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PREFACE

This effort was carried out under ILIROO18, Methods for Linking
Item Parameters. It was basic research conducted in support of an on-
going program in the area of Assessment of Personnel Qualification
which supports the general thrust area of Manpower and Force Manage-
ment. It was performed to gain knowledge in advanced psychometric
theory as applied to computer driven adaptive testing, item banking,
and Item Response Theory. This report is one in a series aimed at
advancing the state of the art in the measurement of human charac-
teristics

The authors wish to thank James B. Sympson for his suggestions
and insightful criticism of portions of an earlier draft of this
report.
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I. INTRODUCTION

During the past decade, an extensive investigation of adaptive
testing has been conducted. In its simplest form, adaptive testing
amounts to administering the subset of items, selected from a larger
pool, that provides the most information about the individual re-
garding the characteristic the test measures. A summary of the cur-
rent state of the art, extracted from the 1979 Computerized Adaptive
Testing Conference (Weiss. 1980), is that adaptive testing potentially
offers several advantages over conventional testing methods, but to
realize these advantages, characteristics of the items comprising the
pool must be accurately determined.

Most adaptive testing technology is built on the framework of
Item Response Theory (IRT), also called Latent Trait Theory or Item
Characteristic Curve (ICC) Theory. In TRT, test items are described
by a set of item parameters. It is these parameters that must be
accurately determined if adaptive testing is to be effective. This
determination is called item calibration. Because adaptive testing
requires a large item pool, and because item calibration requires ad-
ministration to a large number of examinees, calibration must often be
accomplished in parts such that different groups of individuals take
different sets of items.

The purposes of the project were to determine efficient methods
of partitioning the calibration examinee samples and item sets, and
to determine efficient methods of re-assembling or linking the parts
into a common whole once the individual calibrations are accomplished.
As background to the research, the first section of this report re-
views some of the concepts basic to calibration and linking. Pre-
vious research, its shortcomings and unanswered questions, will be
reviewed and discussed. In subsequent sections, a research design to
eliminate these shortcomings will be described and research conducted
according to that design will be reported.

Overview of Item Response Theory

Item Response Theory has been called the psychometric equiva-

lent of Einstein's Theory of Relativity (Warm, 1979). Stated simply,
IRT specifies a general mathematical relationship between an indi-
vidual's status on an underlying trait, characteristics of a test
item, and the probabilities regarding how the individual will respond
to the item. The term IRT actually refers to a general class of
psychometric models. Included in the class are models for use when
the response is dichotomous (Lord & Novick, 1968; lirnbaum, 1968),
models for use when the response is polychotomous (Samejima,1969,
1972; Bock, 1972), and models for use when the response is continuous
(Samejima, 1974). These models have typically been developed for use
where a unidimensional trait is measured. Extension of each to
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multidimensional traits would double the number of available models.
Hambleton & Cook (1977) present an overview of most of the unidimen-
sional IRT models.

All the item domains considered by the current research con-
tained dichotomous ability items of a multiple-choice nature. Two IRT
models are appropriate for such items: the three-parameter normal and
logistic ogive models. For reasons of mathematical tractability, the
logistic model is generally preferred over the normal model and will
be of primary focus throughout this report. A single-parameter degen-
erate case of the three-parameter logistic model, the Rasch model,
will be included in some parts of this review because of its similar-
ity to the three-parameter logistic model and because more research
has been done on calibration and linking using the Rasch model than
has been done using the three-parameter logistic model.

In the three-parameter logistic model, the item is characterized
by the three parameters a, b, and c. Ability is characterized by a
single parameter, theta. The a parameter is an index of the item's
power to discriminate among different levels of ability. It ranges,
theoretically, between negative and positive infinity but practically
between zero and about three when ability is expressed in a standard-
score metric. A negative a parameter would mean that a low-ability
examinee had a better chance of answering the item correctly than did
a high-ability examinee. An a parameter of zero would mean that the
item had no capacity to discriminate between different levels of
ability (and would therefore be useless as an item in a power test).
Items with high positive a parameters provide sharper discrimination
among levels of ability and are generally more desirable than items
with low a parameters.

The b parameter indicates the difficulty level of an item. It
is scaled in the same metric as ability and indicates the value of
theta an examinee would need in order to have a 50-50 chance of know-
ing the correct answer to the item. This is not, however, the level
of theta at which the examinee has a 50-50 chance of selecting a cor-
rect answer if it is possible to answer the item correctly by guessing.

The c parameter gives the probability with which a very low-
ability examinee would answer the item correctly. It is often called
the guessing parameter as it is roughly the probability of answering
the item correctly if the examinee does not know the answer and guess-
es at random. Intuitively, the c parameter of an item should be the
reciprocal of the number of alternatives in the item. Empirically,
it is typically somewhat lower than this.

All four parameters enter into the three-parameter logistic test
model to determine the probability of a correct response. The formal
mathematical relationship is given by Equation 1:

-14-



P(u=l(6) = c + (1-c) Tl.7a(6-b)J (11

where:

'(x) = [l+exp(-x)]-1

In Equation 1, u = 1 if the response to the item is correct and u 0
if the response is incorrect. The relationship expressed in Equation 1
is shown graphically in Figure 1. The item characteristic curve
drawn with a solid line is for an item with a = 1.0, b = 0.0, and c
.2. The slope at any point is related to a. The lower asymptote-
corresponds to a probability or c of .2. The item characteristic
curve shown with a dashed line is for an item with a = 2.0, b = 1.0,
and c = .2. The midpoint of the curve has shifted to e 1.0. The
slope of the curve is steeper near e = b. The lower asymptote of the
curve remains, however, at .2.

Ultimately, theta is the only parameter that needs to be esti-
mated; the objective of testing is to estimate an individual's abil-
ity level. To accomplish this, however, it is necessary to first
'now the item parameters. The items must therefore be calibrated.

Figure 1. Item Characteristic Curves
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Although Ree (1979) has shown that, under certain conditions, ability
estimation can proceed very well with quite poor estimates of item
parameters, in the general case, good estimation of ability requires
good estimation of item parameters.

Item Calibration

Estimation Techniques

Two methods of estimating item parameters have been primarily
employed in IRT applications: maximum-likelihood estimation and
minimum chi-square estimation. The former method identifies the
parameter values for which the probability of observing the observed
data (i.e., the likelihood) is a maximum. The latter method identi-
fies the parameter values for which the discrepancy between the model
and the observed data is a minimum. Both methods are discussed in
detail below with general reference to three-parameter models.

Maximum-likelihood estimation. Conceptually, the application of
maximum-likelihood techniques to estimation of item parameters is
simple. The probability of observing a response vector is expressed
in terms of the unknown parameters, and the parameter values making
this probability a maximum are the maximum-likelihood parameter esti-
mates. In practical calibration applications, however, the number
of parameters to be estimated may exceed several thousand and the
numerical difficulties make the simple conceptual task practically
formidable.

