Bibliography of Soviet Laser Development

May—June 1980
BIBLIOGRAPHY OF SOVIET LASER DEVELOPMENTS

No. 47

MAY - JUNE 1980

Date of Report
April 9, 1981

Vice Director for Foreign Intelligence
Defense Intelligence Agency

This document was prepared for the Defense Intelligence Agency under an intragovernment agreement. It is intended to facilitate access of government researchers to Soviet laser literature.

Comments should be addressed to the Defense Intelligence Agency, Directorate for Scientific and Technical Intelligence, ATTN: DT-1A

Approved for public release; distribution unlimited
This is the Soviet Laser Bibliography for May-June 1980, and is No. 47 in a continuing series on Soviet laser developments. The coverage includes basic research on solid state, liquid, gas, and chemical lasers; components; nonlinear optics; spectroscopy of laser materials; ultrashort pulse generation; crystal growing; theoretical aspects of advanced lasers; and general laser theory. Laser applications are listed under biological effects; communications; beam propagation; computer technology; holography; laser-induced chemical reactions; measurement of laser parameters; laser measurement applications; laser-excited optical effects; laser spectroscopy; beam-target interaction; and plasma generation and diagnostics.
Introduction

This bibliography has been compiled under an interagency agreement as a continuing effort to document current Soviet-bloc developments in the quantum electronics field. The period covered is May-June 1980, and includes all significant laser-related articles received by us in that interval. The bulk of the entries come from the approximately 30 periodicals which are known to publish the most significant findings in Soviet laser technology. Citations from the Russian Reference Journals are also included. Laser items from the popular or semipopular press are generally omitted.

For convenience we have abbreviated frequently cited source names; a source abbreviations list and an author index are included. All sources cited with no parenthetical notation are available at the Library of Congress. A parenthetical entry (RZh, KL) indicates the secondary source in which the citation was found as a bibliographic entry or abstract, but for which the original source is not currently available at the Library. The authors' affiliations are indicated by the numbers in parentheses following the authors' names in the text and are listed in the Author Affiliations List. New affiliations are assigned a new number and are added to a cumulative list which includes all affiliations from 1969 to the present. Only those affiliations which appear in this issue are listed in this issue's Author Affiliations List.
I. BASIC RESEARCH

A. Solid State Lasers

1. Crystal: Ruby .. 1

2. Crystal: Rare-Earth Activated
 a. Nd$^{3+}$.. 1
 b. Dy$^{3+}$.. 1

3. Crystal: Miscellaneous 2

4. Semiconductor: Simple Junction
 a. GaAs .. 3
 b. InP ... 3
 c. PbS ... 3
 d. PbSe ... 3
 e. ZnTe ... 4

5. Semiconductor: Mixed Junction ---

6. Semiconductor: Heterojunction 4

7. Semiconductor: Theory 5

8. Glass: Nd .. 7

9. Glass: Miscellaneous 7

B. Liquid Lasers

1. Organic Dyes
 a. Rhodamine 8
 b. Polymethylene 8
 c. Miscellaneous Dyes 9

2. Inorganic Liquids 10

C. Gas Lasers

1. Simple Mixtures
 a. He-Ne ... 11
2. Molecular Beam and Ion
 a. CO₂ .. 12
 b. CO .. 14
 c. Noble Gas 15
 d. N₂ .. 15
 e. Submillimeter 16
 f. Metal Vapor 16
 g. Gasdynamic 17

3. Excimer .. 18

4. Theory .. 19

D. Chemical Lasers
 1. F₂+H₂(D₂) 19
 2. Photodissociative 20
 3. Transfer ---
 4. CS₂+O₂ 20
 5. Miscellaneous 20

E. Components
 1. Resonators
 a. Design and Performance 21
 b. Mode Kinetics 22
 2. Pump Sources 23
 3. Deflectors 23
 4. Diffraction Gratings 24
 5. Filters .. 24
 6. Mirrors 24
 7. Detectors 25
 8. Modulators 25

F. Nonlinear Optics
 1. Frequency Conversion 27
 2. Parametric Processes 29
3. Stimulated Scattering
 a. Raman .. 29
 b. Brillouin 30
4. Self-focusing 31
5. Acoustic Interaction 31
6. General Theory 32
G. Spectroscopy of Laser Materials 38
H. Ultrashort Pulse Generation 38
J. Crystal Growing 39
K. Theoretical Aspects of Advanced Lasers 39
L. General Laser Theory 41

II. LASER APPLICATIONS
A. Biological Effects 43
B. Communications Systems 43
C. Beam Propagation
 1. In the Atmosphere 46
 2. In Liquids 49
 3. Theory .. 49
D. Computer Technology 51
E. Holography 53
F. Laser-Induced Chemical Reactions 57
G. Measurement of Laser Parameters 60
H. Laser Measurement Applications 66
 1. Direct Measurement by Laser 66
 2. Laser-Excited Optical Effects 77
 3. Laser Spectroscopy 81
J. Beam-Target Interaction

1. Metal Targets .. 86
2. Dielectric Targets 87
3. Semiconductor Targets 88
4. Miscellaneous Studies 88

K. Plasma Generation and Diagnostics 89

III. MONOGRAPHS, BOOKS, CONFERENCE PROCEEDINGS 96

IV. SOURCE ABBREVIATIONS 100

V. AUTHOR AFFILIATIONS 105

VI. AUTHOR INDEX ... 109
I. BASIC RESEARCH

A. SOLID STATE LASERS

1. Crystal: Ruby

2. Konevskiy, V.S., Ye.V. Krivonosov, and L.A. Litvinov (188). Variation in the inhomogeneity of the refractive index of ruby single crystals after annealing at a pre-melting temperature. Tr 1, 21-23. (RZhRadiot, 6/80, 6Ye218)

2. Crystal: Rare-Earth Activated

a. Nd$^{3+}$

b. Dy$^{3+}$

3. Crystal: Miscellaneous

4. Semiconductor: Simple Junction

a. **GaAs**

b. **InP**

13. Ismailov, I.I., and I.M. Tsidulko (0). *Temperature dependence of the electroluminescence band shape and threshold current of InP and InPAs homolasers*. DAN Tadzh, no. 12, 1979, 739-742. (RZhF, 6/80, 6D1052)

c. **PbS**

d. **PbSe**

16. Lukashevich, P.G., V.P. Gribkovskiy, and V.A. Ivanov (0).

5. Semiconductor: Mixed Junction

6. Semiconductor: Heterojunction

7. Semiconductor: Theory

 Part 2. Recombination in the region of a p-n junction and the injection laser. Roz elektr, no. 4, 1979, 923-943. (RZhF, 5/80, 5Ye1354)

8. Glass: Nd

9. Glass: Miscellaneous

B. LIQUID LASERS

1. Organic Dyes

a. Rhodamine

b. Polymethine

49. Kravchenko, V.I., Yu.D. Opanasyuk, and A.A. Smirnov (5). *Organic dye sweep lasers with coherent pulsed pumping.* Sb 1, 3-17.

