectral density also predicts frequency spreading.
And finally, there is some discussion on two different ways of charac-
terizing a time~varying channel via its scattering function. The first
method involves interpreting the scattering function as a density
function from which first and second order moments can be computed, and
the second method is concerned with the finite extent of the scattering

function itself.

2.2 Linear Time-Varying Deterministic Filters

2.2.1 Impulse response and transfer functions. A linear, time-

varying filter is commonly depicted aes in Figure 1, where it is
characterized by its corresponding time-varying impulse response
function h(t,T). The function h(t,T) describes the response of the
filter at time t due to the application of a unit impulse at time T .

The relationship between the input signal x(t) and the output signal

y(t) is given by:l_3

y(t) = J x(a)h(t,a)do . (2.2-1)

-=00

Note that if we let =x(t) = 6(t - T) in Equation (2.2-1), where &(°)

is the Dirac delta function, then:

[+ -]

J §(@ - T)h(t,a)da = h(t,T) , (2.2-2)

where use has been made of the sifting property of the Dirac delta

function.




x(t) —— | h(t,T) | /> y(t) .

Figure 1. Linear time-varying filter.

The causality condition for a time-varying filter is:
h(t,T) = 0 for t < T (2.2-3)

which states that the filter cannot respond before the application of
an input signal. Using the causality condition of Equation (2.2-3) and

assuming that the input signal x(t) 1is zero for ¢t < to » Equation

(2.2-1) becomes:
t
y(t) = f x(T)h(t,T)dT . (2.2-4)
t

g o

Both Equation (2.2-1) and (2.2-4) are equivalent representations of the
output if the time-varying filter is causal. The output of a linear,
time~invariant, causal filter can also be obtained from Equations
(2.2-1) and (2.2-~4). 1In this case, h(t,T) becomes h(t - t) , where
h(t = 1) =0 for t < T : and Equation (2.2-4) reduces to the well

known convolution integral
t
: y(t) = J x(T)h(t - 1)dr . (2.2-5)
t
o
Analogous to the frequency response or transfer function H(f)
of linear, time-invariant systems is the time-varying frequency response
or transfer function H(f,t) of linear, time-varying systems. It is

defined by Zadehl’2 as:
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o«

j h(t,D)exp[~j2rf(t - 1)]}dt , (2.2-6)

-0

H(f,t)

where t 1is considered to be a parameter. Note that Equation (2.2-6)
will reduce to H(f) when the filter under consideration is in fact
time-invariant. When this is the case, h(t,t) = h(t - T) and

Equation (2.2-6) becomes:

oo
H(f,t) = J h(t - T)exp(-j2rf(t ~ 1)]ldT . (2.2-7)
-0
If we let o=t - 1T , then da = -dt and Equation (2.2-7) becomes:
[e o]
H(f) = f h(t)exp(-j2rft)dt (2.2-8)
-0

which is the Fourier transform of h(t) . A very important observation
to make at this time is that h(t,7) and H(f,t) , as defined by
Equation (2.2-6), do not form a direct Fourier transform pair as h(t)
and H(f) do.3 It will be shown later that if an alternate form of
the time-varying impulse response is used, a diresct Fourier transform
pair can be formed between it and its corresponding time-varying
transfer function.

An equally important result is the fact that a compléx exponen-
tial input signal can be used to define the frequency response of both
linear time-invariant and linear time-varying systems.l This can
easily be shown by representing a linear, time-varying filter by the
linear operator L(*) wﬁich operates on input time functions. The

output of the filter y(t) can then be expressed as:

y(t) = L[x(t)] . (2.2-9)

P . T O oo an aselifuin s mecncimeinitsiiens __M
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If we now let x(t) = exp(+j2nf°t) , where fo is some arbitrary

constant frequency, then from Equations (2.2-1) and (2.2-9):

[ <]

L[exp(+j21rfot)] = Jexp(+j27rfor)h(t,'r)d1 . (2.2-10)

-00

and using the definition of H(f,t) given by Equation (2.2-6),

L[exp(+j2nfot)] = H(fo,t)exp(+j2nfot) s (2.2-11)

where L[exp(+j2ﬂf°t)] is the response of the filter to exp(+j2wfot)
and H(fo,t) is the time-~varying frequency response of the filter
evaluated at f = f0 .
As was mentioned previously, h(t,T) and H(f,t) , as defined
by Equation (2.2-6), do not form a direct Fourier transform pair.
However, if we follow the development of Kailath3 and introduce the
alternate form of the time-varying impulse response h(t,t - 1), then
it can be shown that h(t,t - 1) and H(f,t) , as defined by
Equation (2.2-6), do form a direct Fourier transform pair, i.e.,
h(t,t - 1) «—— H(f,t) (2.2-12)
T
with t as a parameter. The function h(t,t - T) describes the
response of the filter at time t due to the application of a unit
impulse at time t - T . The time domain parameter T corresponds

to the "age" of the application of the unit impulse, i.e., t - T
seconds ago.

Equation (2.2-12) can be verified by starting with the defin-

ition of H(f,t) , i.e.,

O T WO PR P Ny . A -
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o

H(f,t) = J h(t,a)exp{-j2nf(t ~ a)lda , (2.2-13)
=00
where t can be considered as a fixed constant. If we let o =¢ -1,

then do = -dt and Equation (2.2~13) becomes:

]

H(f,t) = I h(t,t - t)exp(-j2mft)dr (2.2-14)

-0

which is the Fourier transform of h(t,t - T) with respect to T .

As a result,

- o
} h(t,t - 1) = J H(f,t)exp(+j2mET)df , (2.2-15)
-0
| where h(t,t - 1) 1is the inverse Fourier transform of H(f,t)

The relationship between the input and output signals when

hit,t - T) is used to describe a linear, time-varying filter can be

obtained from Equation (2.2-1), i.e.,

o

y(t) = Jf x(@)h(t,a)da . (2.2-16)

-0
If we let a =t - 1t as before, then da = -dt , where t is
considered to be a fixed constant. Substituting these relations into

Equation (2.2-16) yields the desired result:3

[ o]

y(t) = J x(t - T)h(t,t- - T)dt . (2.2-17)

-0

The causality condition for h(t,t - 1) 1is:

h(t,t = 1) = 0 for 1 <0 . (2.2-18)
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Note that this condition depends only on T and not upon an inequality
relationship between t and T .

If the filter described by h(t,t - 1) 1is in actuality time-
invariant, then h(t,t - T) = h[t - (¢t - T)] = h(T) . As a result,
Equation (2.2-14) reduces to. H(f) = F{h(t)} , where F {+} indicates
a forward Fourier transform. And furthermore, Equation (2.2-17)

reduces to the familiar convolution integral

-]

y(t) = [ x(t - T)h(r)dT . (2.2-19)
-00
where h(t) =0 for T < 0 for a causal filter.
And finally, if we let x(t) = exp(+j2vf°t) in Equation (2.2-17),

then,

L[exp(+j2ﬂf°t)] = H(fo,t)exp(+j2ﬂfot) ’ (2.2-20)

where H(fo,t) is the time-varying transfer function of the filter
given by Equation (2.2-14) evaluated at f = fo , and where use of
Equation (2.2-9) was made. Hence, a complex exponential input signal
can be used to define the frequency response of a linear, time-varying
filter characterized by either h(t,T) or h(t,t - T).3

In order to be consistent with the underwater acoustic signal
processing literature (e.g., see References 4-7), the time-varying
impulse response h(t,t - T) will hereafter by denoted as h(T,t),

i.e.,
h(t,t) = h(t,t - 1) . (2.2-21)

where h(T,t) denotes the response of the filter at time t due
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to the application of a unit impulse at time ¢t - 1. This notation is
more succinct and convenient, especially when dealing with Fourier
transform pairs. Figure 2 summarizes the important relationships
established so far. Figure 2a is the more common representation of a
linear, time-varying filter, and Figure 2b is the alternate represent-

ation which will be used for the remainder of this dissertation.

2.2.2 Additional filter functions. Two filter functions have

already been presented which characterize linear, time-varying filters.
They are the time-varying impulse response and transfer functions. Two
additional filter functions will now be introduced; namely, the
spreading function and the bi-frequency function. The spreading
function will be discussed first.

The spreading function S(r,$) is defined as the Fourier
47

transform of h(T,t) with respect to t , i.e.,

h(t,t) «— 5(1,¢) , (2.2-22)

t
where
A

S(1,¢) = J h(t,t)exp(-j2mot)dt (2.2-23)
and

h(t,t) = J S(1,$)exp (+j2mpt)dd . (2.2-24)

The frequency variable, ¢ (in Hz), corresponds to the rate of change
of the filter's impulse response. The spreading function is a frequency
domain measure of the time variation of the filter. If the spectrum

S(t,¢) 1is confined to low values of 4 , then this would be an

L.
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x..) - —| h(t,T) — y(t)

oo

y(t) = J x(T)h(t,T)dT
H(f,t) = J h(t,r)exp[—jZTrf(t-'r)]d‘r

(a)

x(t) —| h(t,t) |— y(t)

y(t) = J x(t - Tih(z,t)dt

h(t,t) +— H(f,t)

T

H(f,t) = j h(t,t)exp(-j2nfT)dt

h(t,t) = J H(f,t)exp(+j2nfT)df
(b)

Figure 2. Two different representations of linear, time-varying filters:

(a) the more common representation, and {b) an alternate
representation.

Sab N
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indication that the characteristics or properties of the system are
changing slowly with time. However, if §S(1,$) occupied the region
of high ¢ values, then this would be an indication that the filter's
properties are varying rapidly with time.

It has already been shown that the output of a linear, time-

varying filter can be represented as

o0

y(t) = J x{(t - T)h(t,t)dt . (2.2-25)
-0
where Equation (2.2-21) was substituted into Equation (2.2-17). An
alternate representation of y(t) can now be obtained by substituting
Equation (2.2-24) into Equation (2.2-25). Doing so yields:

-]

y(e) = J J x(t ~ T)exp(+j2mot)S(t,p)dtrdd , (2.2-26)
-0

where the integrand term x(t - T)exp(+j2mét) is a time and frquency
shifted version of the input signal. The output, as given by Equation
(2.2-26), can be interpreted as being equal to the sum of time and
frequency shifted components of the input weighted by the spreading
function S(t,$) . Therefore, the spreading function determines the
amount of spread in round-trip time delay T and frequency ¢ that an
input signal will undergo as it passes through the time-varying
channel.l‘-6

The last filter function to be discussed is the bi-frequency

function B(f,¢) . It is defined as being the Fourier transform of
4-7
’ i

H(f,t) with respect to t

8.,
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H(f,t) 4—-—t——-> B(f,¢) (2.2-27)
where
B(£,0) & Jw H(E,t)exp (-)2moe)dt (2.2-28)
and -
H(f,t) = Jw B(f,d)exp(+j2mdt)dd . (2.2-29)

Just as the spreading function gives an indication of how rapidly
h(t,t) changes with time, the spectrum B(f,$) gives an indication

of how rapidly H(f,t) changes with time.s’6

If B(f,$) 1is confined
to large values of ¢ , then this would be an indication that H(f,t)

varies rapidly with time. However, if B(f,¢) 1is concentrated mainly

in the region of low ¢ wvalues, then this would be an indication that
H(f,t) varies slowly with time.
The bi-frequency function can also be found by taking the

Fourier transform of S(T,$) with respect to T , i.e.,

{ $(1,9) «—— B(f,9) , (2.2-30)
T
where
B(f£,9) = [ S(t,$)exp(-j2nfT)dT (2.2-31)
and _:
S(t,9) = J B(f,d)exp(+j2mfT)df . (2.2-32)

In addition, h(T,t) and B(f,$) form a two-dimensional Fourier

transform pair, i.e.,
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h(t,t) e B(£,9) , (2.2-33)
T,t
where
B(f,) = J J h(t,t)exp(-j2n(ft + ¢t)] drdt (2.2-34)
and -:
h(t,t) = J J B(f,d)exp[+j2T(£T + ot)]dfds . (2.2-35)

The interdependence which exists amongst the four filter
functions is depicted in Figure 3. Any one of these functions may be
used to define completely the time-varying channel.7 The forward
Fourier transforms with respect to T and -t are denoted by the

appearance of T and t , respectively, beside the lines in Figure 3.

2.2.3 Output power gpectrum. Let us now compute the complex

frequency spectrum of the output signal y(t) . We begin by expressing

the input in terms of its inverse Fourier transform, i.e.,

[+

x(t) = j X(f)exp(+j27fc)df . (2.2-36)

If x(t) , as represented by Equation (2.2-36), is passed through a

linear, time-varying filter, then,

y(t) = [ X(f)L{exp(+j2nft)idf (2.2-37)
or -
y(t) = J X(£IH(f,t)exp(+j2nfL)df , (2.2-38)




-y L e———

22

TIME-VARYING
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Figure 3. Interdependence amongst the four filter functiomns
that characterize linear, time-varying channels.
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where use was made of Equations (2.2-9) and (2.2-20). Note that
Equation (2.2-38) is not the inverse Fourier transform of X(f)H(f,t) .5

By definition, the output spectrum Y{(n) is equal to:

=]

% Y(n) 4 J y(t)exp(-j2mnt)dt (2.2-39)

-0

and upon substituting Equation (2.2-38) into Equation (2.2-39), one

obtains:

@© [~

() = J X(£) J H(f,t)exp[-j2m(n - £)t]dtdf .

-0 00

(2.2-40)
From Equation (2,2-28), it can be seen that the inner integral !

L appearing in Equation (2.2~40) 1is equal to B(f,n - f) so that:l

o

! , Y(n) = J X(£)B(f,n -~ £)4f (2.2-41)

which is in the form of a frequency domain convolution integral.

r Referring back to Equations (2.2-28) and (2.2-41), note that ¢ = n - f
or n=f+¢ . In other words, the output frequencies n are equal
to the sum of the input frequencies f and the filter variation
frequencies ¢ .3 Equation (2.2-~41) demonstrates that one of the
properties of linear, time-varying filters is the frequency spreading
of the input spectrum due to the system variation frequencies ¢ . As
Kailath3 points out, the frequency behavior of linear, time-varying
channels is usually evidenced by a frequency spread, frequency shift,
or both. The amount of frequency spreading produced may depend upon

' the frequency components of the input.
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Since y(t) 1s a deterministic signal, the output power spectrum
can be obtained directly from Equation (2.2-41) by computing IY(n)I2 .
As a concluding example, let us use Equation (2.2-41) to compute
A the relationship between the input and output power spectrums for
linear, time-invariant, deterministic filters subject to deterministic
inputs. If a linear, time-varying filter is in fact time-invariant,

then H(f,t) = H(f) and Equation (2.2-28) reduces to: ;

B(f,9) = H(f) J exp (-j2mpt)dt (2.2-42)
or -
B(f,¢$) = H(£)8(¢$) (2.2~43)
-y since
1 — 8@ . (2.2-44)

Substituting Equation (2.2-43) into Equation (2.2-41) yields the

- familiar expression:

Y(n) = X(MHM) (2.2-45)

and as a result,

2
s, = 5, () [u()] , (2.2-46)

where Sx(n) = lx(n)|2 and sy(n) = lY(n)lZ are the input and output
power spectrums, respectively, since x(t) and y(t) are both

deterministic signals.




2.3 Linear Time-Varying Random Filters

2.3.1 Filter autocorrelation functions. In Section 2.2, four

system functions were introduced which are used.to characterize linear,

time-varying, deterministic filters. These system functions are:

(1) the time-varying impulse response, h(T,t); (2) the time-varying

frequency response, H(f,t); (3) the spreading function, S(7,$); and

(4) the bi-frequency function, B(f,¢). However, if the filter is

random, then each of these channel functions must be considered as a

random function of two variables. In this section, we will derive the

various Fourier transform pairs which exist amongst the four filter

autocorrelation functions, But first, let us define the autocorrelation

and autocovariance functions as they are to be used in this dissertation.
Consider a random process x(r,s) which is a function of the two

variables r and s . The autocorrelation function of x(r,s) , denoted

by Rx(r,r',s, s') , is defined as:

4

*
Rx(r,r',s ,8") E{x(r,s)x (r',s")} , (2.3-1)

where E{+} is the linear, expectation operator and the asterisk denotes
complex conjugation. The average instantaneous power of x(r,s) can be

found from Equation (2.3-1) by setting r' =r and s'

=s , i.e.,

. Rx(r,s) = E{Ix(r,s)|2} . (2.3-2)

The autocovariance function of x(r,s) , denoted by

Cx(r,r',s,s') , is defined as:

ne

Cx(r,r',s,s') E{[x(x,s) - ux(r,s)]

*
o [x(x',s") - ux(r',s')} 1, (2.3-3)

athiinncndaiii, bt . R S S S S
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where

ux(r,s) = E{x(r,s)} . (2.3-4)
Upon expanding the right-hand side of Equation (2.3-3), one obtains:

Cx(r,r’,s,s') = Rx(r,r',s,s') - ux(r,s)u;(r‘,s') .
(2.3-5)
It can be seen from Equation (2.3-5) that if x(r,s) is zero mean,
then the autocovariance and autocorrelation functions are equal. Also,
the variance of x(r,s) can be obtained from Equation (2.3-5) by

setting r' =r and s' =s, i.e.,

var{x(r,s)} Cx(r,s) = E{|x(x,s) - ux(r,s)lz} .

(2.3-6)

Ex(r,9)]2) - o (e,9)° , (2.3-1)

where use has been made of Equation (2.3~2). From Equation (2.3-7), it
can be seen that if x(r,s) is zero mean, then the variance of x(r,s)
is equal to the average instantaneous power of x(r,s) .

Now that the autocorrelation and autocovariance functions of a
random function of two variables have been defined, the derivation of
the various Fourier transform pairs that exist amongst the four filter

autocorrelation functions can proceed.

The four filter autocorrelation functions are defined as follows:

R (5,166 2 Eh@on @), (2.3-8)
Ry(EE',e,e') & E(H(E,0H (£',60) (2.3-9)
Rg(T,1",0,0") & E(s(r, s (x', 6"} (2.3-10)
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and

A *
Rp(£,£7,4,0") = E{B(f,$)B (£',6")} . (2.3-11)

With the proper interpretation, it can be shown, for example,

that Rh and RH form a two-dimensional Fourier transform pair, i.e.,

R (t,T',t,t") — R (£,£7,t,e7) . (2.3-12)

In order to clarify the phrase '"proper interpretation,” let us take the
two~dimensional forward Fourier transform of Rh , Wwith respect to <

and T' , using the standard sign convention, i.e.,

oo

J J Rh(T,T’,t,tUexp[-jZW(fT + f'1')]dtdr’ . (2.3-13)

=00

Substituting Equation (2.3-8) into Equation (2.3-13), and interchanging

the operations of integratioun and expectation yields:

o [>.]

E { J h(t,t)exp(-32mf1)dT J h*(T',t')exp(—jan'T')dT'}
- - (2.3-14)

or
E(H(E, O (-£,e0)} = R(£,-f',6,t") . (2.3-15)

Upon close inspection of the right-hand side of Equation (2.3-15), it
can be seen that this is not the desired result as given by the right-
hand side of Equation (2.3-12). However, if wé define the forward
Fourier transform of h(t',t') with respect to T' with a positive

complex exponential term, i.e.,
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o0

[ h(t',t")exp(+j2mf't)dt' = H(f',t") ,

-0

FT,{h(T’,t')}

(2.3-16)

then,
-]

H*(f',t') = f h*(’t',t')exp(-jZﬂf'T')dT' (2.3-17)

-00

which is identical to the second integral expression appearing in

Equation (2.3-14). Therefore, Equation (2.3-14) reduces to:
*
E{H(f,t)H (f',£")} = Ru(f,f',t,t') (2.3-18)

- which is the desired result. Thus, if we use the convention that
forward transforms with respect to T and t are defined with a
negative complex exponential (inverse transforms are defined with a

' positive complex exponential), and forward transforms with respect to

' and t' are defined with a positive complex exponential (inverse

. . . . 8
transforms are defined with a negative complex exponential), then the
four system autocorrelation functions are related by the following

Fourier transform pairs:

Rh(T,T',t,t') m— RH(f,f',t,t') , (2.3-19)
T,T'

where

[}

J J Rh(r,r',t,t')

-00

RH(f,f',t,t')

. exp[-j2m(ft - f't')]drdt’

, . (2.3~19a)

e o )

m e - Lol e




and

where

and

where
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Rh(r.r',t,t') = J J RH(f,f',t,t')
« exp[+j2m(fT - £'1')])dfdf' ;
(2.3-19b)
Ry(E, 180t ") RL(E,E7,0,0") (2.3-20)
RB(f,f',d),Cb') = J J RH(f,f',t:t')

» exp[-j2m(¢t ~ ¢'t')]dtdt' (2.3-20a)

e <]

Rﬁ(f,f',t,t') = J J RB(f.f',¢,¢')

-~00

« exp[+i2m (bt - ¢'t")] dddd’

(2.3~20b)

Rh(T,T"t,t') ? RS(T,T',¢,¢') (2.3_21)

-]

Rg(1,T',0,0') = f J R, (T,T',t,t")

-00

. expl-j2m (ot - ¢'t')]dedt’ (2.3-21a)




-,

30

and
Rh('r,'r"t’t') = J JRS(T,T',¢,¢')
. expl+j2m(ot - ¢'t')1dedo'; (2.3-21b)
R (T,T"59,9") <:%:$;:> Ry(£,£',6,0") ,  (2.3-22)
where
Ry (£,£',0,0") = Jf JRs<r,r',¢,¢'>
o exp[-j2n(ft - £'t')]dtdt’ (2.3-22a)
and
RS(T)T')¢3¢') = J J RB(faf's¢:¢')

. exp[+j2m(fr ~ £'t')1afdf’ ; (2.3-22b)

and finally,

R (T,T7,t,t") @ Ry (£,£',6,6")

T,T,t,t (2.3-23)

where

RB(f’f"¢1¢') = J[ I J[ )[ R-h(T,T';t,t')

. exp[-jom(fr - £'1' + ¢t - ¢'t"))drdr 'dedt’

(2.3-23a)




and
[«~]

RO O PR

=00

« exp[+j2m(fT ~ £'1" + ¢t - ¢'t") Jdfdf'dede’.

(2.3-23b)

The interdependence which exists amongst these autocorrelation

functions is illustrated in Figure 4. The forward Fourier transforms

with respect to T, T', t, and t' are denoted by the appearance of

T, Tt , t, and t' , respectively, beside the lines in Figure 4.

2.3.2 Uncorrelated spreading - the scattering function. As can

be seen from Figure 4, the filter autocorrelation functions are, in

general, dependent upon four variables. However, if it is assumed that

the spreading function S(t,$) is uncorrelated with S(t',¢') for all

T# 71" and ¢ # ¢' , then the autocorrelation functions can be

simplified.

The assumption of uncorrelated spreading is mathematically

equivalent to stating that the autocovariance of S(t,¢)
is zero for all T # t' and ¢ # ¢' , i.e.,

] * 4 [ 4 =
Cg(T,T",6,0") = RS(T,T',¢,¢ ) - Mg (T,0)ug (T7,07) o ,
(2.3-24)

where us(r,¢) = E{S(1,4)} . If it is assumed that uS(T,¢) = 0 , then
Equation (2.3-24) is equivalent to:

Rg(T,1",0,¢") = R (T,9)8(T - T')6(p - ¢') , (2.3-25)

and S(1',0')
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Figure 4. Interdependence amongst the four filter

autocorrelation functions that characterize
linear, time-varying, random channels.
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where the function \

[y

Rg(t,8) = El|s(r,0{%) (2.3-26)

-

is called the scattering function and is equal to the variance of the
spreading function.4-7 The écattering function can be thought of as an
average power density function which determines the average amount of
spread that an input signal's power will undergo as a function of
round-trip time delay T and frequency ¢ . Note that RS(T,¢) is a
real, non-negative function of T and ¢ .

Equation (2.3-25) was the result of the assumption that
us(r,¢) = 0 . However, even if S(1,$) is non-zero mean, it is an

easy matter to do the analysis with a centered process SC(T,¢) obtained

by subtracting from S(T1,$) its mean value uS(T,¢) , 1.e.,

SC(T,¢) = S(1,9) - ug(t,¢) . (2.3-27)

The random process SC(T,¢) has zero mean and its autocovariance is

equal to:

\J ' * ? ' }
Cg (T,77,9,0") E{S (1,4)S.(1",9") (2.3-28)

c

CS(TaT'9¢’¢') (2-3‘29)

which is the autocovariance of S(t1,¢) .

Let us now examine the implications and the effect that the
assumption of uncorrelated spreading Qill have on the other three system
autocorrelation functions. As Figure 4 indicates, Rﬂ(f,f',t,t') can
be obtained by taking the inverse two-dimensional Fourier transform of

RS(T,T',¢,¢') with respect to ¢ and ¢' , and then taking the




forward two~dimensional Fourier transform with respect to T and T' .

Doing so yields:

0

RH(f’f'!t)t') = J J j I RS(T’T"¢,¢')

« exp[+j2m (¢t - ¢'t')1dddd’
+ exp(-j2r(fT -~ £'t’)])d7dt"' , {2.3-30)

where use has been made of Equations (2.3-19a) and (2.3~21b). Upon

substituting Equation (2.3-25) into Equation (2.3-30), one obtains:

(£f,f',t,t"') = (Af,At) , (2.3-31)
Ry Ra

where
R (AF,0t) = I JRS(T,¢)exp[—j21r(AfT-¢At)]d1’d¢ ,
- (2.3-32)

where Af = £ - f' and At =t - t' . The expression RH(Af,At) is

sometimes referred to as the time-frequency correlation function and
5,7

f

it is generally a complex quantity. It can be seen from Equation

(2.3-31) that when uncorrelated spreading is assumed, the auto-

correlation function RH(f,f',c,t‘) becomes a function of time and
frequency differences only. This implies that the random process
H(f,t) 1is wide-sense stationary in both frequency and time. An
additional requirement for H(f,t) to be wide-sense stationary in

both frequency and time is that9

uﬂ(f,t) = E{H(f,t)} = constant . (2.3-33)
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Since the four filter functions are related by linear transformations
(see Figure 3), if uS(T,¢) = 0 , then uh(T,t) = uH(f,t) = uB(f,¢) =0 .
Therefore, Equation (2.3-33) 1is satisfied since it was assumed that
uS(T,¢) = 0 , and hence, uH(f,t) = 0 . The condition of uncorrelated

spreading (scattering) in round-trip time delay T is equivalent to a

condition of wide-sense stationarity in frequency (Af).7 The condition
of uncorrelated spreading (scattering) in frequency ¢ 1is equivalent
to a condition of wide-sense stationarity in time (At).7 When
uncorrelated spreading (scattering) in both T and ¢ occur together,
we have a wide-sense stationary uncorrelated scattering (WSSUS)
channel.7’8’10
Next, consider the autocorrelation function Rb(T,T',t,t')

Upon substituting Equation (2.3-25) into Equation (2.3-21b), one

obtains:
R (T,T',t,e") = R (T,86)8(T - 17) , (2.3-34)

where

o

Rh(T,Ac) = j RS(T,¢)exp(+j2ﬁ¢At)d¢ (2.3-35)
—

and At =t - t' . Fquation (2.3-34) indicates that the random
process h(T,t) 1is wide-sense stationary in time because of the At
dependence and since uh(T,t) = 0 . Equation (2.3-34) also indicates
that h(t,t) 1is uncorrelated for all values of T' # T .

And finally, upon substituting Equation (2.3-25) into Equation
(2.3-22a), the autocorrelation function of the bi-frequency function

reduces to:
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RB(f’f"¢’¢') = RB(Af9¢)6(¢ - ¢') 3 (203'36)
where
RB(Af,¢) = J RS(T,¢)exp(-j2WAfT)dT (2.3-37)

and Af = £ - f' . Equation (2.3-36) indicates that the random
process B(f,$) 1is wide-sense stationary in frequency because of the
Af dependence and since uB(f,¢) = 0 . Equation (2.3-36) also
indicates that B(f,$) 1is uncorrelated for all values of ¢' # ¢
Let us now summarize the results obtained so far. Under the

assumption of uncorrelated spreading, the four filter autocorrelation

functions originally defined by Equations(2.3-8) through (2.3-11)

reduce as follows:

Rh('t,'l",t,t’) = Rh('l',At)(S(T -1T") , (2.3-34)

RH(f,f't,t') = RH(Af,At) , (2.3-31)

RS(T)T"¢3¢') = RS(T,¢)6(T - T')6(¢ - ¢') (2~3'25)
and

Ry(£,£',0,6) = RG(A£,0)8(0 -6 (2.3-36)

where RH(Af,At) and RS(T,¢) are referred to as being the time~

frequency correlation function and the scattering function,

respectively, and Af = f - £’ and At =t - t' ,
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2.3.3 The scattering function and its Fourier transforms.

Since Equation (2.3-35) can be interpreted as being the inverse Fourier

transform of the scattering function, then,

I(h(T9At) T RS(T;¢) ’ (2-3-38)
where .
RS(T,¢) = J Rh(T,At)exp(-j2ﬂ¢At)dAt (2.3-39)
-—CO
) _and
Rh(T,At) = J RS(T,¢)exp(+j2ﬂ¢At)d¢ . (2.3-35)
k Q0
.
Similarly, since Equation (2.3-37) can be interpreted as being
the forward Fourier transform of the scattering function, then,
\ RS(T,¢) —_— RB(Af,¢) s (2.3-40)
where
RB(Af,qJ) = J RS(T,d))exp(—jZ‘ﬂ’AfT)dT (2.3-37)
and
[« -]
RS(T,¢) = J RB(Af,¢)exp(+j2nAfT)dAf . (2.3-41)
-0

Additional transform pairs can be obtained as follows. From

Equations (2.3-32) and (2.3-35), we have:

i i adi .. i
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Rh(T,At) — RH(Af,At) s (2.3-42)
where
RH(Af,At) = Im Rh(T,At)exp(—jZHAfT)dT (2.3-43)
and -
Rh(T,At) = f” RH(Af,At)exp(+j2ﬂAfT)dAf . (2.3-44)

If Equation (2.3-39) 1is substituted into Equation (2.3-37), then one

obtains the two-dimensional Fourier transform pair

R (T,4t)  ——> Ry(Af,9) , (2.3-45)
T,At
where
R, (BF,0) = J J Rh(T,At)exp[-jzn(Afr+¢A£)1drdAt
- (2.3-46)
and

w

Rh(T,At) = J J RB(Af,$)exp[+j2n(Afr + ¢At) 1dAfde

-0

(2.3-47)

And, upon using Equation (2.3~43) in conjunction with Equation (2.3-46),

one obtains:

RH(Af,At) i RB(Af,¢) ’ (2.3-48)

i ks aanalith s, u i ‘ S ML . AARED e TTial Tl s
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where
RB(Af,¢) = j RH(Af,At)exp(-j2ﬂ¢At)dAt (2.3-49)
and
RH(Af,At) = [ RB(Af,¢)exp(+j2ﬂ¢At)d¢ . (2.3~50)

The various Fourier transform pairs are summarized in Figure 5.
The forward transforms with respect to T and At are dencted by the ;
appearance of T and At , respectively, beside the lines in Figure 5.

The scattering function, or any of its three Fourier transforms, is a

complete statistical description of a WSSUS channel at the second
order.7

And finally, another very important two-dimensional Fourier
transform relationship (not a transform pair) exists between the
scattering function and the time-frequency correlation function besides
Equation (2.3-32). It is obtained by substituting Equation (2.3-44)
into Equation (2.3-39). Doing so yields:

oo

RS(T,¢) = j J RH(Af,At)exp[+j2ﬂ(AfT - ¢At))dAfdAr .

Ead

(2.3-51)

The time-varying frequency response relationship of Equation
(2.2-20) and the two-dimensional Fourier transform relationship of
Equation (2.3-51) are the two fundamental results upon which the
derivations of the volume reverberation, surface reverberation, and

target scattering functions will be based.
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2.3.4 Input-output relations - output power spectral density.

We will now proceed to derive an expression for the autocorrelation
function of the output from a linear, time~varying, random channel.

From Equation (2.2-26), we have that

o«

y(t) = J J x(t - T)exp(+j2mpt)S(t,9)dtdd , (2.3-52)

-0

where x(t) 1is the deterministic input signal and S(T,$) 1is now the
random spreading function of the filter. The output correlation

function Ry(t,t') is defined as:
A d*
Ry(t,t') = E{y(t)y (t")} . (2.3-53)

Substituting Equation (2.3-52) into Equation (2.3-53) and performing

the indicated operations yields:

o0

Ry(t,t') = J J J J x(t ~ T)x*(t' - T expl+i2m(dt -d't")]

. RS(T,T',¢,¢’)de¢dT'd¢' , (2.3-54)

where RS(T,T',¢,¢') is the autocorrelation function of the spreading
function [see Equation (2.3-10)]. If we make the assumption that the

filter exhibits uncorrelated spreading, then Equation (2.3-54) reduces

to:
_ Ry(t,t') = JwJ x(t - T)RS(T,¢)X*(‘:' -0
. exp(+i2mpAt)dtde (2.3-55)
;
T DR P o N
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where RS(T,¢) is the scattering function, At = t - t' , and use was
made of Equation (2.3-25). Using Equation (2.3-55), an expression for
the average output energy will be derived next.

The average instantaneous output power is given by:
2
R (t,0) = E{[y(e)|“} (2.3-56)

or, from Equation (2.3-55),

[+
Ry(t,t) = J J |x(t - T)|2RS(T,¢)de¢ . (2.3-57)
-0
The average output energy can be found by integrating both sides of
Equation (2.3-57) with respect to t . If we define the energy of the

output signal Ey as:

[}

J ly(e) | %ae , (2.3-58)

-0

we

then the average output energy Ey can be expressed as:

=4}

E&,,é BE} - J E{}y(t)|*}dt (2.3-59)
or
E = R dt . 2.3-
v J y(t.t) ( 60)
11,12
Substituting Equation (2.3-57) into Equation (2.3-60) yields:
(oo
Ey/Ex = J J RS(T,¢)de¢ R (2.3-61)
PO o Le PO ki

(i
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where

o©

J |x(t)|2dt ‘ (2.3-62)

-0

=
]

is the energy of the input signal. Equation (2.3-61) indicates that
the ratio of output (received) average energy to input (transmitted)
energy for a WSSUS channel can be obtained by integrating the
scattering function of the channel with respect to both T and ¢ .
Also note that the average output energy is not a function of the
input signal's shape.

Alternate expressions for Ry(t,t') , other than those given
by Equations (2.3-54) and (2.3-55), can be obtained by representing the

output as:

o0

y(t) = I X(£)H(f,t)exp(+j2nftL)df s (2.3-63)

-00

where X(f) 1is the Fourier transform of the deterministic input

signal =x(t) , and H(f,t) is now the random, time-varying frequency

response of the filter. Substituting Equation (2.3-63) into Equation

(2.3~53) and performing the indicated operations yields:

[+ -]

*
Ry(t,t ) = J JX(f)X (£ IR, (£,£7,t,t7)

-00

* exp(+j2m(ft - £'t')}dfdf" . (2.3-64)

If we make the assumption that the filter exhibits uncorrelated

spreading, then Equation (2.3-64) reduces to:

e . bl e, i, . it
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[}

Ry(t,t') = [ I X(f)X*(f')RH(Af,At)
-
» exp{+j2m(ft - £'t')]dfdf’ ,
(2.3-65)

where Af =f -~ f', At =1t - t' , and use was made of Equation
(2.3-31). A relationship between the output and input power spectral
densities can now be obtained from Equation (2.3-65).