Two approaches to maximum-likelihood item calibration are the

unconditional and the conditional approaches (Bock, 1972; Bock &
Lieberman, 1970). In the unconditional approach, a distribution
of theta is assumed and the theta parameter in each individual
response vector is integrated out. This results in a set of like-
lihood functions, one function for each examinee, that is independ-
ent of theta. From these functions, the item parameters can be
estimated. There are two difficulties with use of the unconditional
approach. First, it requires an assumption as to the form of the
distribution of theta and, second, due to the integration required,

1. The terms "unconditional" and "conditional" as used here should
not be confused with the identical terms used in the Rasch literature
(e.g., Anderson, 1971, 1977; Gustafsson, 1979; Reckase, 1977). "Un-
conditional" in the Rasch literature refers to the "conditional" case
discussed here. "Conditional" in the Rasch literature refers to the
use of likelihood functions conditioned on the sufficient number cor-
rect statistic and is, in some ways, analogous to the "unconditional"
approach discussed here.
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it is computationally too burdensome for use with more than a few
items.

The conditional approach assumes the theta values are unknown
but fixed parameters to be estimated in the same manner as the item
parameters. The computer program LOGIST (Wood, Wingersky, & Lord,
1976) is the major operationalization of the conditional approach
to calibration. Although, in theory, both theta parameters and item
parameters can be estimated simultaneously, LOGIST iterates between
estimation of theta and estimation of item parameters. Provisional
values of theta are obtained from each examinee's raw score and these
are used as true theta values while the item parameters are estimat-
ed. The estimated item parameters are then used to re-estimate the
theta parameters and the procedure iterates until stable item and
theta parameter estimates are found. Convergence can require a large
amount of computation.

Minimum chi-sauare estimation. Regardless :,f how the parameters
of the model are estimated, the adequacy with which the model fits
the observed data can be tested with a Pearson chi-square test.
This is accomplished by grouping subjects on the basis of ability (or
estimated ability), predicting for each item the proportion of sub-

jects in each subgroup who should answer it correctly according to
the model, and testing the significance of the discrepancy between
observed and predicted proportions using a chi-square test. The
minimum chi-square approach to estimation explicitly selects param-
eter values to minimize this chi-square value. Except for the
change in criterion, however, the approach is similar to the condi-
tional maximum-likelihood approach.

A major proponent of this approach was Urry (197S), who sponsored
several computer programs to perform such estimation; the most fre-
quently used are OGIVIA and ANCILLES. In these programs, examinees
are scored based on provisional parameter estimates. Several trial
values of the c parameters are chosen and a and b parameters are esti-
mated using equations given by Urry (1976). The combination of a, b,
and c that produces the minimum lack of fit with the IRT item charac-
teristic curve, as indicated by a chi-square statistic, is chosen as
the minimum chi-square parameter estimate.

Criteria of Good Estimation

Texts in statistics (e.g., Lindgren, 1976) typically list four
desirable characteristics of an estimator of a parameter: an esti-
mator should be unbiased, efficient, sufficient, and consistent. An
unbiased estimator has an expected value equjal to the parameter it
estimates. An efficient estimator has, in comparison to other esti-

mators, small mean squared-deviation from the parameter. If the
estimator is unbiased, its variance is an index of its efficiency.
A sufficient estimator contains all the information regarding the
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parameter that is available from the data on which it is calculated.
Information of an unbiased estimator is an estimate of the recipro-
cal of the squared error of estimate of the parameter (see Lindgren,
1976, for a discussion of information). An unbiased sufficient
estimator is efficient in an absolute sense as no other estimator can
be more efficient. Finally, a consistent estimator is one that con-
verges on the parameter values as the data on which it is based in-
crease. Increased data, in psychometric applications, refers to both
increased subject sample size and increased item set size (i.e., more
items). Both must approach infinity for item and ability parameter
estimates to converge on their true values, but acceptable estimates
can be obtained from sample sizes that are obtainable in practice.

Evaluation of the quality of estimators in terms of these cri-
teria can be done analytically in simple applications. In evalua-
tion of item calibration techniques, analytic calculation of these
criteria is practically impossible because of the complexity of the
calculations. Hence, they must be evaluated through simulation
techniques. In such a simulation, responses to items with known
parameters are generated according to a statistical model (see Vale
& Weiss, 1975, or Ree, 1973, for a full description of a simulation).
Parameters are then estimated from the item responses as if these
responses had been generated by real examinees, and the estimated
parameters are compared to the true values. In studies done com-
paring estimated with true item parameters, three indices of com-
parison have typically been calculated for individual item param-
eters. The average algebraic difference between true and estimated
parameters has been calculated as an index of bias. The mean-square
deviation of estimated parameters from the true parameters has been
calculated and can be considered an index of efficiency. The corre-
lation between true and estimated parameter values has been calculated
and, if the estimates are linear estimates of the parameters, this can
be thought of as an index of relative sufficiency when comparing two
methods on the same items and subjects. All these indices are typi-
cally calculated at several combinations of test length and sample
size and thus provide some evidence for consistency.

In addition to evaluation of the parameters separately, some
researchers (e.g., Ree, 1979) have attempted to evaluate the param-
eters collectively by comparing the test scores produced by the est-
imated parameters with those produced by the true parameters. There
may be some tendency for errors in one parameter to cancel out or com-
pensate for errors in other parameters. Separate evaluation would not
show this effect: joint evaluation would. As will be discussed in re-
gard to the study by Ree, this evaluation may be done in several ways.

Evaluation of Estimation Techniques

Lord (1975) evaluated the LOGIST procedure in a simulation study.
For this study, item parameters for 90 verbal items of the Scholastic
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Aptitude Test were estimated by LOGIST using a sample of 2,995 exam-
inees. These parameters, after correction for errors of estimate,
were used as the basis for a Monte-Carlo simulation in which 2,995
hypothetical examinees (with abilities similar to those of real exam-
inees) "responded" to the items according to the logistic test model.
These responses were then used by LOGIST to re-estimate the item param-
eters. The parameters entering the simulation model were taken to be
true parameters, and the effectiveness of LOGIST was evaluated by how
accurately these true parameters were estimated. Root-mean-square
errors of estimation and the correlations between true and estimated
parameters were, respectively, .130 and .920 for the a parameters and
.196 and .988 for the b parameters. For the c parameters, the root-
mean-square error was .070; the correlation between the true and esti-
mated c parameters was not reported.

Gugel, Schmidt, and Urry (1976) reported a similar simulation
study of the minimum chi-square procedure. Some major differences
between this study and that of Lord's (in addition to the different
estimation procedure) were that (a) the hypothetical subjects were
drawn from a standard normal ability distribution rather than matched
to subjects having taken an existing test, (b) the hypothetical item
parameters were rectangularly distributed in ranges typical for such
parameters rather than matched to those from an existing test, and
(c) subject sample sizes and item set sizes were systematically
varied. Of the conditions investigated a condition with 90 items and
2,000 subjects was most comparable to Lord's study of LOGIST. In this
condition, root-mean-square errors and correlations were, respective-
ly, .244 and .871 for the a parameter, .149 and .996 for the b param-
eter, and .069 and .568 for the c parameter. Direct comparisons with
Lord's study are not particularly meaningful, however, because the
distributions of all parameters were different and this can drastical-
ly affect the comparative indices. The study did note, however, that
the minimum chi-square procedure did not work well when the numbers of
subjects used fell as low as 500.