2. Inorganic Liquids

C. GAS LASERS

1. Simple Mixtures

a. He-Ne

2. Molecular Beam and Ion

a. CO₂

71. Mirinoyatov, M.M., Sh.T. Rikhsiyeva, and A.A. Sipaylo (0). Noise in the radiation of a CO_2 laser with high-frequency pumping. DAN Uz, no. 11, 1979, 37-38. (RZhF, 5/80, 5D1066)

73. Schindler, K., G. Staupendahl, and T. Medoidse (East Germans). Efficient method of quenching parasitic lasing in high-power CO_2 laser amplifier systems. KE, no. 6, 1980, 1328-1330)

75. Soloukhin, R.I., and N.A. Fomin (0). Resonant absorption of 9.6 \(\mu \) radiation at high temperatures by \(\text{CO}_2 \) gas. ZhPMTF, no. 3, 1980, 3-9.

79. Zakhar'yash, V.F., V.M. Klement'yev, Yu.A. Matyugin, M.V. Nikitin, B.A. Timchenko, and V.P. Chebotayev (159). Frequency-phase coupling of a \(\text{CH}_3\text{OH} \) laser at 70.5 \(\mu \) to a \(\text{C}^{12}\text{O}_2 \) laser. KE, no. 6, 1980, 1365-1366.

b. CO

c. Noble Gas

82. Donin, V.I., (0). Broadening ionic lines observed along the axis of a high-current discharge of an argon laser. OiS, v. 48, no. 6, 1980, 1065-1071.

83. Lis, L. (NS). Investigations of populations for $^{1}S_{1/2}$ and $^{3}P_{3/2}$ states of neon levels interacting with laser radiation at 633 and 3391 nm. APP, v. A56, no. 5, 1979, 655-659. (RZhF, 5/80, 6D1041)

d. N_2

e. Submillimeter

f. Metal Vapor

92. Stroganov, V.V. (0). Frequency pulling at a double resonance in a thallium atomic beam tube. IVUZ Radiofiz, no. 3, 1979, 314-331. (RZhRadiot, 5/80, 5Ye62)

3. Excimer

4. Theory

D. CHEMICAL LASERS

1. \(\text{F}_2^+\text{H}_2(D_2) \)

110. Bashkin, A.S., A.N. Orayevskiy, V.N. Tomashov, and N.N. Yuryushev (1). Energy parameters of \(\text{H}_2\text{-F}_2, \text{D}_2\text{-F}_2 \) and \(\text{D}_2\text{-F}_2\text{-CO}_2 \) lasers with e-beam pumping. KE, no. 6, 1980, 1357-1359.
2. Photodissociative

Spectral dependences of the absolute quantum yields for the formation
of \(\text{I}(^2P_{1/2}) \) and \(\text{I}(^2P_{3/2}) \) atoms during photolysis of organic iodides.
Part 2. CF\(_3\)I, C\(_2\)F\(_5\)I, C\(_3\)F\(_7\)I, CF\(_3\)CF\(_2\)CF\(_3\), CF\(_3\)OCF\(_2\)CF\(_2\)I. KE, no. 5,
1980, 993-1005.

Iodine laser with an optically thick medium and a pump lamp.

3. Transfer

4. \(\text{CS}_2\text{O}_2 \)

113. Bystrova, T.V. (0). Vibrational relaxation in a superexcited
diatomic molecular system. FGIV, no. 3, 1980, 78-81.

114. Dudkin, V.A. (0). Spectroscopic determination of relative
concentrations of vibrationally excited CO molecules in a
carbon disulfide flame. FGIV, no. 3, 1980, 73-78.

5. Miscellaneous

amplification in recombination reactions occurring in an adiabatic
explosion in an exothermal mixture. Sh 1, 45-60.

E. COMPONENTS

1. Resonators

a. Design and Performance

b. Mode Kinetics

2. Pump Sources

130. Onik, K.Ch., and M.G. Shterev (NS). Device for optical pumping of a laser by solar energy. Author's certificate Bulgaria, no. 19762, 30 May 1978. (RZhRadiot, 5/80, 5Ye288)

131. Valyavko, V.V., B.V. Krylov, and A.A. Mozgo (0). Steady regulation of the pumping energy in pulsed lasers with an auxiliary storage tank. IAN B, no. 1, 1980, 112-116. (RZhF, 6/80, 6D1145)

3. Deflectors

4. Diffraction Gratings

5. Filters

6. Mirrors

7. Detectors

143. Biryulin, P.V. (0). Operating regimes of electrooptic modulators in a study of photodetector frequency characteristics. PTE, no. 3, 1980, 196-197.

8. Modulators

F. NONLINEAR OPTICS

1. Frequency Conversion

161. Liberts, G.V. (0). **Study on second harmonic generation near a phase transition in oxy-octahedron ferroelectrics.** Sb 6, 36-74. (RZhF, 6/80, 6Ye1658)

162. Masalov, A.V., and S.S. Todirashku (1). **Role of the width and shape of the spectrum during nonlinear conversion of multifrequency laser radiation.** Fizicheskiy institut AN SSSR. Preprint, no. 177, 1979, 34 p. (RZhF, 6/80, 6D920)

166. Stroganov, V.I., A.I. Illarionov, and V.I. Samarin (75). **Conversion of incoherent radiation in a thermal imager with a nonlinear crystal.** Sb 7, 134-140. (RZhF, 5/80, 5D1327)
2. Parametric Processes

3. Stimulated Scattering

a. Raman

b. Brillouin

4. Self-focusing

5. Acoustic Interaction

187. Ostashev, V.Ye. (0). *Change in the phase geometry of an optical beam during its diffraction by ultrasound.* IVUZ Radiofiz, no. 11, 1979, 1356-1364. (RZhRadiot, 5/80, 5Ye22)

6. General Theory

190. Abramovich, B.S., and A.I. Saichev (0). *Statistical description of waves in a nonlinear medium with one-dimensional random inhomogeneities.* IVUZ Radiofiz, no. 11, 1979, 1334-1324. (RZhRadiot, 5/80, 5Ye20)

Independent nonlinear effects in an isotropic medium for randomly polarized opposed waves. KE, no. 6, 1980, 1331-1334.

Nonlinear optics of liquid crystals. UFN, v. 131, no. 1, 1980, 3-44.

197. Bakay, A.S., K.A. Lukin, and V.P. Shestopalov (0). Nonlinear nonstationary theory of diffraction radiation oscillators. IVUZ Radiofiz, no. 9, 1979, 1117-1123. (RZhRadiot, 5/80, 5Ye21)

202. Ginzburg, N.S. (0). Nonlinear theory on amplification and generation of electromagnetic waves by an anomalous Doppler effect. IVUZ Radiofiz, no. 4, 1979, 470-479. (RZhRadiot, 5/80, 5Ye19)

204. Hegedus, E. (NS). An attempt to relate various kinds of coherent states. Sb 9, 45-51. (RZhF, 5/80, 5D900)

206. Kaniyazov, Sh., U. Nasyrov, and I.V. Fekeshgazi (0). Two-photon absorption spectrum of ShSI. Tr 9, 8-11. (RZhF, 5/80, 5D940)

211. Kuz'min, V.S. (0). *Superradiant echo signals in systems with a permanent dipole moment.* DAN B, no. 2, 1980, 125-128. (RZhF, 6/80, 6D912)

223. Tetyukhin, V.V. (0). Reflection of elliptically polarized waves from an interface with a nonlinear medium. Sb 11, 122-127. (RZhF, 5/80, 5D926)

228. Zel'dovich, B.Ya., and V.V. Shkunov (0). Spatial-polarization reversal of a wavefront during a four-photon interaction. Sb 4, 23-43. (RZhF, 5/80, 5D897)

G. SPECTROSCOPY OF LASER MATERIALS

H. ULTRASHORT PULSE GENERATION

J. CRYSTAL GROWING

K. THEORETICAL ASPECTS OF ADVANCED LASERS

244. Grigor'yev, S.V. (19). *Coherent channel for undulator radiation.* Tr 6, 42-47.

256. Malkin, V.M. (0). Establishing the stationary spectrum of turbulence during three-wave decay of an interaction. IVUZ Radiofiz, no. 10, 1979, 1218-1222. (RZhRadiot, 6/80, 6Ye20)

261. Zavorotnyy, V.U. (0). Four-point function of field coherence behind a phase screen in a region of severe fluctuations of the wave intensity. IVUZ Radiofiz, no. 4, 1979, 462-469. (RZhRadiot, 5/80, 5Ye18)
II. LASER APPLICATIONS

A. BIOLOGICAL EFFECTS

B. COMMUNICATIONS SYSTEMS

C. BEAM PROPAGATION

1. In the Atmosphere

Using lasers to analyze the degree of air pollution. Sb 1, 86-107.