If it is assumed that the input signal x(t) 1is a zero-mean,
wide-sense stationary (WSS), random process which 1s uncorrelated with
H(f,t) , then the output autocorrelation function given by Equation

(2.3-65) becomes modified as follows:

o

Ry(t,t') = I J E{x(f)x*(f')}RH(Af,Ac)

-0
o expl+j2m(ft - £'t")]dfdf"’ . (2.3-65a)
Since x(t) was assumed to be WSS, then the following
relationship:
*
E(X()X (£} = S _(£)8(f - £") (2.3-66)

exists (e.g., see ZadehlB), and if Equation (2.3-66) is substituted

into Equation (2.3-65a), one obtains:

Ry(At) = f Sx(f)RH(O,At)exp(+j2ant)df s (2.3-67)
R L A - D P S [ 2Ae e
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where Sx(f) is the power spectral density of x(t) and is defined as
the Fourier transform of the autocorrelation function Rx(T) . The
output power spectral density Sy(f) can now be obtained by Fourier
transforming both sides of Equation (2.3-67) with respect to At .
Doing so yields:l3’14

@

sy(n) = [ Sx(f)RB(O,n—f)df . (2.3-68)

=00

where

oo
Ry(Oyn - £) = [ R, (0,at)[-32m(n - f)At]dAt . (2.3-69)

-00
Note that Equation (2.3-68) is in the form of a convolution integral
just like Equation (2.2-41) for the deterministic case. The convolu-
tion process accounts for the frequency spreading of the input power

spectral density.

2.3.5 Channel characterization via the scattering function.

An interesting consequence of Equation (2.3-61) 1s that the scattering
function can be thought of as a two-dimensional density function.12

For example, if we define the constant K as:

[s.0]

f J R (T, 0TS, (2.3-70)

-0

k 2

then, Equation (2.3-61) can be rewritten as:

oo

f j fS(T,¢)de¢ = 1 , (2.3-71)

-0
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where
fS(T,¢) = RS(T’¢)/K (2.3"72)

is the normalized scattering function. The quantity fS(T,¢) has the

properties of a density function since both the scattering function and

the constant K are real, positive quantities, and fS(T,¢) integrates

to one. As a result, a WSSUS channel can be characterized, at least to

a certain extent, by calculating the first and second moments of both
12

the round-trip time delay T and frequency spread ¢ . The mean

round~trip time delay uT can therefore be computed from:

He = J rfs (t)dr . (2.3-73)
where
fs(T) = [ fS(T,¢)d¢ (2.3-74)

can be interpreted as being the marginal density function of the round-
trip time delay variable T . An alternate expression for fS(T) can
be obtained by ref-rring back to Equation (2.3-35) and setting A4t = O.

Doing so yields:
fs(T) = Rh(T,O)/K s (2.3-75)

where

[+.]

R (1,0) = E{{n(t,0) |2} = f R (T,$)do (2.3-76)

«-=00
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is referred to as the power impulse response and is the distribution
of power as a function of T only.7’15 Note that fs(T) integrates

to one. The mean-square time delay spread 03 is given by:

2 2 - . (2.3-77)
o, = () Mo
where
(TZ) = J Tzfs(r)dT . (2.3-78)

Similarly, the mean value of the frequency spread u¢ can be

computed from:

My = J ¢fs(9)dd ’ (2.3-79)
where
fS(¢) = f fS(T,¢)dT (2.3-80)

can be interpreted as being the marginal density function of the
frequency spread variable ¢ . An alternate expression for fs(¢)
can also be obtained by referring back to Equation (2.3-~37) and

setting Af = 0 . Doing so ylelds:
£ () = R, (0,4) /K , (2.3-81)

where

©

Ry(0,9) = e|sce,0 %) = I Rg(T,0)dT (2.3-82)

-0
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is referred to as the echo power spectrum and is the distribution of

7,15

power as a function of ¢ only. Note that fs(¢) integrates to

2
one. The mean-square frequency spread O

" 1s given by:
2 _ .2y 2 _
0¢ = (o7 u¢ s (2.3-83)
where
(¢2) = j ¢2fs(¢)d¢ . (2.3-84)

Scattering functions are frequently concentrated in a finite
area of the T -~ ¢ plane.12 They occupy a certain band of frequencies
along the ¢ axis and/or a band of time delays along the T axis.

If we refer to the band of frequencies as bandwidth B (in Hz) and

the band of time delays as length L (in sec), then these two
parameters provide an alternate way of describing the scattering
function, and hence, the channel. For example, an underspread channel
is defined as one whose BL product is less than one, i.e., BL <1 ;
and an overspread channel is defined as one whose BL product is
greater than one, i.e., BL > 1 .5’12’15

In order to avoid frequency spreading, it is required that:
1/T >> B s (2.3-85)

where T 1is the duration of the transmit signal and 1/T 1is a measure

5,12

of its Doppler resolution. Similarly, in order to avoid spreading

in round-trip time delay (range), it is required that:

1/w >> L s : (2.3-86)
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where W 1s the bandwidth of the transmit signal and 1/W is a
measure of its range resolution.s’12 1f Equations (2.3-85) and
(2.3-86) are multiplied together, then,

1/TW >>> BL (2.3-87)
which is the requirement for avoiding both range and frequency
spreading. Since, for any real bandpass transmit signal, the time-
bandwidth product TW 1is equal to or greater than one,12’30 i.e.,

™ > 1 . (2.3-88)

Equation (2.3-87) can only be satisfied for underspread channels.
Equation (2.3-88) is based upon the equivalent rectangular duration T
(sec) and bandwidth W(Hz) of the transmit signal.30 Although
Equation (2.3-87) cannot be satisfied for overspread channels, one can

choose a transmit signal such that either range or frequency spreading

is avoided, but not both.
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CHAPTER III

DETECTION IN THE PRESENCE OF REVERBERATION

3.1 Introduction

The purpose of this chapter is threefold: (1) to specify the
binary hypothesis testing problem to be considered in this dissertationm,
(2) to indicate the receiver structure which will be used to process the
received signal, and (3) to introduce the important concept of the
output signal-to-interference power ratio.

This chapter begins with a brief discussion of the complex
envelope notation for bandpass signals since the hypothesis testing
problem will be formulated in terms of the complex envelopes of the
target, reverberation, and noise signals. The target and reverberation
returns are modelled as the outputs from linear, time~-varying, random
filters which are assumed to be WSSUS communication channels.

The particular receiver structure used is a correlator followed
by a magnitude squared operation. The magnitude squared output from
the correlator is tested against a threshold which is determined from
a probability of false alarm constraint in a Neyman~-Pearson test.

Having specified both the binary hypothesis testing problem and
the receiver, the signal-to-interference ratio (SIR) is derived for a
doubly spread target and is shown to be dependent upon the target and
reverberation scattering functions and the cross—-ambiguity function of
the transmit signal and the processing waveform, which is used in the
correlator receiver. It is also demonstrated that the SIR for a slowly

fluctuating point target can be obtained from the general SIR expression

for a doubly spread target.

res a AL ko e . a DTl TN :,;_‘;:J
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The final discussion in this chapter is devoted to the question
of receiver optimality, i.e., when is our choice of receiver an optimum
or sub-optimum receiver for detecting either a slowly fluctuating point
target or a doubly spread target. The discussion on optimality intro-
duces the performance measure A which is shown to be equal to the SIR.
The performance measure determines the probability of detection for a
given probability of false alarm in the important case of Gaussian
statistics. Maximizing A is equivalent to maximizing the probability
of detection and it is noted that this can be achieved by proper signal

design.

3.2 A Binary Hypothesis Testing Problem

3.2.1 Complex envelope notation. Before discussing the

underwater acoustic detection problem, the complex envelope notation

for bandpass signals will be introduced and discussed briefly since it

will be used extensively throughout the remainder of this dissertation.
Consider an arbitrary real bandpass signal g(t) whose amplitude

spectrum |G(f)| is concentrated about f = +fC and f = -fc Hz . The

complex envelope of g(t) , denoted by g(t) , is a complex signal whose -

amplitude spectrum |G(f)| 4is centered about f = 0 Hz. The relation-

ship between g(t) and g(t) 1is given by (e.g., see Whalenls):

g(t) = Re {é(t)exp(+j2ﬂfct)} . (3.2-1)

where
g(t) = [g(t) + j§(t)]exp(-j2nfct) , (3.2-1a)

where Re means 'take the real part" and g(t) 1is the Hilbert

transform of g(t) .

ek,

e . ailn Lo EJ
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In Chapter II, no distinctions were made as to whether the input
and output signals x(t) and y(t) , respectively, and the time-varying
impulse response h(T,t) were real versus complex or lowpass versus
bandpass. Since for most communication and detection problems (in
particular, the detection problem to be discussed here) x(t) , vy(t) ,
and h(T,t) are bandpass waveforms, it is more convenient analytically
to work with their respective complex envelopes. They are denoted by

x(t) , y(t) , and h(1,t) and are related to their real counterparts

‘ by:12,16
x(t) = Ref{f(t)exp(+j2nf _t)} , (3.2-2)
y(t) = Re{§(t)exp(+j2ﬂfct)} (3.2-3)
- and
h(t,t) = hnﬂnnuﬂﬁh%ﬂ} (3.2-4)
where (see Kailath3)
) B(t,t) = [h(t,t) + jA(T,t) Jexp(-j2nf 1) (3.2-4a)
and
& . 1 [ he,t) -
n(t,t) = o J — dt . (3.2-4b)

We will now derive two different relationships between the input
and output complex envelopes. The first relationship will be approx-
imate while the second will be exact. Starting with Equation (2.2-25),

i.e.,

©

y(t) = J x(t - T)h(T,t)dT , (2.2-25)

-0

where it is assumed that x(t) , y(t) , and h(t,t) are real signals,

and using Equations (3.2-2) through (3.2-4) in conjunction with the

identity
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*

Re{2} = (2 +12)/2 , (3.2-5)
where Z 1is some arbitrary complex quantity, it can be shown that16

y(t) = j X(t ~ Th(r,t)dT

-0
- *

+ f x(t - T)h (T,t)exp[—jZﬂ(ch)T]dT . (3.2-6)

If it is assumed that both x(t) and h(T,t) are narrowband bandpass

. signals, then, %(t - T) and h(r,t) will be slowly varying functions

of T . Therefore, the second integral appearing in Equation (3.2-6)
will be approximately equal to zero, and as a result,lz’16
o]
- y(r) = j x(t ~ Dh(T,t)dr (3.2-7)
-C0

which is identical in form with Equation @2.2-25). Although Equation
(3.2-7) is an approximate relationship based upon a narrowband assump-
tion, this does not mean to imply that the concept of a complex envelope
applies to narrowband bandpass signals only. Complex envelopes can be
defined and used for wide-band bandpass signals, also.4 In fact, the
E next relationship which will be derived is exact and does not involve
a narrowband assumption.

Once again, assume that x(t) , y(t) , and h{r,t) are real
! signals. Using Equations (3.2-2) and (3.2~5), the real input signal

x(t) can be expressed as:

x(t) = [R(Dexp(+j2mf t) + i*(t)exp(-jznfct)]/z X

(3.2-8)
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Taking the Fourier transform of both sides of Equation (3.2-8) yields:

X(£) = (R(E - £) + X (£ - £1/2 (3.2-9)
since

i(c)exp(+j2nfct) — X(f - fc) (3.2-10)
and

2 () — 6, (3.2-11)
where

x(t) — X(£) ) (3.2~12)

Substituting Equation (3.2-7) into Equation (2.2-38), i.e.,

[=-]

y(t) = I X(£)H(f,t)exp(+j2mft)df (2.2-38)

!7 yields

=]

y(r) = (1/2) J X(EYH(E + fc,t)

-

. exp(+j2nft)dfexp(+j2ﬂfct)

o

+ {(1/2) J R(OH™(-(£ + £.1,0)

-0
*

. exp(+j2nft)dfexp(+j2ﬂfct)} . (3.2-13)

h(t,t) +—— H(f,t) , (2.2-12)

o\
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where h(T,t) is a real function, then,
*
H (-[f + fc],t) = H(f + £ ,t) (3.2-14)

and upon substituting Equation (3.2-14) into Equation (3.2-13), we

obtain:

y(t) = Re {?(t)exp(+j2wfct)} R (3.2-3)
where

y(e) = Im X(E)H(f + £_,t)exp(+j2mfr)df . (3.2-15)

Equation (3.2-15) is the desired result which relates the output
complex envelope y(t) to the spectrum of the input complex envelope
X(f) (e.g., see Ishimarulo). Equation (3.2-15) is an exact relation-
ship and no narrowband assumption was made.

An interesting interpretation of H(f,t) can be obtained from
Equation (3.2-15). Assume that a cosinusoidal signal is transmitted,

i.e.,
x(t) = cos(2mf t) = Re{l exp(+j2ﬂfct)} , (3.2-16)

so that the complex envelope x(t) = 1 . As a result, the spectrum
X(f) = 8(f) , and if this result is substituted into Equation (3.2-15),

we obtain:

y(t) = H(f_,t) (3.2-17)

or

y(t) Re{H(fc,t)exv(+j2nfct)} . (3.2-18)

e e . e Kka.l' i i ﬂ-] . n v.
— — PRSI ¥ W
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Thus, the time-varying frequency response H(f,t) 1is the complex
envelope of the response of the channel to x(t) = Re{exp(+j2nft)}.1
If y(t) 1is a random process, then a more appropriate
characterization of the output complex envelope is provided by the

autocorrelation f{unction

R (r,t) & eG@iTent . (3.2-19)
y

Substituting Equation (3.2-15) into Equation (3.2-19) and performing

the indicated operations yields:

[++]
] — 3 3* ] ' ]

R~(t,t )y = [ J X(E)X (f )Rﬂ(f + fc,f + fc,t,t )
y -

« exp(+j2m(ft - £'t')]dfdf' , (3.2-20)

where
*
' ' = ' '

RH(f +E L+ f Lt ) E{H(f + fc,t)H (£' + £t o,

(3.2-21)
If the linear, time~varying, random filter is a WSSUS channel, then

Equation (3.2-20) reduces to [see Equation (2.3-31)]:

=]

R (t,t') = .J Ji(f)i*(f’)Rﬂ(Af,At)

y —o

o exp[+j2m(ft - £'t")JdEdE’ (3.2-22)

where Af = f - f' and At =t - t' . Note that the form of Equations
(3.2-22) and (2.3-65) are identical. And upon substituting Equation

(2.3-32) into Equation (3.2-22), one obtains:

Levar g, P — A
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R~(t,t') = J f ¥(t - T)Rs(r,cp)i*(t' - 1)
y N
*  exp(+j2moAt)drtdd , (3.2-23)

where At =t - t' . Note that the form of Equations (3.2-23) and
(2.3-55) are also identical. Using Equation (3.2-23) and following
the development between Equations (2.3-55) and (2.3-62), it can also

be shown that the average energy of the output complex envelope E

y
is given by [compare with Equation (2.3-61)]:
[++]
- E = E~J JRS(T,(b)deq) , (3.2-24)
y X7 _»
where
[+o]
- _ f
: E = J R (t,t)dt (3.2-25)
~ y —~ Y
and o
[ sy 2
E = J |%(t)|“at . (3.2-26)
X
-

And finally, the autocorrelation function of the real output

Ry(t,t') can be obtained from R~(t,t') by using the following

y
approximate relationship:lo’ll

Ry(t,t') = (1/2) Re{R~(t,t')exp[+j2‘nfc(t -t}

y
(3.2-27)
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3.2.2 The signal-to~interference ratio for a doubly spread

target. The detection problem to be considered in this dissertation

is the following binary hypothesis testing problem:

H @ F(t) = y(t) + y(t) + a(e) o < t < » (3.2-28)
1 TRGT REV
H : T(t) = y(t) + n(t) - < t < » (3.2-29)
° REV
where
y(t) = J x(t - Dh(t,t)ar (3.2-30)
TRGT 7 TRGT
S or [+ ¢]
A ] - -
y(t) = X(£)H(f + £ ,t)exp(+j2nft)df (3.2-30a)
TRGT 7 TRGT °©
and
l Lo o]
“ y(t) = J x(t - T)h(T,t)dr (3.2-31)
- REV - REV
or
y(t) = J i(f)ﬁ(f + f ,t)exp(+j2wft)df . (3.2-31a)
REV ‘e REV €

Both the target and the reverberation are being modelled as linear,
time-varying, random filters.12 The approach of treating the ocean
medium as a linear, time-varying, random communicatiop channel is
well-established (e.g., see References 4, 5, 7, 10, 12, 17, 18). This
method has also been applied to problems in radar astronomy and
communication channels in general.s’ll’15
Hypothesis Hl states that the complex envelope of the received
signal [E(t) 1s equal to the sum of the target return §§§éT’ the

b
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reverberation return ;(t) , and noise n(t) . The noise is assumed to
REV
be zero mean, white, anéguncorrelated with both the target and
reverberation returns. It is also assumed that both y(t) and ¥(t)
TRGT REV
are zero mean and uncorrelated with one another. Hypothesis Ho states
that T(t) 1is equal to the sum of the reverberation return and noise.
The reverberation return, in general, is a composite of volume,
surface, and bottom reverberation returns.
The particular receiver structure which will be used in this
dissertation to process <r(t) is illustrated in Figure 6. The
function g(t) 1is to be referred to as the 'processing waveform," as

yet unspecified. The receiver performs the following test: choose

hypothesis Hl if:

o

* 2
= I JE(t)é (t)dt > ¥ (3.2-32)

-

12)?
and choose HO otherwise. The threshold <y 1is chosen to satisfy the
desired probability of false alarm constraint in a Neyman-Pearson
test.

Any discussion concerning the optimality of the receiver
illustrated in Figure 6, and hence, the kest indicated by Equation
(3.2-32), will be deferred until Section 3.3.

Let us now compute the output signal-to-interference power

ratio (SIR) for the receiver shown in Figure 6. The SIR as used in

this dissertation is defined as:

[}

i~

s 2 E{li
v

2
} ’ (3.2-33)

YTRGT




-

Figure 6.

Receiver structure for processing

r(t)
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where ©
7 - J F(t) 3 (t)de , (3.2-34)
YIRGT =~ o IRCT
L = J G(t)é*(t)dt (3.2-35)
v -Q0

and
v(t) = y(t) + f(t) . (3.2-36)

REV

Using Equations (3.2-34) through (3.2-36), it can be shown that:

@

2
E{li- ‘} = J Jé*(t)R~(t,t')§(t')dtdt' (3.2-37)
YTRGT - YTRGT
and
[+ ]
E { [ } = j J g*(t)R (t,t")g(t")dedt’ , (3.2-38)
v . v
where
R~(t,t') = R~(t,t') + Noé(t -t") , (3.2-39)
v YREV

where N0 is the spectral height of the complex white noise n(t) .

Substituting Equation (3.2-39) into Equation (3.2-38) yields:

2 w o
2
E { Z_ } = j Jé*(t)R~(t,t')§(t')dtdt' + N, I HOIE
v — YREV -
(3.2-40)

Now, if it is further assumed that the linear, time-varying, random

filters which represent the target and the reverberation are WSSUS




62

communication channels, then the form of Equation (3.2-23) is applic-

able for the autocorrelation functions R_(t,t') and R (t,t') .

YTRGT YREV
Therefore, with the use of Equation (3.2-23), Equations (3.2-37) and

(3.2-40) can be rewritten as:

[ <]

- 2 £ 2
E {Il~ ‘ } = J J Re(T,9) x~~(r,¢>l d1d$  (3.2-41)
YTRGT -~  TRGT ° xg
and
.12 ® 2 ) 2
E {'2 l } = J I RS(T,¢) X (r,¢)| dtdd + N J'i(t)l dt
by - REV xg ° o
(3.2-42)
where
~ T, ~% T
X__(t,4) = J x(t - 3)g (t + Pexp(+j2mpt)dt  (3.2-43)
Xg —co

is the cross—ambiguity function of the complex envelope of the
transmit signal x(t) , and the complex envelope of the processing

waveform g(t) . The expressions R_(T,¢) and RS(T,¢) are the
TRGT REV

target and reverberation scattering functions, respectively.

Substituting Equations (3.2-~41) and (3.2-42) into Equation (3.2-33)

yields:
I J R (T,9) |x~~(T.¢)lszd¢
TRGT Xg
SIR =
2 ~ 2
[ [ RS(T,¢)’X~~(T,¢)I drdg + N J [§(t) | de
- REV xg le
' (3.2-44)
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which is the output signal-to-interference power ratio for a doubly
spread target. The term ''doubly spread target" is used because of the

s(‘r,¢>) which implies

. TRGT

that the target return y(t) will exhibit a spread in both round-trip
TRGT

time delay T and frequency ¢ . The SIR is almost always defined for

appearance of the target scattering function R

a slowly fluctuating point target in the literature.l9 More will be :
said about the SIR for a slowly fluctuating point target in the next
section. It is important to note that no Gaussian assumptions were
made in the derivation of Equation (3.2-44).

The SIR expression for a doubly spread target as given by
Equation (3.2-44) can also be obtained in a different way. This can

be demonstrated by first defining the quantity A as follows:

, A - e {2 v )

=2 . (3.2-45)
= {10 [}
o
where under hypothesis Hl s
2 = 2 + 1 (3.2-46)
Yrrer Y
and under hypothesis Ho R
1 = 1 , (3.2-47)
v
where and £ are given by Equations (3.2-34) and (3.2-35),

YTRGT v

respectively. Now, if we make the same assumptions as before, i.e.,

that y(t) , y(t) , and 1(t) are zero mean and uncorrelated with
TRGT REV

one another, and in addition, that 1i(t) is white, then, substituting
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Equations (3.2-46) and (3.2-47) into Equation (3.2-45), and performing

the indicated operations yields:

A = E{|Z~ |2}/z{|1~|2} = SIR (3.2-48)
YTRGT M

which is equal to the SIR definition given by Equation (3.2-33), and

as a result, A is also equal to Equation (3.2-44). Once again, note

that no Gaussian assumptions were made in the derivation of Equation

(3.2-48). More will be said about the definition of A , as given by

Equation (3.2-45), in Section 3.3.

The majority of the remaining analysis to appear in this
dissertation will be centered around the SIR expression for a doubly
spread target as given by Equation (3.2-44). However, for complete-
ness, it will be demonstrated in the next section that the more common
SIR expression for a slowly fluctuating point target can be obtained
from the general SIR expression given by Equation (3.2-44). Besides,

the point target problem is important in its own right.

3.2.3 The signal-to-interference ratio for a slowly fluctuatin

point target. The properties of a slowly fluctuating point target are
as follows:12 (1) It is the simplest model of a target. (2) ;t is
assumed that the target characteristics, although random, are fixed
(constant) during the time interval that it is being insonified by the
transmit pulse. However, the target characteristics do change from
time interval to time interval., Therefore, the transmit signal will

acquire a random attenuation and a random phase shift. Since both the

attenuation and phase shift are essentially constant over the time
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interval of insonification, they can be modelled as random variables.
And finally, (3) it is assumed that neither a range spread nor a
Doppler spread is discernible in the target return.15

The target return from a slowly fluctuating point target is
modelled as a time and frequency shifted replica of the transmit
complex envelope, i.e.,

F(£) = Bx(t - T)exp(+j2mé't) , (3.2-49)
TRGT

where b is assumed to be a zero mean complex Gaussian random variable
which accounts for random attenuation and random phase shift.l2 The
magnitude of b , |b] , is assumed to be Rayleigh distributed and the
phase of b 1s assumed to be uniform. Thus, the magnitude and phase
are statistically independent random variables. It is also assumed
that the target is moving with a constant radial velocity.

The scattering function for a slowly fluctuating point target

can be expressed as:15

Ro(r,0) = E (B[RS - D8 -9 . (3.2-50)
TRGT
The quantity E{!S|2} includes the array gains, propagation losses,
and radar (sonar) cross-section of the target.l2
The SIR for a slowly fluctuating point target can now be obtalned
by substituting Equation (3.2-50) into Equation (3.2-44). Doing so

yields the desired result (e.g., see Delong and Hofstetterlg):
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e(]5)%) |x_(z*,00) 2
SIR = ZE — .

co

f
JJRgnwhwﬂ&H%m¢+%Jlﬂﬂﬁﬁ
REV Xg

00 -0

(3.2-51)
DeLong and Hofstetter19 assumed that T' = ¢' = 0 1in their expression
for the SIR for a point target. If these values for T' and ¢' are

substituted into Equation (3.2-51), then,

|

which agrees with their result.

- =]

2 srpya® 2
~(T',4>‘)| )T.=¢.=0 = , J xX(t)g (t)dt (3.2-52)

g ~o

X,
X

3.3 Optimum and Sub-Optimum Receivers

3.3.1 Optimum receivers for detecting a slowly fluctuating

point target. 1In this section, we will discuss two cases when the
receiver illustrated in Figure 6, and hence, the test given by
Equation (3.2-32) is in fact optimal for detecting a slowly fluctuating

point target. The first case is concerned with the detection of a point

target return in the presence of white noise only. The second case 1is

concerned with the detection of a point target return in the presence of

both reverberation and white noise.
Consider the simple case when there is no reverberation present,

i.e., y(t) = 0 . Assume that n(t) 1s Gaussian, zero mean, and white
REV
and that the target return is given by Equation (3.2-49). Recall that

’ y(t) as specified by Equation (3.2-49) is also Gaussian and zero mean.
TRGT
Let us further assume that y(t) and n(t) are uncorrelated
TRGT ‘
(statistically independent because of Gaussian statistics) and that

it . e s e -
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7' and ¢' are known constants. If we process r(t) by a matched

filter designed for the presence of white noise only and matched to
s(t) = x(t - T")exp(+j2mp't) R (3.3-1)
then, the processing waveform g(t) is given by:
g(t) = 8(t) = x(t - texp(+j2md't) (3.3-2)

and the test indicated by Equation (3.2-32) is optimal. It is, in fact,

the log-likelihood ratio test for detecting signals with random

12,16

amplitude and phase, where |E|2 is the test statistic. This

case is also known as slow Rayleigh fading.16
Let us next compute the SIR for this receiver. If Equation

(3.3-2) is substituted into Equation (3.2-43), then it can be shown

that:
2
|x (r',¢'>lz = E , (3.3-3)
X8 %
where
o]
E = f |%(e) | %ae (3.3-4)
X

is the energy of the complex envelope of the tramsmit signal. Also,

note that:

o

J HOIK T E_ (3.3-5)

o x

when g(t) 1is given by Equation (3.3-2). Since it was assumed that

y(t) = 0 , then RS(T,¢) = 0, and if Equations (3.3-3) and (3.3-5) are
REV REV

e e oS I it BB i " e i i o VP . S = S = S t-:,-,;—»_:j__LL\,_.‘J
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substituted into Equation (3.2-51), then the general expression for

the SIR for a slowly fluctuating point target reduces to:

SIR = E /N, R (3.3-6)
YTRGT

where

E = Els|Ye (3.3-7)
YTRGT
is the average return energy from the point target. Equation (3.3-7)
can easily be verified by substituting Equation (3.2-50) into Equatic~
(3.2-24),
The error performance of this receiver is completely determined

by Equation (3.3-6) since the probability of detection PD for a given

probability of false alarm PF is given by:12’16
1/(1+D) -
PD = PF s (3.3-8)
where
A = SIR = E /N . (3.3-9)
YTRGT

It is obvious from Equation (3.3-8) that in order to increase the

probability of detection for a given probability of false alarm, one

must maximize A (SIR) , i.e., as A » = | PD -+ 1 for PF constant.

In this case, it can be seen from Equations (3.3-~7) and (3.3-9) that

A (SIR) can be maximized by simply increasing the transmit energy E~ .
Recall that when A was originally defined by Equation (3.2-4;),

it was not given any specific name, although it was shown to be equal
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to the SIR as defined by Equation (3.2-33) when the same set of

assumptions were used with both definitions. When ¥(t) , ¥{(t) , and
TRGT REV

n(t) are Gaussian, zero-mean, and uncorrelated (statistically

independent) with one another, and =n(t) is white; then A as speci-

fied by Equations (3.2-45) through (3.2-47) is referred to as the

performance measure of the receiver illustrated in Figure 6 by Van

Trees12 since the error performance of this receiver (whether it 1is
optimal or not) is given by:

1/ (1+4)
b PF . (3.3-8)
Therefore, in the important case of Gaussian statistics, maximizing
the SIR (A) 1is equivalent to maximizing the probability of detection ;
for a given probability of false alarm in a Neyman-Pearson test.20
The second case to be considered in this section is the detection

of a slowly fluctuating point target return in the presence of both

reverberation and noise. Let us make the same assumptions that were

made in the first case, and in addition, let us also assume that the

reverberation return ;(t) is Gaussian, zero-mean, and uncorrelated
REV

(statistically independent) with both y(t) and n(t) . Then, with
TRGT

the above assumptions, the test given by Equation (3.2-32) is optimal

if the processing waveform g(t) satisfies the following integral

equation:12

J R (t,t')g(t')de’ + Nog(c) = 3(t) ~© <t < ,

‘e ¥
REV (3.3-10)
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where

s(t) = x(t - T")exp(+j2md'¢t) (3.3-1)

and T' and ¢' are assumed to be known constants as before. The <
receiver specified by Equations (3.2-32) and (3.3-10) is the optimal,

maximum likelihood receiver for detecting a slowly fluctuating point ;
target return in the presence of colored Gaussian noise. The
specification of g(t) as the solution of Equation (3.3-10) is
equivalent to processing r(t) with a matched filter designed for
colored noise and matched to s(t)

Because of the assumption of Gaussian statistics, the error

performance of this receiver is given by Equation (3.3-8), where the

A
performance measure A 1is equal to:
A
> 2
U512} Ix__ ('m0
xg
| A = SIR = .
bt )
) 2 ~ 012
J JR (1,9) Ix_ (1,6)|“dTd$ + N J [g(t) | “ae
SREY Xg °
- -0
(3.2-51) 1

Note that in the presence of reverberation, the performance measure
(SIR) given by Equation (3.2-51) is dependent upon the shape of x(t)
via the cross—-ambiguity function x~~(T,¢) . Since reverberation is
caused by the scatterirg of the trazgmit signal, Equation (3.2-51)
cannot be maximized by arbitrarily increasing the transmit energy.

Increasing the transmit energy will increase both the target and

reverberation returns. However, A can be maximized by proper

signal design via x (1,¢)
X8
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3.3.2 Sub-optimum receiver for detecting a slowly fluctuating

point target. In this section, we will consider the problem of detect-
ing a slowly fluctuating point target return in the presence of both
reverberation and noisé by processing r(t) with g(t) as given by
Equation (3.3-2). This is equivalent to using a matched filter which
was designed for white noise only, to detect a point target return in
colored noise.

If we make the usual assumptions regarding y(t) , y(t) , and
N TRGT REV
n(t) (including Gaussian statistics) as was done in the previous
section, then it is clear that the test gi;en by Equation (3.2-32) will
not be optimal for our choice of g(t) ; namely, g(t) as given by
Equation (3.3-2). However, because of the assumption of Gaussian

statistics, the error performance of this sub-optimum receiver can be

computed and is given by Equation (3.3-8), where an expression for A
which reflects our choice for g(t) will be obtained next.
If Equation (3.3-2) is substituted into Equatiom (3.2-43), tﬁen

it can be shown that:

lx~~(r,¢)|2 = Ix (' -1, ¢ -9¢ni? , (3.3~11)
Xg X .
where
x_(1,0) = J i(t)i*(t ~ T)exp(+j2mdt)dt (3.3~12)
X

is the auto-ambiguity function of the transmit complex envelope x(t) .
Substituting Equations (3.3-3), (3.3~5), and (3.3-11l) into Equation

(3.2~51) yields the desired result (e.g., see Van Treeslz):
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E(|5]%}
A = SIR = —
J J RS(T,¢)lw (t' - 1,9 - ¢')Izdtd¢ + (N /E)
- REV X x
(3.3-13) 1
or ;
E{|5]%)
A = SIR = — ,(3.3~14)
Rg(1,0) * % |y_(1,-9)]% + (¥ /E )
REV X X

where the double asterisk means perform a two-dimensional convolution,

and

¥ (1,¢) = x_(1,8)/E_ (3.3~15)
X X X

is the normalized auto-ambiguity function such that lw~(0,0)| =1 .
Although g(t) as given by Equation (3.3-2) is :ot the optimal
processing waveform to use in this case, it does have its advantages.
As Van Trees12 indicates, (1) it is simpler than the optimum g(t) ,
which is the solution of Equation (3.3-10), and (2) the autocorrelation.
function of the reverberation return R9é;6t') may not be known
exactly a priori, so that the optimum solution for g(t) cannot be
obtained anyway. Besides, since the performance measure A of the
sub-optimum receiver is known [see Equation (3.3-13)], it can be
maximized by proper signal design. For example, suppose that x(t)

was designed in such a way that the two~dimensional convolution integral

appearing in Equation (3.3-13) was minimized. Then, A would approach
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Equation (3.3-9), which would be the maximum value that A could
attain in this case.

It is worth mentioning that, although R_(t,t') may not be
YREV

known exactly a priori, it can be learned in real time by using an
appropriate adaptive signal processing scheme. Therefore, it 1is
theoretically possible then to solve for the optimum g(t) in real

time.

3.3.3 Sub-optimum receiver for detecting a doubly spread target.

The receiver illustrated in Figure 6 is not an optimal receiver for

detecting a doubly spread target.12 However, if the usual assumptions

o are made, i.e., that y(t) , §(t) , and n(t) are Gaussian, zero-mean,
TRGT REV

and uncorrelated (statistically independent) with one another, and

that n(t) is white, then, the error performance of this sub-optimum

receiver in detecting a doubly spread target is known and is given by:

p 1/(1+4)

PD = P s (3.3-8)
where
2
J JRS(T,¢) |x__(t,6)}“drde
- TRGT Xg
A = SIR = — p
J IRS(T,¢>) |x~~(T,¢)|2de¢+N J lE(t)lzdt
_ °REV X3 ° il
(3.2-44)

, ' As was mentioned previously, the use of a sub-optimum receiver

is not necessarily a hindrance since the performance measure, as given
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by Equation (3.2-44), can be maximized by proper design of both x(t)
and g(t) . And when A is maximized, the probability of detection
is maximized.

DeLong and Hofstetter19 suggest that using the receiver
illustrated in Figure 6 and designing x(t) and g(t) so that the
SIR is maximized may well be a reasonable thing to do even in the case
of non-Gaussian statistics. Of course, in the case of non-Gaussian
statistics, the error performance of the receiver is no longer given
by Equation (3.3-8).

It should be mentioned that Van Trees12 gives a discussion on
the optimum receiver to use for detecting a doubly spread target when
y(t) = 0 . In addition, a discussion on the detection of doubly

REV 21
spread radar astronomy targets is given by Price.

From Equation (3.2-44), it can be seen that in order to maximize
the SIR for a doubly spread target, one must be able to specify both
the target and reverberation scattering functions. In general, the
reverberation return is a composite of volume, surface, and bottom
reverberation returns. However, only two kinds of reverberation will
be considered in this dissertation; namely, volume and surface
reverberation. In Chapter IV, both a volume reverberation and target
scattering function will be derived, and in Chapter V, a surface

reverberation scattering function will be derived.




Biamii e

A D e

P

CHAPTER IV

VOLUME REVERBERATION AND TARGET SCATTERING FUNCTIONS

4,1 Introduction

Both the volume reverberation and target scattering functions
are derived in this chapter.

Volume reverberation is modelled as the scattered acoustic
pressure field from randomly distributed discrete point scatterers in
deterministic plus random translational motion. The point scatterers
are distributed in space according to an arbitrary volume density
function with dimensions of number of scatterers per unit volume.

The autocorrelation function of the random, time-varying
transfer function representing the volume reverberation communication
channel is derived for a bistatic transmit/receive planar array
geometry. A single scattering approximation is used and frequency
dependent attenuation of sound pressure amplitude due to absorption
is included. The scattered fields from different regions within the
scattering volume are assumed to be uncorrelated. The volume rever-

beration scattering function is then obtained from the autocorrelation

_ function via a two-dimensional Fourier transformation. The probability

density function of random Doppler shift due to the random motion of
the scatterers is also derived. 1In addition, an expression for the
average received energy from volume reverberation is computed from the

volume reverberation scattering function. Using several simplifying

SHPIA  W
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assumptions, it is shown to reduce to the sonar equation for
reverberation level.