Schmidt and Gugel (1976) again reported the preceding study, as
well as a second study in which the number of items used was 100 and
the sample sizes were 2,000 and 3,000. Root-mean-square errors for
the final estimates at sample sizes of 2,000 and 3,000, respectively,
were .242 and .228 for the a parameter, .123 and .148 for the b param-
eter, and .056 in both samples for the c parameter. Correlations
were .915 and .918 for the a parameter, .996 and .997 for the b param-
eter, and .764 and .760 for the c parameter. Little change was appar-
ent between sample sizes of 2,000 and 3,000. The results of these two
studies led Schmidt and Gugel to conclude that, as a rule-of-thumb,
item sets should contain at least 100 items and should be administered
to at least 2,000 subjects to obtain an accurate calibration.

Two studies comparing different calibration techniques have been
done, to date. Ree (1978, 1979) compared four calibration techniques
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in three different populations. The four calibration techniques
were: (a) NNCILLES, minimum chi-square estimation with ancillary
correction for errors in estimation of ability, (b) OGIVIA, minimum
chi-square estimation similar to that of ANCILLES, (c) LOGIST,the con-
ditional maximum likelihood approach, and (d) transformation of class-
ical parameters derived from IRT assuming a normal distribution of
ability (see Jensema, 1975, for a description of the transforma-
tions). The three ability distributions were: (a) a rectangular dis-
tribution of ability bounded at e = ±2.5, (b) a normal (0,1) distribu-
tion of ability with elimination of the lower third on the basis of a
number correct score, and (c) a normal (0,1) distribution of ability.
The hypothetical items used in the simulation had parameters dis-
tributed normally in ranges typically found in real item sets. Among
the criteria investigated were: (a) correlations between true and
estimated item parameters, (b) correlations between ability estimates
computed using both true and estimated item parameters, (c) correla-
tions between true number-correct scores generated using both true
and estimated item parameters, and (d) test information curves re-
sulting from the true and estimated item parameters. All analyses
were performed on samples of 2,000 examinees and tests 30 items in
length.

Evaluated on the criterion of correlation between estimated and
true item parameters, LOGIST generally produced the highest correla-
tions. The exception to this was in the normal ability distribution
in which OGIVIA produced slightly better estimates of a and b. The
best estimates of the item parameters were obtained using LOGIST and
a rectangular distribution of ability.

Correlations between true and estimated ability levels showed
LOGIST to be slightly better than ANCILLES and OGIVIA, and the trans-
formations to be slightly worse. Differences among correlations were
small, however, ranging from .955 to .974 in the rectangular distri-
bution, from .930 to .943 in the truncated normal distribution, and
from .961 to .965 in the normal distribution.

Correlations between true scores obtained using true and esti-
mated parameters showed very little difference among methods and
only a small deviation from unity. The largest difference observed
was in the rectangular distribution where the transformation yielded
a correlation of .9910 and LOGIST yielded one of .9960. All other
distributions produced correlations of .999, with variations in the
fourth decimal place.

When compared in terms of the information curves produced by the
item parameter estimates, all methods except the transformations pro-
duced information curves similar to the true information curve in the
rectangular and normal ability distributions. In both of these dis-
tributions, LOGIST produced information curves somewhat closer to the
true curve than did ANCILLES or OGIVIq. In the selected distribution,
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all methods produced noticeable departures from the true information
curve.

Of the four criteria investigated, only the correlations among
item parameters and the information curves are independent of the
ability distribution; thus, these criteria are the only ones that
can be compared across ability distributions. (Equivalent estimation
accuracy would yield differences in the other criteria solely as a
function of the ability distribution.) On these two criteria, LOGIST
was nearly always superior to the other methods. The degree of
superiority was not overwhelming, however, and an analysis of cost
suggested that other methods were to be favored. The second-best
procedure, in terms of psychometric criteria, was OGIVTA. OGIVIA
required less than one-tenth as much computer time to use as did
LOGIST.

ks a final point, the level of correlation between actual and
estimated ability levels and actual and estimated true scores is
noteworthy. Especially with the true scores, the level of corre-
lation was so high as to suggest that one might do well enough with-
out bothering to estimate parameters at all. In fact, Ree (1979)
has shown that the correlation between the estimated and true values
of any one of the three IRT parameters can be degraded to little
relation with its true value and still yield correlations between
actual and estimated true scores of .93 and above. All these re-
sults, however, were obtained using conventional tests where all
examinees answer the same items. When administration is adaptive
and each examinee answers a different set of items, these correla-
tions could be expected to drop substantially as a result of poor
item calibration. Unfortunately, no study has investigated this
effect directly. Schmidt and Gugel (1976), in the study discussed
earlier, provided data that hinted at the answer. When the size of
the calibration sample fell to 1,000 examinees and the length of the
calibration item set fell to 60, there was a noticeable decrease in
the quality of tests administered using a Bayesian strategy when
compared to similar tests given using true item parameter values.
Thus, although definitive data do not exist, those data which do exist
suggest that the extremely high correlations between estimates of true
scores obtained using the different parameter estimates may be due to
an averaging-out phenomemon peculiar to conventionally administered
tests.

The second study comparing various calibration procedures was
done by Swaminathan and Gifford (1980). Noting that the Ree study
investigated only a single test length and sample size, they com-
pared ANCILLES and LOGIST in simulation at test lengths of 10, 15,
20, and 80 items and sample sizes of 50, 200, and 1,000. Items had
true a parameters distributed rectangularly between .6 and 2.0, true
b parameters distributed rectangularly between -2.0 and 2.0, and true
c parameters fixed at .29. Three distributions of ability were used;
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one was normally distributed with a mean of zero and variance of
one, the second was rectangularly distributed between -1.73 and 1.73,
and the third was a standardized negatively skewed beta distribution.
Criteria of calibration effectiveness included the differences between
means of true and estimated a, b, and c parameters, the correlations
between true and estimated a and b parameters, the differences in
means of ability estimates using true and estimated parameters, and
the correlations between these values.

The b parameter estimates correlated highly with their true
values in all conditions using either of the calibration methods.
Medians for each of the distributions were all above .9. A trend
toward higher correlations with increased test length was observed,
and median correlations for LOGIST were slightly higher than those
for ANCILLES. No substantial differences were observed among dis-
tributions.

The a parameters were less well estimated. Median correlations
were near .4 for the normal and rectangular ability distributions,
but dropped to near .2 in the skewed distribution. Improvements in
estimation occurred both with increasing test length and sample
size, however. Median correlations using LOGIST were consistently
higher than those of ANCILLES.

Correlations could not be computed for the c parameters since
the true values were fixed at .25.

Correlations between ability estimates and true abilities were
nearly equivalent for the two procedures. Increases were noted with
increasing calibration test length but increases in sample size made
trivial differences.