287. Levin, B.V., B.M. Lysenko, and V.Ye. Rokotyan (0). Lidar methods
for studying long waves on a sea surface. Sb 14, 154-158.
(RZhGeofiz, 6/80, 6V34)

288. Lukin, I.P. (78). Distribution of intensity averages in the focal
plane of a lens. Sb 7, 121-124. (RZhF, 5/80, 5D884)

Deposit at VINITI, no. 772-80, 3 Mar 1980, 24 p. (RZhF, 6/80, 6D881)

290. Lukin, V.P., V.M. Sazanovich, and S.M. Slobodyan (78). Random
image shifting during ranging in a turbulent atmosphere. IVUZ
Radiofiz, no. 6, 1980, 721-729.

291. Lukin, V.P. (78). Correcting for random angular misalignments of
optical beams. KE, no. 6, 1980, 1270-1279.

292. Marichev, V.N., N.V. Nedel'kin, and A.V. Sosnin (78). Study on
using a ruby laser for remote determination of atmospheric

293. Milyutin, Ye.R. (0). Effect of large-scale inhomogeneities in the
troposphere on the displacement of a laser "spot" in the focal
plane of a receiving aperture. Tr 12, 16-20. (RZhRadiot, 5/80,
5Ye298)

2. In Liquids

301. Prikhach, A.S., and V.P. Dik (0). Fluctuations of illumination at a considerable depth under a rough sea surface. IAN B, no. 1, 1980, 76-79. (RZhF, 6/80, 6D900)

302. Rentsch, S. (NS). Photoacoustic measuring method for determining slight linear and nonlinear absorptions in liquids. ETP, no. 6, 1979, 571-577. (RZhF, 6/80, 6D496)

3. Theory

306. Katsev, I.L (0). Radiation flux over an area of finite size in a scattering medium illuminated by a unidirectional point source. IAN B, no. 1, 1980, 66-70. (RZhF, 6/80, 6D899)

308. Molodtsov, S.N. (0). Calculating the covariant function of the intensity of an optical wave in a medium with large-scale random inhomogeneities. The cumulative approach. IVUZ Radiofiz, no. 6, 1979, 733-739. (RZhRadiot, 5/80, 5Ye301)

311. Saichev, A.I. (0). Calculating some corrections to a parabolic approximation of the quasioptics for the statistical description of waves propagating in randomly inhomogeneous media. IVUZ Radiofiz, no. 11, 1979, 1405-1408. (RZhRadiot, 5/80, 5Ye296)

D. COMPUTER TECHNOLOGY

Sb 15, 33-39.

Sb 2, 243. (RZhRadiot, 5/80, 5Ye511)

IVUZ Priboro, no. 5, 1980, 74-78.

IVUZ Priboro, no. 5, 1980, 47-52.

E. HOLOGRAPHY

332. Denisyuk, Yu.N. (7). Some properties of the aspectogram as applied to the synthesis of composite holograms. Tr 11, 70-80. (RZhF, 6/80, 6D1201)

335. Kakichashvili, Sh.D. (0). Reproducing the degree of polarization of a wavefront field by a polarization-holographic method. AN GruzSSR. Soobshcheniye, v. 96, no. 1, 1979, 73-76. (RZhF, 6/80, 6D1204)

340. Lekhtsiyer, Ye.N., B.M. Stepanov, and Ye.B. Shelemin (0).

Holography in the far infrared region of the spectrum. Sb 2, 238.
(RZhRadiot, 5/80, 5Ye507)

342. Mayyer, B.O., and D.I. Stasel'ko (0). Using a holographic element to study the holographic characteristics of photomaterials.

344. Shelishch, P.B. (0). Stages in the development of holography.

Sb 16, 118-121. (RZhF, 5/80, 5A10)

(RZhF, 6/80, 6D1211)

Method of reconstructing transmission holograms. Otkr izobr,
no. 18, 1980, 734603.

and E.A. Gruz (96). Study on the phase characteristics of type PL-3

351. Vinetskiy, V.L., N.V. Kukhtarev, Ye.N. Sal'kova, and L.G.
Sukhooverkhova (5). Dynamic conversion mechanisms for coherent
light beams in CdS. KE, no. 6, 1980, 1191-1198.

Methods for analyzing a deflector for controlling the rotation of a
wavefront in the exposure time of a hologram. Tr 14, 77-83.
(RZhRadiot, 5/80, 5Ye515)

353. Vodzinskiy, A.I., and Yu.V. Tovmach (118). Determining the
conditions for using a small-angle method to study two-phase media
in holography. Tr 14, 84-86. (RZhRadiot, 5/80, 5Ye517)

354. Yegiazaryan, A.M., and P.A. Bezirganyan (37). Possibility of

355. Zamanova, R.T., and Sh.S. Mamedov (60). Study on the optical
properties of GeSe₂. IAN Az, no. 1, 1980, 93-96.
F. LASER-INDUCED CHEMICAL REACTIONS

58

G. MEASUREMENT OF LASER PARAMETERS

383. Biryulin, V.P., and V.S. Galkin (0). Electronic accuracy control of c-w IR laser absorptiometry. Sb 2, 276-277. (RZhRadiot, 6/80, 6Ye251)

385. Bobrik, V.I., and Yu.F. Tomashevskiy (0). Method for tuning the lasing line of a tunable laser at a determined point of the spectrum. Sb 2, 293. (RZhRadiot, 5/80, 5Ye139)

392. Grimblatov, V.M. (0). Spatial modulation in measurements of the characteristics of a laser beam. Sb 2, 264. (RZhRadiot, 6/80, 6Ye233)

393. Grimblatov, V.M., and V.V. Kulagin (0). Highly sensitive fast-response instrument for measuring the spatial characteristics of a laser beam. Sb 2, 275. (RZhRadiot, 5/80, 5Ye312)

408. Marykivskiy, O.Ye. (0). *Reducing the errors in measuring the stability of laser output power.* Sb 2, 342. (RZhRadiot, 6/80, 6Ye241)

415. Yefimov, V.F., N.G. Kokodiy, and V.N. Timoshenko (0). Laser radiation indicator in the infrared. Sb 2, 44. (RZhRadiot, 6/80, 6Ye243)

H. LASER MEASUREMENT APPLICATIONS

1. Direct Measurement by Laser

435. Gan, M.A., and V.S. Obraztsov (7). Comparative analysis of two coherent optical methods for obtaining the optical transfer function during the manufacture of filters for image quality enhancement. Tr 11, 89-100. (RZhF, 6/80, 6D1228)