The doubly spread target is modelled as a linear array of
discrete highlights in deterministic translational motion. Recall
that a doubly spread targét is one whose return signal exhibits a
spread in both round-trip time delay and Doppler. The target scatter-
ing function is obtained from the monostatic form of the volume
reverberation scattering function by appropriately specifying the
volume density function of the scatterers.

Computer simulation results for both volume reverberation and
target scattering functions are presented as examples involving a
monostatic transmit/receive array geometry. The volume reverberation
scattering function predicts frequency spreading as a function of both
beam tilt angle and random motion of the discrete point scatterers.
Also predicted is a time spread and/or contraction as a function of
Doppler shift. The target scattering function also ptédicts a spread
in Doppler values and a time spresad and/or contraction as a function
of Doppler shift. Computer plots of the probability density function
of the random Doppler shift are also presented for a monostatic
geometry as a function of the standard deviation of the random motion

of the scatterers.

4.2 Volume Reverberation Scattering Function

In order to derive a mathematical expression for the volume

reverberation scattering function R_(T,$) , the corresponding

S
REV
time~frequency correlation function RHéAf’At) will be computed first.
EV
The scattering function will then be obtained from (Af,At) via

v
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the two-dimensional Fourier transform relationship given by Equation
(2.3-51).

Volume reverberation is a result of the scattering of emnergy by
the ipherent inhomogeneities in the ocean medium (e.g., fish, bubbles,

17,22 In the

zooplankton, etc.) and its changing index of refraction.
analysis which follows, volume reverberation will be represented as the
scattered field from a random distribution of discrete point scatterers
3 . which are distributed in_space according to an arbitrary volume density
function.lo It is assumed that the particles are undergoing transla-

tional motion. A single scattering approximation is used throughout

the analysis.

- We begin by considering the physical situation depicted by Figure

7 and computing the scattered field at the receive array due to a single
! - particle. Note that both the transmit and receive planar arrays are in
- a bistatic configuration and both are assumed not to be in motion. When

E transmission in the direction ﬁT begins at t = 0 , the range of the

particle from the tranmsmit array in the direction fi, is equal to R .

T
Similarly, the range of the particle from the receive array in the

direction -ip at t =0 1is equal to ROR . Both nn and o, are
unit vectors. The particle's motion is described by the time-varying

translational velocity vector 3(t) . Therefore, the range of the ]

particle from the transmit array at any time t , in the direction @

T 3
is given by:

R (t) = R +J V(e) -+ dt o (4.2-1)
0
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TRANSMIT

RECEIVE
ARRAY %?(RAY‘

Figure 7. Geometry for calculation of scattered field from
a single particle undergoing translational motion.
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and, similarly, the range of the particle from the receive array at any
time ¢t , in the direction -ﬁR , is:

t
R () = R +J V(o) - (-A) er . (4.2-2)
R
0

Assume that a unit amplitude, time-harmonic signal is transmitted and
that the moving particle is in the far-field region of both the transmit

and receive arrays. At some time instant, say t = t! the time-

1 ’

harmonic signal transmitted in the direction 6, 1is incident upon the

T

particle and some power is scattered towards the receive array in the
direction ﬁR . The scattered acoustic pressure field begins to appear

at the output of the receive array at time tl , where

£, = ¢!

1 1

(t])
+ RR__C o, (4.2-3)

where ¢ 1is the speed of sound (in m/sec) in the medium and is assumed

to be constant. The output at time tl is given by [see Equation

(3.2-18) }:

y(tl) = Re {H(f,tl)exp(+j2‘rrft1)} . (4.2-4)

where

H(f,t.) = D, (k. ,k g, ,A.,£)D (k. ,k_) =
1 T X Yo R>T R X YR

expl~3kR_(t])) '
RT(ti) exP['GT(f)RT(tl)] .

exp{-ijR(t')]

NG

exp[-GR(f)RR(ti)] s (4.2-5)
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when the transmit signal x(t) = Re{exp(+j2mft)} .
Equation (4.2-5) is the random, time-varying; transfer function
of the communication channel corresponding to the physical situation of
a single particle in translational motion for a bistatic transmit/receive
array configuration. The term j = V<1 and t' is the retarded time

1
given by:

(th
- R—R-g—l- ) (4.2-6)

' =
5 51

The expressions D, and DR are the far-field directivity patterns of

T
the transmit and receive arrays, respectively. The far-field directivity
pattern of an acoustic planar array is given by the two-dimensional

Fourier transform of the spatial distribution of normal driving velocity,l

say v(x,y) ; i.e.,

]

D(kx’ky) J J v(x,y)exp[+j(kxx + kyy)] dxdy (4.2-7)

when the baffle surrounding the active region R 1is assumed to be

rigid.23 The far-field radiated acoustic pressure field at a point

(x,y,z) with corresponding spherical coordinates (r,0,y) 1is (see

23):

Morse and Ingard

p(x,y,2) = joofl?(kx,ky)'exp(-jkr)/r s

where r = (x2 + y2 + z2 1/2 s Py is the ambient density of the mediumj

and the x and y components of the wave number k are given by:
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kx = k sinb cosy = ku (4.2-8)
and
ky = k sinf siny = kv . (4.2-9)
where
= 2mE _o2m .
kK = - 3 . (4.2~-10)

The terms u = sin® cosY and v = sin® siny are the direction cosines

with respect to the positive x and y axes, respectively. Note that

Equation (4.2~-7) is also a valid expression for (1) the far-field

directivity pattern of an electromagnetic planar array (antenna) when

v(x,y) corresponds to a two-dimensional current distribution,24 and

(2) the Fraunhofer diffraction pattern of an aperture distribution

v(x,y) in optics.zs’26 The expressions ¢, and ¢, are the frequency

T R

dependent amplitude attenuation coefficients due to sound absorption,

- with units of nepers/meter, along the transmit and receive paths,
respectively.

The function g(a f) 1is referred to as the scattering

R’ﬁT’
amplitude function.lo It represents the random far-field amplitude of

the scattered wave in the direction ﬁR when the particle is illumin-

ated (insonified) by a unit amplitude plane wave propagating in the

direction ﬁT . Thus, at large distances from the particle,lo’z3

2 n
g(ﬁR,ﬁT,f) = %J [YK(ro)p(?o) + on(-{o) —kB . Vop(_tto)]

v
(o]

s exp(+ikfip * T)) &V, (4.2-11)

where YK(?O) = [Ke(;;) - K_1/R_ and yp(¥°) = [pe(¥;) - pollpe(;§) )

The particle occupies a volume Vo , Where Ke and oe are the
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compressibility and density, respectively, inside the particle, and
Ko and po are the compressibility and density of the surrounding
medium. The term p(;;) is the actual pressure field within Vo .
Depending upon the physical situation, Equation (4.2-11) can be
simplified by using the Rayleigh, Born, or WKB approximation.10
In order to simplify Equation (4.2-5), assume that the velocity

of the particle is constant during the time it is insonified, i.e.,

-> >
V(t) = V and that

1
R > j V(e) « A dt (4.2-12)
oT T
0
and
t'
R, >> J V(e) - (-) de . (4.2-13)
R 0
Also assume that aT(f) = aR(f) = o(f) . Therefore, upon using these

assumptions [Equations (4.2-12) and (4.2-13) are only used in simplify-

ing the denominator], Equation (4.2-5) reduces to:

exp {—jkEFF[Ro +R + (@A, -1_) Gfi]}

o T R
- T R

H(f,tl) = F(f) Ro Ro

T R
(4.2-14)

where

ROR v . iy

&) = [cl-—c—] / [1- - } , (4.2-15)
A A A

F(f) = DT(kx L,k )g(nR,nT,f)DR(k kyR) (4.2-16)

14
T T XR
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and kEFF is th. complex effective wave number defined by:

A 2

cop 2 k-du® = ELogaim . (4.2-17)
Next, consider the problem of calculating H(f,t) when several
moving particles occupy an elemental volume dV . The problem is
illustrated in Figure 8 where it has been assumed that 6n1y three
particles occupy dV for example purposes. Assuming that the
transmission and scattering processes are linear, the principle of

superposition is used to express the complex envelope of the output .

field (reverberation return) as:

HRé&’tl) = Hl(f,tl) + H2(f’t1) + H3(f,tl) , (4.2-18)

where H HZ , and H3 represent the complex envelopes of the

l 14
individual output fields due to the scattering of the tramsmit signal
x(t) = Re{exp(+j2nft)} from each of the three moving particles.

Using Equation (4.2-18), the autocorrelation function

f stost = E{H (f 2t )H (£ } 4.2-19
RH( e’ f20108) RéVl ‘ Rév £ ¢ )
is equal to:
*
Rﬂééé,fz,t t)) = E{Hl(fl’tl)ﬂl(fz’tz)} +

E{Hz(f t )H (f,, 2)} +

%
E{H3(f1,t1)ﬂ3(f2,t2)} (4.2-20)




Figure 8.

Scatter in the direction 0, from several
moving particles occupying an elemental
volume dV when insonified in the
direction ﬁT .
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or

(fl’fz’tl’tz) = Rﬂ(fl’fz’tl’tz) + RH(fl,fZ,tl,tz) + T
EV 1 2
Rﬂgfl,fz’tl,tz) E] (4.2-21)

where it has been assumed that

{H, (f B (f,,t.)} = £ f 8 :
By (e By (08000 = Rylf)afaatat)®yy
i,j = 1,2,3 , (4.2-22)
where
1, i=3
5., = (4.2-23)
ij 0, 1i#j

is the Kronecker delta. Equation (4.2-22) indicates that the scattered
fields from different individual particles occupying the elemental
volume dV are assumed to be uncorrelated.lo

In general, each term on the right-hand side of Equation (4.2-21)

will not be equal to one another since each particle can have (1) a

different scattering amplitude function gi(ﬁR,ﬁT,f) for 1 =1,2,3 ;

(2) a different constant translational velocity vector Vi for

i=1,2,3 ; and (3) different initial ranges (R_ ) and (R_ ) for
oT i oR i

i =1,2,3 which together with the different velocity vectors yields

different values for the retarded times ti and té

(4.2-14) through (4.2-17)]. However, if it is assumed that the three

(see Equations

properties described above are identical for all particles occupying

dv , then Equation (4.2-21) can be rewritten as:
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R, (f,,E.,t ,tz) = RH(fl,fz,tl,tz)pv v, (4.2-24)

HREVI, 2’71
where Py is the volume density function of the point scatterers
(number of scatterers per unit volume) and RHl = RHZ = RH3 = RH .
Next, integrate the right-hand side of Equation (4.2-24) over the
scattering volume which is common to both the transmit and receive

arrays, i.e.,

* g
E{H(f ,t,)H (fz,tz)} pydV . !

QG —

(4.2-25)
Upon substituting Equation (4.2-14) into Equation (4.2-25) and

performing the indicated operations, it can be shown that:

*
RHRéil,fz,tl,tz) = l E{F(fl)F (fz)} .

Elexp(~j[ (A, - A) * 31[kEFF1:i . k;Fthél)} -

exp{-[a(fl) +alf )R+ R 1}

T R
(
R 4R ]
exp{-j2m —= R (£, - £} °
Py
5~ 4V , (4.2-26)
Ro R
T R

where V 1is the scattering volume common to both arrays and
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* *
E{F(fl)F (fz)} = DT(kluT’klvT)DT(kZUT’kZVT)

E{g(ﬁR’ﬁT’fl)g*(ﬁR’ﬁT’fZ)} .

- *

Dp (kjup kg ve)Dg (kyup ,kovp) - (4.2-27)
217fi
k, = — ;s 1=1,2 , (4.2-28)
‘ k.EFFl = k- ja(f;)) (4.2-29)
and
* = k i 4.2-30
kEFFz = k, + ja(f,) . (4.2-30)
-

The derivation of Equation (4.2-26) was based upon the assumption that
the scattered fields from different spatial locations within V are
Egggrreléted. For simplicity, all particles within the common
scattering volume V are. assumed to have the same scattering amplitude
function g(ﬁR,ﬁT,f) and velocity vector v . Otherwise, they would
have to be shown as functions of position. Note, however, g(ﬁR,ﬁT,f)

is still a function of geometry because of its dependence upon ﬁT and .

nR.

]
Next, replace fl and f2 with £ + fC and f' + fc ’

respectively, where fc is the center or carrier frequency of the

bandpass transmit signal. Upon substituting Equation (4.2-15) for ti

and an analogous expression for té into Equation (4.2-26) and

expanding, the following general expression for the autocorrelation

\ function is obtained:

R e T P 1 TSN N S . P - NP i P o —— e T s e el e LJ
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v * L
R.Hl(é$fc,f Ho,tyaty) = I E{F(f+fc)F (f +fc)} .
'

. (Ap-fig) - ¥
] E | exp { “32m(E+E ey - (f'+fc)t2][‘—"fz“‘“"— ]} :
c -V . ﬁR

exp { +i2m (£-£f') [

R R

’ (o]
) exp { - [ a(f+fc) {tl - ——R~] + a(f'+fc) [tz - —-C—R ]]

)}

| exp { - [a(f+fc) + a(f'+f ) ] (ROT + ROR

[o]
exp { - j27 ———JL—T;—JS— (f-£") } 3 V2 dv
Ro Ro
T R )
(4.2-31)
Ishimarulo refers to the autocorrelation function of the random,
*
time-varying transfer function Rﬁf,f',t,t') = E{H(f,t)H (f',t")} as
the two-frequency correlation function or the two-frequency mutual
coherence function. The expression Rﬂ(f,f',t,t') is equal to the
correlation which exists between the complex envelopes of the output
fields H(f,t) and H(f',t') at two different times (t and t') due

to the application of time~harmonic input fields at two different

frequencies (f and f'). If two time-harmonic waves are transmitted

Iy V. . PR PSRRI WSO




at the same frequency f and the resulting output fields are observed

at two different times .t and t' , the correlation between the output
fields decreases as the time difference At = t - t' increases.10 The
value of the time difference At at which the correlation function
RH(f,f,t,t') = E{H(f,t)H*(f,t')} is approximately equal to zero or

decreases to a specified level is called the coherence time.lo It is a

measure of the correlation which exists between the output fields at two
different times at the same frequency. The reciprocal of the coherence
time is equal to the frequency spectrum broadening a wave will undergo
as it propagates in a random, time-varying medium.lo

Similarly, if two time-harmonic waves are transmitted at two
different frequencies f and f' and the resulting output fields are
observed at the same time ¢t , the correlation between the two output
fields decreases as the frequency difference Af = f - f' increases.10
The value of the frequency difference Af at which the correlation
function Ru(f,ﬁ',t,t) = E{H(f,t)H*(f',t)} is approximately equal to

zero or decreases to a specified level is called the coherence
10

bandwidth. It is a measure of the correlation which exists between

the output fields at two different frequencies at the same time. The
reciprocal of the coherence bandwidth is equal to the time delay
broadening a wave will undergo as it propagates in a random, time-
varying medium.lo

Therefore, both the coherence time and the coherence bandwidth,
and hence, the spectrum broadening and time broadening associated with

our model of volume reverberation can be computed from Equation (4.2-31).

oa il PR N Y
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Since Equation (4.2-31) is not a function of Af = f - £f' and
At = ty -ty the volume reverberation scattering function cannot be
obtained from it via Fourier transformation. However, if Equation
(4.2-31) is substituted into Equation (3.2-20), a mathematical
expression for R§(t1’t2) can be obtained in terms of the pertinent
system functions and geometry of the physical situation. Let us now
investigate whether or not it is possible to reduce Equation (4.2-31)
to a function of Af and At .

As of yet, no distinction has been made between narrowband
versus broadband bandpass transmit signals. However, it will be shown
in the subsequent analysis that in order for the two-frequency
correlation function to be wide-sense stationary in frequency, a
narrowband transmit signal must be used. The condition of wide-sense
stationarity in frequency does not hold for broadband transmission.7
Therefore, assume that the transmit signal is indeed narrowband.
Referrihg back to Equation (3.2-20) for a moment, one notices that the
frequency variables f and f' are associated with the low pass
spectrum of the complex envelope of the transmit signal. Therefore,
as a consequence of the narrowband assumption, it is reasonable to

assume that |[f]| << f, and g1 << £, so that

n

E{F(f + fc)F*(f’ + £} E{IF(fc)lz} , (4.2-32)

a(f + fc) = a(fc) (4.2-33)
and

a(f' + fc) = a(fc) . (4.2-34)
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Substituting Equations (4.2-32) through (4.2-34) into Equation (4.2-31)

yields:
&>
(A_~f,_ )V
(Af,c ,t,) = J'E{IF(fc)IZ}E[exp{—jmrfc(tl_tz)[n*r R ]}
EV e
R
(ﬁ -A ) . —‘; Ro
exp{+j2ﬂAf { T R* ] R } .
(c - V-iip) ¢
2R . n A >
OR (nT-nR)o v
exp{-a(f )[(t +t) - } [ * J}J .
[ 1 2 [ 1_(V." .
(R_+R_)
o, O 0
T R v
exp{-Za(fc) [R°f+R°n]} exp {-jZW — Af ;E_Ei_ v,
on op
(4.2-35)

where Af = f - f' . The two~frequency correlation function is still

not a function of At = t. - t, due to the presence of the term

1 2

t. + t, appearing in the third exponential factor, involving attenua-

1 2
tion due to sound absorption.

Some additional observations are appropriate at this point in
order to facilitate simplifying Equation (4.2-35). TFirst of which is
the fact that in our analysis problem, it will certainly be true that:

Vi

-—c— << 1 . (6‘2°36)

Now, with regard to the significance of the third exponential factor

appearing in the integrand of Equation (4.2-35) to attenuation, consider
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The time instants tl and

t2 correspond to the times at which signal returns are monitored at

the receive array and are approximately equal to:

the following order of magnitude argument.

[o] [o]
. o1 R _
t, = S (4.2-37)
‘ RO + RO
t, = < + 8t , (4.2-38)

where Ot 1s some relatively small time increment since it is assumed

that tz > tl .

it can be shown that

Therefore, using Equations (4.2-36) through (4.2-38),

Poe] [ @pfig) = ¥
exp {-a(fc) [tl+t2- ] o }
A\ oy
1 -
c

+ é6t](ﬁT - ﬁR) . g }

=  exp { -a(fc) [ZRo
(4.2-39)

T

which is negligible compared to the attenuation due to
exp{—a(f YI2R. + 2R ]}
c or °r

and can therefore be ignored. Making use of these observations and
assuming that V can be expressed as the sum of a deterministic and

random component, Equation (4.2-35) finally reduces to the desired

result:




R
2) At °r ]
(@f,80) = j, E{IF(ch fexp{-ﬂ"[ﬂt e %m}‘ )

: R
b [o]
¢ Lo (o [ -4 oo} ) -
C

R + R
o OR] Py j
exp { ~j2m S Af } 5 3 av
R Ro
T R
- (4.2-40)
where ¢DET is the deterministic Doppler shift defined as:
! £ B, -f) -
A TeMt TR -
¢DET = 5 , (4.2-41)

> >
U being the deterministic component of the velocity vector V , and

¢pyp 1S the random Doppler shift defined as:

(4.2-42)

Vf being the fluctuating or random component of V . Note that the

Doppler shifts are functions of angle due to the

dper @4 4rap

presence of the inner product. For example, in the spherical coordinate

system, is a function of the spherical angles (8,y) . And since

OpET

the directivity functions D,r and DR are also functions of (8,y) ,
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different deterministic Doppler shifts are weighted differently by the
beam patterns. Thus, a frequency spread will result because of the
finite extent of the beamwidths of both the transmit and receive beam
patterns. Now, if Equation (4.2-40) is substituted into Equation
(2.3-51), one obtains the volume reverberation scattering function:

Rs(T,0) = J;E“F(fc)lz}%gg%m)é“ - @1 -

Py

exp{-Zoc(fc) [ROT + ROR]} 55— dV (4.2~43)

Ro Ro
T R

which is a function of the time delay T (in sec) and the Doppler

spread ¢ (in Hz), where

o) 2 T, + (@R, )/ (£ e)] , (4.2-44)

R

>

(Ro + Ro ) /e (4.2-45)
T R

and

E(JF(E) 1Y = [o Geup k) [PEC | (p,an,6 )12}

|Dg G kv |2 , (4.2-46)

where k = anc/c and p¢(') is the probability density function of
RND
the random Doppler shift which is given by:

3
Py(®) = [ —= } 2.
RND lnT-nRIfco i
® 2
2
exp "%[ — “) xz}dX; 6] < x <=
18] / x2-o? UAy-dglf o (4.2-47)
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where o is the standard deviation of ]Vfl .

Note that T1(¢) as
defined by Equation (4.2-44) is not the round-trip time delay (see
Appendix A and References 27-29). However, it is shown in Appendix A
that the round-trip time delay can be obtained from T(¢) by dividing
it by the dimensionless scale factor {1 + (¢/fc)] . That is, the
round-trip time delay is given by Tt(¢)/[1 + (¢/fc)] .

The derivation of the probability density function of the random
variable

n A >
fclnT—nRIIVf[cosg

O RD - = - (4.2-48)

can be found in Appendix B and was based upon the assumptions that IVfl
was Maxwell distributed, the angle & was uniformly distributed, and

that the random variables IG and cosf are statistically

el
independent (use was made of References 30-32 in the derivation of

. - . ~ . A A 2 - A A~
the density function). The function E{Ig(nR,nT,fc)[ } = Gd(nR,nT,fc)
is referred to as the average differential scattering cross section of

10,33,34

one of the point scatterers and has units of area. The average

bistatic radar cross section is equal to

A A 2 — ~ ~
AnE{Ig(nR,nT,fC)| } = 4mo (R, i, £ )

The volume reverberation scattering function given by Equation
(4.2-43) predicts that the input signal's power will undergo both a
frequency spread--via the transmit and receive beam patterns and the
probability density function p¢RND--and a time spread or contraction--
via the scale factor 1 + ¢/fC . For a monostatic transmit/receive

array geometry, let

DUUICECINIILE SRS T M




.

b

(4.2-49)

and

nR = —nT ’

where u and v are the direction cosines with respect to the positive
x and y axes, respectively.
In the case of a monostatic geometry, the average backscatter

radar cross section of one of the point scatterers is equal to
4mE{|g(-fi_,A_,f )|2} = 4mo, (-fi_ A, f )
e Al R S S
The target strength of an individual point scatterer is given by:34
10 loglo[od(—nT,nT,fC)/Al]dB re A1 , (4.2-50)

2 ;
where A1 =1 m® and re means "relative to." Thus, the target
strength or volume reverberation backscattering strength is a decibel

33,34

measure of the differential backscattering cross section. The

volume reverberation backscattering strength is dependent upon the

33,34

type and density of scatterers per unit volume. For example, the

backscattering strength per unit volume is given by:34
10 1og10[ov0d(-nT,nT,fC)Rl]dB re R, , (4.2-51)

where is the volume density of the scatterers and Rl is the

Py

reference distance, usually chosen to be 1 m.
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As an example, the average received energy (in dB) from volume

reverberation will be computed from the expression {see Equation (2.3-61)]

. o

E = E J J R_(T,$)dTdd , (4.2-52)
y X SREV

-00
where E; is the average received energy, Ex is the transmit energy,
and RS(T,¢) is the volume reverberation scattering function given by
REV
Equation (4.2-43). TFor simplicity, assume a monostatic transmit/receive

array geometry and no motion, i.e., ¢DET = ¢RND = 0 and as a result,

§(¢) . With these assumptions, Equation (4.2-43)

P (0 + Opgp) = py(9)

RND
_becomes:
Rg(1,6) = JE{IF(fC>I2}6<¢)6{r-[—§ %%]J .
REV
v
exp{-Aa(fc)r}(pV/r“)dv (4.2-53)
or
Ro(1,4) = R (r)o(¢) > (4.2-54)
REV REV
where

Rg(T) = J E{|F(f )IZ}S[T - (r/c)lexpl-ta(f Ir}(p, /thav
RLV c c v
v (4.2-55)

and from Equations (4.2-46) and (4.2-49):

E{IF(fc)|2} = IDT(ku,kv)lzod(—ﬁ fc)|DR(ku,kv)|2 .

T’nT’
(4.2-56)
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Now, if Equation (4.2-54) is substituted into Equation (4.2-~52), one

obtains:
oo

E = E J R.(T)dT (4.2-57)
y X SREV

-Q0

and substituting Equation (4.2-55) into Equation (4.2-57) yields:

E; = E_ j E{lF(fc)Iz} [ j §lt - (2r/c)lat J .
v -—00
expl-4a(£ )r} (o /x*)av (4.2-58)
or
Ey = E_ J E{lF(fc)|2}exp{—4a(fc)r} (oV/r4)dV. (4.2-59)

v

Next, assume a spherical coordinate system so that
dv = rzsinedrdedw and that pv is not a function of position. In

addition, assume that Od(—ﬁ £.) does not depend upon o) i.e.,

T’ﬁT’ T’

assume that Od(—ﬁT,ﬁT,fc) is omnidirectional and is equal to a
constant. Therefore, with these assumptions, Equation (4.2-59) can be

expressed as:

r+(Ar/2)
4 2
Ey = Ex(pvcd) (exp{—éa(fc)r}/r )r dr .
r-{(Ar/2)

m/2 27
|p, (ku,kv) | [D, (ku, kv) | %sin6d6di (4. 2-60)
8=0 {=0

where u = sinBcosy and v = sinfsiny . If it is further assumed that

the range interval Ar 1is negligible compared to r, then the integrand

of the range integral is approximately constant so that:
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r+(Ar/2)
4, 2 -4 2
(eXP{-Aa(fc)r}/r Yrodr = [exp{-4a(fc)r}r ] (xAr)
r-(4r/2) (6.2-61)
and as a result, Equation (4.2-60) simplifies to:
— -4 2
Ey = Ex(pvcd) [exp{-4a(fc)r}r 1(c“ArY) , (4.2-62)
where n/2 2w
y = o[ |0 |? sinpdedy . (4.2-63)
6=0 {=0

Therefore, the average received energy from volume reverberation in

decibels is:

10 log,, E& = 10 log;, E_+ 10 log,,(p,04) - 40 log,, r +

10 log,,[exp{-4a(f )r}] + 10 loglo(rzArW) )

(4.2-64)

Equation (4.2-64) is the sonar equation for volume reverberation level
(e.g., see Urick33) since (1) 10 log10 Ex is the source level,
(2) 10 loglo(pvod) is the volume reverberation backscattering strength
per unit volume, (3) =40 loglor is the two-way transmission loss due
to spherical spreading, (4) 10 loglo[exp{—hd(fc)r}] is the two-way
transmission loss due to sound absorption, and (5) the expression
r2ArW corresponds to what Urick33 calls the "reverberating volume."

And finally, for the sole purpose of comparison, an alternate

expression for the volume reverberation scattering function as is found

T L Ea O B . WM




in Moose17 will be presented. As Moosel7~indicates, several researchers

(e.g., see References 22, 35, 36) have modelled the reverberation return

as.
N(t)
ye) = [ a(c - T, dexp{+j2mp t} , (4.2-65)
REV i=1

where N(t) 1is a Poisson random variable which governs the number of
reflections from the discrete point scatterers that contribute to the
sum at time t . The a;, are random coefficients which include all

such factors as transducer patterns, propagation loss, and the cross
sections of the scatterers. If the a; are zero-mean statistically
independent random variables, then Moose17 shows that the autocorrelation
function R;(t,t') of Equation (4.2-65) is of the same form as Equation

REV
(3.2-23) and that the scattering function is given by

R(T,0) = E{lact,®) Do), (4.2-66)
REV |

where E{la(T,¢)|2} A E{[ailz} for scatterers with ranges and Doppler
shifts near (1,¢) and p(1,$) is the Poisson parameter which

describes the density of scatterers near (1,¢) , i.e.,

N
P(N;T,0) = LLCLOATAO) i 150, 8)ATA0)}  (4.2-67)
N

‘ is the probability of exactly N scatterers that have Doppler shifts

between ¢ and ¢ + A and time delays between T and T + AT . The

product ©0(T,¢)ATAd 1s the expected number of scatterers in the area

Atdd .
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The differences between the volume reverberation scattering

functions given by Equations (4.2-43) and (4.2-66) are obvious.

4.3 Target Scattering Function

The target scattering function for a doubly spread target will be
derived in this section. The doubly spread target is modelled as a
linear array of discrete highlights in deterministic translational
motion. Each highlight is represented by its own average differential
backscattering cross section. The scattered acoustic pressure fields
from the individual highlights are assumed to be uncorrelated with one
another.

In order to derive the scattering function for a simple line
target composed of discrete point scatterers, start with the monostatic
form of the volume reverberation scattering function given by Equation

(4.2-43) in the spherical coordinate system, i.e.,

2 + ¢/fc 2 - )
g+ [ [[F2] enfres [ )
0y
cT . 2
Py [2 T o7E, 8, w] E([F(ED |} -

8(p + ¢ )dbsineds

RU R

T @+4/E) 2 T > Q@+ /5 , (4.3-1)

where RL and RU are the lower and upper limits of integrationm,

respectively, with respect to range (in meters), and where




 _
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p¢é§n+ ¢DET) 2 6(0 + ¢DET) since it is assumed that the target, and

hence, the scatterers, have only deterministic translational motion.
The problem now is to mathematically represent the volume density
function Py of the scatterers.

Toward this end, refer to Figure 9 where the line target is

represented by the vector ;AB . The length of the target is leBl = L

meters and it has a velocity vector U= lﬁ]ﬁAB , Where ﬁAB is a unit

>
vector in the direction of r

AB ° Thus, all the highlights will also

->
have the same velocity vector U . Both the transmit and receive arrays
lie in the xy plane. The relative orientation of the target with

respect to the arrays is specified by the position vectors ?A and ?B

to the endpoints A and B of the target, respectively. Note that

T,.=1t,~-71, . Th tor T ==t, + df
I'AB rB - !.‘A . e vector r = rA nAB

any discrete highlight along the target. Any particular highlight is

is the position vector to

designated by its distance d (in meters) from endpoint A .

The term ct/(2 + ¢/fc) appearing in the argument of p. is the
range to a highlight. The range, however, can also be specified in
terms of its corresponding time delay 1 . Therefore, the volume

density function can be expressed as:

N
Py(T:8,) = Z=1 §(t - T )8(8 - 8 )8 - ) , (6.3-2)
where
rﬂ
T, o= 7;'[2 + ¢/fc] (4.3-3)

th

and the spherical coordinates (rn,en,wn) of the n highlight are

given by:
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B/ U=[Ulmyg

—
P
-
=+

——— —— ————— —

Figure 9. Orientation of line target with respect to the
transmit and receive arrays.
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r = |¥;| = [ {[1 - (dn/L)]l?AluA + (dn/L)]¥£|uB}2 +

{[1 - (dn/L)ll?AlvA + (dn/L)|¥£|vB}2 +

> > 2 1/2
{[1 - @ /Wlr, v, + (dn/L)]rnle} ) ,

(4.3-4)
{ -1( - ->
6 = cos l(l/rn){[l-(dn/L)]er u + (dn/L)IrB|wB})
‘ (4.3-5)
and
v, = cos t [[l/(rnsinen)]{[l —(dn/L)]i;AI“A +
e (d /L) |7, |ug } ) , (4.3-6)
where
! ‘ u, = sinb,cosy, up = sinBycosyy
v, = sing,simy, Vg = sinGBSian (4.3-7)
W, = coseA Wy = coseB )

where u, and up sV, and Vg s and W, and wp are the direction
cosines uf the endpoints A and B of the line target with respect to
the positive x , y , and 2z axes, respectively, and N 1is the total

s number of highlights. The parameter dn is the distance (in m) of the

nth highlight from endpoint A . Substituting Equation (4.3-2) into

Equation (4.3-1) yields the target scattering function:
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Ig 2
R (T,9) = (2 = ¢ p/E )/ (T )] .
STRGT n=1 DET, o} Tn
exp{-‘*a(fc)[(ctn)/(z - ¢DETn/fc)]} .
2
E{|Fn(fc)| }sin®_ §(T - T )8 + %ETn) ,
(4.3-8)
. where
T, = (rn/c) 2 - SpET /fc) s (4.3-9)
n .
E(E_(E) (%) = [Do(ku kv ) (? E{[g (-G .8, )]%} -
~ nc T " "n’ n n' T’ T’ ¢
_ Ipg (ku_,kv_) |2 (4.3-10)
! and from Equation (4.2-41):
-> > ->
Popr_ = 2f /) (lul/y {u Ulrglug - Iz, w1 +
vnll;’BlvB - i;AlvA] + wn[I;Ble - i;AlwA]} ,
k (4.3-11)
where j
u = sinencos‘bn , ]
: ‘ v = s§inb siny (4.3-12)
n n n

and

w = cosb
n

=]

th

are the direction cosines of the n highlight with respect to the

positive x , y , and 2 axes, respectively.
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The average monostatic (backscatter) radar cross section of the nth

highlight is given by 4nE{|gn(-ﬁ fc)lz} = 410, (-4_,f ,fc) , where

1% d_hrtr

od (—ﬁT,ﬁT,fc) is the average differential backscattering cross section
n .
of the nth highlight. Therefore, the target strength of the nth high-

light is34 [see Equation (4.2-50)]:

10 loglO [o (—ﬁT,ﬁT,fc)/Al] dB re A (4.3-13)

d 1 ’
n

where Al =1 m2
Since the target is being modelled as a linear array of N
highlights (sources) radiating in random phase, the average differential
backscattering cross section of the target is given by:34
N

oy (-An,8,E) = [ o (-8,8,,f) . (4.3-14)
i=1 i
Another way of stating this result is that Equation (4.3-14) is a valid
expression for od(—ﬁT,ﬁT,fc) when the N scattered fields are
uncorrelated, and as a result, intensities add. When the N sources
are radiating in phase (i.e., the N scattered fields are correlated):

N /2 2

~ o) ~ A "~ l
cd(-nT,nT,fc) = §=1 [Udi('“r’“r’fc)]

(4.3-15)

34

since amplitudes add. The corresponding target strength can be

obtained by computing

10 log10 [Od(-nT,nT,fc) / Al] dB re A (4.3-16)

l 14

where Al = 1 m2 . In our case, Equation (4.3-14) is the applicable

expression.
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4.4 Example Problem Calculations

4.4.1 Volume reverberation scattering function. A computer

solution of the volume reverberation scattering function will be

presented for an example problem involving a monostatic transmit/receive

array geometry.
The monostatic form of the volume reverberation scattering

function in spherical coordinates is obtained from Equation (4.2-43):

2

2 + ¢/fc e \
Rsé£6¢) = [ ot ] exp { —4a(fc) ['5_3_67?: ] f .
m/2 2%
c 2
oy [z—:%rf: ,e,w} E{|F(£) |7} -
6=0 y=0
Py (¢ + ¢, --)dyYsingdd ; (4.4-1)
¢RND DET

Ry

&
:;'(2 + ¢/fc) > T > 7;‘(2 + ¢/fc) »

where RL and RU are the lower and urper limits of integration with
respect to range, respectively. It is assumed that the array lies in

the xy plane. Thus, the positive 2z axis is normal to the face of

the array. In this example problem, both the transmit and receive

directivity functions are identical, i.e., DT = DR =D . As a result,

2 4 A A 2
EF(ED ™Y = |D(ku,kv) | E{lg(—nT,nT,fc)I }, (4.4-2)




where the directivity function actually used was:

Z Q cos [M—d- (u - uo)] sin [10‘rrd v)

n=1 A
D(ku,kv) = .
5 Td
Z Qn 10 sin[ Y V]
n=1
(4.4-3)

Equation (4.4-3) corresponds to a (10 X 10) planar array composed of
10-element, amplitude shaded, linear arrays parallel to the x axis

and 1l0-element, uniformly shaded, linear arrays parallel to the y axis
where Q = 1.0, Q, = 0.8389 , Q = 0.5801 , Q, = 0.3153 ,

Q5 = 0.1251 , and d/X = 0.4 . The parameter d is the uniform

] spacing (in m) between elements and A is the wavelength (in m)

corresponding to the frequency fc (in Hz). This particular choice
F . of amplitude shading coefficients ensures 40 dB down sidelobe levels
:
! ! in the xz plane for y = 0 . The phase shift u = sinaocoswo is
used for beam tilting in the xz plane.