The mean-difference criteria suggested that both item param-
eters and ability estimates were biased somewhat. In general, AN-
CILLES produced more bias than LOGIST. Bias decreased with increas-
ing test lengths and sample size.

Swaminathan and Gifford concluded that, although LOGIST produced
slightly better estimation than did ANCILLES, it cost considerably
more to run and the gain was probably not worth the cost. They fur-
ther concluded that a and c parameters should not be estimated using
tests containing 15 or fewer items.

Item Linking

Predicting, Equating, and Linking--A Clarification of Concepts

Scores from one test are often used to infer scores on a second
test. Whether this inference is an act of predicting, equating, or
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linking will depend on the tests involved and the method used in
making the inference.

Equating and predicting. Methods for equating test scores among
different groups of people have long been available. Publishers of
entrance examinations for educational institutions, faced with the
need to change the examinations each time they were administered and
aware that different types of people took the examinations in April
and October, developed the means of assuring that a person of fixed
ability would attain approximately the same score regardless of when
the examination was administered. Formally, equating methods are pro-
cedures for expressing scores from two different tests measuring the
same trait on a common score metric. The crucial requirement is that
the tests measure the same trait.

Methods for predicting one test score from another have also

long been available. The reason for giving entrance examinations in
the first place was based on the empirical fact that scores on the
entrance examinations predicted, to some degree, scores on classroom
examinations. The difference between equating and prediction is that
two tests do not have to measure the same trait to be candidates for
prediction.

Statistical methods for equating and predicting come in both
linear and non-linear forms. In the linear case, prediction is accom-
plished by linear regression. Equating is accomplished by a similar
procedure in which a correlation of 1.0 between tests is assumed.
Prediction uses the empirical data to estimate the relationship between
the two traits. Equating assumes, not unreasonably, that a trait
should correlate very highly (i.e., perfectly) with itself. The pre-
diction equation is not invertible; a regression equation used for
predicting test A from test B cannot simply be reversed and re-applied
to predict test B from test A. The exception to this rule is when the
correlation between tests is perfect. The assumption of perfect cor-
relations made in equating allows the equating equation to be used for
the inverse transformation.

If equating procedures are used for a prediction problem, the re-
sult will be less-than-optimal predictions. If regression is used
for an equating problem, the result will be a lack of correspondence
between test scores, which was the objective of equating in the first
place.

Linkng. Linking is a term which describes the act of equating
at the item level. The objective in equating, as discussed above,
was to put total test scores onto a common metric. Linking is used
to describe the process of putting items from different tests on a

common metric. Linking was first investigated as a means to an end
of test equating (Fan, 1957; Swineford & Fan, 1957) and did not gen-
erate a great deal of research interest. More recently, as a result
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of adaptive testing applications, linking has become a legitimate end
in itself. Adaptive testing item pools, because of their size, have
had to be constructed by linking smaller sets of items together on
a common parameter metric.

The objective of this project was to find efficient ways of link-
ing test items. Much of the research available to date has been on
equating rather than linking. There are close parallels between the
two, however, and the following review will include equating as well
as linking efforts. Prediction is a vast subject and will not be
covered except to point out instances in which it was used appropri-
ately as a linking or equating method.

Paradigms of Linking and Equating

Linking and equating paradigms can be categorized on two basic
aspects: the design by which data are collected and the method by
which the linking transformation is determined. Angoff (1971), in a
classic survey of equating methodology, listed six major equating
designs. In terms of data collection, these six designs can be
grouped into two categories: designs assuming equivalent samples of

examinees to achieve equation (Designs I and II) and designs employ-

ing an anchor test to achieve equation (Designs III, IV, V, and VI).
Transformations, in Angoff's designs, are determined either through
linear or curvilinear means. Marco (1977), in a recent survey,
listed three data collection designs: (a) all items are given to a
single group of examinees, (b) the same set of items is administered
to different groups of people, and (c) an anchor set of items is
common to all tests given to different groups of people.

There are, in fact, four basic data collection designs of poten-
tial utility for linking: (a) the equivalent-groups method, (b) the
equivalent-tests method, (c) the anchor-group method, and (d) the
anchor-test method. Angoff's first two designs are contained in the
equivalent-groups method, and his latter four are examples of the
anchor-test method. Marco's three designs are, respectively, a
special case of the equivalent-groups method, a special case of
the equivalent-tests method, and the anchor-test method.

In theory, IRT explicitly makes the relationship among item
parameters, across groups, linear. There is thus no need to discuss
the curvilinear transformation procedures. Reckase (1979) presented
the most exhaustive array of linear procedures yet encountered. As
will be discussed, however, only the one called the major axis proce-
dure is an appropriate linking transformation method. Transformation
methods thus do not offer much ground for research.

In theory, IRT item parameters are invariant, except for a lin-
ear transformation, across groups of individuals. The constants of
the linear transformation necessary to change one metric to another

I
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(assuming a unidimensional pool of items), are simple functions of
the means and standard deviations of the abilities of the groups
under consideration. When items are calibrated, there are four
values that are undetermined and must be arbitrarily imposed: the a
and b parameter means and the ability mean and standard deviation.
Among this group of four values, there are two degrees of freedom
corresponding to unit and origin of the metric to be chosen. The
unit can be specified by fixing either the mean a parameter or the
standard deviation of the ability distribution. When one is fixed,
the other is determined. The origin can be specified by fixing
either the mean b parameter or the mean of the ability distribution.
Again, when one is fixed, the other is determined. Any one of the
values can be varied at will as long as the corresponding value is
also appropriately adjusted.

As an example, assume that a set of items had been calibrated on
a group of individuals and that the ability mean and standard devia-
tion were set at zero and one, respectively. If desirable, the
ability mean and standard deviation could be changed to 50 and 10.
To do this, each ability estimate would be multiplied by 10 and 50
would be added. Also, the a and b parameters would have to be adjust-
ed accordingly. In this ease, the a parameters would have to be di-
vided by 10 and the b parameters transformed by multiplying them by
10 and adding 50. The c parameter is evaluated at an infinitely low
ability level and is thus not affected by the transformation (i.e.,
any finite linear transformation leaves negative infinity untouched).
A linear transformation such as this could be used to set the mean
and standard deviation of the ability distribution or the mean a and b
values to any value without affecting the performance of the ICd model
as long as both parameters were adjusted in the two pairs.

Item linking in IRT models consists of finding two common values
(i.e., ability mean and standard deviation or item parameter means)
in different sets of items given to different groups of people and
then of determining a linear transformation that equates these values
as well as the remaining two values which are determined by them.
In the methods discussed in the next paragraphs, different sets of
assumptions necessary to match values will be presented. The differ-
ences between the methods are in the groups chosen as the reference
groups and in the parameters matched. The concept of the linear
transformation to equate item parameters is the same for all methods.