454. **Lensometry by synthetic holograms.** Bild und Ton, no. 1, 1980, 11-14,32. (RZhRadiot, 6/80, 6Ye384)

459. Naydenov, A.S. (0). *Instrumental function of a Fabry-Perot interferometer during illumination by a Gaussian light beam.* Sb 2, 282. (RZhRadiot, 6/80, 6Ye293)

460. Nikolayenko, A.N. (0). *Spectroscopic characteristics of the methane resonance in an He-Ne/CH₄ ring laser.* Sb 2, 300. (RZhRadiot, 5/80, 5Ye55)

464. Pomeranskiy, A.A. (0). *Distortions of an interference pattern of a Fabry-Perot interferometer with an optical wedge between the mirrors.* Sb 2, 281. (RZhRadiot, 6/80, 6Ye294)

72
He-Ne minilaser for optical information processing systems.
Tr 8, 110-111. (RZhF, 5/80, 5D1366)

(RZhF, 5/80, 5D1002)

Dissertation, 1979, 19 p. (KLDV, 5/80, 7197)

Tr 11, 100-105. (RZhF, 6/80, 6D1227)

472. Sergeyev, P.A. (7). Determining the conditions for recording of hologram filters. Tr 11, 105-110. (RZhF, 6/80, 6D1230)

481. Tomashevskiy, Yu.F., and A.A. Pomeranskiy (0). **Optical formation of an interference pattern while recording the spectrum of coherent radiation in a Fabry-Perot interferometer.** Sb 2, 280. (RZhRadiot, 5/80, 5Ye420)

483. Vdovin, V.G., and A.A. Pustoshkin (0). **Errors in a holographic method for determining the density and temperature of particles in open arcs.** Sb 2, 235. (RZhRadiot, 5/80, 5Ye520)

486. Vlasov, L.V., A.A. Liberman, and L.N. Samoylov (0). **Measuring the radiation coefficients of high-temperature materials.** Sb 24, 50-56. (RZhF, 6/80, 6D815)

496. Zolotarev, V.M. (0). *Nature of losses in the surface layer of optical materials for the 1.06 - 10.6 μ IR range.* ZhPS, v. 32, no. 6, 1980, 1096-1103.

2. Laser-Excited Optical Effects

3. Laser Spectroscopy

Effect of alkali metal cations on the spectrum and kinetics of
luminescence in HCl-Bi3+ solutions. UFZh, no. 5, 1980, 739-744.

531. Bez'yazychnyy, N.A., V.F. Kamalov, N.I. Koroteyev, L.B. Meysner,
and N.G. Khadzhiyskiy (2). Determining the properties of the
Raman scattering tensor of rare-earth ion electron levels using
nonlinear polarization spectroscopy. ZhTF, no. 6, 1980, 1316-1319.

533. Brivina, L.P., N.S. Strokach, D.N. Shigorin, and M.V. Gorelik (0).
Study on the electron and vibrational absorption spectra of
(RZhF, 6/80, 6D337)

534. Bulatov, Ye.D., D.N. Kozlov, Ye.A. Otlivanchik, P.P. Pashinin, A.M.
Prokhorov, I.N. Sisakyan, and V.V. Smirnov (1). Automated high-
resolution CARS spectrometer and coherent Raman spectroscopy of
tetrahedral molecules. KE, no. 6, 1980, 1294-1299.

535. D'ordyay, V.S., I.V. Galagovets, Ye.Yu. Peresh, Yu.V. Voroshilov,
V.S. Gerasimenko, and V.Yu. Slivka (0). Vibrational spectra of
MPS\textsubscript{4(M-In,Ga,Sb,Bi)}. Zhurnal neorganicheskoy khimii, no. 11,
1980, 2886-2891.

(136). Raman spectra of TlPbI\textsubscript{3} single crystals. FTT, no. 6, 1980,
1609-1612.
537. Finkel'shteyn, V.Yu. (1). **Two-level system in a resonant multi-frequency field.** ZhETF, v. 78, no. 6, 1980, 2138-2156.

538. Ignat'yev, B.V., V.F. Kalabukhova, V.V. Osiko, and A.A. Sobol' (1). **Raman spectrum of \((1-x)\text{ZrO}_2-x\text{HfO}_2\) solid solutions as a function of concentration.** FTT, no. 5, 1980, 1524-1526.

540. Klimov, V.D., V.A. Kuz'menko, V.A. Legasov, and T.A. Udalova (0). **Sensitized luminescence in \(\text{VF}_5\) irradiated by a pulsed \(\text{CO}_2\) laser.** ZhPS, v. 32, no. 6, 1980, 1009-1013.

541. Korablyeva, S.L., A.K. Kupchikov, M.A. Petrova, and A.I. Ryskin (0). **Phonon and electron Raman scattering of light in \(\text{LiTmF}_4\) and \(\text{LiYbF}_4\) crystals.** FTT, no. 6, 1980, 1907-1909.

545. Kozulin, A.T., and V.I. Karmanov (0). Frequency pulling of crystal lattice vibrations for solving the reverse spectral problem of XY₃ type pyramidal molecules. TiEKh, no. 1, 1980, 97-102. (RZhF, 6/80, 6D484)

J. BEAM-TARGET INTERACTION

1. Metal Targets

2. Dielectric Targets

569. Levin, A.B., and M.F. Dubovik (188). Damage to lithium niobate crystals under the action of intense laser radiation. Tr 1, 75-78. (RZhF, 5/80, 5Yei135)

571. Mikla, V.I., M.V. Potoriy, D.G. Semak, and A.A. Kikineshi (0).
Study on the photosensitivity of glasses of the Cu-P-Se system.
Deposit at VINITI, no. 536-80, 12 Feb 1980, 8 p. (RZhF, 5/80, 5Ye1862)

3. Semiconductor Targets

dispersion during interaction of powerful e-m waves with two-band

structure characteristics of the laser interaction zone in silicon
single crystals. FTT, no. 6, 1980, 1802-1807.

4. Miscellaneous Studies

574. Abrosimov, V.M., and V.V. Shein (118). Heating a metal film-
semiconductor system with the radiation from a laser operating in
various regimes. TVT, no. 3, 1980, 577-580.

575. Aleskovskaya, A.A., A.A. Gorbachev, R.R. Larina, and L.I. Mirkin (0).
Some optical and spectral characteristics of transparent materials
after the action of gamma radiation and laser radiation. Sb 25,
82-88. (RZhF, 6/80, 6Ye2168)

577. Kachurin, G.A., Ye.V. Nidayev, R.N. Lovyagin, and A.I. Popov (0).
Laser annealing of silicon implanted in small doses. Sb 26,
172-181. (RZhF, 6/80, 6Ye976)

K. PLASMA GENERATION AND DIAGNOSTICS

584. Arsenin, V.Ya., A.L. Galkin, and V.V. Korobkin (1). Possibility of determining the spatial distribution of ionic temperature in a plasma. KE, no. 6, 1980, 1219-1226.

Photon emission during the interaction between multicharged Ti ions
in a laser plasma and a CuBe surface. O1S, v. 48, no. 5, 1980,
1011-1013.