We will assume that the array is in motion in the positive =z
direction and that the relative, deterministic velocity of the discrete
point scatterers with respect to the array is U =- 20.0 Z m/sec so
that

40.0 £
¢ = - ——F cosf Hz . (4.4-t)

| DET (o]
Before we can evaluate Equation (4.4~1), we must evaluate
¢(¢ + ¢DET) . Values for the probability density, function of the

)

{

|

r ' random Doppler shift ¢( ) as given by Equation (4.2-47) were
l

|
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calculated via numerical integration. Figures 10a and 10b are plots of
() for 0 =0.1m/sec and © = 1.0 m/sec , reéspectively, for a
monostatic transmit/receive array geometry. Recall that ¢ 1is the
standard deviation of |3£| .
Finally, for simplicity, also assume that the scatterers are

uniformly distributed in space, i.e., = constant ; and that the

Py
average differential backscattering cross section of an individual

point scatterer is omnidirectional, i.e., E{[g(—ﬁT,ﬁT,fC)Iz} does not

depend upon 1 and is therefore equal to a constant ¢

q°

Let us first consider the case of relative, deterministic motion

T

only. Using the aforementioned assumptions and ieplacing p, (¢ + ¢ )
¢RND DET

by &(¢ + ¢DET) , Equation (4.4-1) reduces to:

2
RG(T,9) = Kj lvacu,kv)f" dysing (4.4-5)
REV =0

where 6 is such that:

40.0 f -
cosb6 = ¢ Hz ; 72 8 >0 (4.4-6)
and
2? 2+ ¢/fc) > T > i}-(Z + ¢/fc) (4.4-7)

and where

c cT 1
K = py {——“z;—~— ) exp { -Qa(fc) [ E—:—$7E: ] f 9y

(4.4-8)

Al o .
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Figure 10a. Probability density function of the random
Doppler shift for a monostatic transmit/receive
array geometry, 0 = 0.1 m/sec .
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Figure 10b.

Probability density function of the random
Doppler shift for a monostatic transmit/receive
array geometry, o = 1.0 m/sec .




Figures 11, 12, and 13 are normalized Doppler profiles (range

constant) of Equation (4.4-5) for beam tilts of Bo = 0° , wo = 0° ;

80 = 30° , wo = 0° ; and 60 = 45° , wo = 0° , respectively. The
values of ¢ = 1500 m/sec , u(fc) = 4.9 x 10-4 nepers/m , and

fc = 25 kHz were used in connection with Figures 11-13. Note the
increase in frequency spread, measured at the 3 dB down level, as the
beam tilt angle 60 is increased. Also observe from Figure 11 that

the scattering function peaks at ¢ = 664 Hz , which corresponds to

8

5° , rather than peaking at ¢ = 667 Hz , which corresponds to
6 = 60 = 0° . Mathematically, this is due to the sinf dependence of
the scattering function. Physically speaking, however, 6 = 0° implies
that the elemental scattering volume dV 1is zero; and hence, there is
no scattered power. These plots demonstrate the effect of tilting a
given beam pattern on frequency spread. Figure 15, however, demonstrates
the additional effect of random motion of the scatterers on frequency
spread.

Figure 14 corresponds to relative, deterministic motion only
[see Equation (4.4-5)] with 60 = 45° , wo = 0° , fc = 25 kHz ,
a(fc) = 4,7 x 10.4 nepers/m , and c¢ = 1505 m/sec . If we now allow
the discrete point scatterers to have random motion, Equation (4.4-1)
reduces to:
2r w/2

KJ J ln(ku,kv)ll‘ .
Y=0 6=0

R.(T,4)
SREV

40.0 £
p, (¢ - —
oeND ¢

cosf) sinfdedy, (4.4-9)
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Figure 13. Normalized Doppler profile of volume reverberation

scattering function, 60 = 45° wo = 0° .
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Figure 15a. Normalized Doppler profile of volume reverberation
scattering function. Relative deterministic plus

random motion (90 = 45° , lbo = 0°).
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where K 1s given by Equation (4.4-8), the directivity function D by
Equation (4.4-3), and p¢é§% by Equation (4.2~47) with © = 1.0 m/sec
(see Figure 10b). Figure 15 is a normalized Doppler profile of

Equation (4.4-9). The values of the parameters used for Figure 15 are
identical with those used for Figure 14. By comparing Figures 14 and 15,
it is seen that an additional frequency spread of 26 Hz is introduced by
the random motion of the scatterers for ¢ = 1.0 m/sec . This

represents an increase of approximately 17%.

4.4,2 Target scattering function. The target scattering

function given by Equation (4.3-8) 1s calculated for an example problem
using the monostatic transmit/receive array geometry depicted in

Figure 9. In this example, the array is not in motion. The magnitude
of the deterministic velocity of the target is |ﬁ| = 20.0 m/sec. The

location of the endpoints A and B of the target with respect to the

array is specified by the following constants: IFA{ =500m,
GA = GB = 5,739° , wA = 180° , and wB = 0° . With this information,
I;Bl can be calculated. The length of the target is L = 100 m and

the number of highlights being considered is 10. The first highlight
is located 5 m from point A and the spacing between the remaining
highlights thereafter is 10 m. The values 80 = 45° , .wo = 0° ,

c = 1500.342 m/sec , a(f) = 4.9 x 1074 nepers/m , and f_ = 25 kHz
are used. It is assumed that DT = DR = D , where the directivity

function D 1is given by Equation (4.4-3). It is also assumed that

E{lgn(-ﬁ £ ))2} is equal to a constant value which is the same for
c

T’aT’
all N highlights.
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Values for the normalized target scattering function, as a
function of T and ¢ , are presented in Table I. Upon inspecting
Table I, it can be seen that highlights 1 through 5 have positive
Doppler shifts which indicate that these five highlights are Qpproaching
the array which is in agreement with the geometry of the problem. Also
note that highlights 6 through 10 have negative Doppler shifts which
indicate that these five highlights are receding from the array which is
also physically correct. Highlights 5 and 6 have Doppler shifts which
are almost equal to zero since the position vectors ;5 and ;6 for
these two highlights are nearly perpendicular to the array. Note that
the magnitude of the scattering function is larger for highlights 6
through 10 as compared to highlights 1 through 5. And, in fact, the
scattering function has its maximum value at highlight 8. This is also
in agreement with the geometry of the problem since the beam pattern was
tilted in the general direction of highlights 6 through 10,

The time delay parameter T, given by Equation (4.3-9) does not
correspond to round-trip time delay, and hence, the values for Tn
appearing in Table I do not correspond to round-trip time delays.
However, as was discussed previously in Section 4.2 with regard to the
volume reverberation scattering function, the round-trip time delay can
be computed from Ty by dividing it by [1- (¢DET /fc)] , i.e., the
round-trip time delay corresponding to the nth higslight is given by
T /11 - (d)DETn/fc) ]

Table II presents values for the range L the simple round-
trip time delay Zrn/c , and the actual round-trip time delay

Tn/[l - (¢ /fc)] , for the ten highlights. The simple round-trip

DET
n
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TABLE 1
NORMALIZED TARGET SCATTERING FUNCTION
Highlight T ¢ = —¢DETn RS;;ég)

n (sec) (Hz) (dB)
1 0.666680 59.851 ~0.376507E 02
2 0.665438 46.579 -0.243289E 02
3 0.664461 33.255 -0.107524E 02
- 4 0.663752 19.888 -0.592028E 01
5 0.663310 6.481 -0.686279E 01
‘ 6 0.663137 - 6.858 -0.511047E 01
! 7 0.663231 -20.276 -0.328704E 00
8 0.663592 -33.638 -0.000000E 00
9 0.664220 ~46.960 ~0.294615E 01

10 0.665115 -60.229 -0.109380E 02




Highlight

10

ROUND-TRIP TIME DELAY CALCULATIONS

r
n

(m)

499.526
498.728
498.128
497.730
497.531
497.534
497.738

498.143

. 498,747

499.552

TABLE 2

2r /¢
n

0.6658828
0.664819

0.6640192
0.6634887
0.6632234
0.6632274
0.6634993
0.6640392

0.6648444

0.6659175

T /(- ¢

DET
n

(sec)
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/£)]

0.6650877
0.6642005
0.6635783
0;6632244
0.6631381
0.6633189
0.6637693
0.664486
0.66547

0.6667211

s idehuie
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time delay does not depend upon Doppler shift while the actual round-
trip time delay does. The range values r ~were computed from
Equation (4.3-4). Upon inspecting Table II, it can be seen that the
actual round-trip time delays for highlights 1 through 5 are smaller
than the corresponding simple round-trip time delays since these five
highlights have positive Doppler shifts and are therefore approaching
the array. Similarly, the actual round-trip time delays for highlights
6 through 10 are larger than the corresponding simple round-trip time

delays since these five highlights have negative Doppler shifts and are

therefore receding from the array.




CHAPTER V

SURFACE REVERBERATION SCATTERING FUNCTION

5.1 Introduction

The underwater acoustic propagation path between transmit and
receive planar arrays via the surface of the ocean is treated as a
linear, time-varying, random WSSUS (wide-sense stationary uncorrelated
spreading) communication channel. The random, time-varying, surface
reverberation transfer function is derived for a bistatic geometry
using a generalized Kirchhoff approach. The result for the bistatic
configuration can then be easily reduced to either the specular or
backscatter geometries.

The generalized Kirchhoff approach uses a Fresnel corrected
Kirchhoff integral, no small slope approximation, and the Rayleigh
hypothesis that the scattered acoustic pressure field can be represented
as a sum of plane waves travelling in many different directions. The
transfer function obtained in this chapter is shown to be greater in
magnitude than those transfer functions previously derived by the
classical Kirchhoff approach, especially for the specular and back-
scatter geometries.

The randomly rough, time-varying surface is assumed to be a zero
mean, wide-sense stationary, Gaussian process. Two second order
functions are derived from the transfer function. They are the two-
frequency correlation function and the surface reverberation scattering

functidn., These second order functions are shown to be dependent upon
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the directional wave number spectrum of the ocean surface. The
scattering function analysis predicts both a spread in round-trip time

delay and in frequency.

5.2° Surface Reverberation Transfer Function

5.2.1 Background discussion. The bistatic underwater propagation

path from transmit array to receive array via the ocean surface is ;
assumed to be a linear, time-varying, random communication channel. If
one transmits a time-harmonic signal of the form exp(+j2mft) , then the
acoustic pressure field at the receive array due to scatter from the
ocean surface can be obtained from Green's Theorem.37
Consider Figure 16 which depicts the transmit array T , the
receive array R , and the ocean medium as being enclosed by the closed
surface S' = S+ 8" , where S 1is the ocean surface, and S" is an
arbitrary contour to be specified later. Assuming a time-harmonic input

signal of the form exp(+j2mft) , the spatial factor for the acoustic

2
pressure field at the receive array is obtained from Green's Theorem as
p(r.)) = | p(ENGE, [TV +
R R
V!

§ (GGl 2 p @) - p(EY) o5 GElTlas'

§' (5.2-1) H

where V' 1is the volume enclosed by §S' , p(?') is the source

distribution, G(;Rl;') is the Green's function for the bounded medium,
p(;') is the total acoustic pressure field at each point on the closed )
surface S' , and 2J3/9n' signifies a partial derivative in the outward

normal direction (away from the enclosed volume) evaluated at each point

- i =, ] N “_~ N I‘i P a I'"-..J'
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Figure 16. Transmit array T , receive array R , and ocean
medium being enclosed by the closed surface S' =S + S".
PR RS A L dado Aok
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on S' . Equation (5.2-1) is valid if the receive array's location,
denoted by the position vector ;R » 1s either on or inside the closed

surface S' , and Equation (5.2-1) is invalid 1if ;R is outside §S'

It can be seen from Equation (5.2-1) that the total field at the
receive array is equal to the sum of the field due to the elementary
sources and the field due to scatter from the boundary. As an example,

- - >
assume that the source is a point source, i.e., p(r') = 8(r' - rT)

As a result, the volume integral in Equation (5.2-1) reduces to:

f p(ENG(FIrav = J (' - TG [T)av’

v v (5.2-2)
or

Jpru%Fww's uaﬁp . (5.2-3)

vl

where G(?RI?T) represents the direct acoustic pressure field from
transmit array to receive array.

The direct acoustic pressure field from transmit array to receive
array is of no concern in this chapter. The important quantity of
interest is the acoustic pressure field due to scatter from the
boundary. Therefore, from Equation (5.2-1), the expression for the
acoustic pfessure field at the receive array due to scatter from the

boundary S' 1is given by:

pg(ry) = é [cGRl?'> eGP 5o G(FRIF')] ds' .

5! (5.2-4)

e e AT S S ccnioisit " o 1---.---i-l-iﬂinnlilillllﬂlilll
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If we follow the Kirchhoff approximation and let G(;RI;') be

2
equal to the free-space Green's function, 6 i.e.,

> +
. exp(-jk|r' - rR|)
GG IE) = S : (5.2-5)
A

where k = 2mf/c is the wave number, and then substitute Equation

(5.2-5) into Equation (5.2-4), we obtain:

- exp(-ijR) 3 >, >,
S'
-
exp (-3kR;) ]
3 '
ot R ] ds (5.2-6)
R
! which is the integral theorem of Helmholtz and Kirchhoff,26 where
> é 2 -
RR |RR| |t e . (5.2-7)

Equation (5.2-6) can be further simplified by choosing the contour S'''
to be an infinite hemisphere centered about the receive array's

location (it is assumed that the ocean bottom is infinitely far away).

Therefore, since S' =§ + §'' ,

f ol ] -]
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since

J = 0 (5.2-9)

by Sommerfeld's radiation condition.zs’37

As a result of Equation (5.2-8), Equation (5.2-6) reduces to:

- exp (-jkR.) - - exp(-jkR_)
ps = | [—quﬁ‘i—g% p@® - p(® %——fg—l‘—}ds,

(5.2-~10)

S

where p(;) is the total field at each point on the ocean surface S ,
d9/9n signifies a partial derivative in the outward normal direction

(away from the ocean medium) evaluated at each point on S , and

-

R, = I -1l \ (5.2-11)

"m oy on

where the prime symbol has been removed from the position vector
' (see Figure 16).

Before proceeding further with the discussion, let us refer to
Figure 17 which describes the geometry of the problem to be considered
in this chapter. Note that the transmit and receive arrays occupy the

XTYT and XRYR planes, respectively. The Z and ZR axes are

T
perpendicular to the X_Y and X YR planes, respectively. The

TT R
reference coordinate system is XYZ . If the ocean surface was
perfectly smooth, it would occupy the XY plane. Any vertical
deviation of the ocean surface from the XY plane is represented by
Z = g(x,y,t) . The random process £(x,y,t) describes the randomly

rough, time-varying, ocean surface. It is assumed to have a zero mean,

i.e., E{§(x,y,t)} = 0 . Note that &(x,y,t) 4is a function of both




i ———

Z2=¢€(xy,t)

Figure 17. Bistatic geometry for surface-scatter communication
channel.
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1 position and time. The time-varying position vector ;(t) locates the
| infinitesimal surface area element dS . The unit vector @ is normal
to dS and is pointing in the conventional outward direction away from
the ocean. The position vectors il and 52 are chosen to be colinear
with the axes of the main lobes of the transmit and receive directivity
patterns, respectively. The time-varying position vector R&(t) gives
the range of dS from the transmit array, at any time ¢t , in the
direction ﬁT . Similarly, the vector §R(t) gives the range of dS

from the receive array, at any time ¢t , in the direction (-n Both

R) '

ﬁT and ﬁR are unit vectors. Based upon the geometry of Figure 17,

Equation (5.2-11) becomes:

>Rt = @] & |Ew -] ,  (5.2-12)
Rp > & Y 2

>
where rR = iz .

Equation (5.2-1Q0) and the geometry of Figure 17 have been the
basic starting points for many researchers who worked on various
aspects of the problem of acoustic scattering from the ocean surface.

Eckart38

started with Equation (5.2-10); however, he defined
p(?) as the scattered acoustic pressure field on the ocean surface
and not as the total (incident plus scattered) field. Approximating
the ocean surface as an ideal pressure release boundary and assuming

. that it was locally plane compared to the wavelength of the incident

radiation, Eckart38 reduced Equation (5.2-10) to:

"R

- L exp(-JkRy)
PS(rR) = JEa?{ l:pI(r) —-———R-l-] ds (5.2-13)
S

L athe o P o~ . . et e i i q:ﬁﬂ;z
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where p§;) is the known incident radiation given by:
exp (-jkR..)
p(¥) = D_(k,7) sxp IRy (5.2-14)
I T RT
and, from Figure 17,
> A > >
Ry > R () = [R (O] = [|r(e) - R, | ,  (5.2-15)
. where T.. in Figure 16 is equivalent to ﬁ in Figure 17. The

T 1

] directivity function of the transmit array projected onto the ocean
surface is represented by DT(k,;) . Although Eckart38 did not

i consider time-varying position vectors, he did make two important

-
additional assumptions. The first is referred to as the small slope
approximation since he replaced the normal partial derivative with

! 3/32 and dS with dxdy . Doing so and using Equation (5.2-14),

Equation (5.2-13) becomes:

> exP{"jk( + )}
pS(rR) = J J DT(k,x,y) g% [ a RRT RR ]dxdy .

TR
(5.2-16)

where DT(k,x,y) is the projection of the directivity function of the

transmit array onto the XY plane. The second assumption Eckart38

made was that the directivity function of the transmit array was highly

38

directional (very narrow beamwidth). Thus, Eckart limited himself to

a Fraunhofer approximation when he expanded the ranges RT and RR

appearing in the complex exponential in terms of r, Rl , and R

Eckart38 based his subsequent analysis on Equation (5.2-16).

)




Following the basic approach of Eckart,38 Gulin39 also started
his analysis of acoustic scattering from a sinusoidal surface with
Equation (5.2-16). Although Gulin39 did not include a transmit beam
pattern, he used a Fresnel approximation to expand the ranges RT and
RR in the complex exponential rather than a Fraunhofer approximation.
As was previously mentioned, Eckart38 Justified using a
Fraunhofer approximation on the assumption that the beam pattern of
the transmit array was sufficiently directional. However, Melton and
Horton,40 and Horton and Melton,41 stimulated by Gulin's39 work,
disagreed with Eckart's38 justification for the use of the Fraunhofer
~ approximation. They noted that the beamwidths of practical acoustic
sources are large enough to make one question the validity of using a
Fraunhofer approximation, especially since the area of insonification

! of the ocean surface increases as the distance from the source to the
surface increases. Thus, the beamwidth of the directivity pattern plus
the geometry of the physical situation.must both be taken into account
when deciding upon the Fraunhofer versus Fresnel approximation.40 In
fact, Horton and Melton41 showed that for their particular experimental .
arrangement, the Fresnel approximation was superior to the Fraunhofer
approximation for the calculation of scattered intensity. The question

of the Fraunhofer versus Fresnel approxiﬁation will be discussed

further in Section 5.2.2.

Several authors have approached the problem of surface scatter
by viewing the ocean surface as a linear, time-varying, random filter

» as will be done in this chapter (see References 14, 37, and 42-45).
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Following Gulin,39 the authors of References 14 and 43-45 also used
Equation (5.2-16) in conjunction with the Fresnel approximation as
their starting point with the notable exception that a Gaussian
functional form for the projected transmit beam pattern was used
throughout their analysis.

Horton and Melton41 suggested that the approximation that most
critically limited their theoretical analysis was the small slope
approximation, i.e., using the partial derivative with respect to Z
to approximate the normal partial derivative 9/3n . Several investi-
gators have used the Kirchhoff approach to describe scatter from a

randomly rough surface without making the small slope approximation.4
46-48 They started their analysis with Equation (5.2-10) and defined
p(;) as the total acoustic pressure on the ocean surface, i.e.,
incident plus scattered. And by taking into account the normal partial
derivative, a slope correction factor was obtained.lf6 However, they
used a Fraunhofer approximation and no transmit directivity function

was included.

Tolstoy and Clayl'9 also began with Equation (5.2-10) but they
defined p(;) as scattered acoustic pressure only and used a Fraunhofer
approximation after Eckart.38 However, unlike Eckart,38 they did not
make a small slope approximation and they did include a Gaussian
functional form for the projected transmit beam pattern. Clay and
Medwin,34 on the other hand, followed Gulin's39 initial approach with
the exception that they also included a Gaussian functional form for

the projected transmit beam pattern. And finally, the results of the

analysis reported in References 14, 40, 41, and 43-45 pertain only’to
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a specular orientation between the transmit and receive arrays,
whereas the results reported in References 34, 42, and 46-49 pertain
to a general bistatic geometry and are not limited to a specular
geometry.

As oﬁe can see, many different combinations of assumptions have
been made by the investigators mentioned above although each began with
Green's theorem and the Kirchhoff integral. However, the following
important but overlooked assumption is common to all: the fact that
the position vectors ﬁl and KT are not parallel, and that the
vectors §2 and ﬁR are also not parallel, is ignored.l‘9 The
assumption that these pairs of vectors are parallel is very much
dependent upon a sufficiently narrow beamwidth.42 Therefore, the
following pattern emerges: 1if the beamwidth of the transmit directiv-
ity function is relatively narrow so that a Fraunhofer approximation
is sufficient, then the 'parallel assumption" is reasonable. But if
the beamwidth is relatively broad, a Fresnel approximation must be used
and the "parallel assumption' is no longer valid. Although References
14, 40, 41, and 43-45 used a Fresnel approximation in order to handle
the relatively broad beamwidths of practical acoustic sources, they
still assumed that the "parallel assumption" was valid.

The derivation of the random, time-varying, transfer function of
surface reverberation in this chapter is also based upon the form of
Equation (5.2-10), where p(;) is defined as the total acoustic

pressure field on S . Both a transmit and receive directivity

function are included. Receive directivity functions have either been




ignored in the past or stipulated as omnidirectional.43 No specific

functional forms for the beam patterns are assumed, but rather, they
are kept as general frequency dependent expressions. Also included is
the frequency dependent attenuation of sound pressure amplitude due to
sound absorption. The small slope approximation is not made. A
Fresnel approximation is used, and the results for the trunsfer
function pertain to a general bistatic configuration which can then

be easily reduced to either a specular or a monostatic (backscatter)

orientation.
-
A generalized Kirchhoff approach is used since the vectors R1
-> -
and ﬁ are not assumed to be parallel, and vectors R, and R_ are

T 2 R

also not assumed to be parallel. By not assuming ﬁR is parallel to

>

R2 » we are following a Rayleigh approach only in the sense that the
total scattered field at the receive array 1is represented as the
superposition of élane waves travelling in different directions (sum
of all wave modes).[‘6 When one assumes ER is parallel to §2 , this
is consistent with the classical Kirchhoff approach of representing
the scattered field as a superposition of plane waves travelling in

only one particular direction (an individual wave mode), i.e., in the

direction of EZ .46

5.2.2 Analysis. From Equation (5.2-10), one can express the

scattered acoustic pressure field at the receive array at time ¢t = tl

as:
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S

Pf;(ti)) 59; GIKZ]}’(ti)J ] ds, (5.2-17)

—>
where the total acoustic pressure on the ocean surface at r(ti) is

defined as:
pFEDT & p (FED] + p [FeDY (5.2-18)

G(+]*) 1is the free-space Green's function to be specified later, and

R_(eh)
e = cl--va—l—— (5.2-19)

is the retarded time37 where RR(') is defined by Equation (5.2~12)
and ¢ 1is the speed of sound in the ocean. The expressions pI(')
and pS(') refer to the incident and scattered acoustic pressure
fields, respectively. The Kirchhoff approximation will now be used
to obtain an expression for p[;(ti)] as defined by Equation (5.2-18).
In the Kirchhoff approximation, it is assumed that the ocean
surface is locally plane, i.e., the radius of curvature at all points
on the surface is assumed to be much greater than a wavelength.46’48
The field on the surface is approximated by the field which would exist
if the surfiace were replaced by an infinite plane, tangent to the
surface at the point of insonification. Since the ocean surface is
assumed to be in the far-field of the transmit array, Equation (5.2-18)

can be approximated by:
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P[r(ti)] = P%r(ti)] +'C1£E}gti)]p£r(ti)] , (5.2-20)

where Cﬁgéti)] is the plane wave pressure amplitude reflection
coefficient evaluated at the point ;(ti) on the surface. Multiple
scattering effects at the surface have been ignored and it has been
assumed that there is no shadow problem. The fundamental assumption in
the Kirchhoff approximation which limits the validity of the solution
is the extent to which the reflection coefficient Céﬁ% , which is
applicable to an infinite plane wave at an infinite plane boundary,

34,46 The boundary

can be used at every point of a rough surface.
condition represented by Equation (5.2-20) will be a very good
approximation for locally flat surfaces composed of irregularities
with small curvature, i.e., large radii of curvature compared to a
wavelength.46 In the case of a perfectly smooth surface when
Z = £(x,y,t) = 0 , Equation (5.2-20) is exact.

The roughness of a surface depends on three parameters:46
(1) the height h of the surface irregularities with respect to the
XY plane; (2) the angle of incidence 91 measured from the 2Z axis;
and (3) the wavelength A of the incident field. For randomly rough
surfaces, the parameter h should be replaced by o , the standard
deviation of the height variation of the rough surface.48 According

to the Rayleigh criterion, a random surface 1s considered smooth if46’48

1
8 cos@1

o ) (5.2-21)




Therefore, from Equation (5.2-21), it can be seen that a surface
approaches being smooth as either o/A = 0 or 8; + /2 .

A simple criterion for the radius of curvature restriction can
be obtained if one assumes that the roughness of the surface can be
represented by a two-dimensional spatial Fourier series. For example,

consider height variations along the x direction only and let

Z = 0O sin [ A;n X } . (5.2-22)
IN

where AMIN is the minimum surface wavelength (see Figure 18) of the
various surface height components along the x direction. The radius

AMIN

of curvature p of Equation (5.2-22) evaluated at x = - is:

2
. Daw

2 . (5.2-23)
4neo

p

Therefore, the Kirchhoff restriction requiring that the radius of
curvature be large compared to a wavelength yields the criterion

2
A << —A%E (5.2-24)

4o

for the boundary represented by Equation (5.2-22). Note that Equation

(5.2-24) is a high frequency condition. That is, the higher the

transmit frequency, the smaller the wavelength A and the better the

inequality given by Equation (5.2-24) will be observed.




Figure 18. Geometry for example calculation of the radius
of curvature criterion and the shadow prevention
criterion in the incident direction. By definition,
the angles f , Oi , and B are all positive.

v
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A simple criterion for the prevention of shadows in the transmit
direction can also be obtained for the surface represented by

Equation (5.2-22). From Figure 18, we have that

6, +8 =7 , (5.2-25)

where Gi is the angle of incidence, B is the angle between the

positive x axis and the dashed line which is tangent to the curve
at the point of inflection P , where x = AMIN , and 70 is the angle

between the unit vector fA normal to the surface at P and the

->

incident propagation vector ki . In order to prevent shadows, 70 must

be less than Tm/2 , and since

~y
tang = $£ : (5.2-26)
x =
=hyrn
l . we obtain, from Equation (5.2-25), the criterion
2ng
cotei > (5.2-27)
AMIN
37

for the prevention of shadows in the transmit direction. Fortuin
indicates that, according to Kinsman,so the slopes of sea surface waves
cannot exceed the value of 2/7 . Therefore, this implies that the
angle B in Figure 18 is less than 16°; i.e., B < tan—1(2/7) = 16° .
The major problem before us is the evaluation of Equation
(5.2~17). 1In order to evaluate Equation (5.2-17), functional forms for

p(*) and G(-
I

*) must be specified. Therefore, let

, N w  expl-fk g R ()]
pFCENT = D[k, F(E])] EFFT 1

Rr(ti)

(5.2-28)
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and
exp[-jkE RR(t')]
> D> ' - -> ' FF 1 -
G[R,|r(t})] = Dplk,r(cr])] R (eD) , (5.2-29)
where DT[k,;(ti)] and DR[k,z(ti)] are the transmit and receive
directivity functions, respectively, projected onto the surface;
kEFF is the complex, effective wave number defined as:
) k & x - ja08) (5.2-30)
EFF J ’ :
where a(f) 1is the frequency dependent pressure amplitude attenuation
coefficient (in nepers/m) due to sound absorption, and from Figure 17:
~-
1 = T - e -
R.(£]) lr(tl) Rll (5.2-31)
and
' ] > \J 3
! Re(t]) = |r(e]) - &,| . (5.2-32)
Having specified p{(*) and G('!') , it 1s now possible to
1
obtain expressions for the normal partial derivatives of p(¢) and
G('I') . It can be shown that the normal partial derivative of p(*)
! as given by Equation (5.2-20) is:
a -+ ~ A
3 PITED] = =(R + A (1 - Cpprlikppep [F(EDT
(5.2-33)
p
: where it has been assumed that C[;(t')] = C (a constant) ,
€ REF 1 REF
§ '
i lkEFFRT(tl)l > 1 , and
~ ->
. l& - v lk,r(tD]1]
<< 1 . (5.2-34)
A . A + [
| (a nT)kEFFDT[k,r(tl)]|
b
N
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Equation (5.2-33) is derived in Appendix C where use has been made of
References 26, 46, 51, and 52.

Since for the ocean~air interface the difference in the charac-
teristic impedances of the two media is so large, the reflection
coefficient is effectively no longer a function of the local angle of
incidence or of position on the ocean surface for that matter. Hence,
the assumption that the reflection coefficient is a constant is very

reasonable; in fact, C -1 . With CREF = -1 , Equation (5.2-20)

REF
is equal to zero and Equation (5.2-33) is a maximum which are correct
results for a pressure release boundary like the ocean surface. The
assumption that lkEFFRT(ti)I >> 1 1is commonly referred to as the
far-field assumption and indicates that the transmit array is many
wavelengths away from the ocean surface. Equation (5.2-34) stipulates
that the ratio of the magnitude of the gradient of the projected
transmit directivity function to the projected directivity function
itself must be small compared to the reciprocal of the wavelength.

The inequality given by Equation (5.2-34) will be observed best over

the projected beamwidth of the directivity function. In addition,

Equation (5.2-34) is a high frequency condition similar to the radius

of curvature criterion because of the appearance of kEF in the

F

denominator. As the frequency of the transmit signal increases, kEFF
also increases, and as a result, the left-hand side of Equation (5.2-34)
decreases and the inequality is better observed. Although high
frequencies make directivity patterns more directional (i.e., the
beamwidth decreases as the frequency increasesza), the gradient of the

projected transmit directivity function over its beamwidth will still

remain small since it was assumed that the ocean surface was in the
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far-field of the transmit array. For example, consider an arbitrary
directivity pattern D(ku,kv) , where k = 2n/X , u = sinfBcosy , and
v = sinfsiny . The gradient of D(ku,kv) in spherical coordinates

is given by:
VD(ku,kv) = (1/r) g%-D(ku,kv) ﬁe +

2 p(ku,kv) 3 (5.2-35)

(1/[rsinb]) 3 v

since the directivity function is not a function of range r .
Therefore, it can be seen from Equation (5.2-35) that IVD(ku,kv)l
decreases as the range r from the array increases. As a consequence
of the requirement imposed by Equation (5.2-34), the expression for

é% p[;(ti)] as given by Equation (5.2-33) will be a good approximation
for that region of the ocean surface which is insonified by the beam-

width of the transmit directivity function. Equation (5.2-34) is

analogous to the condition (see Tolstoy53)
72D (ku, kv)
- <1 (5.2-36)
k“D(ku,kv)

which must be satisfied 1f p = D(ku,kv)exp(~-jkr)/r 1is to be an
approximate solution to the Helmholtz wave equation (V2 + k2)p = .
And finally, note that the dot product (fi - ﬁT) in the

dénominator of Equation (5.2-34) is a possible source of trouble, i.e.,
it may equal zero at some point ;(ti) on the ocean surface. However,
refer to Figure 18 and to the cone defined by the Z axis and dashed

’ line which is tangent to the curve at point P . All rays with their
respective directions of propagation Ei , and hence, angles of

incidence 91 delimited by this cone satisfy the shadow prevention

- ) . - ) N e s i J
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criterion of Equation (5.2-27)., Now assume that the transmit array is

positioned in such a way that the various directions of propagation '
defined by the beamwidth of its directivity function coincide with
those within the cone. Then, the expression (d * ﬁT) will never
equal zero, and Equation (5.2-~34) will always be finite for at least
those rays emanating from within the beamwidth (note that Ki = kfi_ ).

T
Similarly, upon taking the normal partial derivation of G(-l*)

as given by Equation (5.2-29), one obtains:

3 3 a5 > ' - . . > > ' _
] 32 SR [TED] = + (8« Ak GIR [TeD] , (5.2-37)

V 1
|, where it has been assumed that IkEFFRR(tl)I >> 1 and that

n . > ]
|8« vD [k, z ()]

< 1 , (5.2-38)

|G+ Bk Dk, T (e

where

expl-kgppRy (£1)] s ( expl-dkggR (E])]
V[ R, (c]) ] = R (D [ R (£]) ]

(—ﬁR) R (5.2-39)

since RR(ti) = |§k(ti)| is a distance measured in the direction
(-ﬁR) (see Figure 17 and refer to References 26, 46, or 52). Note
the term (A ° ﬁR) in the denominator of Equation (5.2-38). Refer to
Figure 19 and to the cone defined by the Z axis and the dashed line
which is tangent to the curve at point P . All rays with their

-»> .
. respective directions of propagation ks , and hence, angles of scatter

Bs delimited by this cone satisfy the criterion
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Figure 19. Geometry for example calculation of the shadow

prevention criterion in the scatter direction.
By definition, the angles 7° and 6_ are
positive, while the angle R' 1is negative.
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210 )
- cotb > (5.2-40)
S AMIN

which, if obeyed, prevents the shadowing of the scattered radiatiom.
With the exception of the minus sign, Equation (5.2-40) is analogous to
Equation (5.2-~27). The minus sign is required since GS > 7w/2 , and as
a result, cot6S < 0 . Aiszo note from Figure 19 that the point of
inflection P at x = AMIN/2 was used and in order to prevent
shadowing in the scatter directionm, 70 > n/2 . Now, assume that the
receive array is also positioned in such a way that the various
directions of propagation defined by the beamwidth of its directivity
function conicide with those within the cone. Then, the expression
(a - ﬁR) will never equal zero, and Equation (5.2-38) will always be
finite for at least those rays entering within the beamwidth (note that
kg = KAy ).

Upon substituting Equations (5.2-20), (5.2-33), (5.2-37),
(5.2-28), and (5.2~29) into Equation (5.2-17), and dropping the

multiplicative term jkEFF from in front of the integral, one obtains

the random, time-varying transfer function
= T 1 T 4 L]
HRég,tl) J DT[k,r(tl)lDR[k,r(tl)l
S

expl-jkppp[Rp(e]) + RR(ti)]}

R (EDRR(£])

,...
2>
[ ]
”~~
f=)3
i
= M
N
(@]
]
o>
.
~~
=}

fi_ + ﬁR)]dS

(5.2-41)

[ SN
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of the linear, time-varying, random communication channel consisting
of the ocean surface and a bistatic transmit/receive array geometry as
illustrated in Figure 17. The subscript "REV" denotes surface
reverberation. Note that ps(§2’tl) - Hégvtl) since a time-harmonic
input signal of frequency f(Hz) was transmitted37 [see Equations
(3.2-16) - (3.2-18)]. The unit vectors 1a , ﬁT , and ﬁR are all
functions of position along the ocean surface. In addition, n is
also a function of the retarded time ti . The integration in
Equation (5.2-41) is meant to be performed over that region of the
surface which corresponds to the intersection of the projected beam-
widths of both the transmit and receive directivity functions. It is
interesting to note that when one defines p[;(ti)] in Equation
(5.2-17) as being equal to incident plus scattered acoustic pressure
[see Equation (5.2-18)], one obtains both of the terms (BT - ﬁR)CREF
and (ﬁT + ﬁR) in Equation (5.2-41) [e.g., see Beckmann and
Spizzichino46 or Ishimaru48]. However, if one defines p[;(ti)] in
Equation (5.2-17) as being equal to scattered acoustic pressure only,

- n.)C

T ® CREF in Equation (5.2-41)

then one obtains only the term (n
[e.g., see Tolstoy and Clayag].
| L
Let us now consider the ranges RT(tl) and RR(tl) which
appear in the denominator of Equation (5.2-41). From Equations

(5.2-31) and (5.2-32), we obtain the following approximations:

R
-]

Rp(e)) = [r(ed) - R . (5.2-42)

]
=

(5.2-43)

Re(e) = T - Kyl = w,




h R, = |R,| and R
where 1 Rl an
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-
2 = |R2| » and where it has been assumed that

I;(ti) /Ell <1 and I;(ti)lizl <1 . While Equations (5.2-42) and

(5.2-43) are suitable approximations for amplitude attenuation due to

spherical spreading, they are not appropriate for the phase information

represented by the complex exponential appearing in the integrand of

Equation (5.2-41). Therefore, for the phase information, both RT(ti)

and RR(ti) will be expressed in terms of a binomial expansion.