Methods based on sampling. In the equivalent-groups method of
item linking, a sample of examinees available for item calibration is
randomly split into two or more groups, and each group is given a
different set of items. It is assumed that the distributions of
abilities are equal in the various groups: ability mean and standard
deviation are the values matched across groups in this method. Param-
eters a, b, and c are estimated separately in each group, abilities are
estimated, and ability levels and item parameters are simultaneously
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transformed such tiat thp ability means and standard deviations
of the groups are equal. The mean and standard deviation (i.e.,
origin and unit) of ability are arbitrary when items are calibrated
and must be set to some value Calibration programs (e.g., LOGIST
or OGIVIA) typically set them to zero and one, respectively. In the
equivalent groups method of linking, which assumes equal ability
distributions, setting means and standard deviations equal, as is
done by the program, puts all parameters on a common metric.

The equivalent tests method allows an item pool to be divided
randomly into sets of items and these sets of iter3 administered to
different groups of examinees. It is assumed that the Liem subpools
are equivalent, and thus the method derives from the concept of ran-
domly parallel tests. Item parameter means are the values matched
across groups, and no assumption is required about the distribution
of abilities in the samples of examinees. As in the equivalent
groups method, parameters a, b, and c, as well as abilities, are esti-
mated separately in each group. The difference is that the ability
estimates and the a and b parameters are simultaneously adjusted such
that the item parameter means, rather than the ability mean and stand-
ard deviation, are constant across groups (e.g., mean a of 1.0 and b
of 0.0). Theoretically, the c parameter does not change across groups.

Methods based on anchoring. In the anchor-group method, a
common group (i.e., anchor group) of individuals takes all items in
the pool. Each subset of items is administered to a calibration
group consisting of the anchor group and an additional group of
examinees. The distribution of ability in the anchor group is taken
as a standard, and no assumption of randomly sampled examinees or
items is required. This method is conceptually very similar to the
equivalent-groups method. Items are calibrated independently in each
of the calibration groups as in the equivalent-groups method. The
difference lies in the group of examinees on which the origin and unit
of ability are established. In the equivalent-groups method, the
mean and standard deviation of ability are assumed constant across
calibration groups so the mean and standard deviation of ability in
each of the groups is set to the same value. In the anchor-groups
method, only ability in the anchor group is constant across calibra-
tion groups so, within each calibration group, a linear transformation
of the item parameters is found which makes the ability estimate means
and standard deviations within the anchor groups constant across cali-
bration groups (e.g., 0.0 and 1.0).

The anchor-test method is based on a common set of items admin-
'stered to all examinees. The anchor items are taken as the stand-
ard against which all other sets of items are calibrated. Parameters
of the anchor test items are first estimated on the entire sample
from the population of examinees. The mean and standard deviation of
ability in this sample can arbitrarily be set to zero and one, res-
pectively. Then for each subset of non-anchor test items given to a
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subgroup of examinees from the available population, item parameters
and abilities are estimated. Each examinee in a subgroup will have
an ability estimate from the anchor test items and another ability
estimate from the non-anchor test items. Since the metric of the
anchor test items is the standard, a transformation of item param-
eters of the non-anchor test items must be found which will make
ability estimate means and standard deviations equal for both anchor
and non-anchor test items. As was the case with the anchor-group
method, no assumptions regarding the distribution of item parameters
or abilities are required.

Composite network methods. The term network linking will be
used to refer to any linking paradigm in which one of the anchor
methods discussed above is used to simultaneously link items from
more than two tests. Included in thi8 category are the cascading
schemes discussed by Angoff (1971) as well as the more complex net-
works described by Wright (1977) and Forster and Ingebo (1979). Con-
ceptually, network procedures accomplish the same thing as the simple
methods discussed above. They also provide advantages not available
in the simple methods, however. Cascading schemes allow more effi-
cient use of subjects when abilities are spread over a wide range.
The more complex networks allow this and additionally allow inde-
pendent checks on the links and evaluation of linking adequacy.

Criteria of Linking Adequacy

Item linking and item calibration are two psychometric activi-
ties that are intimately interrelated in practice. They are con-
ceptually, however, two distinct operations, and it is important
to recognize this fact when evaluating criteria for the adequacy
with which each is done. Adequacy of calibration is evaluated by de-
termining the accuracy with which the parameters of the items are es-
timated. The essence of IRT linking, however, is embodied in the
linear transformation used to put items onto a common metric. This
transformation is specified by two parameters: unit and origin. It
is thus the accuracy with which these two parameters are estimated
that determines the adequacy of the link. Estimates of the two
parameters are subject to the same estimation quality criteria dis-
cussed above in reference to the item parameters: unbiasedness,
efficiency, sufficiency, and consistency.

Few of the studies discussed below have given adequate thought
to the criteria of linking effectiveness. In most cases, linking and
calibration effects have been hopelessly confounded. In some studies
of linking, no criteria that adequately reflect linking adequacy have
been included. These deficiencies will be pointed out as the studies
are discussed. More appropriate criteria will be presented later in
this report.
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Evaluation of Linking Techniques

Rasch Model. Of all the IRT models, the Rasch model is by far
the simplest. It is a special case of the three-parameter logistic

model which specifies that items can differ only in terms of diffi-
culty. Graphically, this means that each ICC has the same slope but
a different position to the right or left on the theta continuum.
Although not a model of prime interest to the current research, be-
cause it fails to consider that guessing is possible in multiple-
choice tests, most of the recent studies of linking and equating have
been done using the Rasch procedure. A representative sample of these
studies is thus reviewed below.

As in other logistic models, the Rasch ability parameters and
item difficulty parameters (the only parameters in the Rasch model)
are expressed on a common scale. Lack of an item discrimination
parameter puts an additional restriction on the model in calibration:
all items must be equally discriminating. In typical formulations

of the model, the effective value of the common a parameters is 1/1.7
or about .59. If the actual value (in the logistic model frame of
reference) is .59, the ability distribution will have a variance of
1.0. If the actual value is anything else, the variance will be
other than 1.0. Similarly, if the average person ability is equal
to the average item difficulty, or item easiness in Rasch termin-
ology, the mean of the ability distribution (in the logistic frame

of reference) will be 0.0.

Linking, as is commonly done with the Rasch model, consists of
determining an additive constant to adjust both item easiness and
ability values to a scale having a common origin. This is typically

done in one of two ways. The first method requires that a common
group of examinees respond to the item sets to be equated. Since
the ability of the sample of persons is the same in both item sets,
any differences in average ability computed from the different item
sets are due to differences between the item sets. The second method
requires that two groups of examinees respond to two item sets which
share a common subset of items. In this method, the model states
that because the common core of items should have the same average

item easiness in both sets, any observed difference is due to differ-
ences in ability levels of the two groups in which the two sets of
items are calibrated. An adjustment making the item easiness equal
in the core items can be applied to the non-core items to place them
onto the common scale.

In order for linking to be possible in this simple form, the
discriminating powers of the items must be constant not only within
tests but also across tests. Otherwise, only the means of the tests

would be equated and not the variances. Most of the studies in-
volving the Rasch model make the assumption of equal item discrimin-

ations across tests.
"8
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Several recent studies have investigated the utility of the
Rasch model for the equating/linking of the National Board Medical

Examinations. Bell (1979) used an anchor test to equate a 225-item
Physician's Assistants Examination given in 1973 with a similar ver-
sion given in 1976 (referred to here as the reference test). The
?nchor test was a 46-item set that had been included in all Physi-
cian's Assistants Examinations given since the testing program was
begun. Bell evaluated two procedures in terms of their ability to
answer two questions:

1. Is the ability level of current examinees higher than the
reference group on which the reference test was originally
calibrated?