591. Belik, V.P., S.V. Bobashev, M.P. Kalashnikov, Yu.A. Mikhaylov,
A.V. Rode, G.V. Sklizkov, S.I. Fedotov, and L.A. Shmayenok (1).
Photionization method for absolute measurements of x-ray fluxes
in a laser plasma. Fizicheskiy institut AN SSSR. Preprint, no. 202,
1979, 12 p. (RZhF, 5/80, 5G209)

593. Bonch-Bruyevich, A.M., O.I. Kalabushkin, L.N. Kaporskiy, and V.S.
Salyadinov (0). Anisotropy of radiation scattering in a laser

model for converting the energy in a plasma from a thermonuclear

Spatial distribution of ion emission from a laser-initiated

596. Charakhch'yan, A.A. (0). Calculating the laser compression of a
spherical target, allowing for self-radiation in the plasma.
Sb 28, 58-75. (RZhMekh, 6/80, 6B334)

III. MONOGRAPHS, BOOKS, CONFERENCE PROCEEDINGS

Vzaimodeystviye lazernogo izlucheniya s poluprovodnikami tipa A\textsubscript{III%BVI} (Interaction of laser radiation with type A\textsubscript{III%BVI} semiconductors).
Institut fiziki AN AzSSR. Baku, Elm, 1979, 139 p.

620. Ablekov, V.K., Yu.N. Denisov, and V.V. Proshkin (0).
Khimicheskiye lazery (Chemical lasers). Edited by V.S. Avduyevskiy (0).

621. Fizika plazmy. 1-ya Sovetsko-Frantsuzskiy seminar, Moskva, 20-22
noyabr' 1978 (Plasma physics. 1st Soviet-French seminar, Moscow,
20-22 November 1978). Institut vysokikh temperatur AN SSSR. Moskva,
1979, 222 p. (RZhF, 6/80, 6G503)

622. Fotometriya i yeye metrologicheskoye obespecheniye. 3-ya Vsesoyuznaya
nauchno-tekhnicheskaya konferentsiya. Tezisy dokladov (Photometry
and its metrological accuracy control. 3rd All-Union scientific and
technical conference. Summaries of the reports). VNII optiko-
fizicheskikh izmeriy. Moskva, 1979, 413 p. (RZhRadiot, 5/80,
5Ye339)

623. Golograficheskiye metody obrabotki informatsii (Holographic methods
for information processing). Moskovskiy institut radiotekhniki,
elektroniki i avtomatiki. Mezhvuznyy sbornik nauchnykh trudov.
(KL, 24/80, 22182)
624. Golografiya i stereokino (Holography and stereo-cinematography),
VNI kinofotoinstitut. Trudy, no. 98, 1979, 118 p. (Cited in TKiT, no. 6, 1980)

633. Obrashcheniye volnovogo fronta opticheskogo izlucheniya v nelineynykh sredakh (Wavefront reversal of optical radiation in nonlinear media). Institut prikladnoy fiziki AN SSSR. Sbornik nauchnykh trudov. Edited by V.I. Bespalov (426). Gor'kiy, 1979, 205 p. (RZhF, 5/80, 5D895)

IV. SOURCE ABBREVIATIONS

(CIRC Codens)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP (A)</td>
<td>(ATPLB) Acta physica polonica</td>
</tr>
<tr>
<td>BWAT</td>
<td>(BWATA) Biuletyn Wojskowej akademii technicznej J. Dabrowskiego</td>
</tr>
<tr>
<td>DAN B</td>
<td>(DBLRA) Akademiya nauk Belorusskoy SSR. Doklady</td>
</tr>
<tr>
<td>DAN SSSR</td>
<td>(DANKA) Akademiya nauk SSSR. Doklady</td>
</tr>
<tr>
<td>DAN Tadzh</td>
<td>(DANTA) Akademiya nauk Tadzhikskoy SSR. Doklady</td>
</tr>
<tr>
<td>DAN Uz</td>
<td>(DANUA) Akademiya nauk Uzbekskoy SSR. Doklady</td>
</tr>
<tr>
<td>Elek</td>
<td>(EKNTB) Elektronika [Poland]</td>
</tr>
<tr>
<td>ETP</td>
<td>(EXPPA) Experimentelle Technik der Physik</td>
</tr>
<tr>
<td>FAiO</td>
<td>(IFAOA) Akademiya nauk SSR. Izvestiya. Fizika atmosfery i okeana</td>
</tr>
<tr>
<td>FGiV</td>
<td>(FGVZA) Fizika goreniya i vzryva</td>
</tr>
<tr>
<td>FiKhOM</td>
<td>(FKOMA) Fizika i khimiya obrabotka materialov</td>
</tr>
<tr>
<td>FTP</td>
<td>(FTPPA) Fizika i tekhnika poluprovodnikov</td>
</tr>
<tr>
<td>FTT</td>
<td>(FTVTA) Fizika tverdogo tela</td>
</tr>
<tr>
<td>IAN Arm</td>
<td>(IAAFA) Akademiya nauk Armyanskoy SSR. Izvestiya. Fizika</td>
</tr>
<tr>
<td>IAN Az</td>
<td>(IAFMA) Akademiya nauk Azerbaydzhanskoy SSR. Izvestiya. Seriya fiziko-tekhchnicheskikh i matematicheskikh nauk</td>
</tr>
<tr>
<td>IAN B</td>
<td>(VABFA) Akademiya nauk Belorusskoy SSR. Izvestiya. Seriya fiziko-matematicheskich nauk</td>
</tr>
<tr>
<td>IAN Fiz</td>
<td>(IANFA) Akademiya nauk SSSR. Izvestiya. Seriya fizicheskiya</td>
</tr>
<tr>
<td>IAN Lat</td>
<td>(LZFTA) Akademiya nauk Latviyskoy SSR. Izvestiya. Seriya fizicheskikh i tekhnicheskikh nauk</td>
</tr>
<tr>
<td>IAN M</td>
<td>(IZFMB) Akademiya nauk Moldavskoy SSR. Izvestiya. Seriya fiziko-tekhchnicheskikh i matematicheskikh nauk</td>
</tr>
<tr>
<td>Journal</td>
<td>Code</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>IAN Uz</td>
<td>(IUZFA)</td>
</tr>
<tr>
<td>I-FZh</td>
<td>(INFZA)</td>
</tr>
<tr>
<td>IT</td>
<td>(IZTEA)</td>
</tr>
<tr>
<td>IVUZ Fiz</td>
<td>(IVUFA)</td>
</tr>
<tr>
<td>IVUZ Pribo</td>
<td>(IVUBA)</td>
</tr>
<tr>
<td>IVUZ Radiofiz</td>
<td>(IVYRA)</td>
</tr>
<tr>
<td>KE</td>
<td>(KVEKA)</td>
</tr>
<tr>
<td>KhVE</td>
<td>(KHKVA)</td>
</tr>
<tr>
<td>KL</td>
<td>(KHLTA)</td>
</tr>
<tr>
<td>KLDV</td>
<td>(KLDVA)</td>
</tr>
<tr>
<td>Kristal</td>
<td>(KRISA)</td>
</tr>
<tr>
<td>Lit fiz sb</td>
<td>(LFSBA)</td>
</tr>
<tr>
<td>MZhiG</td>
<td>(IMZGA)</td>
</tr>
<tr>
<td>NM</td>
<td>(IVNMA)</td>
</tr>
<tr>
<td>OiS</td>
<td>(OPSPA)</td>
</tr>
<tr>
<td>OMP</td>
<td>(OPMPA)</td>
</tr>
<tr>
<td>Opt app</td>
<td>(OPAPB)</td>
</tr>
<tr>
<td>Otkr izobr</td>
<td>(OIPOV)</td>
</tr>
<tr>
<td>PTE</td>
<td>(PRTDA)</td>
</tr>
<tr>
<td>RIE</td>
<td>(RAELA)</td>
</tr>
<tr>
<td>Roz elektr</td>
<td>(RZETA)</td>
</tr>
<tr>
<td>RZhF</td>
<td>(RZPFA)</td>
</tr>
<tr>
<td>RZhGeofiz</td>
<td>(GZGFA)</td>
</tr>
<tr>
<td>RZhMekh</td>
<td>(RZMKA)</td>
</tr>
<tr>
<td>RZhRadiot</td>
<td>(RZRAB)</td>
</tr>
<tr>
<td>Sbl</td>
<td>Sbornik</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Sb4</td>
<td>Obrashcheniye volnogo fronta opticheskogo izlucheniya v nelineynykh sredakh. Institut priladnoy fiziki AN SSSR. Gor'kii, 1979.</td>
</tr>
<tr>
<td>Sb5</td>
<td>Tekhnika elektroniki i elektrodinamiki, no. 4, Saratov, 1979.</td>
</tr>
<tr>
<td>Sb8</td>
<td>Teplovyye nelineynyye yavleniya v plazme. Institut priladnoy fiziki AN SSSR. Gor'kii, 1979.</td>
</tr>
<tr>
<td>Sbl0</td>
<td>Voprosy teorii plazmy, no. 10, Moskva, 1980.</td>
</tr>
<tr>
<td>Sbl4</td>
<td>Teoriya i operativnuyy prognoz tsunami. Moskva, 1980.</td>
</tr>
<tr>
<td>Sbl5</td>
<td>Zapominayushchiye ustroystva. Institut kibernetiki AN UkrSSR, Kiyev, 1980.</td>
</tr>
<tr>
<td>Sbl6</td>
<td>Voprosy istorii yestestvoznaniya i tekhniki, no. 67-68, Moskva, 1980.</td>
</tr>
<tr>
<td>Sbl9</td>
<td>Dielektriki i poluprovodniki, no. 17, Kiyev, 1980.</td>
</tr>
</tbody>
</table>
Sb21 Uchenyye zapiski TsAGI, no. 3, 1980.
Sb22 Razvedochnaya geofizika, no. 89, 1980.
Sb28 Dinamika izlucheyushchego gaza, no. 3, Moskva, 1980.
TJEKh (TEKHA) Teoreticheskaya i eksperimental'na khimiya
TKiT (TKTEA) Tekhnika kino i televizioniya
Tr1 Trudy VNII monokristallov, Stsintillatsionnykh materialov i osobo chistych khimicheskikh veshchestv. Sbornik nauchnykh trudov, no. 4, 1979.
Tr5 Vychislitel'nyy tsentr Moskovskogo GU. Sbornik rabot, no. 31, 1979.
Tr6 Moskovskiy energeticheskiy institut. Trudy, no. 450, 1980.
Tr7 Nauchnye trudy vysshikh uchebnykh zavedeniy Litovskoy SSR. Ultrasound, no. 12, 1980.
Tr9 Karakalpaskiyy filial AN UzSSR. Vestnik, no. 3, 1979.