Starting with Equation (5.2-31), RT(ti) can be rewritten as

follows:

or

where

and

RT(ti)

Fep - R = SEE) -1 - B -’

(5.2~44)
' = .
RT(tl) R, 1+ by . (5.2~45)
r(ti) 2 fl . -{(ti)
by = [ R ] -2, (5.2-46)
1 1

T(t]) = xR+y§+EGxy,L) 8 , (5.2-47)
rz(ci) - |;(ti)|2 I S £ (x,y,t])  (5.2-48)
£o= sinelcoswlx + sinelsinwly + coselz (5.2-49)

>
is the unit vector of R (see Figure 20). Note that the azimuth

1

angles wl and wz are measured in a counterclockwise direction from

the positive X axis. In order to use a binomial expansion on

il o - aeaiiboa
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Equation (5.2-45), two questions must be answered. First, is the ¥
inequality IbTI < 1 satisfied, and second, if the inequality is
indeed observed, how many terms in the expansion should be used?

Some insight into the answers to these two questions can be obtained
by referring to Figure 21. The position vector ;(ti) is shown

lying in the XY plane. Since the ocean surface will eventually be
projected onto the XY plane later in the analysis, this situation is
representative of our problem. The angle € 1s the beamwidth of the
directivity pattern, and Y 1is the grazing angle. From Figure 21 and

the Law of Sines,

r(t;)
17 _sin(e/2) -
= = . (5.2-50)

1 sin(y - %)

Substituting Equation (5.2-~50) into Equation (5.2-46), and taking the

absolute value of both sides of the resulting equation yields:

. r :
lel - Sin(E/zz [ Sln(E/zé - ZCOS(TT - .Y) ' .
sin(y - ?) sin(y - 39
(5.2-51)
where (7 - y) 1is the angle between fl and ;(ti)

Table 3 lists values of |b computed from Equation (5.2-51)

|
T
for several different values of beamwidth € and grazing angle vy .
One can see two trends from the data of Table 3. The inequality

IbTI < 1 1is observed best for narrow beamwidths and for grazing angles
approaching 90°. However, with the exception of y = 90° , the values

of |b are not, in general significantly less than 1. In fact, for

7!




o

Tit))

Figure 21.

)
~ojm

Geometry for the calculation of the binomial
expansion criterion. The argle € is the
beamwidth of the directivity pattern and

Y 1is the grazing angle.
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VALUES OF THE BINOMIAL EXPANSION FACTOR Ib

€ (deg)
10

10
10
10
20
20
20
20
30
30
30

30

TABLE 3

7l
FOR DIFFERENT COMBINATIONS OF BEAMWIDTH €

AND GRAZING ANGLE Y

Y (deg)
30

45
60
90
30
45
60
90
© 30
45
60

90

| 5 |

0.209
0.117
0.008
1.137
0.52
0.279
0.031
2.732
1.001
0.5

0.072
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€ =20° and Y =30°, € =230° and Y = 30°, and € = 30° and
y = 45° , IbTI > 1.0 , and as a result, a binomial expansion is not
valid for these combinations of parameters. Therefore, Equation
(5.2-45) will be expanded to include second order terms (Fresnel
approximation) as opposed to only first order terms (Fraunhofer
approximation).

Assuming that IbTI < 1 , Equation (5.2-45) can be expressed as

2
(¢]) = R [ 1+ EI-— El ] (5.2-52)
RT 1 1 2 8 ’ :

and upon substituting Equations (5.2-46) through (5.2-49) into

~-
Equation (5.2-52), one obtains:
: Qa - sinzelcoszwl) 2
R (t!) = R, + x +
| T 1 1 ®,
- sin26 sinzw )
1 1 y2 +
2R1
sin29 2
' -
7X, & (x,y,t9)
{ X sinelcoswl [ 1+ ﬁL-sinelsinwl +
1
£(x,y,t;)
———-§I~—— cose1 } +y sin6131nw1 .
E(x,y,ti)
——— L
[ 1 + Rl cose1 ] + £(x,y,t1)cos91 } ,
' (5.2-53)
» -

JPOTSPE T ST ’h_.‘),‘,} - -h>.i" i i ."i m..' i IR “, ’ . _“ "y PSR ,Ii,.J




vwhere individual and cross product terms involving x , y , and
E(x,y,ci) raised to powers higher than 2 were not included in the
expansion. Equation (5.2-53) can be simplified considerably if one
orients the XYZ coordinate system in such a way that El lies in
the XZ plane, i.e., let ¥, =T . With ¥, = 7, Equation (5.2-53)

reduces to:

2 2
cos 61 2 1 2 sin“0

1 o~ 1 1.2 '
Rp(tp) = Ry +—p—= x4 5p= ¥ + g ET(xy,t))
1 1 1
E(x,y,ti)
—{-xsinel [1+—R——cosel]+
1
L -
E(x,y,tl) cose1 } . (5.2-54)

where the cross product terms involving xy and yE(x,y,ti) have
cancelled out. Assuming that
sinze1 2
g 9 <« 1 , (5.2-55)
1l
2 2
where ¢ = E{% (x,y,ti)} is the variance of the zero-mean, random

process, E(x,y,ti) , and

cosel

o
Rl

<< 1 . (5.2-56)

then Equation (5.2-54) further reduces to:
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2
cos 8
' ~ . Yoot 1.2 1 2
Rp(ty) = Ry = F) »r(ty + wm_ * w7
(5.2-57)
where
£ . * 4 = - ! -
£ r(tl) X sinel + E(x,y,tl)cosel (5.2-58)
and wl =T .
Similarly, RR(ti) can be expanded as:
bz bé
] ~ — o a— . -~
Ro(e)) = R, [ 1+ 3 ] ; |bR| <1 , (5.2-59)
where
CIRY: F(£])
r r., *r
by = { 4 } e (5.2-60)
2 2 :
and
r, = sinezcoswz X+ sinezslnwz v+ cos62 z (5.2-61)
is the unit vector of § . Substituting Equations (5.2-60), (5.2-61),

2
(5.2~47), and (5.2-48) into Equation (5.2-59) yields:

2 2
(1 - sin ezcos wz)

2
1 ~
Ralep) = Ry #+ 7R, x +
(1 ~ sin®0.sin®y.) sin6. -
2 2 2, 220 oy -
R 7R A

2 2

: X
{ X sxnezcoswz [ 1+ Rz sinezsin\b2 +

S R
e
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E(XJ,ti)
R2 c0562 + vy sinezsinwz .
E(x,y,ti)
[ 1+ —_— cosez] + E(x,y,ti)cosez} , (5.2-62)
2

where, as before, individual and cross product terms involving x ,
. y , and E(x,y,ti) raised to powers higher than 2 were not included

in the expansion. Assuming that

sin262 2
—_— g~ << 1 , (5.2-63)
~ 2R2
c0592
R o << 1 ' (5.2-64)
| 2
and, in addition, that
! & sinfysinh, << 1, (5.2-65)
: 2

Equation (5.2-62) reduces to:

2 2
(1 - sin Gzcos wz)

" | ~ _A .+ [] 2
RR(Ll) R2 £, r(tl) + 2R2 x +
(1 - sinzezsinzwz) 2 :
7R y s (5.2-66)

2

where

£ . > ' = L}
£, r(tl) x sinezcoswz +y sinezsimb2 + E(x,y,tl)cosez.
(5.2-67)
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Note that since wl = q , 1f one chooses wz = 21 for a specular
f geometry or wz = 1 for a backscatter geometry, then the left-hand
side of Equation (5.2-65) equals zero (see Figure 20).

Upon substituting Equations (5.2-42), (5.2-43), (5.2-57),
(5.2-58), (5.2-66), and (5.2-67) into Equation (5.2-41), the following

expression for the transfer function of ocean surface reverberation is

. obtained:
exp(-jk__.[R, + R 1)
_ EFF- 1 = 2 > Fety] .
Hg_é\fi’tl) =R J DT[k,r(tl) ]DR[k,r(tl)]
12 s
- { L 1}
exp -jkEFF[ x + my + né(x,y,t,)]
expl-fk, [(L/2)x + (@ /2)y 1}
| I¥grrt VE £/<7y
[A - (nT - nR)CREF -fi - (nT + nR)]dS ,
(5.2-68)
where
L = sinel - sinezcosw2 , (5.2-69)
m = - sinezsinlb2 s (5.2-70)
n = = (cose1 + cosez) . (5.2-71)
c05281 (1 - sin262 coszwz)
lf = R + 5 . (5.2-72)
1 2
and
i 1 a - sinzezsinztllz)
L + R . (5.2-73)
» 1 2
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where the subscript £ denotes "Fresnel approximation term." If a

Fraunhofer approximation happens to be sufficient for a particular

problem, one can simply let the Fresnel coefficients lf and m

equal zero.

Our efforts will now be devoted to simplifying the term

A ~ A ~ A Al ~
I = [n- (nT - nR)CREF -0 (nT + nR)]dS (5.2-74)
) which appears in the integrand of Equation (5.2-68).

The difficulty with Equation (5.2-74) is trying to specify # ,
ﬁT , and ﬁR which are functions of position along the randomly rough,
-y time-varying, ocean surface S . This problem can be avoided by

projecting S onto the XY plane as follows.

Let vectors 3(x,y) and K(x,y) be defined as:
* A ~ A ~
a(x,y) = Ap(x,y) - np(x,y) = a (x,y)x +

ay(x,y)y-+ a, (x,y)2 (5.2-75)

and

b(x,y) ﬁT(x,y) + ﬁR(x,y) = bx(X.y)i +

by(x,y)§ + b (x,y)2 (5.2-76)

- _ and also express the unit vector ﬁ(x,y,ti) in rectangular components,

i.e.,

ﬁ(x,y,ti) = nx(x,y,ti)ﬁ + ny(x.y.ti)ﬁ + nz(x,y,ti)i .

(5.2-77)
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Since an infinitesimal surface area element dS 1is related to its

projection onto the XY plane dxdy by48,49,51
s = d:d , (5.2-78)
p
and since
0 5
—— = - —— L} _
n_ 5% &Yty (5.2-79)
and
%y 3
- _ ] _
R T Tyt (5.2-80)

then, substituting Equations (5.2-75) through (5.2-80) into Equatiomn

(5.2-74) yields:
' 9 '
I(X,y,tl) = { [" ax X E(X,y,tl) -

0 '
ay s; E(x,y,tl) + a, ] CREF

[' bx % E(x)y’ti) .=

)
by ¥ E(x,y,ti) +b, ] } dxdy (5.2-81)

or

I(xr}':ti) = { - nygoc,}’pci) * [CREF; - g] +

3\
! [c - bz] ]k dxdy , (5.2-82)

REF2z
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where ny is the two-dimensional gradient defined as:

A ~

A 3 9
= a_xx-f-gy . (5-2-83)

v
Xy

Substituting Equation (5.2-81) into Equation (5.2-68) yields:

exp (-Jkypp[R; + R,])
Xy

exp{-jkppp (4% + my + n€(x,y,e1) 1} -

. 2 2
exp{—JkEFF[(lf/Z)X + ﬁmf/Z)y 1} 1
- 3
- — 1 -
. a ji-g(x y,ti) + a C
! y dy R § z REF
- b -a—i(x ty) -
x ax !Y’ 1
F b ji-g(x y,ti) + b dxdy , (5.2-84)
y ay IRARS z ’ .
L where DT(k,x,y) and DR(k,x,y) are the transmit and receive
directivity functions, respectively, projected onto the XY plane.
r Recall that the coefficients a , ay » 3, bx ’ by , and bz
J are also functions of x and y .

Let us consider the physical significance of Equation (5.2-82)

for a mowent. This equation indicates that the integration along the




ocean surface itself dS has been replaced by an integration in the
XY plane dxdy . However, the price we pay 1is the need to evaluate
the gradient of the random process E(x,y,ti) . This problem can be
avoided by performing an integration by parts to be discussed later,
but for now, the presence of the gradient yields some important
information.

For a perfectly smooth ocean surface (i.e., an infinite plane
boundary), &(x,y,ti) = 0 , and hence, nyg(x,y,ti) =0. ?herefore,

Equation (5.2-82) reduces to:
] _ -_ -
I(x,y,tl) = [CREFaz(x,y) bz(x,y)]dxdy (5.2-85)

CREFaz - bz]

represents the specular contribution to the total scattered acoustic

for a perfectly smooth ocean surface. Thus, the term [

pressure field, while the term nyE(x,y,ti) represents the contribu-
tion due to surface roughness.
The next objective, as mentioned previously, is to eliminate

the partial derivatives of E(x,y,ti) by performing an integration

46,48,49

by parts. For example, consider the following double integral

from Equation (5.2-84):

m
j exv(-jkEFme)eXP(-jkEFF 7§'y2) f DT(k,X.y)DR(k,x,y) .
y X

o

2x)exp(-jk - xz)axC

exp (-jkppy EFF 2 REF

exv[-jkEFFnE(x,y,ti)] 58; E(x,y,ti)dxdy . (5.2-86)
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Although the minus sign appearing before a_ in Equation (5.2-84)
is not included in Equation (5.2-86), it will be accounted for later
in the analysis. Perform an integration by parts with respect to the
x integration by letting
e 2
u = DT(k,x,y)DR(k,x,y)exp(-JkEFFQ.x)exp(-JkEFF 5 % )axCREF
(5.2-87)
and
3
— - \J —— \J -
dv = expl JkEFFnE(x,y,tl)] . E(x,y,tl)dx . (5.2-88)

Next, perform the following total differentiation:

-
;
£ expl-fkppgab oy, tD] = 2 expl-Jlgpgng Gyt +
! 3 dti
3] {em[-jkEFFnE(x,y,tl)]} = 5-2-89)

or

4 3 ' = s _ "1 .
dx exP[ JkEFan(x’y’tl)] JkEFFn exp| jkEFan(x’y,tl)]

de!
3 ] a | _.__1‘_
[&- E(X,Y,tl) + ati E(x,}’atl) dx ] ’
(5.2-90)

" where, from Equations (5.2-19), (5.2-66), and (5.2-67), it can be

shown that:




r-

L‘__J -

T

o

0=

]
dtl [ - cose2 3

I < a—tzi(x,y,ti)] = ( ] [sinezcoswz -

(1 - sin28 coszw )
2 2 ]
X +

Ry

cose2 3
— M —-—
[ - ) = Lyt (5.2-91)
Since the magnitudes of both (cosezlc) and the first term on the
right-hand side of Equation (5.2-91) is << 1 , and if it is further
assumed that E(x,y,ti) is a slowly varying function of time during

the interval of insonification of the ocean surface, i.e.,

f;&(x,y,ti) = 0 , (5.2-92)
1

then, Equation (5.2-91) reduces to:

— o~

dx

1
dtl cosG2
c

) 2ty . (5.2-93)

Note that the magnitude of the partial derivative of g(x,y,ti) in
the x direction may be large. Substituting Equation (5.2-93) into

Equation (5.2-90) yields:

4 -3 ' .
dx exp[ JkEFan(xvy,tl)] =

L exp[-jkEFFne<x,y,ci>1{§; g(x,y,ti>]

c0562 3
[ 1+ { 2 ) 3;{ g(x,y,tl) J (5.2-94)
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and upon using Equation (5.2-92), one obtains:

d[exp{-jk__.nE(x,y,t’)}]
T — exp[~fkgppnE (x,7,61)]  +

1

EFF"

9 ) -
= E(x,y,tl)dx = dv .

(5.2-95)
Therefore, from Equation (5.2-95),
- !
expl-dkpnE(x,y,t])])
v = - S . (5.2-96)
IXurFF

The last piece of information needed for the integration by parts is
du/dx . From Equation (5.2-87),

*¢

. . I .
du = ¢C F exp(-jk Qx)exp(-JkEFF 7 X )

RE EFF

{ ~jkEFFaxDT(k,x,y)DR(k,x,y)[2 + fo] +
a D_(k,x,y) 2 D_(k,x,v) + a D_(k,x,y) 2 D..(k,x,vy) +
0T V& 1% 3x DR\l xR\ Y 5% T % 24
D (K, x,y)D. (k,x,y) 2 a b dx (5.2.97)
T T IER YY) By %k : e

With the use of Equations (5.2-87), (5.2-88), (5.2-96), and
(5.2-97), the integration with respect to x in Equation (5.2-86) can

be expressed as:

XU
[
dx = - (3] 4 ) , (5.2-98)
X EFF
L
W, PSS, ER R TSP P ; b bk 4“—-*43 e
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where
4 . '
I1 axDT(k,x,Y)DR(k,x,y?exp{ kppplex + nE(x,y,tl)]}
J?'f 2 xU
exp(-Jkpop 5 %) (5.2-99)
x=x_L
and
K zf 2
= -' ' s °f .
N J exp{ Jkppplix + ni(x,y,tl)]}exp( fkppp 3= %)
L
{ Jkpppa, Dy (K%, 7D (eyx,y) [£ + 2ox] -
| :
aD_(k,x,y) = D_(k,x,y) - |
x T > ox R sy 1
b 9 p_(k ;
a D (k,%,y) 3= D (k,x,y) - |
3
DT(k,x,Y)DR(k,x,y) 3% 3 } dx ,  (5.2-100)

where the lower and upper x limits X and Xy define the extent
along the X axis of the common region of overlap between the transmit
and receive projected beamwidths.

The J1 term is referred to as the edge effect46 and its
magnitude can be approximated by the absolute value of the difference

between the products of the two beam patterns evaluated at the upper

and lower x limits, i.e.,

|91 = Dy (k% y)Dg (kyxp,y) = Do(k,x ,y)Dg (kyxp ,3) |

(5.2-101)

since the complex exponentials are phase terms of unit magnitude.
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The Jz term defined by Equation (5.2-100) can be simplified

by deciding which terms appearing inside the braces, { }, are dominant.
Note that the first term inside the braces is the only expression which

whose magnitude |k___| >> 1 for high

EFF

frequencies. Since it has been previously assumed that the magnitudes

includes the parameter kEFF

of the gradients of the beam patterns are small over their respective
projected beamwidths [see Equations (5.2~34), (5.2-35), and (5.2-38)],
then the second and third terms within the braces of Equation (5.2-100)
are negligible compared to the first term. Assuming also that the
fourth term within the braces is negligible compared to the first,
Equation (5.2-100) can therefore be approximated as:
Xy
J, = jk J

, exp{-jk

[2x + nE(x,y,ti)]} .

EFF EFF

i

exp (-jk

Rf

— 2) L]
EFF 2 *

{ axDT(k,x,y)DR(k,x,y)[l + lfx]} dx . (5.2-102)

It can be seen from Equation (5.2-102) that the magnitude of

J2 depends upon kEF

F and the integral of the product DT(k,x,y) .

DR(k,x,y) over the entire range of the x 1limits. By comparing Jé

[as given by Equation (5.2-102)] with J [as given by Equation

1
(5.2-99)], it is clear that Jz is the dominant expression. As a
result, Equation (5.2-98) becomes:
U C
! dx = - [—kRE—FE] 1, , (5.2-103)
I¥EFF

1

lh_; L




where J2 is given by Equation (5.2-102). Substituting Equations
(5.2-103) and'(5.2-102) into Equation (5.2-86), and multiplying the

result by (-1) to account for (—ax) , yields:

C
[ ‘:,EF] J f D (k,%,y)Dg (k,%,9)  *
Xy

exp{—jkEFF[lx + my + nE(x,y,ti)]} .

exp{—jkEFF[(Qf/Z)xz-+(mf/2)y2]}ax[2 + lfx]dxdy
(5.2-104)

which is an approximation to the first surface integral of Héévtl)
as given by Equation (5.2-84). The remaining surface integrals of
Equation (5.2-84) involving the ay , bx , and by terms can also
be approximated by analogous expressions by following the procedure
just outlined. By doing so, the following general expression for the
random, time-varying, transfer function of ocean surface reverberation
is obtained:

exp (~jkgpp(R; + R,1)

H (f’t ) = .
Rey 1 Rle

J J DT(k,x,Y)DR(k,X,Y)K(X,Y) *
Xy

exp{-jkEFF[Qx + my + nE(x,y,ti)]} . %

exp{-ik [(szf/z)x2 + (mf/Z)yZ]}dxdy ,

EFF

. (5-2-105)
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where
A
K(x,y) = K (x,y) - K (x,5) + Ry(x,y) = K, (x,y)
(5.2-106)
A
K, (x,) {a (x,y)(&/n) + ay(x,y) (m/n) + a (x,y))Cppr
(5.2-107)
A
A Ky (x,y) = [b (x,¥) (&/n) + by(x,y) (m/n) + b (x,y)] ,
(5.2-108)
. Ky(x,y) = (ax(x,y)(!lf/n)X*-ay(x,y)(mf/n)ylcREF
(5.2-109)
and
K (xy) = [b (x,y) (Rg/m)x + b (x,y) (me/n)y] . (5.2-110)
-
The functional dependence of DT . DR , and the "a" and "b" terms on
the (x,y) coordinates are given in Appendix D where use was made
! of Butkov.SA

By making the appropriate combination of assumptions, Equation
(5.2-105) will simplify to the forms of previously published results
for the acoustic pressure field scatteréd from the ocean surface

[i.e., H(f,tl)] obtained by using a Kirchhoff approach. For‘example,
REV

: assume that a Fraunhofer approximation is sufficient so that

g.=m, =0 . In addition, make the following assumptions which are

f f

associated with the classical Kirchhoff approach (e.g., see References

42 and 49):

14
n

nT(x9y) - - l
and (5.2-111)

] .

nR(x,y) * T, s

14
>
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where £, and £, are given by Equations (5.2-49) and (5.2-61),

1 2
respectively. Upon substituting Equation (5.2-111) into Equation

(5.2-75), it can be shown that

ax(X’}’) = 2 ’
a , =
y(x y) m
(5.2-112)
and
a (x,y) = n R

where £ , m, and n are given by Equations (5.2-69) through (5.2-71),
respectively. Similarly, substituting Equation (5.2-<111) into

Equation (5.2-76) yields:

b, (x,y) sinf, + sinf,cosy, R

b_(x,y) = sinf,siny
y 272 (5.2-113)
and

bz(x,y) - cose1 + cose2 .

If Equations (5.2-112) and (5.2-113) are substituted into

Equations (5.2-107) and (5.2-108), respectively, one obtains:

K (x,y) = F(el,ez,wz)cREF (5.2-114)
and

KZ(X,Y) = 0 s (5.2-115)
where

21 - sinelsinezcosw2 + coselcosez)

A
F(el’GZ’wZ) = - (c0361 + cosez)

(5.2-116)
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Using the results of Equations (5.2-114) and (5.2-115), and noting
that K3(x,y) = Ka(x,y) = 0 when lf - mf = (0 , Equation (5.2-105)
reduces to:

exp (-Jkppp[Ry + Ry1)

H(ft) = .
REG 1 R1R2

F(elsezswz)CREF j J DT(k’x’Y)DR(k,x:Y) *
Xy

exp{-jkppp[2x + my + nE(x,y,t;)]}dxdy

EFF

(5.2-117)
which is in the same form as the Kirchhoff solutions presented in
References 42, 48, and 49.

It is interesting to note that when the approximations given by
Equation (5.2-111) are made, the term Kz(x,y) = 0 . The presence of
the Kz(x,y) term in Equation (5.2-106) is due to the form of
Equation (5.2-18), i.e., the acoustic pressure field on the ocean
surface was set equal to incident plus scattered acoustic pressure.
Tolstoy and Clay49 also used the approximations given by Equation
(5.2-111), but they defined the acoustic pressure field on the ocean
surface as equal to scattered acoustic pressure only. Therefore, when
a Fraunhofer approximation is used in conjunction with Equation
(5.2-111), it does not matter whether the right-hand side of Equation
(5.2-18) equals incident plus scattered or scattered pressure only--the

final results are identical. This will not be true for the Fresnel

approximation as is demonstrated next.
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Another simplified version of Equation (5.2-105), which appears
frequently in the literature, can be obtained by using a Fresnel
approximation in conjunction with Equation (5.2-111) for a specular
orientation between the transmit and receive arrays. For a specular
geometry, 61 = 62 and wz = 2T since wl =1,

As a result of using the assumptions given by Equation (5.2-111),
the ax , ay , and a, terms are given by Equation (5.2-112); and for

a specular geometry, they reduce to:

ax(x,y) ay(x,y) = 0

and (5.2-118)

az(x,y) -2 cose1 R

and the bx . by , and bz coefficients given by Equation (5.2-113)

become:

bx(x,y) 2 sinGl

and (5.2-119)

by(x,y) bz(x,y) = 0 .

Also, for a specular geometry,

(R, + R,)
9. = cos’e, —t 2 (5.2-120)
f 1 R,R
172
and (Rl ¥ Rz)
mf = __RT— . (5-2—121)
172
Substituting Equations (5.2-118) through (5.2-121) into
Equations (5.2-107) through (5.2-110) yields: .

e e i R X e I i i it il i N PP PR~ S
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exp (-jkppp[Ry + Ry1)
Hégétl) = Rle J J DT(k,x,y)DR(k,x,y) .
.x y

exp{+jkEFF€(x,y,t:'L)2cosel} .

exp{-jk

EFF[(Rl + RZ)/(ZRIRZ)][xzcosze1 + yzl} .

(R1+R)

{ - ZCREFcose1 + x sinelcosel —?Ezizy—— } dxdy .

(5.2-122)
With the exception of the second term within the braces, Equation

(5.2-122) is in the same form as the Kirchhoff solution presented in |

-
McDonald,43 for example. The additional term or "information" appearing
in Equation (5.2-122) is due to the fact that Equation (5.2-105) was not
! ) based on the "small slope approximation" while the solution presented

in McDonald,43 for example, was. In addition, Equation (5.2-105) was
based upon setting the acoustic pressure field on the ocean surface
equal to incident plus scattered acoustic pressure and this gives rise
to the "b" terms as was discussed earlier. However, the transfer
function presented in McDonald43 was based upon setting the acoustic
pressure field on the ocean surface equal to scattered acoustic
pressure only.

Besides a specular geometry, it is clear that the assumptions
most responsible for simplifying Equation (5.2-105) are those given by
Equation (5.2-111). The next obvious question then is what does the
transfer function given by Equation (5.2-105) look like when the
assumptions given by Equation (5.2-111) are not made, i.e., when the

"a" and "b" terms are indeed functions of x and y [refer to




i
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Appendix D, Equations (D17) and (D18)]. 1In particular, let us compare

LY

both a specular and backscatter orientation to previously published

, as specified by Equations (5.2-105), (D17), and (D18), for

results for the transfer function which were based upon the classical
Kirchhoff assumptions represented by Equation (5.2-111).
For a specular orientation, 61 = 62 =0 , wz = 21 since

Y, =m, and a_ = 0 (see Figure D-2). Also, assume for simplicity
1

R

that both the transmit and receive beam patterns are untilted so that

BT = BR =83 , where B =7 ~ 8§ . Therefore, Equation (D17) reduces to:

[ RT(x,y) + RR(x,y) ]
X +

a (x,y) = R (x,y)Ry (x,y)
R R
1 2
sind [ B (5,) = RR(x,y)] ’
r RT(x,y) + RR(x,y)
ay(x,Y) =7y L RT(x,y)RR(X,y) ] (5-2-123)
and
R R
1 2
az(x,y) = =~ cosB [ RT(x’y) + RR(x,y) }
for a specular orientation, and Equation (D18) reduces to:
RT(x,y) - RR(an) ]
b (x,y) - X [ Ry (%, ¥)Rp (%, ¥) ¥
R R
1 2
sin@ [ + ] :
RT(X,Y) RR(XQY)
RT(x,y) - RR(x,Y) 22124
by(x,y) = ‘Y[ Ry (%, ¥R (x,¥) } (02120




R R
bz(x,y) = -~ cosb [ 1 2 ]

Ry (x,y) - Rp (x,¥)

Equations (5.2-123) and (5.2-124) were obtained by choosing the
positive sign (+) for wT(X,y) in Equation (D4) and the negative sign
(-) for wR(x,y) in Equation (D12). From Equations (5.2-69) through

(5.2-71), we also obtain:

(5.2-125)
- 2 cosb

n

and lf and m_ are given by Equations (5.2-120) and (5.2-121),

f
respectively for a specular geometry.

For comparison purposes, one need only compute the quantity
K(x,y) as defined by Equation (5.2-106) since the remaining terms in
Equation (5.2-105) are identical in form to previously published
results. Upon substituting Equations (5.2-120), (5.2-121), and

(5.2-123) through (5.2-125) into Equations (5.2-107) through (5.2-110)

and letting CREF = - 1 , Equation (5.2~106) becomes:
R ’
1 2 2 1
K(x,y) = 2 cosf ——— + [ x“cosb + ¥y [ ) ] .
R.(%,¥) cos®

(R, + R,) (R, +R,)

1N ] . 1" %2

—— = | + x 3infcosd zT—F——

[ R R,R (x,y) RT(x,y)R2
(5.2-126)

for a specular orientation. The transfer function appearing in

McDonald,43 for example, contains only one integrand term for a
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specular orientation; namely, 2 siny which is equal to -2 cosf since
r
2

is analogous to the first term in Equation (5.2-126). It is also

=6 - in our notation. Therefore, the term 2 siny in McDonald43
instructive to compare Equation (5.2-126) with the expression within
the braces of the integrand in Equation (5.2-122). Recall that Equation
(5.2-122) was obtained from Equation (5.2-105) by using the classical
Kirchhoff assumptions given by Equation (5.2-111). The first and
second terms within the braces in Equation (5.2-122) are analogous to
the first and third terms, respectively, of Equation (5.2—126).

One can therefore see that Equation (5.2-126) contains additional
important information represented by the middle expression involving
2

X~ and y2 . Note that for shallow grazing angles, i.e., as 6 -+ 7/2

(see Figure 20), cos6 - 0 and 1l/cos8 -+ « . Thus, Hégétl) , as

given by Equations (5.2-105) and (5.2-126), will be greater in H
magnitude for a specular orientation than the other previously derived |
transfer functions obtained from the classical Kirchhoff approach.
This is encouraging since Horton and Melton41 reported that the
Kirchhoff approach, in conjunction with the Fresnel and small slope
approximations, began to fail for a specular geometry at a Rayleigh
parameter larger than 2, and predicted values for the scattering
coefficient that were systematically smaller than the experimental
values. The Rayleigh parameter is equal to 2koOsiny for a specular
geometry where ¢ 1is the grazing angle.éo’él’ba
For a monostatic (backscatter) geometry, Bl = 62 =0,
Yp =¥, =7, R =R, =R, Ru(x,y) = Re(x,y) = R(x,y) , and

ﬁT(x,y) = - ﬁR(x,y) . As before, it will be assumed that both the
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transmit and receive beam patterns are untilted so that BT = BR =R,

where B =7 - 68 . It can be shown that

R sinBcosd tanb i
Ky) = 2 emRGGy) 2 Reoy) T X Reoy T ;
2 . 2 2 1
[ R(x,y)R } { X cost + Y e } (3.2-127)

for the backscatter case. The transfer function derived in Clay and
Medwin34 contains only one integrand term for the backscatter case;
namely, 2/cosGl which is equal to -2/cosb® since 91 =17 ~8 in

our notation. Therefore, the term 2/cosel in Clay and Medwin34 is

analogous to the first term in Equation (5.2~127)., One can also
compute the "a" and "b" terms according to Equations (5.2-112) and
(5.2-113), respectively, for the backscatter geometry as was done for
the specular geometry. Using Equations (5.2~112), (5.2-113), (5.2-69)
through (5.2-73), and (5.2~107) through (5.2-110), Equation (5.2-106)
becomes:

sinBfcosb
cos9 + 2x R

(5.2-128)

which is analogous to the first and second terms of Equation (5.2-127).

As was apparent with Equation (5.2-126) for the specular
geometry is also true with Equation (5.2-127) for the backscatter
geometry. That is, Equation (5.2-127) contains additional important
information represented by the last expression involving x2 and y2 .

Therefore, Hégﬁtl) , as given by Equations (5.2-105) and (5.2-127),

will be greater in magnitude for a backscatter orientation than the
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other previously derived transfer functions obtained from the classical
Kirchhoff approach. For example, see Parkins47 who indicates that his
predicted backscattering strengths were much lower than experimental
values for very rough surfaces, especially at small grazing angles.
Parkins'[‘7 expression for scattered acoustic pressure was based upon
the Kirchhoff approach in conjunction with the Fraunhofer approximation;
however, he did not make the small slope approximation.

Another important point worth mentioning again is that the
transmit and receive beam patterns can be projected exactly onto the
XY plane (see Appendix D). In previously published works (e.g., see
References 14, 43, 44, and 55), a Gaussian form for the projected
transmit beam pattern was commonly assumed for mathematical convenience.
However, as was pointed out in Zornig and McDonald,55 the fact that the
actual projected transmit and receive beam patterns are not likely to
be Gaussian when doing experimental work leads to a major source of

error when comparing theoretical predictions with experimental results.

5.3 Second Order Functions

5.3.1 Two-frequency correlation function. Since the transfer

function given by Equation (5.2-105) is random, a more appropriate
expression to work with is the two-frequency correlation function

defined as:

R (£ ,6,,t,8) & BIH(E e R (Fy,t))  ,  (5.3-1)

where E{+} 1is the expectation operator and the asterisk denotes

complex conjugation. By defining the expression Z(k,x,y) as:

Z0,x,y) & D (k,x,IKGEID (x,y) (5.3-2)

L

e i



where K(x,y) is given by Equation (5.2~106), Equation (5.2-105) can

be rewritten as:

H(E,

t

)

exp (~jk

(R, + R, 1)
EE L2 Z(k,x,y)
R,R
172
Xy

exp{-jkEFF[lx + my + nE(x,y,ti)]} .

o [ (] (3] ) o

(5.3-3)

With the use of Equation (5.3-3), and by replacing fl with

(f + fc) and f

2

.

' =
+ fc’ f' + fc’tl’tZ)

with (f' + fc) , Equation (5.3-1) becomes:

exP{'j[kEFFl'k;FFZ][R1+R2]}

2
2m{f + £ ]
Z —-——__—C X y .
c 71071
X Y1 %2 Y2
o (2TE" + £ ]
Z c ’x2’y2 '

*
exp [ -jL [ kEFlel - kEFFZXZ ] ) .

2
2
£ 2 *x 2
exp [ -d [ 2 } [ kEFle‘ } kEFszz } ] ’
("¢ * 2
exp { N ] [ “err Y1 = ¥EFF Y2 ] ) .