2. Are the items on the current test more difficult than
those on the reference test?

The procedures Bell compared were the Rasch model and several
variants of linear raw score equating. For the Rasch procedure, each

examination was calibrated separately. This yielded easiness param-
eters for each item set and ability estimates for each examinee group.

Using a shift constant computed from the 46-item anchor test, ability
scores from the current test were shifted to the scale of the reference
test. The linear raw-score equating procedure began by estimating the
mean and variance for both tests from the performances of the current
group and the reference group on their respective tests and the com-
bined (current and reference) group on the common items. These esti-
mates were then used in a linear equation to yield a raw-score conver-
sion. This procedure was not specified in detail but reference was
made to Angoff's (1971) equating procedure for groups not widely dif-
ferent in ability. Bell concluded that although each procedure was
capable of answering the question about the ability level of the cur-
rent examinee group, only the Rasch model answered the question about
whether the difficulty of the current items had increased. No dis-
cusssion was given as to the fit of the data to the Rasch model so
judgment of the accuracy of the equating cannot be made. Due to the
brevity of the paper, no more detailed inferences can be drawn.

Kelly (1979) discussed a large Rasch linking study in which items
from two forms of a 1,000-item examination were linked together onto a
common scale. The tests used, licensing examinations for medical doc-
tors, were each composed of seven subtests of approximately equal

length, assessing areas as diverse in content as biochemistry and be-
havioral science. Kelly made the assumption that these subtests all
measured knowledge of medical science and were unidimensional enough
in total to allow Rasch calibration. Statistical tests of this as-
sumption, not described in enough detail to evaluate, reportedly sup-

ported its tenability.
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Kelly described two studies. In the first, the seven subtests
of a reference form of the test were administered to approximately

8,500 second-year medical students. Items in this test were all put
onto a common scale by shifting subtest difficulty by an amount
necessary to make ability estimate means zero for each of the sub-
tests. The implicit assumption of equal item discrimination among
subtests was apparently not tested. A second form of the test, the
current form to be linked to the reference form, was given to ap-
proximately 3,000 second-year medical students. There were an un-
specified number of common items between corresponding subtests in the
two test forms. The linkage between the forms was established by
first calibrating items of each subtest in the current form in the
current group and then setting mean difficulties of the common items
within subtests equal across the two forms. Uncommon items in the
current test were put onto the reference test metric by adjusting them

using the constant used to adjust the common items in the correspond-
ing subtest. This resulted, given the assumptions, in a pool of 2,000
items all linked onto a common scale.

In the second study that Kelly described, both the reference test
and the current test were first calibrated separately as 1,000-item
homogeneous tests. Linking was accomplished by finding the constant
that adjusted the common items to have equal mean difficulties in the

two examinee groups. This was done in the same manner used for the
subtests earlier. The difference here was that the entire test was
linked at one time. This study was primarily descriptive rather than
evaluative and, as such, provided no information on comparisons of
linking designs. It did, however, illustrate two different designs.
In the first study, linking was accomplished using a degenerate case
of the equivalent-groups method (in which the groups were identical)
and the anchor-test method. The second study used the anchor-test
method exclusively.

The major flaw in Kelly's study is that it was purely descriptive
rather than evaluative. It would have been informative, for example,
to have a comparison of the two equating procedures using the same
data. It seems reasonable to assume that both procedures would yield
nearly the same results, but an empirical validation would be more

convincing.

In the third study, sponsored by the National Board of Medical
Examiners, Hughes (1979) used data from six tests given to different
groups of examinees and placed the tests onto a common scale. Each
test was composed of either 10 or 11 sets of six multiple-choice ques-
tions for a specific physician-patient interaction. The common-item
links were thus composed of sets of questions, an arrangement that
probably violated the local independence assumption of IRT.

The- procedure for linking the six tests consisted of c complex
network of common-item links. An iterative procedure computed
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estimates of each test's average difficulty on a common scale and ex-
pected values of the shift constant for tests having no common-item
link. Two indices were proposed to identify inconsistent triads and
links: a triad index and a link index. No information was provided
about the distribution of these indices. Thus, only relative state-
ments about the quality of the linking networks could be made. Al-
though no conclusions were stated, use of the links and triad in-
dices as diagnostic tools in evaluating the quality of Rasch linking
was suggested.

Rentz and Bashaw (1975, 1977) applied item analysis and scaling
methods of the Rasch model to data from the equating phase of the
Anchor Test Study (Loret, Seder, Bianchini, & Vale, 1974) in the
development of the National Reference Scale (NRS) for reading. The
NRS was developed from seven widely used standardized reading tests
consisting of vocabulary and comprehension subtests. There were
two forms of each test, a primary and an alternate form. All 14
tests were chosen to be appropriate for grades 4, 5, and 6.

Seven pairs of tests were studied at each of the three grade
levels. Each examinee responded to two reading tests. Each pair

of tests was administered, counterbalanced, to two separate samples
within each grade level yielding a total of 42 samples per grade
level. In addition, each test was paired with its alternate form,
counterbalanced within each grade level, and administered to 14
additional samples.

All tests at a single grade level were placed onto a common

scale. Within each grade level, test pairs were calibrated as a
single long test. The average item easiness was computed for each
single test and the differences in averages were then computed for
the test pair. These average differences were organized into
matrices such that the lower half of the matrix contained differences
from one order of testing and the upper half of the matrix, from the
second order of testing. Row and column means were averaged, rever-
sing the signs of the row means (due to reversed orders of admini-
stration), to obtain the equating constant averaged over order of
administration. Tests were then placed onto a common scale defined
by the Sequential Tests of Educational Progress--Series II (STEP-II)
which was administered to all grade levels.

Comparisons of equated raw scores (i.e., number correct with no
correction for guessing) from the Anchor Test Study and the Rasch
study were made across samples from each study that took the same
tests in the same order. For each comparison, the first test admin-
istered was taken as the base test. Conditional mean-squared errors
were then computed for each base test score. For the comparisons
reported, the differences between the equipercentile and the Rasch-
based equated scores ranged from 0 to 3 raw-score points and were
deemed inconsequential.
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Slinde and Linn (1978, 1979) presented a set of studies designed
to evaluate the adequacy of the Rasch model for vertical equating
(i.e., equating where tests differ widely in difficulty and examinees
differ widely in ability). In their first study (Slinde & Linn,
1978) response data from 1,365 examinees on a 36-item mathematics
achievement test were used. Two tests of differing difficulty were
obtained by dividing the 36-item test into two 18-item tests on the
basis of the p-values of the items obtained in the group of 1,365 ex-
aminees. The average p-values of the tests were .665 for the easy
test and .362 for the difficult test. The examinees were then divid-
ed into low-, middle-, and high-ability groups on the basis of their
scores on the easy test.