Tr13 Institut okeanologii AN SSSR. Trudy, no. 90, 1980.

TVT (TVTYA) Teplofizika vysokikh temperatur

UFN (UFNAA) Uspekhi fizicheskikh nauk

UFZh (UFIZA) Ukrainskiy fizicheskiy zhurnal

VMU (VMUFA) Moskovskiy universitet. Vestnik. Fizika, astronomiya

ZhETF (ZEIFA) Zhurnal eksperimental'noy i teoreticheskoy fiziki

ZhETF P (ZFPRA) Pis'ma v Zhurnal eksperimental'noy i teoreticheskoy fiziki

ZhFKh (ZFKHA) Zhurnal fizicheskoy khimii

ZhNiPFiK (ZNPFA) Zhurnal nauchnyi i prikladnoy fotografii i kinematografii

ZhPMTF (ZPMFA) Zhurnal prikladnoy mehaniki i tekhnicheskoy fiziki

ZhPS (ZPSBA) Zhurnal prikladnoy spektroskopii

ZhTF (ZTEFA) Zhurnal tekhnicheskoy fiziki

ZhTF P (PZTFD) Pis'ma v Zhurnal tekhnicheskoy fiziki
V. AUTHOR AFFILIATIONS

1. Non-Soviet
 0. Affiliation not given
 1. Physics Institute imeni Lebedev, AN SSSR (Fizicheskiy institut imeni Lebedeva AN SSSR).
 2. Moscow State University (Moskovskiy gosudarstvennyy universitet).
 3. Institute of Physics, AN BSSR, Minsk (Institut fiziki AN BSSR).
 4. Physicotechnical Institute im Ioffe, Leningrad (Fiziko-teknicheskiy institut im Ioffe).
 5. Institute of Physics, AN UkrSSR, Kiev (Institut fiziki AN UkrSSR).
 6. Institute of Semiconductors, AN UkrSSR, Kiev (Institut poluprovodnikov AN UkrSSR).
 7. State Optical Institute im Vavilov, Leningrad (Gos opticheskiy institut im Vavilova).
 12. Leningrad State University (Leningradskiy GU).
 13. Institute of Crystallography, AN SSSR, Moscow (Institut kristallografii AN SSSR).
 15. Institute of Radio Engineering and Electronics, AN SSSR, Moscow (Institut radiotekhniki i elektroniki AN SSSR).
 17. Institute of Problems of Mechanics, AN SSSR, Moscow (Institut problem mehaniki AN SSSR).
 19. Moscow Power Engineering Institute (Moskovskiy energeticheskiy institut).
 22. Institute of metallurgy im Baykov, Moscow (Institut metallurgii im Baykova).
 29. Leningrad Polytechnic Institute (Leningradsikiy politekhniyshchiy institut).
 30. Leningrad Institute of Precision Mechanics and Optics (Leningradskiy institut tochnoy mehaniki i optiki).
 32. Physics Scientific Research Institute at Leningrad State University (Fizicheskiy NII pri Leningradskom GU).
 33. Institute of Silicate Chemistry im Grebanshchikov, AN SSSR, Leningrad (Institut khimii silikatov im Grebanshchikova AN SSSR).
 34. Khar'kov State University (Khar'kovskiy GU).
 35. Khar'kov Institute of Radioelectronics (Khar'kovskiy institut radioelektroniki).
 36. Physicotechnical Institute of Low Temperatures, AN UkrSSR, Khar'kov (Fiziko-teknicheskiy institut nizkikh temperatur AN UkrSSR).
 37. Yerevan State University (Yerevanskiy GU).
 38. Kazan' Physicotechnical Institute (Kazanskiy fizico-teknicheskiy institut).
 42. Ural Polytechnic Institute im Kirov, Sverdlovsk (Ural'skiy politekhniyshchiy institut im Kirova).
 44. Institute of Applied Physics, AN MSSR, Kishinev (Institut prikladnoy fiziki AN MSSR).
 45. Saratov State University (Saratovskiy GU).
 50. Institute of Semiconductor Physics, AN LitSSR, Vilnius (Institut fiziki poluprovodnikov AN LitSSR).
 51. Kiev State University (Kiyevskiy GU).
52. Joint Institute of Nuclear Research, Dubna (Ob"yedinenny institut yadernoykh issledovanii).
53. Chernovtsy State University (Chernovitskiy GU).
59. Institute of Physics Research, AN ArmSSR (Institut fizicheskikh issledovanii AN ArmSSR).
60. Institute of Physics, AN AzSSR (Institut fiziki AN AzSSR).
64. Institute of Atmospheric Physics, AN SSSR (Institut fiziki atmosfery AN SSSR).
66. Institute of Solid State Physics, AN SSSR (Institut fiziki tverdogo tela AN SSSR).
67. Institute of Physics of Chemistry, AN SSSR (Institut khimicheskoy fiziki AN SSSR).
69. Institute of Oceanography, AN SSSR (Institut okeanologii AN SSSR).
71. Institute of Applied Mathematics, AN SSSR (Institut prikladnoy matematiki AN SSSR).
72. Institute of Spectroscopy, AN SSSR (Institut spektroskopii AN SSSR).
74. Institute of High Temperatures, AN SSSR (Institut vosokikh temperatur AN SSSR).
75. Institute of Automation and Electronic Measurements, Siberian Branch AN SSSR (Institut avtomatiki i elektrometrii SOAN).
78. Institute of Atmospheric Optics, Siberian Branch AN SSSR (Institut optiki atmosfery SOAN).
79. Institute of Nuclear Physics, Siberian Branch AN SSSR (Institut yadernoy fiziki SOAN).
82. Physicotechnical Institute, AN UkrSSR, Khar'kov (Fiziko-tekhnicheskii institut AN UkrSSR).
84. Institute of Radiophysics and Electronics, AN UkrSSR (Institut radiofiziki i elektroniki AN UkrSSR).
86. Azerbaydzhan State University (Azerbaydzhanskiy GU).
96. All-Union State Scientific Research and Planning Institute of the Photographic Chemical Industry (Vses gos NI i proektmy institut khimiko-fotograficheskoy promyshlennosti).
98. Institute of Nuclear Physics at Moscow State University (Institut yadernoy fiziki pri Moskovskom GU).
104. Kaunas Polytechnic Institute (Kaunasskiy politekhnicheskii institut).
106. Kiev Polytechnic Institute (Kiyevskiy politekhnicheskii institut).
107. Khar'kov State Scientific Research Institute of Metrology (Khar'kovskiy gos NII metrologii).
109. Latvian State University (Latviyskiy GU).
110. Leningrad Electrotechnical Institute (Leningradskiy elektrotekhnicheskii institut).
118. Moscow Physicotechnical Institute (Moskovskiy fiziko-tekhchnicheskii institut).
129. Siberian State Scientific Research Institute of Metrology (Sibirskiy gos NII metrologii).
12. Tomsk State University (Tomskiy GU).