' 5.3-4
ax,dy,dx, dy, , ( )
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R

where fC is the center or carrier frequency of the bandpass trans-
mitted signal, f and f' correspond to frequency deviations from

fc [see Equation (3.2-20)], and the characteristic function ¢ (vé,vz)
€
1’72

is given by:

= 3 ' L\
Qg(vé,vz) E{exp (5 [V ECx .y Ep) + vzs(xz,yz,tz)])} y
1772 (5 3-5)
where
i | vl = - nkEFFl , (5.3-6)
= + ok,
Vo = T4 EFF, , (5.3-7)
3
- 2n(f + fc)
kEFFl = " ja(f + fc) (5.3-8)
and
- 2M(E' + £ ) .
! EFF, = —C—C—- + ja(f' + £) ) (5.3-9)

Equation (5.3-4) is the general expression for the two-frequency

correlation function of the ocean surface-scatter communication

channel. As was discussed in Chapter IV, f + fc’ £f' + ¢

RHéEV c,tl,tz)

contains information concerning the amount of correlation which exists
between the acoustic pressure fields H(f + fc,t) and H(f' + fc,t)

at the two different frequencies f + fc and f' + fc for t, = t2 = t,

or the amount of correlation between H(f + fc’t and H(f + fc,tz)

1 )
at the two different times 3 and t, for £ = f' . Both the
coherence time and the coherence bandwidth, and hence, the frequency
{ ) spectrum and time delay broadening associated with surface reverbera-
] .

S tion can be computed from Equation (5.3-4).

e ~ heconinbine oS cinct. ooliiiing .~ ST N O i . . e B A Y T
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If Equation (5.3-4) can be reduced to a function of Af = £ - f£'
and At =t, -t ; i.e., if H(f,t) can be shown to be wide-sense
1 72 REV
stationary in both frequency and time, then the surface reverberation
scattering function can be obtained from RH(Af,At) via a two-

REV
dimensional Fourier transformation [see Equation (2.3-51)].

5.3.2 Surface reverberation scattering function. Equation (5.3-4)

can be simplified by making the following assumptions. Let us first
assume that the bandpass transmit signal is narrowband so that
ffcf >> |£] and Ifcl >> |f'] . As a result,

r 2n(f + fc]
o ¥psYp ] = Z(k,xl,yl) s (5.3-10)

x (27[E" + fc] *
A [*—-——C——*— ,xz,yz ] = Z (k,xz,yz) R (5.3-11)

al(f + £ ) = a(f) ’ (5.3-12)
c c
L} ~ -
a(f' + fc) = a(fc) (5.3-13)
and
* . 2
kEFFlkEFFZ = k s (5.3-14)

where k = 2ch/c.
By substituting Equations (5.3-8), (5.3-9), and Equations
(5.3-10) through (5.3~13) into Equation (5.3-4), and letting

X, = X

1 + Ax and Y=Y, + Ay , one obtains:

2




wp (-1 ZBL (R 4R, )

(f+f ,f'+f ,t_,t,) =
RH'REV c c’1’72 (RIRZ)Z

exp{-2a(f )[R, + R,J} -

-]

L
J JJ(k,Ax,Ay)exp { -jk [ 2Ax + mAy + [—Ef-] (Ax)2 +

[¥) o]}

exp { -a(fc) [ LAx + mAy + [T] (Ax)2 +

i ()2
- Ay) dAxdAy , (5.3-15)

where
J(k,Ax,Ay) = JJZ(k,HAx,yMy)Z*(k,x,y) @(\)l,vz) .
Xy E1’5;2
2 m
e { 3 22 [px vy + [+ [5) 7] } -

ey 2
exp { -2a(fc)[ Lx+tmy+ [—5—] x +

2m : ¢
exp { -j - (f+fc) [[T] 2xAx + [—2—) ZyAy] } dxdy

(5.3-16)

and Af =f - £' .

183
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Now, let us turn our attention to the characteristic fumction
appearing in Equation (5.3-16); namely, @(vl,vz) as given by Equation
(5.3-5). Since the attenuation due to theg%;naom deviations of &£(x,y,t)
from the XY plane is negligible in comparison with the other terms
contributing to attenuation, one can set a(fc)==0 in Equation (5.3-5).

If it is also assumed that §&(x,y,t) 1is Gaussian, zero-mean, and wide-

sense stationary, then it can be shown44 that Equation (5.3-5) becomes:

2nlf + £ ]
o(Ax,Ay,At') = exp { - [ —— < o;n ] *
E; E [s4 g
1°°2

R. (Ax,Ay,At")
(-2 J (-]

2 Tf+f
o)
E [od
. 2 2
N N R A Y
*P 2 c £ E+E_ ’
(5.3-17)
where
RE(Ax,Ay,At') = E[§(x+ Ax, y + Ay, ti)E(x,y,té)]
(5.3-18)
and
2 2
E(£"(x,y,t)] = o R (5.3-19)
where 02 is a constant, and At' = ti - té . Using the narrowband

assumption, i.e., f + fC = fc and f + fC >> Af , Equation (5.3-17)

reduces to:

-
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2

R, (Ax,8y,At")
n)2 [ 1 - £ ] } .
%

d(Ax,Ay,At") = exp { - (ko
51,52

£
1 2 | Af 2
exp { - 5-(kc£n) [ ?:-] } . (5.3-20)

If Equation (5.3-18) can be shown to be a function of At , then

Equation (5.3-15) becomes a function of Af and At which is our
desired result. Indeed, in Appendix E, it is shown that
RE(Ax,Ay,At') = Rg(Ax,Ay,At) , Where Rg(Ax,Ay,At) is given by

Equation (E10), i.e.,

@«

RE(Ax,Ay,At) = (1/4)J J W(p,q)exp{+jw(p,q)it] -

-0

sinezcosw2
exp{-:l [p--w(p.q)——c-—] AX} .

sinezsin\b2
exp { | [q - w(p,q) ]Ay}dpdq s
(E10)
where W(p,q) 1is the directional wave number spectrum of the ocean

surface and the corresponding angular frequency (in rad/sec) is given
by:
1/2
2 2.1/2 Ell
m(p,q)=i[g(p +q)/:l ’ (E11)
where g 1s the acceleration due to gravity.48 The directional wave

number spectrum and corresponding angular frequency are discussed

further in Appendix E. Therefore, Equation (5.3-20) can be written as:




8(Ax,Ay,Ac")

= o(0x,Ay,At) =

! 9 Rg(Ax,Ay,At)
exp{-(kogn) [1-_..._---—2 ]} .
%
exp { -2 (kogn)z [’é—f- ]2 } (5.3-21)
c
. where RE(Ax,Ay,At) is given by Equation (E10). Thus, the character-

istic function originally given by Equation (5.3-5) has been reduced
to the expression given by Equation (5.3-21).

With the use of Equation (5.3-21), and assuming that £ + fc = fc

[ -
in the last complex exponential term in Equation (5.3-16), the two-
b frequency correlation function given by Equation (5.3-15) can be
! ) written as a function of Af and At , i.e.,
expl-20(f ) (R, + R)] (”
R, (Of,At) = s J J J(k,Ax,Ay,Af) o
REV (R;R)) oo
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exp{-(kogn) l:l-—é-————2 ]}.
%

exp { - jk |:R.Ax+mAy+‘[-§f-] (Ax)2 +
m
[-25) (A}')ZJ } .
A

exp { —a(fc) [ LAx + mAy + (Tf] (Ax)2 +

. Mg )2
—| @y ddxddy , (5.3-22)
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lf 3
exp { -jk { [ > 2xAx +

m ’
[ Tf-]ZyAy ] } dxdy . (5.3-23)

The scattering function can be obtained from RﬂRéf ,At) by

substituting Equation (5.3-22) into Equation (2 3-51). Doing so

yields:
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2
To(x,y) = [ % J [ 2x + my + [ ?;-)xz +
m
[—,} Jyz ¥ (R 4 Ry) } , (5.3-26)
b = c/(nog Vam ) (5.3-27)
and
® X R, (Ax,Ay,At)
I'(Ax,Ay,9) = f exp { - (ko,n) 1- A }0
g 02
-C0 E
exp(-j2moAt)dAt . (5.3-28)

Equation (5.3-24) is the scattering function of ocean surface
reverberation. It determines how the input signal's power will be
spread in round-trip time delay T (sec) , and frequency ¢ (Hz) after
being scattered from the ocean surface.

The spread in round-trip time delay is due to the presence of
the Gaussian function in T appearing in the integrand of Equation
(5.3-25) and to the variety of possible propagation paths which exist
between the transmit and receive arrays as specified by Equation
(5.3-26). These paths are associated with different portions of the
insonified area of the surface. The most obvious propagation path is,
of course, (Rl + RZ)

And from Equation (5.3-28), it can be seen that the frequency
spread is due to the time variations or motion of the ocean surface

itself as characterized by R, (Ax,Ay,At)

g
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McDonald and Tuteur,44 and Tuteur, McDonald, and Tung45 also

derived expressions for the ocean surface reverberation scattering
function. Their scattering functions were based upon a Fresnel
corrected Kirchhoff integral and a small slope approximation and
pertain only to a specular geometry. In addition, they did not include
a receive directivity function and they assumed a Gaussian functional
form for the projected transmit beam pattern. And furthermore, they
gssumed very specific models for the ocean surface rather than relating
their scattering functions to the general form of the directional wave
number spectrum.

In contrast, the surface reverberation scattering function given
by Equation (5.3-24) is applicable to a general bistatic geometry. As
a result, expressions for both the specular and backscatter geometries
can easily be obtained from it. Equation (5.3~24) is a result of a
generalized Kirchhoff approach which includes a Fresnmel corrected
Kirchhoff integral, no small slope approximation, and the Rayleigh
hypothesis that the scattered acoustic pressure field can be represented
as a sum of plane waves travelling in many different directions. 1In
addition, the transmit and receive directivity functions are general,
frequency dependent expressions. The necessary transformation equations
which will project both the transmit and receive directivity functions
exactly onto the xy plane are provided in Appendix D. And finally,
the scattering function given by Equation (5.3-24) is dependent upon
the general form of the directional wave number spectrum. Hence, the
models of the ocean surface used by McDonald and Tuteur,aa and Tuteur,

McDonald, and 'I'ung"5 are automatically included as special cases.




CHAPTER VI

MAXIMIZATION OF THE SIGNAL-TO-INTERFERENCE
RATIO FOR A DOUBLY SPREAD TARGET:

PROBLEMS IN NONLINEAR PROGRAMMING

6.1 Introduction

The main purpose of this chapter is to consider the problem of
maximizing the signal-to-interference ratio (SIR) for a doubly spread
target via signal design. Recall that the SIR for a doubly spread

target is given by [see Equation (3.2~44)]:

[e o}

| JRS<T,¢> x(1,6) [*dras
_ TRGT %g
SIR = = . (6,1-1)
2
R (t,$)]| x(1,9)|"dtdp+N E_
J f SREV %8 °8
where
~ Ty~* T .
XSI,¢) = j x(t - E?g (t + EDexp(+32ﬂ¢t)dt (6.1-2)
Xg oo

is the cross-ambiguity function of the complex envelope of the transmit

signal x(t) , and the complex envelope of the processing waveform g(t);

<o

Eg = J |§(c)|2dt (6.1-3)

-0
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is the energy of the processing waveform; No is the spectral height of

the complex white noise n(t) , and RS(T,¢) and RS(T,¢) are the
TRGT REV

target and reverberation scattering functions, respectively. Target
and volume reverberation scattering functions were both derived in
Chapter IV and a surface reverberation scattering function was derived
in Chapter V. If volume reverberation is the dominant source of
interference, then one would use the volume reverberation scattering
function in Equation (6.1-1). Similarly, if surface reverberation is
dominant, then one would use the surface reverberation scattering
function. However, in the analysis which follows, the mathematical
expressions for the scattering functions will not be substituted into
Equation (6.1-1) for reasons of simplicity and generality.

In contrast, the SIR for a slowly fluctuating point target is

given by [see Equation (3.2-51)]:

E(B]%} [x(re9)?
Xg

SIR = s (6.1-4)

"
R (T,$) )x(T,$)|° drde + N E.
J J Sjev kg ’ °8

where b 1is a zero mean complex Gaussian random variable which accounts
for random attenuation and random phase shift. The magnitude of b is
assumed to be Rayleigh distributed and the phase of b 1is assumed to

be uniform. As a result, the magnitude and phase are statistically
independent random variables. The quantity E{]E|2} includes the

array gains, propagation losses, and scattering cross-section of the
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target. The details of the derivations of both Equations (6.1-1) and
(6.1-4) are discussed in Section 3.2.2.

The SIR optimization problem has been approached in a variety of
ways. The discussion which follows on the next several pages is a brief
survey of the relevant literature on this subject matter. Stutt and
Spafford56 considered the point target problem and assumed that the

transmit signal x(t) was arbitrary but given (fixed). They concerned

themselves with maximizing the SIR [as given by Equation (6.1-4)] with

respect to the processing waveform g(t) subject to constraints on the

output signal power |x(T',¢')I2 and output noise power E§ . Rummler57
xg
] also considered the point target problem and not only assumed that the

transmit signal was fixed, but that its form was fixed as well.
Specifically, the transmit signal was assumed to be a uniformly spaced
train of rectangular pulses with no phase or amplitude weighting. The
optimum processing waveform was approximated by one which was matched
to the shape of the transmit pulse train, but with complex weighted
subpulses. Consideration was given to the problem of determining the
optimum, complex weighting vector for the processing waveform; i.e.,
the weighting vector which maximized the SIR. Rummler57 assumed in his
analysis that the joint probability density function for the clutter
(the analog of the reverberation scattering function) was a separable
function and that the clutter was uniformly distributed in both range
and Doppler. These assumptions are not true in general and limit the
usefulness of his analytical results.

’ Unlike Stutt and Spafford,56 and Rummler,57 DeLong and

Hofstetterl9 considered the joint optimization problem of finding the
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optimum transmit-processing waveform pair that would maximize the SIR
for a point target subject to energy constraints on both i(t) and

g(t) . They restricted both the transmit and processing waveforms to

be uniformly spaced, phase and amplitude weighted pulse trains of
identically shaped subpulses. However, the shape of the subpulse was
arbitrary. For example, it was not restricted to be rectangular as was
done by Rummler.57 Like Rummler,57 DeLong and Hofstetter19 approximated
the optimum processing waveform by one which was matched to the shape

of the transmit pulse train. In addition, unlike Rummler,57 the clutter
density function (reverberation scattering function) was kept as an
arbitrary, general function of round-trip time delay and Doppler shift.
Delong and Hofstet:ter19 presented an iterative algorithm for finding

the optimum, transmit-processing, complex weighting vector pair which
maximizes the SIR for a point target subject to energy constraints on
both x(t) and g(t) . It appears that their iteration technique was
the first systematic procedure for the design of clutter-resistant radar
waveforms.

Delong and Hofstetter58 extended their analytical results
obtained in Delong and Hofstetter19 by presenting an iterative signal
design algorithm for the joint optimization problem for the case where
the energy constraints wete replaced by a dynamic-range constraint,
i.e., the ratio of maximum to minimum transmit signal amplitude was
limited. By introducing maximum and minimum constraints on the
amplitudes of the transmit subpulses, signal energy was also limited

and thus, the energy constraints were no lohger necessary. Delong and




Hofstetter58 formulated the original point target SIR optimization

problem into an equivalent nonlinear programming problem.

Rummler59 also generalized his earlier work somewhat (see
Rummlet57) by allowing the subpulses of both the transmit and processing
pulse trains to be complex weighted. However, the pulse trains were
once again composed of uniformly spaced rectangular subpulses.
Similarly, the clutter density function was once again assumed to be
separable, but this time, it was represented by a summation of
elementary clutter density functions; specifically, uniform distribu-
tions of varying amplitudes in range and Doppler. Rummler59 also
described an iterative technique for finding the optimum, transmit-
processing, complex weighting vector pair which maximizes the SIR for
a point target. The iterative technique of Rummler59 is identical with
that of DeLong and Hofstetter.19 However, the analysis and equations
of Delong and Hofstetterl9 are more general. Spafford20 also considered
the joint optimization problem for a point target.

Thompson and Titlebaum60 approached the problem of maximizing the
SIR for a point target by assuming that the transmit signal was given
and then optimizing with respect to the processing waveform, subject to
constraints cn peak and average power. However, the transmit and
processing waveforms were not restricted to be pulse trains. Further-
more, the clutter was modelled as a finite number of point-clutter
elements. As a result, the clutter density function contained Dirac
delta functions in both range and Doppler. The SIR expression for a
point target was ultimately represented by a finite number of state

variables and use was then made of the Pontryagin Maximum Principle.
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And finally, in a more recent paper devoted to the problem of
maximizing the SIR for a slowly fluctuating point target, Sibul and
Titlebaum61 demonstrated that in the case of Gaussian interference, the
joint optimization of transmit and processing waveforms reduces to the
optimization of the transmit signal only. The maximum-likelihood
receiver for detecting a slowly fluctuating point target return in
colored Gaussian interference is determined by the transmit signal, the
reverberation scattering function, and the level of the white noise
power spectral demnsity. Only the design of the transmit signal is
required. As noted by Sibul and Titlebaum,61 this simplifying observa-
tion has not been explicitly pointed out in the literature.

All of the research work discussed so far has dealt with a
slowly fluctuating point target. Efforts to treat more complicated
target models in the context of the SIR optimization problem were made
by Kooij62 and Moose.17 They modelled the target as a linear, time-
invariant, deterministic filter. The target could then be considered
as a singly spread target rather than as a point target. The time-
invariant assumption implies no relative target motion, and hence, no
target Doppler. Therefore, the target spread is in round-trip time
delay values only.

Kooij62 derived both the optimum transmit signal frequency
spectrum and the corresponding optimum processing filter transfer
function that would maximize the ratio of target echo power to
background power, subject to an energy constraint on the transmit
signal. The background was defined as the sum of reverberation and

colored noise. Kooij62 also modelled the reverberation as a linear,
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time-invariant, random filter. Once again, because of the time-
invariant assumption, no relative motion was allowed, and hence, no
reverberation Doppler. Kooij62 did not restrict the transmit and
processing waveforms to be pulse trains.

Moose17 attacked the problem of maximizing the detection index
for a known signai (i.e., the ratio of target echo power to background
power) by using the optimum receiver and then optimizing with respect
to the transmit signal. The background was defined as the sum of
reverberation and white noise. The reverberation was represented by
a reverberation scattering function which was assumed to be a function
of Doppler shift only. Moose17 restricted the transmit signal to be a
periodic waveform composed of N harmonics. As a result, this signal
had a finite Fourier series representation. The problem then became
one of maximizing the detection index with respect to the magnitudes of
the Fourier coefficients, subject to an energy constraint on the
transmit signal, Moose17 formulated the original optimization problem
into an equivalent nonlinear programming problem, as was done by DelLong
and Hofstetter,58 and used Rosen's gradient projection method63’64 to
investigate the solution.

As mentioned earlier, the main problem considered in this chapter
is the maximization of the SIR for a doubly spread target as given by
Equation (6.1-1). In our analysis, both the transmit and processing
waveforms will be limited to pulse trains. However, each subpulse of
the transmit pulse train is allowed to be arbitrary in shape and can
occupy the entire interpulse spacing interval if desired. This

represents a generalization of previously published approaches. For
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19,58

example, although Delong and Hofstetter allowed the shape of the

subpulse to be arbitrary, the shape of each subpulse was identical; and

Rummler57’59

restricted the duration of each subpulse to be less than
one-half of the interpulse spacing. In this chapter, each subpulse of
both the transmit and processing waveforms is allowed to be complex
weighted. The reasons behind limiting X(t) and g(t) to pulse trains
are as follows.

In order to avoid unrealistic solutions when maximizing the SIR
with respect to both X(t) and g(t) , for example, constraints must
be specifically imposed upon x(t) . For example, these may include
bandwidth and duration constraints which serve the purpose of
restricting the range and Doppler resnlution of the admissible transmit
signal. Otherwise, the optimal solution for X(t) may require an
infinite bandwidth or infinite duration or both. Moreover, as Delong
and Hofstetterl9 point out:

.+« . even if it is possible to find the optimum

x(t) and g(t) subject to a given set of constraints,

it is not obvious that they will yield a 'practical'

solution to the optimization problem., The optimum

x(t) may not be of the type that can be transmitted

. « . and the optimum g(t) may be so complicated as

to present insurmountable realization problems.

Rummlet57 also notes that although it is known that the impulse response
of the optimum receiver for detecting a point target return immersed in
noise plus clutter may be obtained as the solution of an iantegral
equation, the most serious objection to its use is that it is difficult
to realize. In addition, since for a given transmit signal the form of

the frequency response of the optimum filter is dependent upon the

probability density function of the clutter (reverberation scattering




W

199

function), each new clutter situation requires the synthesis of a new
receiver with a specially designed frequency response.57 "This design
problem becomes especially severe for large time-bandwidth signals
such as chirped pulses."57 However, when the transmit signal and
processing waveforms are pulse trains, the realization difficulties

C . 19,20,57
are minimized.

When the transmit signal is a pulse train, the
optimum processing waveform may be approximated by one which is matched
to the shape of the transmit pulse train, but with complex weighted
subpulses. In general, this complex weighted receiver will not perform
quite as well as the true optimum filter, but it is to be preferred

since it may be realized in a straightforward manner.19’57

However,
it should be mentioned here that with the current technology, the
optimum receiver can be calculated adaptively in real time.

Pulse trains have other desirable properties. They possess
simultaneously both high range and Doppler resolution.20’57’65
Constraints on the energy, bandwidth, and duration can be achieved by
suitably altering the parameters of the pulse train. Thus, if one
chooses, the constraints can be built into the transmit pulse train
while leaving its complex weights to be determined via the optimization
process. In addition, any arbitrary signal of a particular duration
and bandwidth can be approximated by a pulse train.19 And finally,
restricting X(t) and g(t) to be complex weighted pulse trains allows
the integral expression of the SIR to be transformed into an equivalent

vector-matrix form. Thus, the original problem of finding the optimum

time functions x(t) and g(t) , for example, is transformed into a
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parameter optimization problem of finding the optimum transmit-

processing complex weighting vector pair.

19,58 will be

The basic approach taken by Delong and Hofstetter
followed in this chapter. Their method of transforming the integral
expression of the SIR for a slowly fluctuating point target into an
equivalent vector-matrix expression will be discussed, generalized, and
extended to doubly spread targets in Section 6.2. The fact that each
subpulse of the transmit pulse train is allowed to be arbitrary in shape
makes the approach described in Section 6.2 analogous to the Rayleigh-
Ritz technique.66

Although the point target problem is not of primary concern in
this chapter, it is an important and interesting problem in its own
right and is included for completeness. In Section 6.3, two different
optimization problems concerning the maximization of the SIR for a
slowly fluctuating point target are discussed. The first problem is to
find the optimum, unit-energy, complex processing weighting vector that
will maximize the SIR when the complex transmit weighting vector and the
parameters of the subpulses are given. The second problem is to find
the optimum, transmit-processing, complex weighting vector pair that
will maximize the SIR when the parameters of the subpulses are given
and when the maximization is subject to unit-energy constraints on both
x(t) and g(t) . The iterative technique due to DeLong and Hofstetter19
for solving this joint optimization problem will be discussed.

Section 6.4 addresses the main purpose of this chapter. Three
different optimization problems concerning the maximization of the SIR

for a doubly spread target are discussed. The first problem is to find




the optimum complex processing weighting vector that will maximize the

SIR when the complex transmit weighting vector and the parameters of
the subpulses are given and when the maximization is subject to a
unit-energy constraint on the processing weighting vector and a
constraint on the desired amount of reverberation to be removed by the
processing weighting vector. The second problem is to find the
optimum, transmit-processing, complex weighting vector pair that will
maximize the SIR when the parameters of the subpulses are given and
when the maximization is subject to a dynamic range constraint on the
transmit weighting vector, a unit-energy constraint on the processing
weighting vector, and a constraint on the desired amount of reverbera-
tion to be removed by the processing weighting vector.

And finally, the third problem is tc maximize the SIR for a
doubly spread target with respect to the parameters of the subpulses.
For this particular optimization problem, it is assumed that both the
transmi£ and processing weighting vectors are equal and given and that

the maximization is subject to a constraint on the desired amount of

reverberation to be removed by the processing waveforms and constraints

on the subpulse parameters themselves.

The approach taken in Section 6.4 is to formulate the optimiza-
tion problems into equivalent nonlinear programming problems defined
on a real space. As a result, one need not develop algorithms to solve
these problems, but rather, one can simply use standard computer
programs which are available for solving nonlinear programming problems

67

(e.g., see Kuester and Mize '). Note that all three optimization

problems in Section 6.4 are originally defined on a complex space.

e 4
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‘ 6.2 Mathematical Preliminaries — Problem Formulation
t ' Following Delong and Hofstetter,19 the first step will be to
normalize the expression for the SIR as given by Equation (6.1-1).
Toward this end, let
By & 2o (6.2-1)
VEL
X
and
~ A g
g sy & BB , (6.2-2)
r . vE.
[ 4
|
| where the energy of the transmit signal is given by:
i ©
[ Y
- B, = J [%(t)|“dt (6.2-3)
-0 H
and the energy of the processing waveform E§ is given by Equation l
!' (6.1-3). Equations (6.2-1) and (6.2-2) define the normalized transmit 4

and processing waveforms, respectively, such that:

J lﬁ(t)lzdc = J Iﬁ(t)lzdt = 1 . (6.2-4)
Also, let:
Orper & j J R (T,0)dTdd (6.2-5)
TRGT
Opgy 4 J JRS(T,¢)de¢ , (6.2-6)
A
) o(t,d) = R (1,4) / © (6.2-7)
TRGT STRGT TRGT
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and

A
o(t,9) = R.(1,9) / O . (6.2-8)
REV Spev REV

Equations (6.2-5) and (6.2-6) define the total scattering cross-sections
of the target and reverberation, respectively, and Equations (6.2~7)
and (6.2~8) define the normalized target and reverberation scattering

functions, respectively, such that:

[+ o] [}

J Jo(r,dﬁdrdcp = J Jc(r,cb)dtdcb = 1 . (6.2-9)
TRGT REV

Since scattering functions are real, non-negative functions of round-
trip time delay 1T and Doppler shift ¢ , the normalized functions
g(t,$) and O(T,$) can be thought of as density functionms.

TRGT REV
Substituting Equations (6.2-1) and (6.2-2) into Equation (6.1-2)

xam—

yields:

X(T,0) = VEES X(T,$) , (6.2-10)
% & "ow

and if Equations (6.2-7), (6.2~8), and (6.2-10) are substituted into

Equation (6.1~1), one obtains:

f [o(wb) X(@.®) |“ards
A o TRGT ' uw
QL g ~ »  (6.2-11)
o
P A [ J 0(t,¢) ngz,cb)lzdrd(b +1
REV uw
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where 0 1s the normalized SIR for a doubly spread target,

a E.
A TRGT x
Oo N (6.2-12)
o
and
by 4 o} /G (6.2-13)
REV TRGT °

The numerator of Equation (6.2-12) is nothing more than the total
average energy returned by the target [see Equation (3.2-24)].
Therefore, the expression Do is the signal-to-noise ratio (SNR), and
A 1is the ratio of total reverberation scattering cross-section to
total target scattering cross-—section'19 Generally speaking, the
optimization problem is to find that pair (or pairs) of unit-energy

waveforms u(t) and w(t) that will maximize the normalized SIR p ,

as given by Equation (6.2-11) for constant po and X\ .
The normalized complex envelope of the transmit signal u(t) is

restricted to be a pulse train consisting of uniformly spaced, complex

welghted subpulses; i.e.,
a = a_p - .2-14
u(e) ) B (c nTp) , (6.2-14)

where ﬁn is an arbitrary complex weight applied to the nth subpulse
Bn(.) 3 Tp is the interpulse spacing, and N is the total number of
subpulses in the pulse train. The duration of each subpulse T < '1‘p

1s identical for all subpulses and the total duration of u(t) is

T, = NTp . Note that each subpulse is allowed to be arbitrary in
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shape, except for the time duration constraint T < Tp . For example,

if each subpulse is a linear frequency modulated (LFM) pulse, then:

- 2
= +j .
pn(t) exp ( ant )exp(+j2ﬂfnt) ;

n=20,1, ..., N-1; 0<t<T , (6.2-15)

where (bnT)/ﬂ is the swept bandwidth (in Hz) and fn is the frequency
deviation [:-om the carrier (in Hz) of the nth subpulse. The quantity

1/YT is a normalization factor such that:

@

f :sn(t)lzdt = 1; n=0,1, ..., N-1 . (6.2-16)

-0

The normalized complex envelope of the processing waveform w(t)
t is chosen to be a time (') and frequency (¢') shifted version of

u(t) , i.e.,
wit) = u(t - t")exp(+j2md't) . (6.2-17)

or substituting Equation (6.2-14) into Equation (6.2-17),

N-1
w(t) = ] wp (t-[t"+nT Dexp(j2md't) , (6.2-18)
n=0 nn P

"

~ . th
where v is an arbitrary complex weight applied to the n
subpulse.19 When Gn # Gn for n=0,1, ..., N-1, this is
referred to as the "mismatched filter' case. However, when Gn = Gn

' for n=20,1, ..., N- 1, this is referred to as the "matched filter"

b case. The parameters T' and ¢' are assumed to be known constants.




For the case of a doubly spread target, the parameters T' and ¢'
can be chosen as the mean round-trip time delay and the mean Doppler
shift [see Equations (2.3-73) and (2.3-79)].

Since one of the optimization problems to be discussed in this
chapter is the joint optimization of p with respect to the unknown
time functions u(t) and w(t) , the form of Equations (6.2-14) and
(6.2-18) are significant. They can be thought of as trial functions,
i.e., linear combinations of a finite number of different, preselected
functions. The preselected functions for u(t) are the N subpulses
ﬁn(t - nTp) , and for w(t) , they are ﬁn(t - [t" + nTp])exp(+j2n¢'t)
When Equations (6.2-14) and (6.2-18) are substituted into Equation

(6.2~11), the joint optimization of p will be with respect to the

unknown complex constant coefficients ﬁn and Gn for n=0, 1,

..., N =1, and no longer with respect to the time functions u(t)

and w(t) . This is exactly analogous to the Rayleigh-Ritz technique
for finding the extremum of a functional which involves quadratic terms
of the unknown time function.66 With the use of Equations (6.2-14) and
(6.2-18), the integral expression for o can be transformed into an
equivalent vector-matrix expression. But before this prvocedure is
begun, let us examine the constraints that must be placed upon ﬁn and
Gn for n=0,1, ..., N-1 due to the form of Equations (6.2-14)
and (6.2-18). |

If one computes the energy of uG(t) and w(t) using Equations

(6.2-14) and (6.2-18), respectively, it can be shown that:

. . : Lo
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2 N-1 2 t 2
f [w(e)|%de = § % |°= ww = |¥ ,  (6.2-20)
n=0 0

~=C0
where

~ A ~ o~ ~ T

u = [u0 AR uN-l] (6.2-21)
is the (N x 1) complex transmit weighting vector, and

~ A . ~ T

w o= [wo Wy e wN-l] (6.2-22)
is the (N X 1) complex processing weighting vector. The dagger "i"
denotes complex conjugate transpose and the superscript "T" denotes

transpose.

In deriving Equations (6.2-19) and (6.2-20), use was made

of the orthonormal properties of ﬁn(t - nTp) , i.e.,

[

[ * 0O ;m#n
p (t - mT )p (t - nT )dt = s

(6.2-23)

-an

where it has been assumed that each ﬁn(') is normalized [see

Equation (6.2-16)]. In order to satisfy the unit-energy requirements

of u(t) and w(t) , the vectors u and w must also be constrained
to have unit-energy, i.e.,
1512 "= (@)% - 1 . - (6.2-24)




We are now in a position to transform the integral expression

for p 1into an equivalent vector-matrix expression. Consider the

magnitude squared cross-ambiguity function

-}

J u(e - %)C:*(: + %)exp(-*-jZTrd)t)dt
|

-0

}x§3,¢)}2 - i
uw

(6.2-25)

Substituting Equations (6.2-14) and (6.2-18) into Equation (6.2-25)

yields:
) N-1 N-1
lx(r,¢), = I 1 6@ exp(+inle - ¢'] -
uw m=0 n=0
2
[m + n]T )y [2e(t),d - ¢'] , (6.2-26)
P 55mn
mn
where
A
= -1 + - )T 2 . 6.2-27
e(1) [t-~1 (m - n) p]/ ( )
Equation (6.2-26) can also be written as:
xg,mlz S (G T{ L (6.2-28)
uw

where element (mn) of the (N x N) matrix H(t,¢) is defined as:

2l S .



P

209

RT,0) & exp(HT[0 - ¢'J[m + nlT X (Qe(1),0 - ¢') ;
mn P 5 g mn

PpPy
m,n=0,1, ..., N-1 . (6.2-29)
Using Equation (6.2-28), one can write
f 2 N SR
J 0(1,9)|x(T,0)|"dtde = ¥ C (®F (6.2~30)
. TRGT uw
and
2 ~t ~y o~
J [ o(t,9) [x(T,$)|" d1dd = vy o, (6.2-31)
REV uw
- where
~ A - ~, T
. Cw = J I o(t,$)H(T,¢)ulH(T,$)u] drtdd (6.2-32)
' _ TRGT
is the (N X N) Hermitian "target matrix," and
w A “r ~ ~.t .
_QR(E) = J J o(t,9)H(T,¢)u[H(T,¢)u] drd¢ (6.2-33)
REV

is the (N x N) Hermitian 'reverberation matrix.'" Upon substituting

Equations (6.2-30) and (6.2-31) into Equation (6.2-11l), one obtains:

B& = (6.2-34)
o

where I 1s the (N X N) identity matrix. Equatica (6.2-34) is the

o,
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desired vector-uatrix ~xpression of the normalized SIR p for a
doubly spread target.
The normalized version of the SIR P for a slowly fluctuating

point target is:

|x53',¢')|2
0 uw
= - _ , (6.2-35)

(
oA f J U(T,¢)1X(T.¢)|2drd¢ +1
o REV aw

-0

where po and XA are given by Equations (6.2-12) and (6.2-13),

respectively, with

opeer = EUBITY . (6.2-36)

If one evaluates Equation (6.2-26) at T =T' and ¢ = ¢' , one obtains:

| N-1 N-1 2
voary 12 ~
|XSI 0N = ) ) u v x([m - n]T_,0) .
uw m=0 n=0 e P P
mn (6.2-37)
Since
l,m=n
x{[m - n]Tp,O) = ’ (6.2-38)
PP, 0, m#n
then
2
N-1
|x(r',¢')\2 = |V ae| - 5% . 6.2-39)
uw n=0 17
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Upon substituting Equations (6.2~31) and (6.2-39) into Equation (6.2-35),

one obtains:

~ta2
l§'d
L2 (6.2-40)
o] ~+ ~ y~
o w [I+p AC;(W)]w

which is the desired vector-matrix expression of the normalized SIR ¢

for a slowly fluctuating point target.

6.3 Maximization of the SIR for a Slowly Fluctuating Point Target

6.3.1 The optimum processing waveform for a given transmit

signal. 1In this section, we will'consider the problem of finding the
optimum unit-energy processing weighting vector gOPT that will
maximize the SIR when the unit-energy transmit weighting vector E
and the parameters of the subpulses are given.

Since u and Sé') for n=0,1, ..., N -1 are assumed to
be given, the elements of the reverberation matrix gﬁ(ﬁ) are known
complex constants. Also, since ER(ﬁ) is positive semi-definite
Hermitian in general, and the identity matrix I 1is positive definite
Hermitian, the (N X N) matrix [I + QOKQR(E)] is positive definite
Hermitian since the sum of two Hermitian matrices is also Hermitian68
and the sum of a positive semi~definite matrix and a positive definite

matrix is a positive definite matrix.69

Therefore, since (I + pokgn(i)]
is positive definite Hermitian, there then exists a unique (N X N)

positive definite Hermitian matrix § such that:

L+0pC (@ = ss , (6.3-1)
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where § 1s called the square root70 of (I + poxga(g)] . Using

Equation (6.3-1), Equation (6.2-40) can be rewritten as:

2
, lis s
il a— (6.3-2)
o ~ -
° wSSsSyw
F which can be bounded from above by applying the Cauchy inequality to

the numerator.