Rasch item parameters were calculated for the total set of 36
items in the low group, the high group, and the total group (the
middle group was reserved for later use). Ability estimates were
then calculated for each of these groups (low, high, and total) using
parameters obtained from each group in a crossed design. Mean dif-
ferences between ability estimates derived from the easy test and
the difficult test were then computed and compared.

When the total group ability estimates were calculated using
item parameters obtained from the total group, the difference be-
tween means obtained from the easy and difficult tests was trivial.
Similarly, when the high group mean was calculated using item param-
eters obtained from the high group and when the low group mean was cal-
culated using the item parameters obtained from the low group, the
differences were trivial. When items calibrated in the high group
were used to estimate abilities in the low group or the middle group
and when items calibrated in the low group were used to estimate
abilities in the high group or the middle group, substantial differ-
ences in ability estimate means were found. Slinde and Linn inter-
preted this to mean that Rasch parameters were not really invariant
and that Rasch equating procedures were not particularly useful for
the problem of vertical equating.

Gustafsson (1979) criticized this interpretation. He suspected
that the differences between means was due to regression artifacts
which were due to the fact that Slinde and Linn had estimated abil-
ities and subgrouped people on the basis of only 18 of their 36
items. Individuals would not be expected to perform, in a relative
sense, as extremely in either direction on the entire 36 items as
they did on the easy 18; therefore, a difference between means would
be expected. To support his hypothesis, Gustafsson performed a com-
puter simulation modeled closely after the Slinde and Linn study with
the notable exception that the assumed invariance properties of the
Rasch model were built in. His simulation showed that the parameter
estimates obtained in the different groups were different but that
this was due to a regression artifact and not to a lack of invariance.
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He suggested that Slinde and Linn reanalyze their data, subgrouping
individuals on the basis of their total test scores.

Slinde and Linn (1979) improved upon this idea by obtaining data
from 1,638 examinees on two different tests including a 60-item read-
ing comprehension test. The first test was used to independently
subgroup examinees. The 60-item test was then split, on the basis
of item difficulty, into two 30-item tests and their original study
was essentially replicated. Their findings were that the mean
differences disappeared in comparisons of the middle with the high

group. Whenever the low group was compared with another group, the
differences persisted. This finding was attributed to the effects
of guessing. No allowance is made by the Rasch model for the possi-
bility that correct responses can be obtained through guessing. When
multiple-choice items are used, as was the case here, guessing undoubt-
edly happens and probably tends to bias the results. Most likely this
was a more pronounced effect for the low ability group where subjects
knew the correct answer less often and had more "opportunity" to guess.

Together these studies suggest that linear equating works as
expected using the Rasch model but that problems may result if the
model is used in groups of sufficiently low ability that guessing
occurs with any frequency. Unfortunately, most items used in ob-

jective tests can be answered correctly by guessing and may often be
used in environments where guessing is likely to occur. The three-
parameter logistic model extends the Rasch model to account for guess-
ing and thus may be more generally useful.

Three-parameter logistic model. In the three-parameter logistic
model, as in the simple Rasch model, a linear equation is used to
link parameters on one test to those on another. The one difference
in the three-parameter case is the explicit addition of a scaling
parameter to adjust for changes in unit as well as origin.

Three studies of linking using the three-parameter logistic
model were of direct relevance to the present effort. One, a study
by Reckase (1979), was of interest for two reasons: first he pre-
sented four methods of determining the linking transformation, and
second, he attempted to determine acceptable numbers of items to be
included in anchor tests for adequate linking to be possible. The
four techniques for item linking he presented were: (a) major axis,
(b) least squares, (c) least squares with outliers deleted, and (d)
maximum likelihood.

The major-axis technique got its name from the fact that the
parameter transformation equation was derived from the equation for
the major axis of the ellipse formed by the data points of a bi-
variate plot of parameters of items in the tests being linked. In
simpler terms, it amounted to a linear regression of the current pa-
rameters onto the reference parameters assuming the correlation to be
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perfect. Adjustment was made for unit and origin but no actual re-
gression was performed.

The least-squares procedure was a regression procedure where the
correlation was determined empirically rather than assumed to be per-
fect. As discussed earlier, this is not a legitimate linking method
but rather a method of prediction.

The least-squares-with-outliers-deleted procedure presented was
the same as the least-squares procedure, but items with parameters
further than two standard errors from the regression line were de-
leted. Like the other least-squares procedure, this was not a legi-
timate linking method.

The maximum-likelihood procedure described by Reckase was really
a version of the major-axis method. The procedure, as described,
made use of the capability of the program LOGIST to treat items as
"not reached" and ignore them in estimation of ability. What LOGIST
actually does can best be illustrated in the simple paradigm in which
two tests, with some of their items common, are given to two groups.
For examinees taking the first test, items unique to the second are
coded "not reached." For examinees taking the second test, items
unique to the first are treated as "not reached." LOGIST estimates
abilities for all examinees using all items "reached." This means
that each examinee is scored on those items contained in the test
taken. Using these ability estimates, item parameters are then esti-
mated. Before the estimation process, which is iterative, can proceed
to another stage, the ability estimates are scaled to a mean of zero
and a variance of one. To do this, all item parameters must be appro-
priately adjusted. The adjustment is a major-axis transformation de-
signed to make the parameters of the common items equal and the over-
all ability mean zero and variance one. Asymptotically, the same
result should be achieved by an ordinary major-axis transformation
following separate calibrations. For estimation, however, the maximum-
likelihood procedure has the advantage of using all available data on
the common items for each of the two separate calibrations.

Reckase used live-testing data obtained from administration of
the Iowa Test of Educational Development (ITED) given to 1,000 Iowa
school students from each of grades 9, 10, 11, and 12. The ITED
consisted of seven subtests with a total length of 357 items. A
principal-components analysis produced a sufficiently strong first
component to suggest unidimensionality. The data were calibrated
using each of three programs: (a) a Rasch model program written by
Wright and Panchapakesan (1969), (b) LOGIST, a three-parameter lo-
gistic maximum-likelihood program (Wood, Wingersky, & Lord, 1975),
and (c) ANCILLES, a three-parameter logistic minimum chi-square pro-

gram (Urry, 1975).
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This study was designed to evaluate the joint effects of linking
method, calibration procedure, sample size, and anchor test size. As
was discussed earlier, the major-axis method of determining a trans-
formation was the only true equating method presented and discussion
will be limited to that method. Sample sizes were 100, 300, 500,
1,000, and 2,000 obtained using a "systematic sampling procedure" from
a total of 4,000 cases. Three levels of item overlap were chosen: 5,
15, and 25 items. A

Four 50-item tests were linked in each condition. These tests
were cascaded in the sense that, except for the first and last test,
each test was linked to the previous test and the following test by
two different sets of anchor items. Overlap among items in the two
anchor sets in each test was permitted. Linking was performed se-
quentially: the second test was linked to the first, the third test
was linked to the first two, and the fourth test was linked to the
first three.