13. Central Aerohydrodynamic Institute im Zhukovskiy (Tsentral'nyy aerogidrodinamicheskii institut im Zhukovskogo).
136. Uzhgorod State University (Uzhgorodskiy GU).
137. Voronezh State University (Voronezhskiy GU).
139. All Union Electrotechnical Institute (Vsesoyuznyy elektrotekhnicheskii institut).
141. All Union Scientific Research Institute of Optophysical Measurements (VNII optiko-fizicheskikh izmerenii).
152. Moscow Institute of Steel and Alloys (Moskovskiy institut stali i splavov).
159. Institute of Thermophysics, Siberian Branch AN SSSR, Novosibirsk (Institut teplofiziki SOAN).
161. Moscow Institute of Radio Engineering, Electronics and Automation (Moskovskiy institut radiotekhniki, elektroniki i avtomatiki).
162. Moscow State Pedagogical Institute (Moskovskiy gos pedagogicheskiy institut).
166. Riga Polytechnic Institute (Rizhskiy politekhnicheskiy institut).
184. Institute of Geochemistry and Analytical Chemistry im Vernadskiy, AN SSSR, Moscow (Institut geokhimii i analiticheskoy khimii im Vernadskogo AN SSSR).
185. Gor'kiy Polytechnic Institute (Gor'skovskiy politekhnicheskiy institut).
188. All Union Scientific Research Institute of Single Crystals, Scintillation Materials and Extra Pure Chemical Substances (VNII monokristallov, stsinillyatsionnykh materialov i osobo chistykh khimicheskikh veshchestv).
193. Institute of Theoretical and Applied Mechanics, Siberian Branch AN SSSR, Novosibirsk (Institut teoreticheskoy i priladnoy mekhaniki SOAN).
202. Institute of Electronics, AN UzSSR, Tashkent (Institut elektroniki AN UzSSR).
209. Moscow Institute of Precision Mechanics and Computer Technology (Moskovskiy institut tochnoy mekhaniki i vychisitel'noy tekhniki).
210. Institute of Physics, Siberian Branch AN SSSR (Institut fiziki SOAN).
213. Leningrad Technological Institute (Leningradskiy tekhnologicheskiy institut).
240. Odessa State University (Odesskiy GU).
246. Main Astronomical Laboratory, AN SSSR (Glavnaya astronomicheskaya laboratoriya AN SSSR).
248. Institute of Mechanics at Moscow State University (Institut mekhaniki pri Moskovskom GU).
276. Institute of Physics of the Earth im Shmidt, AN SSSR (Institut fiziki Zemli im Shmidta AN SSSR).
277. Leningrad Institute of Aviation Instruments (Leningradskiy institut aviationsnogo priborostroyeniya).
287. Institute of Physical Chemistry, AN SSSR (Institut fizicheskoy khimii AN SSSR).
295. Institute of Chemical Kinetics and Combustion, Siberian Branch, AN SSSR, Novosibirsk (Institut khimicheskoy kinetiki i goreniya SOAN).
297. Institute of Chemistry, AN SSSR, Gor'kiy (Institut khimii AN SSSR).
308. Moscow Institute of Railroad Transport Engineers (Moskovskiy institut inzhenerov zheleznodorozhnogo transporta).
313. Scientific Research Institute of Applied Physics at Irkutsk State University (NII priladnoy fiziki pri Irkutskom GU).
325. Scientific Research Institute of Physics, Rostov-on-Don (NII fiziki, Rostov-na-Donu).
336. Scientific Research Institute of Nuclear Physics, Electronics and Automation at Tomsk Polytechnic Institute (NII yadernoy fiziki, elektroniki i avtomatiki pri Tomskom politekhnicheskom institute).
369. Krasnoyarsk Institute of Nonferrous Metals im Kalinin (Krasnoyarskiy institut tsvetnykh metallov im Kalinina).
396. "Optika" Special Design Bureau for Scientific Instrument Manufacture, Siberian Branch, AN SSSR (Spetsial’noye konstruktorskoye byuro nauchnogo priborostroyeniya "Optika" SOAN).
426. Institute of Applied Physics, AN SSSR, Gor’kiy (Institut prikladnoy fiziki AN SSSR)
427. Physics-Power Institute, AN LatSSR (Fiziko-energeticheskiy institut AN LatSSR).
435. Simferopol State University (Simferopol’skiy GU).
445. All Union Scientific Research Institute of the Metrological Service, Moscow (VNI metrologicheskoy sluzhby).
459. Moscow Institute of Land Management Engineers (Moskovskiy institut inzhenerov zemleustroystva).
492. Institute of Physics, AN EstSSR (Institut fiziki AN EstSSR).
506. Institute of Physics, AN LitSSR (Institut fiziki AN LitSSR).
507. Institute of Solid State and Semiconductor Physics, AN BSSR, Minsk (Institut fiziki tverdogo tela i poluprovodnikov AN BSSR).
521. Scientific Research Institute for Physics of Condensed Media of the Yerevan State University (NII fiziki kondensirovannykh sred Yerevanskogo GU).
526. Institute of Radioelectronics and Automation, AN SSSR (Institut radioelektroniki i avtomatiki AN SSSR).
532. Mordovian State University, Saransk (Mordovskiy GU).
534. Institute of Physics at the Dagestan Branch, AN SSSR, Makhachkala (Institut fiziki Dagestanogo filiala AN SSSR).
535. Kemerov State University (Kemerovskiy GU).
549. Institute of Powder Metallurgy, Minsk (Institut poroshkovoy metallurgii).
551. Institute of Cybernetics, AN UkrSSR, Kiev (Institut kibernetiki AN UkrSSR).
554. Scientific Research Institute of Electrography (NII elektrografii).
556. All Union Cardiological Science Center, AMN SSSR, Moscow (Vsosoyuznyy kardiologicheskoye nauchnyy tsentr AMN SSSR).
558. All Union Scientific Research and Test Institute of Medical Technology, Moscow (VNI i ispytatel’nyy institut meditsinskoy tekhniki).
559. Special Design Bureau for Analytical Technology Aids, Uzhgorod (Spetsial’noye konstruktorskoye byuro sredstv analiticheskoy tekhniki).
560. Institute of High Energy Physics, Serpukhov (Institut fiziki vysokekh energii).
561. Institute of Chemistry, AN M SSR, Kishinev (Institut khimii AN M SSR).
VI. AUTHOR INDEX