The numerator of Equation (6.3-2) can be rewritten as:

5's 574512 - 12§, (6.3-3)

where the (1 X N) complex vector x is:

A -+

x 'S (6.3-4)

1€

and the (N X 1) complex vector y is:

i & s ) (6.3-5)

The scalar product

Xy = X,y (6.3-6)
S S
so that
N N
. 2 ) - 2
E357 I N Y D S P (6.3-7)
{=1 i=1

by application of Cauchy's inequality.9 Since i isa (1 XN)

vector, then:

PRSI TTLE S AL (6.3-8)




;

R

and since y 1s a (N X 1) vector, then:
. (6.3-9)
Substituting Equations (6.3-7) through (6.3-9) into Equation (6.3-3)

yields:

wssTulC < wsswu(ss) u (6.3-10)

,and (8§ "8 ) = (§_§)- . And upon
substituting Equation (6.3-10) into Equation (6.3-2), one obtains the

desired result:

o 5t ~yq~Ls _
o, 2 [L+pAC@]1E . (6.3-11)

The inequality in Equation.(6.3—1l) becomes an equality only when

= k3 (6.3-12)
or equivalently:

~ z ~yy—la

w = k[I+pAC (W] u , (6.3-13)

where k is an arbitrary complex constant. Since K is arbitrary, it
can be chosen in such a way that the unit-energy requirement of
Equation (6.2-24) is met. It can be shown that the value of k which

~12
satisfies lgl =1 4is given by:

1
k2 =

= = , (6.3-14)
u [I+pAC WG

ki . TR N A
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where k = k 1s a real constant since the denominator of Equation
(6.3-14) is a quadratic positive definite Hermitian form, and hence,
a real non-zero positive scalar quantity.
Therefore, when u and 5&*) for n=0,1, ..., N-1 are
given, the optimum processing weighting vector is:
4
- ~y =1~
YoPT k(I + QOXQR(E)] u , (6.3-15)
where k is given by Equation (6.3-14). When EOPT is used, the il
normalized SIR p for a slowly fluctuating point target 1is maximized
and this maximum value is:
b (p ~T ~y =1~
[— = u[I+pAC (@] 0 . (6.3-16)
p MAX - = o —R™— -
| - °
6.3.2 The optimum transmit-processing waveform pair - an
! ) iterative technique. 1In order to develop an iterative technique for
} finding the optimum pair (EOPT’ EOPT) , one must maximize Equation
(6.3-16) over the set of all unit-energy vectors u . In this section,

an iterative algorithm will be described that yields a sequence of

increasingly better transmit weighting vectors, along with the

19,59

corresponding processing weighting vectors. This sequence of

transmit-processing, complex weighting vector pairs has the property

that pn+1‘3 pn .19’59

The basis for the iterative procedure is the following symmetry

property of the cross-ambiguity function:

[x(.0) 2 . |x(t:9) z (6.3-17)
o ae
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where
a'(t) = u(-t) (6.3~18)

and
w(t) = w(-t) . (6.3-19)

By referring to Equations (6.2~11) and (6.2-35), it can be seen that
the SIR obtained from a transmit signal u(t) and processing waveform
w(t) 1is the same as would be obtained from a transmit signal w'(t)
and processing waveform u'(t) . For the case when the transmit and
processing waveforms are pulse trains, this invariance principle is

equivalent to the statement that the SIR, as given by Equations (6.2-34)

- or (6.2-40) 1s invariant under the transformation
i oamd 0@,
i . where
@ o= I's , (6.3-20)
@ = 1'w (6.3-21)
and
(000« + 1]
0+-+-010
A . . (6.3-22)
01 . .
i 10 ¢ » o ¢ O,J
Note that the prime symbol " ' " does not indicate transpose. Also note

that premultiplication of a matrix by 1' reverses the order of the

rows of that matrix and post-multiplication reverses the order of the

' columns.19
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The iterative technique due to Delong and Hofstetter19 which
finds the optimum pair (EOPT’ HOPT) that maximizes 0 for a point

target when Eé') s n=0,1, ..., N=-1 1is given and the maximization

is subject to unit-energy constraints on both is

YorT opT °

discussed next.

Start with an arbitrary, unit-energy, transmit weighting vector

El and compute its corresponding optimum processing weighting vector

from Equations (6.3-14) and (6.3-15), i.e.,

~ ~ -1.
Yot © kL + e e W1 8y ’ (6.3-23)
where
K, = L (6.3-24)
1 ~F ~ \1=2~ \1/2 e
(ﬂl[l + po}‘g-R(El)] 21)
The pair (_1, !OPTI) results in p1 as given by [see Equation
(6.3-16)1:
p. = p G*[I + p AC, (u )]'lﬁ (6.3-25)
1 o1l = o —R—1 -1 : :
By the invariance property described previously, the pair (w! , ul)
—OPTl =1

yields the same SIR p, as given by Equation (6.3~25). However, u

1

i8 not necessarily the optimum processing weighting vector to use with

the transmit weighting vector w! . Therefore, the optimum
—OPT1
processing weighting vector corresponding to iéPT must yleld a SIR
1
no smaller than pl . Let
Iy = w! - g
u, EOPTl (6.3-26)




(6.3-27)

Substituting Equations (6.3-23) and (6.3-24) into Equation (6.3-27)

yields:

' ~ yq-1-~

. I [L+pAC (w1 "y

i, = — 17 - (6.3-28)
{u) [+ p ACp(u) ) “uy}

The optimum processing weighting vector corresponding to EZ is
[see Equations (6.3-14) and (6.3-15)1:
A ~ -2~
i, - T[l +p, QR(gz)]_zgz} - (6.3-29)
2 {5,[1 + p AC (E,)17E,
and from Equation (6.3-16):
P, = P ﬁf[I + p AC_(u )]_16 > p . (6.3-30)
2 2= o —R™—2 =2 = "1 '
Therefore the second iteration would yield the pair (4., w ) as
=2 —OPT2

given by Equations (6.3-28) and (6.3-29), respectively, and this

particular pair would yield the SIR p, as given by Equation (6,3-30).

2
Equation (6.3-28) can be generalized so that

8- T(gn) ; n=1,2, 3, ... . (6.3-31)
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where T(*) 1s the nonlinear transformation defined by:

I'(L+ p AC (3017

2. }1/2
u

M

T(En) = (6.3-32)

~t ~ yq=
TG [1+ 0 AC, @ )]

and gl is an arbitrary, unit-energy transmit weighting vector used

to initlate the iterative algorithm of Equation (6.3-31). The
optimum processing weighting vector corresponding to §n+1 is:

- -1~
(L + P W) By

W = s (6.3-33)
—OPT ~t ~ -2~ /2
o AR L e g1 iy )
n=20,1, 2, . .
The pair (§n+1’ EOPT ) results in a SIR given by:
ntl
= pal r+pic G T (6.3-34)
P+l Potmer 127 PG00 By e
= 0, 1, 2, . [}
>
where pn+1 __pn .

The sequence pn+1 given by Equation (6.3~34) is monotonic
and so must converge.19 Therefore, in order to find the optimum paif

(EOPT’ EOPT) , the iterative algorithm given by Equations (6.3-31)

through (6.3-33) should be continued until there is no further change

in p as given by Equation (6.3~34).
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However, this particular algorithm does have its shortcomings.
Although the sequence of pn's will ultimately converge, the limiting

value is a relative maximum at least, but not necessarily the global

19,59

maximum. In addition, the procedure does not provide a unique

optimum solution.59 The pair of complex weighting vectors (§OPT’
QOPT) to which the procedure converges is strongly dependent upon

the initial choice of the transmit weighting vector used to start the
iteration scheme.59 And the maximum value of 0 to which the
algorithm converges is also dependent upon the initial choice of g..59
As with any iterative algorithm, the initial choice required to start
the iteration should always be an intelligent choice based upon a

priori information (if available) rather than an arbitrary one.

DeLong and Hofstetter58 also point out another drawback of this

iterative technique. Based upon computational experience with their
own algorithm, they found that pulse trains optimized under a unit-
energy constraint tend to have large amplitude variations. Since it
is undesirable to have the amplitude vary widely from subpulse to
subpulse, it is desirable to control the amount of amplitude taper
permitted in the signal design. Therefore, DeLong and Hofstetter58
suggested replacing the energy constraints with a dynamic range
constraint. A dynamic range constraint limits the maxigum and minimum
values allowed for the subpulse amplitudes in the transmit weighting
vector. And since a dynamic range constraint also limits signal
energy, energy constraints are no longer necessary. Since their

iterative technique19 was not suited for handling a dynamic range




constraint, Delong and Hofstetter58 formulated their new optimization
problem into an equivalent nonlinear programming problem.

The nonlinear programming problem which they considered was the
maximization of Equation (6.3-~16) with respect to u , subject to the

constraints

Aae < 181 < AL s 1=0,1, ..., N -1, (6.3-35)

where both AMIN and AMAX are positive, real constants. In this
problem, the waveforms u(t) and w(t) are identically equal to
x(t) and g(t) , respectively, and hence, are not unit energy. Thus,
the parameter ., 1s equal to E{|E|2}/No .

The approach taken by DeLong and Hofstetter58 was to construct
an iteration scheme that, if convergent, would converge to a vector i
satisfying the Kuhn-Tucker conditions. The Kuhn-Tucker conditions are
necessary conditions which an optimal solution must satisfy.58

DeLong and Hofstetter58 mention fhat it is not known whether
their algorithm will always converge. Also, even if the sequence of
values of p converges to a relative maximum, they state that it is
theoretically possible that the sequence of transmit weighting vectors
might not converge.

Luenberger71 notes that there are two basic approaches for
handling complex optimization problems by numerical techniques:

(1) formulate the necessary conditions describing the optimal solution

and solve these equations numerically (usually by some iterative

scheme), or (2) bypass the formulation of the necessary conditions

220
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and implement a direct iterative search for the optimum. Obviously,
DeLong and Hofstetter58 took the first approach and ran into some
theoretical difficulties.

Luenberger7l states that the second approach appears to be the
most effective since progress during the iterations can be measured by
monitoring the corresponding values of the objective functional.
Therefore, instead of using the algorithm proposed by Delong and
Hofstetter,58 one should implement a direct iterative search for the
optimum U that will maximize Equation (6.3-16).

A direct iterative search for the optimum solution is also
recommended to handle the more complicated optimization problems to

be discussed in Section 6.4.

6.4 Maximization of the SIR for a Doubly Spread Target

6.4.1 The optimum processing waveform for a given transmit

signal. As with the point target optimization problem discussed in

Section 6.3, we will first consider the problem of finding QOPT for
u and ﬁn(') yn=0,1, ..., N-1 given. In Sections 6.4.1 and

6.4.2, u(t) and w(t) are no longer considered to be the unit-
energy, normalized versions of x(t) and g(t) , respectively, but
rather u(t) = x(t) and w(t) = g(t) . As a result, the energy of
u(t) and w(t) are given by Equations (6.2-19) and (6.2-20),

respectively. Also, the parameter f appearing in Equation (6.2-34)

is now equal to:

o = N . (6.4-1)

e - T RS AU W it Lb . D s
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The optimization problem to be considered in this section is

the maximization of

- e ®F
P _ (6.2-34)
%o ST+ pAC ()19
¥ 1+ opzplw)ie
with respect to w for u and Sn(') ; n=0,1, ..., N~ 1 given.

The quadratic form in the numerator of Equation (6.2-34) precludes the
direct application of the Cauchy inequality as was done in the point
target case. Therefore, in order to find the optimum ﬁ to use with

a given u which satisfies, for example, a dynamic range constraint

g
Mgy S lﬁi[ S Apyg s 1=0,1, ..., N-1,(6.4-2)
P and with ﬁ“(°) ; n=0,1, ..., N-1 also given, one must maximize
' the quadratic
T e '
w S'T(P-)E . (6.4-3)
or equivalently, minimize the quadratic69
—G+C (w)w : (6.4-4)
__TE! M
with respect to w , subject to the following nonlinear constraints:
N-1
52 = ) lv}ilz =1 (6.4-5)
i=0
and
~t L e~
. e @i < kK >0 (6.4-6)
{
»




where K is a real, positive constant since QR(Q) is positive
semi-definite. Since u and §n(°) ;y n=0,1, ..., N-1 are given,
ET(E) and Co(H) are known, constant matrices [see Equations (6.2-32)
and (6.2-33), respectively]. The choice of a unit-energy comstraint,
as given by Equation (6.4-5), was arbitrary since a scaling of the
processing waveform leaves the SIR unchanged.19 The real, positive
constant K in Equation (6.4-6) represents the level to which the
reverberation has been reduced by the processing waveform for E. and
p();n=20,1, ..., N~1 given. For example, K = 0 means that
the processing waveform has completely removed all the reverberation.
It should be noted that it is not necessary to reduce the reverbera-
tion to zero, even if such a reduction were possible.56 A final
reverberation level comparable with the noise, if achievable, would
usually be all that was required.56

Equations (6.4-4) through (6.4-6) represent a problem in

nonlinear programming involving the (N X 1) complex vectors ‘g and

w and the (N X N) complex matrices C.(u) and Cp(u) . The
nminimization of the quadratic given by Equation (6.4-4) was chosen
since most of the standard computer programs available for handling
nonlinear programming problems are written in terms of minimizing the
nonlinear objective function. The main purpose of this section is to
formulate the above nonlinear programming problem, which is defined
on a complex N-space, into an equivalent nonlinear programming
problem defined on a real 2N-space.

The (N X 1) complex vectors U and W can be represented

by (2N X 1) real vectors by treating the real and imaginary parts
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of both u and W as independent variables.’® For example, let the

complex weighting vector W be given by:

¥ = a+jb (6.4-7)
or
rFo~ b r -y r -
wo aO b0
¥ 2 by
- + (6.4-8)
L “N-1 i aN-1 by-1
J . L J
so that
ok
§ = a-4b , (6.4-9)

where a and b are real (N X 1) vectors. From Equation (6.4-7),
one can see immediately that the constraint given by Equation (6.4-5)

in terms of the complex unknowns Gi can be rewritten as:

2 . 2,2 2 2, .2 2
AN ag+a] + ... tag Fby bl F . kb =1
(6.4~10)

in terms of the real unknowns ai and bi ; i=0,1, ..., N=1.

Let us now attempt to express the constraint given by Equation (6.4-6)

in terms of the real unknowns ai and bi , also.

First note that the quadratic form ﬁﬁgk(g)ii can be expressed

.68
as.
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N N .
ie, @i = ]
=1 m=1

~

L ¥ 8-1%m-1 . (6.4-11)

where Elm is element (Zm) of the (N X N) Hermitian matrix

ER(E) . Making use of the fact that the reverberation matrix is

-~ -~

Hermitian, i.e., r,, = r, , the expansion of Equation (6.4-11)

ij ji
becomes:
e @u = v P v P el 24
- —R="— 11' ¢ 22 1 Tt NN’ "N-1
2R . . + T gl +
e rlzwow1 + r13w0w2 + ... rleowN_l
N o ke N + +
r23w1w2 + r24 1W3 + ... + rZNwle-l ces
T a +r % +
T(N-2) (N-1)¥N-3"N-2 7 T(N-2)N"N-3N-1
- .
T(N-1)N “N-2"N-1 } , (6.4-12)
where rll’ r22’ cees Ty are real constants. Also, note that the

expression

*

F9-1) (m+2) " 0-2"mpy 5 2 T 2 35 ees N

m=0,1, ..., N-2 (6.4-13)

will match any cross term appearing in Equation (6.4-12) so long as
the difference between % and m 1is not greater than positive 2,

i.e.,

~® < 9 - m < +2 . (6.4-14)

Now let

Tom = Xgm + ijm , (6.4-15)
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1
where Xpm and Yom 3TC real, known constants since ER(E) is a
known, constant matrix. Recalling that
w, = ay + jbi (6.4~16)
and upon substituting Equations (6.4-15) and (6.4-16) into Equation
(6.4-13) and then taking the real part, Equation (6.4-12) can be
expressed as:
. N
. 1 ~—.~ 2 2
r ¥ Wy E=1 M Bre-1 ¥ Pper) Y
AR
2 [a, .2 +b, .b Ix +
] 7=2 m=0 2~2"m+1 2~2"m+l " (2-1) (m+2)
g
~o0< §-m<+2
| (amt1P0-2 = 3p-2Pme1 1Y (p-1) (m+2)} K20
(6.4-17)
since rll’ r22, cees rNN are real constants, and hence, from

Equation (6.4-15), T13 = %11 0 T2 < xéz, cees TN T gy ¢

Equation (6.4-17) expresses the original nonlinear constraint as

given by Eyuation (6.4-6) in terms of the real unknowns a; and b1 .

Similarly, if one denotes element (fm) of the (N x N)

Hermitian matrix C (u) as:

Tt = a, + 3B (6.4-18)
m

m L {m ’

where both azm and Blm are real, known constants, then the

nonlinear objective.function given by Equation (6.4-4) can be

expressed as:




227

A e o 2 2
-—ue @y = E=1 %l B-1 ¥ Bpey !
Ty
2 { [a, ~a +b, .b ] -
b Lol Pe-2%m T Peo2Pan
o< g ~m<+2

b

%-1y@2) * PPoraPe-2 T 2p-2Pmirl

8 (6.4-19)

(2-1) (m+2) } :
The task of formulating the original nonlinear programming
- problem which was defined on a complex N-space into an equivalent
problem defined on a real 2N-space has been accomplished. For a
given complex transmit weighting vector which satisfies Equation
! 7 (6.4-2), and with the parameters of the subpulses also given, the
equivalent problem is'to minimize the nonlinear objective function
given by Equation (6.4-19) with respect to the real unknowns a, and

bi ; 1=0,1, ..., N-1 subject to the nonlinear constraints

given by Equations (6.4-10) and (6.4-17). Once the optimum pair

(agpps bopy) 1s found, the corresponding optimum complex processing

weighting vector can be computed fron

PT agpr * 1Bgpr : (6.4-20)

A)t:z

One of the most common nonlinear programming techniques for

handling constraints is to use the method of steepest descent in

g conjunction with the gradient projection method.66’71

63,64 -

The gradient

projection method is due to Rosen.




228

6.4.2 The optimum transmit-processing waveform pair. Using

the results of Section 6.4.1, a joint optimization nonlinear program-
ming problem will be formulated in this section, the solution of which

will yield the optimum pair (EOPT’ QOPT

) that maximizes the SIR ¢
for a doubly spread target subject to a dynamic range constraint on the
transmit weighting vector and the amount of reverberation to be
removed. Once again it is assumed that the parameters of the subpulses
are given,

Consider the following (N X N) positive semi-definite

Hermitian matrix

=

c@ = J J U(T,¢)§ﬁ1,¢)§I§(T,¢)§J+dtd¢ s (6.4~21)

--00

where the subscripts "T" and "R" have been removed for now. If one

expresses the (N x N) matrix H(T,$) as:

i |

Boo Bt By ov-1)
o by T By
E(‘["¢) = . . . e . . .

B (8-1) (8-1)
. o

(6.4-22)

where Emm = h(t,$) , then it can be shown that element (ij) of the
mn

(N x N) matrix E(T,¢)§[§(T,¢)§]+ is:
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u, h . 3 h, ; (6.4-23)

=0 LA ¥ % o=g T Jm

i’j = 0’ 1’ ’ N-1
and as a result, element (ij) of C(u) 1is given by:
) S «
@y - L L ol IS LS

-00

1,5 =1, 2, ..., N, (6.4-26)
where n(t,¢) is defined by Equation (6.2-29) and
mn

[+ <]

%
X [2e(T),9 - 9'] = I p It - e(mlp [t +e(D)] -
smsn on - m én n mn

exp(+j2nl¢ - ¢'lt)dt (6.4-25)
where €(1) is defined by Equation (6.2-27). Since
mn

PSR (NG I (6.4-26)

and

~

.
rij (6.4~27)

[C@ly, >

Equation (6.4-24) can be used to write

N-1 N-1
t, = |} u, u

T : (6.4~28)
1] £=0 m=0
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and
N-1 N-1
' rij ) gso E—O “ Ya Ri,j,ﬂ,m shi=1,2,...,8 ,
(6.4-29)
where o
F & (,0)h 8% . drds (6.4-30)
. = o(t, _ _ .
1,] ’Q,’m J_ooJ TRGT (i 1)2 (j l)m
and
«Q
& h 5 dtd 6.4-31)
15,40 " "y N (5-adTe - (6u4-3D),
The expressions Ti,j,%,m and Ri,j,z,m are known, complex

constants since the subpulses ﬁn(') 3 n=0,1, ..., N-1 are
given.

Next, represent the complex elements of the transmit weighting
vector as:

u, = vy +3n

i i=0,1, ..., N-1 , (6.4-32)

i ;

where both ui and n are real, unknown constants. Upon

i
substituting Equation (6.4-32) into Equations (6.4-28) and (6.4-29),

one obtains:

N-1 N-1 ~
ty; = §=0 E=é(“2“m + nlnm)Re(Ti,j,l,m) -

(umn2 - “z”m)Im(Ti,j,z,m) +

j[(ulum + nznm)Im(Ti,j,l,m) +

o b W S




(umnl - ulnm)Re(Ti,j,l,m)]}; (6.4-33)

1, =1, 2, «.., N

and
N~1 N-1
rij = §=0 mZO {(ukum + nlnm)Re(Ri,j,SL,m)
(ung - ulnm)lm(ﬁi,j,l,m) +

F0Cugu + nlnm)lm(ﬁi,j,z,m) +
Ny - ulnm)Re(ﬁi,j,R,m)]}; (6.4-34)

i’j=1’ 2; 0-‘-,N .

Equations (6.4-33) and (6.4-34) express the complex unknown elements
of the target and reverberation matrices, respectively, in terms of
the real unknowns ui and ni . Note that the j term multiplying
the square brackets in both Equations (6.4-33) and (6.4-34) is equal
to V-1 » and hence, is not an index. All the information required
to formulate the joint optimization nonlinear programming problem in
terms of real unknowns is now available.

The nonlinear programming problem can be stated as follows:
minimize the nonlinear objective function given by Equation (6.4-19)
with respect to the real unknowns u, , n, , ai , and bi H

i i

i=0,1, ..., N-1, where aij = Re(tij) and Bij = Im(tij) can

be obtained from Equation (6.4-33). The minimization is subject to
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the following nonlinear comstraints: (1) Equation (6.4-17), where

xij = Re(f‘ij 1

(6.4-34); (2) the dynamic range constraint

) and Vi = Im(f,.) can be obtained from Equation

Ay < 151 < Apgs 120, 1, L, N- 1 (6.4-2)

or equivalently,

. 2 2,1/2 s _
AMmg(ui+ni) gAMAx,l-o,l,...,N 1,
(6.4-35)
and (3) the unit-energy constraint
-~ 2 2 2 2 2 2
a, -+ al + ... aN—l + b0 + bl + ... + bN-l = 1 .
(6.4-10)
' Once the optimum vectors agpr EOPT . EOPT , and DOPT are found,

the corresponding optimum transmit and processing complex weighting

vectors can be computed from:

Yopr = Hopr ¥ IDgpr (6.4-36)
and
Wopr = Z2opr * Jlopr ¥ (6.4-37)

The optimization problem to be considered in Section 6.4.3 1s
totally different from those discussed in Sections 6.4.1 and 6.4.2.
In Section 6.4.3, the transmit and processing weighting vectors are

assumed to be equal and given. The maximization of the SIR will be

with respect to the parameters of the subpulses.




6.4.3 Maximization of the SIR for a doubly spread target with

respect to the subpulse parameters. Consider the '"matched filter"

version of Equation (6.2-34). That is, if one lets w =4 ,

Equation (6.2-34) becomes:

i @i
o _ . T , (6.4-38)

I+ p AC (W) ]u

(=3

°o
le

where it is assumed that .E is given. In this section, the waveform
u(t) is once again the normalized version of x(t) . Hence,

lglz =1 and P, is given by Equation (6.2~12). The optimization
problem is to maximize Equation (6.4-38). More specifically,

minimize the nonlinear objective function
- i’ @i (6.4-39)
— —T QR b

with respect to the subpulse parameters, subject to the nonlinear

constraint
E C (g)@ < K >0 (6.4-40)

and suitable constraints on the subpulse parameters. Note that
although g is given, the target and reverberation matrices are
unknown, constant matrices. They are both functions of the subpulse
parameters for this optimization problem. The complex scalars Emn 3
m,n =0, 1, ..., N- 1 are not only functions of T and ¢ but
they are also functions of the parameters of the subpulses §m(‘)

)

mn

and §n(-) via the cross-~ambiguity function  x(°

»
~
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Let the nth subpulse ﬁn(t) be given by the general expression

() = exp[+i¥ ()] 5 0 <€ <T<T , (6.4-41)

T

i ' where Wn(t) is the instantaneous phase function. Note that 5n(t)
satisfies the orthonormality condition given by Equation (6.2-23).
Upon substituting Equation (6.4-41) into Equation (6.4-25), and then

substituting this result back into Equation (6.2-29), one obtains:

o = Re{ﬁmn} = % J bos{Wm[t - Eég)] - Wn[t + Eé;)] +
L ~-
, m(d - ¢')[2t + (m + n)Tp]}dt
h (6.4-42)

' and © ]
d = Im{k } = T J sin{Wm[t - eég)] - wn[t +As£§)] +
7 - ¢"){2t + (m + n)Tp]}dt ,
(6.4-43)
where
ﬁmn = c + d_; mn = 0,1, ..., N-1. (6.4-44)

- k
Using quation (6.4-44), the expression h(i—l)lh(j-l)m appearing in

both Equations (6.4-30) ard (6.4-31) can be rewritten as:

~ *

B G-na T -1 G-De T Ye-ndG-De *

Ieg-padia-1yg ~ S1-1g4(3-1)m)
(6.4-45)




Note that the j term multiplying the square brackets in Equation
(6.4-45) is equal to v-1 , and hence, is not an index. Keep in mind
that since Emn is a fﬁnction of T, ¢ , and the subpulse parameters,
then both ¢ and dmn are also functions of these same variables.

For example, if Wn(t) is of the form
2 i
Wn(t) = bnt + 2ﬂfnt sy n=20,1, ..., N-1, (6.4-46) 5

then, from Equations (6.4-42) and (6.4-43), one can see that:

Con = Cpn(Ts®sbf b LE ) (6.4~47)
and
- = f 6.4-48
dmn - dm(T)¢’bm’fm)bn, n) . ( G- )
Since it was assumed that w = U , where u is given, then
! from Equation (6.4-16), one can write
G, 0= 8 = a +3b, ;3 10,1, ..., N-1 ,
(6.4-49)
where the ai's and bi's are real, known constants. Also, since
P P <t~ N R
u Ci(Wuy =wC (Ww and C.(Wu = wC (ww , then Equations
E (6.4-39) and (6.4~40) can be replaced by Equations (6.4-19) and
i (6.4-17), respectively.

Assume for simplicity that the transmit weighting vector is

real, i.e., only uniform amplitude weighting is done. Therefore,

under these assumptions and since IQIZ =1,
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a, = — 3 1i=0,1, ..., N=-1

and (6.4-50)

Upon substituting Equation (6.4-50) into Equations (6.4-19) and

(6.4-17), Equations (6.4-39) and (6.4-40) can be expressed as:

+ ST
-uC @I = -F ) oy -y @ (g
T N k=1 kk N $=2 m=0 (2-1) (m+2)
< fmm<+2 (6.4-51)
and
e @a = L) 2y 3
u C (wu = = + = X <K>0 ,
SRR TNL e TNG LT @) =T =
—o<f-m<+2 (6.4-52)
respectively, where
4y = Re{tij} (6.4-53)
or
JN)
a,, = T o(t,$) (e, c, .
13 ¥ §e0 meo/_J mer (DT (G-Da
d(i-l)ld(j—l)m]de¢ s 1,j=1,2, ..., N
(6.4-54)
and
x1j = Re{rij} (6.4-55)
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N-1 N-1 ,®
£=o £=o J J Oégé¢)[°(i—l)£°(j-l)m

d(i—l)ld(j-l)m]de¢ s i,j=1,2, ..., N

(6.4-56)

As a result of the above analysis, our problem in nonlinear
programming can be stated as follows: minimize the nonlinear objective
function given by Equation (6.4-51) with respect to the parameters of
the N subpulses, where aij is given by Equation (6.4-54) and c 4
and dij are given by Equations (6.4-42) and (6.4-43), respectively.

For example, if the instantaneous phase function of the nth subpulse

- is given by Equation (6.4-46), one may choose to minimize with respect
to either the frequency deviation parameters
| £ 3 n=0,1, ..., N-1

or the frequency sweep parameters

b 3 n=0,1, ..., N-1

or both. The minimization is to be performed subject to both the
nonlinear constraint given by Equation (6.4-52), where xij is given
by Equation (6.4-56), and suitably defined constraints on the subpulse

parameters. For example,

and (6.4-57)




Of the three optimization problems discussed concerning the
doubly spread target, maximization with respect to the subpulse
parameters is the most significant one. By closely inspecting
Equations (6.4-51) through (6.4-57) and Equations (6.4-42) and (6.4-43),
one can easily see that this rather general formulation is a very
complex numerical problem. Let us investigate next the extent to which
this important problem can be simplified, specifically the expressions
for aij and xij as given by Equations (6.4-54) and (6.4-56),
respectively.

If the relatively simple target scattering function derived in
Chapter IV [see Equations (4.3-8) through (4.3-12)] is normalized
according to Equation (6.2-7) and then substituted into Equation
(6.4-54), one obtains:

. 1 ) N-1 N-1

NH 2
iy~ [m L {[[2- ”’nar,,’fc]}’ SRR

2=0 w=0

exp { ~4a(fc)[(ctn)/12 - [¢DET /fcl] J } .
n

E{IFn(fc)lz}(sinen) .

c[Tn,—chET . ...]c[rn,-d)DET s ceo] +
(i-1)2 ¢ (-Dm ©

dlbpgy » - dlT b s D |

(i-1)2 0 (3-1)m

i,j= 1,2, ..., N, (6.4-58)
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where
NH 2
OTRGT I [2 - [bpgr /fc]) / (et )| -
n=1 a

exp { -4a(fc){(crn) / [2 - E¢DET /fc]) } .
n

2
E{ an(fc)l }sinb_ (6.4-59)

and NH is the number of discrete point highlights along the target.
The double integral originally appearing in Equation (6.4-54) has now
been replaced by a single summation due to the presence of the target
scattering function's Dirac delta functions in T and ¢ . Note that

c and di plus the parameters

i} 3

of the instantaneous phase function [see Equations (6.4-42) and

are functions of Tn and -¢DETn
(6.4~43), respectively]. Although Equation (6.4-58) is a simplified
version of Equation’ (6.4~54), it is still not trivial. In order to
evaluate aij for just one pair of values for (i,j) , a double
summation over all N subpulses must be performed followed by a
summation over all NH highlights of the target. In addition, each
c(i-l)l R C(j—l)m ’ d(i~l)£ , and d(j—l)m is an integral with
respect to time ¢t .

The expression for xij as given by Equation (6.4-56) can also
be simplified somewhat by judiciously specifying the normalized
reverberation scattering function o(t,$) . A common simplification

REV

is to assume that the scattering function R_(7,¢) 1is a function of

SREV




¢ only, i.e., RS(T,¢) = RS(¢) . Van Trees12 refers to Rs(¢) as
REV REV REV

the Doppler scattering function. However, even with this simplifica-
ti.n, the integration with respect to T remains in Equation (6.4-56)
since C(i—l)l . c(j—l)m . d(i—l)£ , and d(j—l)m are functions of
T . Thus, xij remains a very complicated expression. In order to
evaluate xij for just one pair of values for (i,j) , a double
summation of a double integration with respect to T and ¢ , in
addition to integrations with respect to time t , must be performed
over all N subpulses.

Therefore, in conclusion, even with the above simplificatioms,

the important problem of maximization with respect to subpulse

parameters remains a difficult nonlinear programming problem.
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CHAPTER VII
SUMMARY AND CONCLUSIONS

This dissertation was concerned with the problem of detecting a
doubly spread target returu in the presence of reverberation and noise
via maximization of the signal-to-interference ratio (SIR) by signal
L design. Previous research efforts have been devoted mainly to either
the slowly fluctuating point target or singly spread target problems.
The basic philosophy that was adopted in this dissertation was to treat
both the ocean medium and the target as linear, time-varying, random
filters. Accordingly, this dissertation began with a discussion on the
fundamentals of linear, time-varying, deterministic and random filters
in Chapter II. This chapter presented some of the basic mathematical
relationships, terminology, and concepts that are part of linear,
time-varying filter theory.

The four system functions which are used to characterize linear,

time-varying filters were discussed. These functions are (1) the time-
varying impulse response, (2) the time-varying frequency response or
transfer function, (3) the spreading function, and (4) the bi-frequency
function. It was shown that these four system functions and their
corresponding autocorrelation functions are related to one another via
Fourier transformations. In addition to various input-output relation-
ships, expressions for the output power spectrum for both deterministic
. and random systems were derived. These expressions demonstrated the

frequency spreading property of linear, time-varying filters. The

— ——




discussion on the important channel property of uncorrelated spreading
introduced the concepts of the wide-sense stationary uncorrelated
spreading (WSSUS) channel and the scattering function along with its
various Fourier transforms.

Chapter II concluded with a brief discussion of two different
ways of characterizing a time-varying channel via its scattering
function. The first method involved interpreting the scattering
function as a joint density function since it is real, non-negative,
and can be normalized to integrate to unity. Thus, first and second
order moments of the round-trip time delay (range) and frequency spread
can be computed. The second method was concerned with the finite
extent of the scattering function in the range-frequency plane. As a
result of this approach, the concepts of an underspread and an over-
spread channel were defined. Criteria for avoiding spreading in range
and/or frequency were formulated in terms of the duration and bandwidth
of the transmit signal and the extent of the scattering function in the
range-frequency plane. It was concluded that both range and frequency
spreading could be avoided only for underspread channels. For over-
spread channels, one can choose a transmit signal such that either range
or frequency spreading is avoided, but not both.

Chapter III introduced the problem of detecting a doubly spread
target return in the presence of reverberation and noise. This chapter
began with a brief discussion of the complex envelope notation for
bandpass signals since the binary hypothesis testing problem was
formulated in terms of the complex envelopes of the target, reverbera-

tion, and noise signals. Two different relationships between the

input and output complex envelopes of a linear, time-varying filter
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were derived. The first relationship was shown to be approximate and

was based upon a narrowband assumption. However, the second relation-

ship wa$ shown to be exact and is valid for broadband as well as
narrowband bandpass signals. Both the target and reverberation returns
were modelled as the outputs from linear, time-varying, random filters
which were assumed to be WSSUS communication channels.

L The particular receiver structure used was a correlator followed
by a magnitude squared operation. The magnitude squared output from the
correlator was tested against a threshold determined from a probability
of false alarm constraint in a Neyman-Pearson test.

Having specified both the binary hypothesis ‘testing problem and

- the receiver, the signal-to-interference ratio (SIR) for a doubly spread

target was derived. It was shown to be dependent upon the target and

% reverberation scattering anctions and the cross-ambiguity function of

the transmit signal and processing waveform. It was also demonstrated

that the more familiar SIR expression for a slowly fluctuating point
target could be obtained from the general SIR expression for a doubly
spread target.

The final discussion in Chapter III was devoted to the question
of receiver optimality. Although the chosen receiver structure can be

an optimum receiver for detecting a slowly fluctuating point target,

it is sub-optimuﬁ for detecting a doubly spread target. However, it
was concluded that the use of a sub-optimum receiver is not necessarily
a hindrance since the SIR can still be maximized by proper design of
both the transmit and processing waveforms. And in the important case
’ of Gaussian statistics, maximizing the SIR is equivalent to maximizing

the probability of detection for a given probability of false alarm




(i.e., the Neyman~Pearson criterion). In order to maximize the SIR

for a doubly spread target via signal design, one must be able to
specify both the target and reverberation scattering functions. In
general, the reverberation return is a composite of volume, surface, and
bottom reverberation returns. However, only volume and surface
reverberation were considered.