A

ABAKAROV D I 41
ABAKHNOV G A 39
ABALYSEVA M 27
ABDULLAYEV G B 96
ABDURAKHMANOVA S A 81
ABLEKOV V K 96
ABRAHOMOV B S 38
ABROMOV N V 88
ACHASOV O V 17
ADUKOV A D 77
AGANOV R V 69
AGRE N Y 77, 78
AKHURIN G G 11
AKHMANOV A S 32
AKHMADOV D 4
AKHMETIEV N N 70
AKROFAN D G 88
AKTSIPETROV O A 81
ALEKSAHROV I N 78
ALEKSAHROV V V 89
ALEKSAHROV YE B 15
ALEKSAHROVSKAYA N G 38
ALEKSAHROVSKYI A L 25
ALEKSEYENKO V I 23
ALEKSEYEV N YE 12
ALEKSEYEV V YE 12
ALEKSEYEVSKAYA A A 68
ALEN'IKOV V S 15
ALEISHOJEVA A B 53
ALIYEV V A 9
ALIPATOV V V 70
AL'TSHULER L V 57
AL'TUPOV YU K 57
ANDRAYAVICHENYE V S 41
ANKHOV YU YA 66
ANAN'YEV V 23
ANAN'YEV YU A 27
ANDREYANOV V M 1
ANDREYEV A V 39
ANDREYEV N YE 89
ANDREYEVSKAYA T M 53
ANURUKAN A V V 78
ANDROVA I A 33
ANDRUSENKO A M 66
ANGELOV D A 57
ANIYEEV B V 1
ANTIPENKO B M 74
ANTIPIN A A 78
ANTIPOV A I 38
ANTUNOV V S 57
ANTUSHIN M K 67
APARKHALEN'S M 27, 33
ARESEV I P 33, 67
ARISTOV A V 8
ARKHANGEL'SKAYA V A 2
ARKICHEN'AY V V 15
ARSENIN V YA 90
ARTHURMENA L I 90
ARTSIMOIVICH V L 89
ARTUKLYAN G M 88
ASYAEV V K 57
ASBAKHANAMINKAYA A L 1
ASBAKHANAZEL H M 57
ASEKAN'YAN G A 90
ASTAKHOV V V 60
ASTROV YU A 25

B

ATAMOVEDBAYEV A K 81
ATAYEV B M 77
ATSAGORTSYYAN A Z 41
AVIZIN'SH M P 67
AVABYEV A G 7
AVATYAN G A 96
AVDUSEVSKIY V S 81
AYER'YANOY YE M 96
AVDRACHNOKO R P 67
AVANTIN A D 60
AVTOHOMOV V P 12

P 24

BOGATSEV K S 43
BOKHAN P A 67
BOLOTSETIKH L T 87
BONCH-BRUEVICH A M 57
BONDAR' S A 33
BOKOBOV A I 90
BORISOV B D 22
BORISOV B N 22
BORISOV M 55
BORKOTSEV P V 23
BORYNOY D Y 43
BRAUN P A 67
BRAZIS R S 18
BREYEV V V 30
BRITAN A B 39
BRODNOY I I 26
BROOKS I Y 19
BTDROVOY V P 57

S 12, 30, 90

ADZUROV A V 41
ADZUROV N A A 61
ADZUROV N V P 25
ADZUROV V P 61
ADZUROV V T 46
ADZUROV VY A 46
ADZUROV YU A 61

YU A 61, 64

B 132

B 22

B 5, 15

B 31

B 17

B 82

B 46

B 39, 49

B 77

B 43, 44, 51, 57

B 91

B 43

B 39

B 31, 33

B 36

B 36
<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Category</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>KREMENITSKIY V V</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KREPOSDOV P I</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRIVAT'YANOVA O S</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRIVOSHEIKOV G V</td>
<td>27,24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRUGLENO V P</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRUGLOV B V</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRUGLOV S N</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRULYAKOV E P</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRUM'N A E</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRUTIK V M</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRUTYAKOVA V P</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUCHILIN' Y V</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KLYOV B V</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRYUKOV P G</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRZHIZANOVAKOV R YE</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSHNEVTSKAYA M L</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSHNEVTSKIY S A</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUXKHERMAN M S</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUZ'NIEVICH V I</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUDRASHOV V A</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUDRYAVTSEV YE M</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUKHTAREV N V</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUKHTEVICH V I</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KULINSKII V L</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KULAGOV V Y</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KULAGINA S N</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KULIKOV S M</td>
<td>92,94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KULYAGOV A G</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUNITSYN V YE</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUPCHIKOV A K</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUPRIYANOVA N L</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUPRIYANOVA N G</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KURDINOVIC S P</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KURROOMIN V Y</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUKTOVA Y E</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUZ'MENKO V A</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUZ'MICHEVICH V M</td>
<td>63,66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUZ'MIN M G</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUZ'MIN R N</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUZ'MIN V S</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUZNETSOVA S A</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUZNETSOVA T I</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUZNETSOVA V S</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUZNETSOVA YE A</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUZYAKOV B A</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUZYAKOV YU YA</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABUDA S A</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAGODA V B</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMIREX P I</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDBERG YE G</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAPSHEIN E A</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAPSHEIN V Y</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAPTEV I D</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LARINA R R</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LARIONOV N P</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LARTHEINSEV YE G</td>
<td>1,22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAZAROVO V P</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAZAREV V V</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAZARUK A M</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAZUSTKIN O N</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEBEDEV A K</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEBEDEV S A</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LECHESOV V A</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEGHESYER YE N</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEGHOS A P</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEHMUTZCHIKOV A M</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>