Both a volume reverberation and a target scattering function
were derived in Chapter IV. In the past, assumed functional forms for
the reverberation (clutter) scattering function were used in order to
calculate the SIR.

Volume reverberation was modelled as the scattered acoustic
pressure field from randomly distributed discrete point scatterers in
deterministic plus random translational motion. The point scatterers
were distributed in space according to an arbitrary volume density
function with dimensions of number of scatterers per unit volume.

The two-frequency correlation function representing the volume
reverberation communication channel was derived for a bistatic transmit/
receive planar array geometry. A single scattering approximation was
used and frequency dependent attenuation of sound pressure amplitude
due to absorption was included. The scattered fields from different
regions within the scattering volume were assumed to be uncorrelated.
It was noted that the coherence time and coherence bandwidth can be
computed from the two-frequency correlation function. The reciprocals
of the coherence time and the coherence bandwidth are equal to the
spectrum broadening and time broadening, respectively, that a wave will

undergo as it propagates through a random, time-varying medium. The
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volume reverberation scattering function was obtained from the two-
frequency correlation function via a two-dimensional Fourier
transformation and was shown to include explicitly all the important
systenm functions and physical parameters as opposed to having them
lumped together and accounted for by a single random variable as has
been done in the past. A probability density function of random
Doppler shift due to the random motion of the scatterers was also
derived. 1In addition, the average received energy from volume reverber-
ation was computed from the volume reverberation scattering function.
Using several simplifying assumptions, it was shown to reduce to the
sonar equation for reverberation level.

The doubly spread target was modelled as a linear array of
discrete highlights in deterministic translational motion. The target
scattering function was obtained froﬁ the monostatic form of the volume
reverberation scattering function by appropriately specifying the volume

density function of the highlights.

Computer simulation results for both the volume revérberation
and target scattering functions were presented as examples involving a 4
monostatic transmit/receive array geometry. The volume reverberation
scattering function predicted frequency spreading as a function of both
beam tilt angle and random motion of the discrete point scatterers. As
one might expect, frequency spread increased as both beam tilt angle ﬂ
and random motion increased. Also predicted was time spread Qnd/or
contraction as a function of Doppler shift. Similarly, the target
scattering function predicted a spread in Doppler values and a time

spread and/or contraction as a function of Doppler shift. Computer

N



plots of the probability density function of the random Doppler shift
were also presented fo; a monostatic geometry as a function of the
standard deviation of the random motion of the scatterers.

A surface reverberation scattering function was derived in
Chapter V. The underwater acoustic propagation path between transmit
and receive planar arrays via the surface of the ocean was treated as
a linear, time-varying, random WSSUS communication channel. The
random, time-varying, surface reverberation transfer function was
derived for a general bistatic geometry using a generalized Kirchhoff
approach. The generalized Kirchhoff approach included a Fresnel
corrected Kirchhoff integral and the Rayleigh hypothesis that the
scattered acoustic pressure field can be represented as a sum of plane
waves travelling in many different directions. Also, no small slope
approximation was made.

The following important observations were made in deriving the
surface reverberation transfer function: (1) Generally speaking, the
validity of thé transfer function is restricted to that region of the
ocean surface which corresponds to the intersection of the transmit and
receive projected beamwidths, especially if the beam patterns have
significant sidelobes. (2) The binomial expansion becomes a less reli-
able approximation as the grazing angle approaches zero degrees and/or
the beamwidths of the directivity functions increase. For some combin-
ations of grazing angle and beamwidth, the binomial expansion is invalid.
(3) Assuming that the functional form of the projected transmit and
receive beam patterns is Gaussian leads to a major source of error when

comparing theoretical predictions with experimental results. As a




247

result, the transmit and receive directivity functions included in the
derivation of the transfer function in Chapter V were kept as general,
frequency dependent expressions. The necessary transformation equations
which will project both directivity functions exactly were provided.
(4) And when the transfer function derived in Chapter V was compared
with previously published expressions for the scattered acoustic
pressure obtained from a classical Kirchhoff approach, it was shown to
contain additional "correction" terms which increase its magnitude,
especially for the backscatter and specular geometries. This is
encouraging since results based upon a classical Kirchhoff approach
have predicted values for the scattering coefficient that were smaller
than experimental values.

Two second order functions were derived from the surface
reverberation transfer function by assuming that the randomly rough,
time~varying ocean surface was a zero mean, wide-sense stationary,
Gaussian random process. These included the two-frequency correlation
function and the surface reverberation scattering function. The second
order functions were shown to be dependent upon the directional wave
number spectrum of the ocean surface. The surface reverberation
scattering function predicted both a spread in round-trip time delay
and in frequency. Previously published expressions for the ocean
surface reverberation scattering function were based upon a Fresnel
corrected Kirchhoff integral and a small slope approximation. They
pertained only to a specular geometry. In addition, these expressions
did not include a receive directivity function and a Gaussian functional

form for the projected transmit beam pattern was assumed. And further-

more, very specific models for the ocean surface were used rather than
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the general form of the directional wave number spectrum. These
specific models are nothing more than special cases of the general
form of the directional wave number spectrum.

Having derived the various scattering functions, the last major
topic then was the optimization problem of maximizing the SIR for a
doubly spread target via signal design. This problem was considered
in Chapter VI. Both the transmit and processing waveforms were

restricted to be pulse trains. Each subpulse of the transmit pulse

train was allowed to be arbitrary in shape and could occupy the entire
interpulse spacing interval if desired. This represents a generaliza-
tion of earlier approaches. The optimum processing waveform was
approximated by a time and frequency shifted replica of the transmit
pulse train. Each subpulse of both the transmit and processing pulse
trains were allowed to be complex weighted. Restricting the transmit
and processing waveforms to be complex weighted pulse trains allowed
the integral expression of the SIR to be transformed into an equivalent
vector-matrix form. And the fact that each subpulse of the transmit
pulse train was arbitrary in shape made this approach analogous to the
Rayleigh-~Ritz technique. Thus, the original problem of finding the
optimum time functions was transformed into a parameter optimization
problem.

Although the slowly fluctuating point ta.:nt problem was not of

primary concern in Chapter VI, it is an important and interesting

problem in its own right and was included for completeness since

substantial research effort has been devoted to it in the past. Two

different optimization problems concerning the maximization of the SIR
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for a slowly fluctuating point target were discussed. The first problem
was to find the optimum, unit-energy, complex processing weighting
vector that would maximize the SIR when the complex transmit weighting
vector and the parameters of the subpulses were given. The second
problem was to find the optimum, transmit-processing, complex weighting
vector pair that would maximize the SIR when the parameters of the
subpulses were given., The maximization was subject to unit-energy
constraints on both the transmit and processing waveforms.

Three different op;imization problems concerning the maximization
of the SIR for a doubly spread target were discussed. The first
problem was to find the optimum complex processing weighting vector
that would maximize the SIR when the complex transmit weighting vector
and the parameters of the subpulses were given. The maximization was
subject to a unit-energy constraint on the processing weighting vector
and a constraint on the desired amount of reverberation to be removed
by the processing weighting vector. The second préblem was to find
the optimum, transmit-processing, complex weighting vector pair that
would maximize the SIR when the parameters of the subpulses were given.
The maximization was subject to a dynamic range constraint on the
transmit weighting vector, a unit-energy constraint on the processing
weighting vector, and a constraint on the desired amount of reverbera-
tion to be removed by the processing weighting vector.

And finally, the third problem was to maximize the SIR for a
doubly spread target with resgpect to the parameters of the subpulses,

For this particular optimization problem, it was assumed that both the

transmit and processing weighting vectors were equal and given, and
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that the maximization was subject to a constraint on the desired amount
of reverberation to be removed by the processing waveform and constraints
on the subpulse parameters themselves.

Since all three optimization problems for the doubly spread
target were originally defined on a complex space, the approach taken in
Chapter VI was to formulate the optimization problems into equivalent
nonlinear programming problems defined on a real space. As a result,
one need not develop algorithms to solve these problems, but rather, one
can simply use standard computer programs or methods which are available
for solving nonlinear programming problems.67;72’73

Of the three optimization problems discussed concerning the
maximization of the SIR for a doubly spread target, maximization with
respect to the subpulse parameters is the most interesting and
significant one. However, even with several simplifying assumptions,
it was shown to be a difficult nonlinear programming problem.

Therefore, in conclusion, all the information required to solve
the problem of detecting a doubiy spread target return in the presence
of reverberation and noise by maximizing the SIR via signal design has
been furnished; namely, the receiver structure; target, volume reverber-

ation, and surface reverberation scattering functions; and the formu-

" lation of the various SIR optimization problems into equivalent

nonlinear programming problems defined on a real space.




CHAPTER VIII
RECOMMENDATIONS FOR FUTURE RESEARCH

Although the volume reverberation model that was used in this
dissertation was based upon classical assumptions, the derivation of
the volume reverberation scattering function was nonetheless tedious,
instructive, and did demonstrate some basic phenomeng. For example,
the volume reverberation scattering function predicted frequency
spreading as a function of both beam tilt angle and random motion of
the discrete point scatterers. Also predicted was time spread and/or
contraction as a function of Doppler shift. However, it is recommended
that more realistic models of the ocean medium be studied. For example,
an investigation as to whether or not a volume reverberation scattering
function could be derived for an ocean medium with a variable sound
'speed profile would be interesting. In addition, one could include
scattering from internal waves along with incorporating more sophisti-
cated target models.

Since the two-frequency correlation function 1s one of the
fundamental expressions required in order to study wave propagation in a
random medium, it is recommended that experimental values for both the
target and volume reverberation two-frequency correlation functions be
collected. The experimental values and theoretical predictions for
frequency and time spreading could then be compared. On the basis of
these comparisons, the validity of various mathematical models could be

established; for example, the discrete point scatterer model used for
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volume reverberation and the extended target and the WSSUS assumption
required for scattering function calculations.

It was demonstrated in this dissertation that an ocean surface
reverberation scattering function could be derived by using a general-
ized Kirchhoff approach. Since the validity of the Kirchhoff approach
is dependent upon a radius of curvature restriction (which is based
upon a sinusoidal ocean surface model), it is recommended to investigate
a surface reverberation scattering function derivation based upon alter~
nate approaches; for example, stochastic operator t’.echniquesn‘_76 or

applicable perturbation methods.48 While a perturbation method is not

dependent upon a radius of curvature restriction, it is dependent upon a
- restriction on the slope of the surface.48 A composite surface roughness

model--high spatial frequency waves (capillary waves) superimposed upon

low spatial frequency sinusoidal waves (gravity waves)--should also be
!A investigated.

Since the treatment of surface reverberation was entirely 1
analytical in this dissertation, much computer simulation work with the
equations could be done. For example, it is recommended that computa-
tion of the surface reverberation scattering function be performed for
both specular and backscatter geometries and compared with the results
from previously published expressions. The scattering function
calculations should incorporate the directional wave number spectrum.
For example, one could use the Neumann-Pierson spectrum, the Pierson-
Moskowitz spectrum, and other special cases. Shallow grazing angles
could especially be investigated in the backscatter case.

) Besides computer simulation work, an experimental program should

be conducted to determine the quality of agreement between experimental

— N A - ; B i R e ADSEE G el kel




values and theoretical predictions of the surface reverberation

two-frequency correlation function. Both experimental and theoretical
values for frequency and time spreading could be computed and compared.
Of the three optimization problems discussed concerning the
maximization of the SIR for a doubly spread target, maximization with
respect to the subpulse parameters is the most interesting and
significant one. For example, this particular problem formulation
allows one to find optimum frequency hop codes.77-79 Although
maximization with respect to the subpulse parameters is a difficult
nonlinear programming problem, it is recommended that future research
efforts be devoted to investigating valid simplifications and efficient
methods for its solution so that meaningful example problems can be

solved.
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APPENDIX A

DERIVATION OF THE RETURN SIGNAL

FROM A SLOWLY FLUCTUATING POINT TARGET

If one considers a slowly fluctuating point target to be in
relative motion and in the far-field with respect to a bistatic transmit/
receive array geometry, then it can be shown that the transfer function
which corresponds to this physiéal situation is given by [see Equat‘on

(4.2-14) and Figure 7]:

H(f,t) R—F“I%'f—)'exp{-jk[R +R O+ (@, -fA) «Ve']} ’
(o} o T R
Op oR T R
(A1)
where
F(f) = DT(kuT,va)g(nR,nT,f)DR(kuR,kvR) , (A2)
up = sinGTcosz . (A3)
v, = sinGTsian s (184)
up = sineRcosz . (AS)
vp = sinBRsian , (A6)
Ro
o
YT TRe -
1- R
c
1
2nf

and k = = is the wave number, where ¢ 1is the speed of sound in the

ocean medium. The expressions DT and ’DR are the far-field directivity




patterns of the transmit and receive arrays, respectively. The

function _g(ﬁR,ﬁT,f) is the scattering amplitude function. It
represents the random, far-field amplitude of the scattered wave in

the direction ﬁR when the point target is insonified by a unit
amplitude plane wave propagating in the direction ﬁT . Bo;h ﬁT and
HR are unit vectors. The spherical angles (eT,wT) and (eR,¢R) are
measured with respect to the transmit and receive arrays, respectively.
The velocity of the target 3' is assumed to be constant, and ROT and
ROR are the initial ranges of the target from the transmit and receive
arrays, in the directions ﬁT and (—ﬁR) , respectively. The retarded
time t' is given by Equation (A7).

~y Upon substituting Equations (Al) and (A7) into Equation (3.2-15),

one obtains:

" F(fc) (s)

' y(e) = R ﬁ{s [t - —T—é—])exp[—jZTrfc(l-s)t] .
°r %R
exp [—ijsz [I_(SS_)] ) (A8)

which is the complex envelope of the return signal from a slowly
fluctuating point target where it was assumed that lfcl >> |f] so
that F(f + fc) = F(fc) . The time compression/stretch factor s 1is

defined as:

4+ V
O
A L- c
s = — =3 ; (A9)
oy *
1__——-
) c




the expression T(s)/s 1is defined as the round-trip time delay in

seconds where
) ot -a-e R (A10)
o c

and

5 (A11)

and the Doppler shift factor (1 - s) is defined as:

Ay - Ag) v
(1 -s) = ry (Al12)
Ven
c[l - R
c
or
@, - A) - v
(1L -g) = c (Al13)
if one assumes that
lgl << 1 . (Al4)

Note that T(s) by itself is not the round-trip time delay.

For the more familiar monostatic or backscatter geometry,

ﬁR = -ﬁT , Ro = Ro = Ro and, therefore,
T R
A, + V
- Tc (A15)
= ——0Cc
A,V
1+ L
C
and
we) = T, (5‘2“1) : (A16)

S-SR, © -7 R I ultha.
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|
|

1
N

(1 - s)

(A19)

When the velocity of the target V=0 , note that both Equations
(A9) and (Al5) reduce to s =1 and, therefore, the round-trip time

t(s)

delays for the bistatic and monostatic cases reduce to

s=1 "
Equations (All) and (Al7), respectively, as would be expected. In
addition, it is instructive to consider the backscatter case and assume
that a point target is moving away from the observer. Therefore, the
radial velocity ﬁT «V >0 in Equation (Al5) and, as a result, s < 1.
With s <1, (1 -s) >0 and the complex exponential
exp{-janc(l—s)t} in Equation (A8) corresponds to a negative Doppler

shift which is physically correct. The backscattered signal begins

to appear at the output of the receiver at time [see Equations (A8)

and (Al6) §
1(s) 2%[1+%
- a
S P [ 5 (A20)
and with s <1, TE:) > 2Ro/c sec which is also physically correct.

Similarly, if the point target is moving toward the observer, then

ﬁT V<0, s>1, (L-s)<0, exp{—janc(l—s)t} corresponds to
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a2 positive Doppler shift, and Tif)

< 2R /¢ sec.
(o}
Equation (A8) represents the complex envelope of the return
signal. 1If one calculates the pre-envelope or analytic signal16 of

y(t) , Zy(t) , one obtains:

zy(c) = §r(:)exp(+jzvrfct) (A21)
- wfs [ -] emfne, [s [ - 2]
(A22)

(A23)

]
[\
—
1]
—
rt
I
—
®la
I
—
S—
-

where the amplitude terms of Equation (A8) were dropped and Zx(') is
the analytic signal of x(t)

With the exception of a multiplying amplitude factor, Equation
(A22) is identical in form with the model of the return signal
specified by Equation (1) in Gassner and Cooper.27 Indeed, for the
backscatter case, s and 7T(s) as given by Equations (Al5) and (Al6),
respectively, are equal to the expressions Bo and To , respectively,
as defined by Equations (3) and (4) in Gassner and Cooper.27 The

parameter To is referred to as being a suitably defined delay time28

and is not referred to as being the round-trip time delay.27’28
Kelley and Wishner29 model the backscattered echo corresponding

to the transmission f(t) as:
fix(t - 8)] (A24)

for a constant velocity target, where their "Doppler stretch factor' x

is equal to our s as given by Equation (Al5), and their s 1is defined

el L T ettt it b, e ¥
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as round-trip time delay. More specifically, referring to Equation (5)

of Kelley and Wishner29:
|
s = 2r = 2:8 (a25)

where t = s/2 1is the time at which a photon, having left the
transmitter at t = 0 , is reflected by the target, and r(s/2) 1is
the target's range from the transmitter when the reflection occurred.

. Therefore, s 1is the round-trip time delay or, as Kelley and Wishner29

state, . . .the delay of a photon arriving at s 1is just s . Thus,
by comparing Equations (A23) and (A24), it can be seen that their round-

- trip time delay s 1is equivalent to our round-trip time delay T(s)/s ,
with the notable exception that our round-trip time delay [see Equation
(A20)] is explicitly shown to be a function of the Doppler shift factor.

! ‘ The round-trip time delay +t(s)/s can also be expressed in

another way. If one defines the Dopper shift ¢ (in Hz) as:

4

¢ -1 - s)fc , (A26)

then the time compression/stretch factor s is given by:

s = 1+ (¢/fc) . (A27)

Therefore, with the use of Equation (A26), the general bistatic

expression for 7T(s) as given by Equation (Al0) can be written as:

&

T(s) > 71(¢) T + [($R_)/(f ¢)] , (A28)
o OR (4




e

(R°T + ROR)/c . (A29)

Thus, from Equations (A27) and (A28), the round-trip time delay T(s)/s

can also be expressed as T($)/[1 + (¢/fc)] .

A




APPENDIX B

DERIVATION OF THE PROBABILITY DENSITY FUNCTION

OF THE RANDOM DOPPLER SHIFT ¢RND

Consider the random variable

Senp 4 fc(ﬁT - ) - fr’f/c = fc[ﬁT - ﬁRH\'I’flcosg/c ,
(4.2-48)
where it is assumed that ]gf] is Maxwell distributed, the angle §
is uniformly distributed, and that the random variables |6£| and cos§
are statistically independént. In order for |7f| = (Vi + Vi + Vi )1/2
to be Maxwell distributed, the three components Vf , Vf s an V:
x y z

must be statistically independent Gaussian random variables, each with
zero mean and variance 02 (e.g., see Papoulis32).
In order to derive the probability density function of ¢RND’

first rewrite Equation (4.2-48) as:

benp = XY , (B1)
where

x = alf,| (B2)

Y = cos§ (B3)
and

a = fclnT - nRI/c . (B4)

Note that E{¢RND} = E{X}E{Y} = 0 since E{cosf} = 0 when £ is

uniformly distributed.3o Since X and Y are statistically
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independent random variables, the probability demsity function of ¢RND

is given by:3l’32
1
p,(¢) = j —— p(x) p,(¢d/x)dx . (B5)
¢mm _mlx x. M
where32
1
Py(x) = —— p(x/a) , (B6)
lal v,
[ /MY 2 @/0%) (x/a)2exp[-(1/2) (x/[a0]) 2] 3
p, (x/a) =
Vel *20
0 ; x<0 (B7)
ang 3032
Ir@ - [9/0Y2) 5 Jesx] < 1
py(d/x) = (B8)
0 ; lo/x| > 1

Note that the probability that (¢/x) = + 1 1is zero.32 Substituting

Equations (B6) through (B8) into Equation (BS) yields:

p¢é§% = (c/[lﬁT - ﬁleco])3 (V2 / n/m]) o

[+ ]

J W/ |x]) /L - @rx21t?

-00

)x2 .

exp{-(1/2)(c/[|ﬁT - ﬁlecG])zxz}dx :

x>0, |¢/x| <1 (B9)
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or

p.(0) = (c/[|a. -Aa a3 VZ/ (nm ) -
¢RND T R' ¢

(xz/[xz - ¢2]l/2) .
o]

exp{-(l/Z)(c/[Ir’i,r - ﬁklfcol)2 x2}dx :
[¢] < x <= (B10)

which is the probability density function of the random Doppler shift

¢RND as given by Equation (4.2-48).




APPENDIX C

DERIVATION OF THE NORMAL PARTIAL DERIVATIVE

OF THE TOTAL ACOUSTIC PRESSURE FIELD ON THE OCEAN SURFACE

The total acoustic pressure field on the ocean surface at

;(ti) is defined by Equation (5.2-18), i.e.,

pIECD] & p [FeD] +pglFep] (5.2-18)
so that

= lEEP] = Zp (FePT] + = pg[FeD] , (D)
where’

2o (FEDT = & - W ()] (€2)
and

= pg[F(ED] = A& - pglFeD] . €3)

Upon substituting Equation (5.2-28) into the right~hand side of

Equation (C2) and then evaluating the gradient, one obtains:
2o D] = - @ - Bk, FEDT -

{1- j[kmiﬂtr)

A« VD.[k,2(t!)]
T 1 ] } %)

@ Bk D [k, E(E)]




since (e.g., see References 26, 46, or 52):

[ expl-flppeRp(eD] ) o | expl-dkgpeRp(eD]
Ry (€]) ) oR (t]) Rp(£]) }“T'
' | (c5)

Now if one assumes that

legppRp (el > 1 (c6)
and that
|& « Vb K,z ()]
« 1, (7
~ ~ -+ ]
| @« 8 kpppDplk,x(e))]]

then Equation (C4) simplifies to:

a *' ~ L -’|
= p[T(E)] = - (B - B)Ikgep [T(ED] . (C8)
Equation (C3) will be evaluated next. Following the Kirchhoff
approximation, the amplitude of the scattered acoustic pressure field

>
on the ocean surface at r(ti) is approximated by:

pglT(t)] = ¢ [r(ep] (©9)

REF PI

where the reflection coefficient CREF is assumed to be a constant.

The direction of ps(-) is specified by the unit vector ﬁs (see

Figure Cl). Substituting Equation (C9) into Equation (C3) yields:

R

2 D] = Cppp B+ W (F(eD)] (c10)

i Tl bttt beiitosin et il ettt it . ot o M




Figure Cl. Scatter geo.etry for locally plane

surface area element dS .




or, from Equation (C2),

) Tl - - S
an PslT(tp)] = Cppp g Plr(ep] (C11)
where
- [ _s [}
. { expl-~jk -R.(£1)] } ) 3 { exp[-jkpppRo(t1)] }ﬁ
! = 1 ! .
RT(tl) IRy (£7) R.I.(tl) S
(C12)
Note that the unit vector appearing in Equation (Cl2) is ﬁs and not
ﬁT . Therefore, by replacing ﬁT in Equation (C8) with ﬁS , Equation

(C11l) becomes:

~ ~

2 pg[F(EDT = = (A * 8g)Cpp ke ep [F(ED] . (C13)

Consistent with the Kirchhoff approximation, the infinitesimal surface
area element dS associated with the position vector ;(ti) is
assumed to be locally plane as is illustrated in Figure Cl. Since for
a plane wave incident upon a plane boundary, the angles 6. and SS

I

are equal, then from Figure Cl, it can be seen that:
R = coseI = 0 (—nS) = coseS . (C14)

With the use of Equation (Cl4), Equation (Cl3) can be rewritten as:

A

Bpg[F(ED] = + @ - A)Copdkppep (FED] , (C15)

and upon substituting Equations (C8) and (Cl15) into Equation (Cl), one

obtains the desired result:
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d > 1 ~ A A -> '
3 PlrCed] = - @ « 8)[1 - Cop likpopp (2]

(C16)

which is the normal partial derivative of the total acoustic pressure

-
field on the ocean surface at r(ti) .




APPENDIX D

FUNCTIONAL DEPENDENCE OF THE TRANSMIT AND RECEIVE
DIRECTIVITY FUNCTIONS AND VECTORS g(x,y)

AND b{(x,y) ON THE (x,y) COORDINATES

In order to obtain the functional dependence of the (ax,ay,az)
and (bx’by’bz) terms on the (x,y) coordinates, one must first
obtain expressions for ﬁT(x,y) and ﬁR(x,y) . Refer back to Figure

17 and note that:

‘ A A ~
A = wlp v+ vy s (p1)
where
! » u, 4 sinf, cosy
‘ T T T i
v 4 sin®, siny (D2)
T T T
and
A A
Wp = coseT
are the direction cosines of n, with respect to the XTYTZT
coordinate system. The spherical angles ST and wT are also 1
} measured with respect to the XTYTZT coordinate system. Now let us

assume that the YT and Y axes are parallel to one another so that
[ ?T =§ . If the XTYTZT coordinate system is then rotated by an angle

8.. 1in a clockwise direction with respect to the XYZ coordinate

T
;
i ' system, and recalling that wl = 7 , we obtain [see Figure Dl and,
|

for example, Butkovsa): ;




Figure DI.

. P b sgden

Orientation of the XTY ZT coordinate
system with respect to Ehe XYZ reference
coordinate system.

2%
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f,.(x,y) = [u,.(x,y)cosB, + w,.(x,y)sinB 1% +
T Yr T YT T

VT(x,y)§ + [wT(x,y)cosBT - uT(x,y)sinBT]E .

(p3)
where
{x + (coseltanST + sinel)RllcosBT

uT(x’y) = RT(X.y) ’

vo(x,y) = y/RT(x,y) (D4)
and

wT(x,y) = 1,//i - ué(x,y) - V%(x,y) ,
and

RT(x,y) = /x2 + y2 + 2R1xsin6l + Ri . (D5)

Although Figure D1 shows ﬁi and the Z.r axis to be colinear,
this may not be true in general. For example, if the transmit beam

pattern were to be tilted in the XTZT plane, Kl and the ZT axis

-5
would no longer be colinear. However, Rl is always chosen to be
colinear with the axis of the main lobe of the transmit beam pattern.
Whether the transmit beam pattern is tilted or untilted in the xTzT

plane, the rotation angle B, is still defined as the angle between

T

the Z and Z,, axes as shown in Figure Dl.

T
Equation (D4) can also be used to project the far-field transmit

directivity function DT(kx ,ky ) onto the XY plane. It has already

T T
been stated in Chapter IV that DT(kxT,ky ) 1is given by the two-
T
dimensional Fourier transform of the spatial distribution of normal
driving velocity, say qT(xT,yT) ; i.e.,
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Dplky, ko ) = J f Qp (g5 yplexp{+] (kx.rxr + ky yp) ldx dy,
T T R T
(D6)
when the baffle surrounding the active region R of the array is
assumed to be rigid [see Equation (4.2-7)]). The Xy and Yo

components of the wave number k are given by:

*
L}
P
[
"

ksineTcosz

and (D7)

=
[}

o
<
n

ksinSTsian ,

where Uy and v, are defined in Equation (D2) and k = (2nf)/c =

(2my/A . Replacing u, = sineTcosz and v, = sineTsian with

T
uT(x,y) and vT(x,y) as given in Equation (D4), respectively,

yields the desired transformation

DT(kx%kyT) + Dplk,x,y) . (p8)

The next plece of information required is an expression for

6R(x,y) . Instead of working with f, directly, let us work with ﬁi

R
which is defined as:

ar & 5

g fip uRﬁR + VR?R + wRﬁR . (D9)
where

u & sinf_cosy

R R R ’

g

Ve sinfpsinyy (D10)

and é

we cosBR
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Ay
are the direction cosines of np with respect to the XRYRZR

coordinate system. The spherical angles eR and wR are also

measured with respect to the XRYRZR coordinate system. From Figure D2,

it can be seen that the XY plane and Y_ axis are parallel to one

R

another with the YR axis rotated through an angle o

to the Y axis, and the 2

R with respect

axis rotated through an angle B8_ with

R R

respect to the Z axis. Therefore,
ﬁé(x,y) = [uR(x,y)costcosBR + vR(x,y)sinuR -
wR(x,y)sinBRcosaRlﬁ +
{VR(x,y)cosaR - uR(x,y)sinaRcosBR +
wR(x,y)sinaRsinBR]§ +

[uR(x,y)sinBR + wR(x,y)cosBRIE , (D11)

where
vy = [(x-Rzuz)-(y—szz)tanaR]cosaRcosBR-szzsinBR
uR 24 RR(X7Y)
(x-R,u,)sina_ + (y-R.,v,)cosa
- 272 R 2°2 R
Ve (x,¥) R (5,9 (p12)
and

wvp(%y) = * ﬁ- ui(x,y) - v;(x,y) >

2 2 2
RR(x,y) - //; +y° - 2R2(u2x + vzy) +R, (D13)




Actual physical separation between the XRYRZR and XYZ
coordinate system. :

(b)
YRZ coordinate system superimposed upon the XYZ
coord%nate system.

Figure D2. Orientation of the XRYRZR coordinate system with
respect to the XYZ reference coordinate system,




a

t

P

w

(o]

u, = sinezcoslb2 ,

v, = sin6251nw2 (D14)
nd

w, = cose2 .

Although Figure D2 shows ﬁé and the ZR axis to be colinear,
his may not be true in general. For example, if the receive beam
attern were to be tilted in the XRZR plane, ﬁé and the ZR axis
ould no longer be colinear. However, i is always chosen to be

2

olinear with the axis of the main lobe of the receive beam pattern.

Whether the receive beam pattern is tilted or untilted in the XRZR

P

lane, the rotation angle BR is still defined as the angle between

the Z and ZR axes as shown in Figure D2.

With the use of Equation (D12), the receive directivity

function DR(ka,ky ) can also be projected onto the XY plane as

R

was done for DT(k ,ky } . That is, we know that

T

ka = kuR = ksineRcosz

and (D15)

W

u

g

t

kyR = kvR = ksineRsian ’

here up and vp are defined in Equation (D10). Replacing

= sinBRcosz and v_ = sineRsian with uR(x,y) and vR(x,y) as

R R
iven in Equation (D12), respectively, yields the desired transforma-

ion:

DR(ka,kyR) + Dplk,x,y) . (D16)

e e M T ke e




We are now in a position to calculate the functional dependence

. of the (ax,ay,az) and (bx’by’bz) terms on the (x,y) coordinates.

From Equations (5.2-75), (D3), (D9), and (D1l), we obtain:

ax(x,y) = uT(x,y)cosBT + uR(x,y)cosa cosBR +

R

VR(x,y)sina + wT(x,y)sinBT -

R
1
wR(x,y)sinBRcosaR ,
{ . aY(x,y) = ~ uR(x,y)sinuRcosBR + vT(x,y) +
vR(x,y)cosaR + wR(x,y)sinaRsinBR
and (D17)
) az(x,y) = - uT(x,y)sinBT + uR(x,y)sinBR +

1 . wT(x,y)cosBT + wR(x.Y)COsBR ,

and from Equations (5.2-76), (D3), (D9), and (D1ll), we obtain:

: bx(x,y) = uT(x,y)cosBT + wT(x,y)sinBT -
uR(x,y)cosaRcosBR - vR(x,y)sinaR +
wR(x,y)sinBRcosaR s
by(x,y) = vT(x,y) - vR(x,y)cosaR + uR(x,y)sinaRcosBR -
- wR(x,y)sinaRsinBR
and (D18)
bz(x,y) = wT(x,y)cosBT - uT(x,y)sinBT -

' uR(x,y)sinBR - wR(x,y)cosBR .




APPENDIX E

THE RELATIONSHIP BETIWEEN RE(Ax,Ay,At') s RE(Ax,Ay,AC)

AND THE DIRECTIONAL WAVE NUMBER SPECTRUM OF THE OCEAN SURFACE

Let us examine the retar” " time

Do . EZ { L smezcosw2
1.7 7 R,

x +
sin@zsinw2 cose2
y + E(x,y,t]) +
R2 R2 1

a - sin26 coszw )
2 2 2
X <+

2R

NN

2 2
(1 - sin“8.,sin“yP,)
2 2 yz } s (E1)

NN

2R

where Equation (El) was obtained by substituting Equation (5.2-66) into

Equation (5.2-19). Note that ti , as given by Equation (El), is a

random variable since E(x,y,ti) is random. Since

cosf
2 o

% |

<« 1 (E2)

and assuming that

<1, (E3)

J”b‘

Equation (El) can be approximated by:
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o - t. ) EZ L - sinezcosw2 - sinezsinwz
1 1 "¢ R R y

2 2
which is now a deterministic quantity.
Referring back to Equation (5.3-18), it can be seen that ti is

associated with the spatial coordinates (x + Ax) and (y +Ay) and

that t! 1s associated with x and y . Therefore, using the form

2
of Equation (E4), ti and té can be written as:
R sinf, cosy
- -2 | —22
tl :1 = { 1 [ R (x + Ax) +
2
sinezsinw2
_— (Y"’AY)]} (ES)
Ry
and
e e - EE L. sinezcoslp2 . sinezsimb2 y
2 2 c R R2 ¢

2

(E6)

By subtracting Equation (E6) from Equation (E5), one obtains:
1
' - 2
At At + m [sinezcosszx + sinezsinszy] , (E7)

where At = t; -t . Thus, from Equation (E7), it can be seen that

At' is a function of Ax, Ay, and At . Using the two-dimensional

Fourier transform relat::[onshi.pl‘8




=]

E(Ax’AY,At') = [%] J J'w(qu) *

-00

R

exp[-jpdx ~ jqdy + jw(p,q)At')dpdq
(E8)

and substituting Equation (E7) into Equation (E8), one obtains:

Rg(Ax,Ay,At') = Rg(Ax,Ay,At) , (E9)

where

R, (&x,Ay,At) = [%]j Iw(p,q)eXPij(p,q)At] .

g
sinezcosxp2
exp{-j [p-m(p,q)————c ]Ax}.

[

sinezsinwz
exp{-j [q-w(p,q)—————]Ay}-

The expression W(p,q) 1s the directional wave number spectrum of the
ocean surface, where W(p,q)dpdq is the amount of the component of
the ;ough surface having the gpatial wave number between p and

p +dp in the x direction and between q and gq + dq in the vy
direction. The corresponding angular frequency (in rad/sec) is given

by:

1/2
wip,q) = * [ s;(p2 + q2)1/2 ] , (E11)




~
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where g 1is the acceleration due to gravity.48 The spectral density
W(p,q) 1is a real positive function of p and q and since £(x,y,t)
is real, W(p,q) 1is an even function of p and q , i.e.,

W(-p,-q) = W(p,q) . Equation (Ell) is applicable to deep-water ocean
surface waves and it is an odd function of p and q , i.e.,

w(-p,~-q) = -w(p,q) . The choice of sign in Equation (Ell) depends upon
the motion of the surface.48 For example, consider the backscatter case
where both the transmit and receive array are located at wl = wz =7,
g, = 62 ,and R, =R

1 1 2
is in the positive x direction, choose the negative sign in Equation

(see Figure 20). If the surface wave motion
(E11) since

expl+jw(p,q)At] = exp{-j[g<p2+q2>1’211’2m} (E12)

will then correspond to a downward shift in frequency from the carrier,
i.e., a negative Doppler shift. This makes physical sense because the
surface waves are mo&ing away from the receive array. Similarly, if
the surface wave motion is in the negative x direction, choose the

positive sign in Equation (E1ll) since
2 2
exp[+jw(p,q)At] = exp {+j[g(p +q )1/211/2At} (E13)

will then correspond to a upward shift in frequency from the carrier,
i.e., a positive Doppler shift. This also makes physical sense because

the surface waves are moving toward the receive array.
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