Each test was calibrated with each calibration program for each
sample size, and each set of four tests was linked for each sample
size and degree of overlap. Thus, for each linking there were 15
combinations of sample size and common item overlap. The reference
against which linking adequacy was judged was a full calibration of
the entire 357-item test using the full sample.

The adequacy of the linking was evaluated in three ways: (a) cor-
relations between the linked parameter values and the total-test-cali-
bration parameter values, (b) a sum-of-squared-deviations quality-of-
linking index (Wright, 1977), and (c) scatterplots of linked parameter
values versus total-test-calibration parameter values.

Results of the correlational analysis for the Rasch linking
showed a predictable pattern of increasing correlations as sample

size and number of overlapping items increased. No statistically
significant changes in correlation occurred as the number of tests
linked increased, but significance would have been difficult to judge
because all correlations were near 1.0. The sum-of-squared-deviations
quality-of-linking index was computed and reported for the Rasch model,
but because the chi-square values (a transformation of this index)
were significant, even when the correlations were of the order of .999,
Reckase concluded that this index bore little relationship to the qual-
ity of linking. Therefore, this quality-of-linking index was not re-
ported for the three-parameter models.

For the three-parameter calibration models, the correlations
tended to follow the same increasing trend as sample size increased.
No data were available for the 5- or 25-item overlap combinations;
therefore, no conclusions could be drawn regarding trends with in-
creasing item over-lap. From the correlational data reported, there
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seemed to be evidence to indicate that ANCILLES performed substan-
tially better than LOGIST.

One problem is apparent in this study. Linking in an IRT model
is an attempt to make a linear transformation of parameters from one
metric to another. Correlations, the major criteria used in this
study, are insensitive to differences between linear transformations.
Although they provide information about the accuracy of calibration,
they say virtually nothing about the adequacy of linking. The one
criterion that is related to linking quality, squared error of esti-
mate, was eliminated from consideration because it showed a difference
where the correlations showed none.

As the data for the three-parameter model were not complete at
the time the report was written, the effects of item-overlap could
not be evaluated. Furthermore, as only one linking paradigm was pre-
sented (i.e., an anchor test design) no comparisons among methods
were possible. Thus, the study served to clarify some issues re-
garding methods of transformation but did not provide any hard em-
pirical data regarding linking design for the three-parameter model.

Ree and Jensen (1980), in a simulation study, investigated the
joint effects of varying calibration group sample size and linking
group sample size on the quality of the item parameter estimates.
Simulating two tests with common items, a pool of 140 hypothetical
items was specified. This pool was split into two tests of 90 items
each. Twenty of the items were common to the two tests. The first
test, TI, was taken as the reference test and the second test, T2,
as the current test. Although not stated in the report, the pro-
gram OGIVIA was used for calibration (Ree, 1980a).

Two groups of 2,000 hypothetical examinees each were generated
from a standard normal population and a response vector for each
examinee on one of the two tests was generated according to the three-
parameter logistic model. Four samples of size 250, 500, 1,000, and
2,000 were drawn with replacement from each group and were used to
calibrate the corresponding test. The major axis method of linking,
described earlier, was then used to link parameters of the current
test to the metric of the reference test.

Two criteria were considered in evaluating the quality of the
parameter estimates. They were the correlations between true and
estimated item parameters and the average absolute differences be-
tween true and estimated parameters. In the portion of the study
explicitly discussing linking, only the average absolute differences
were presented as correlations were expected to be misleading.

Both criteria behaved as might be expected from other research
when accuracy of calibration was investigated separately in the two
tests. Correlations for the a and b parameters increased and average
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absolute error decreased as sample size increased. No definite trend
was obvious for the c parameter, however. It was estimated relatively
poorly at all sample sizes but some improvement was noticeable as the
sample size rose to 2,000.

Linking adequacy was investigated at each of 16 combinations
of reference and current group sample size for the a and b param-
eters. The c parameter, not in need of linking, was not considered.

The expected trend toward decreasing error in the current test with
increasing sample size was observed, for the most part, in the b pa-
rameters. As the size of the current test calibration sample in-
creased, error in the b parameters decreased. There was a reversal
with respect to the sample size used in calibrating the reference
test: errors of estimation for the current-test b parameters were
less for reference test calibration samples of 500 than for 1,000.

Errors in estimating a parameters did not follow such a reason-
able pattern. Errors, as a function of reference test calibration
group size, typically decreased with increasing size. Errors, as a
function of current group size, were highest at a sample size of 250,
lowest at a sample size of 500, and increasing from 500 to 7,000. It
is this latter trend that was not expected.

An interesting comparison present in the data but not discussed
was the relative quality of linking available from assuming equiva-
lent groups of individuals when such an assumption is warranted (as
it was in this study) compared to the quality of linking obtained
from use of an anchor test. Since the calibration program assumed
the ability metrics were the same for the two groups, the items were
automatically linked upon calibration. Errors incurred in this link-
ing were presented in the last column of Ree and Jensen's Table 5.
When these results are compared to those obtained using the anchor
test presented in their Table 6, it can be seen that the anchor test
method was superior in only three of 16 sample size combinations for
the a parameters and never superior for the b parameters. Thus, it
appears, an explicit attempt to link items is not always necessary
or desirable.

The third study of consequence to the present effort was a
unique application of the three-parameter latent trait model by
Sympson (1979). The procedure for placing items onto a common scale
was unique in that it required neither overlapping groups of exam-
inees nor overlapping sets of items. The data collection plan is
schematically shown in Figure 2. Items were rank ordered in terms
of difficulty and subtests were formed ranging from easy to diffi-
cult. Each subtest was administered to examinees at the grade level
for which it was targeted and at the grade levels one level above
and one level below that. Subtests were calibrated using responses
of the three groups who took each subtest.
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Figure 2. Sympson's Data Collection Plan

Grade Level

Subset of Items 1 2 3 4 5 6

A X X X

B X X X

C X X X

D X X X

In order to place each subtest onto a common scale when there

are no common items or common persons, Sympson suggested that if

groups are randomly sampled from their respective populations, an

equivalent-groups condition exists. This is indicated by the dashed

box in Figure 2. The assumption of random sampling from a specified

population implies, for example, that the group formed by combining

individuals from levels 3 and 4 who took subset B was a random sample

from the same "composite" population as the group formed by combining

individuals from levels 3 and 4 who took subset C. Each pair of groups

sampled from a common composite population was assumed to have the

same mean and standard deviation on the underlying ability metric and

thus comprised equivalent groups.

The paper was simply descriptive of the method and presented no

data suggesting how well it worked. Reference was made to an unpub-

lished simulation which apparently yielded favorable results. The

paper's primary contribution to the current research is in its sugges-

tion of a rather creative composite of simple procedures.

Conclusions

The research reviewed has been useful in suggesting potential

methods of performing the act of item linking. Several data
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collection designs were suggested. Several methods of establishing
the transformations were also suggested and served to clarify the
fact that, for IRT models, only the major-axis procedure is appro-
priate. Finally, the studies reviewed suggested several criteria of
linking adequacy. They served primarily to suggest a distinction
between criteria of calibration and of linking adequacy and to suggest
some candidates for linking-quality criteria.

The studies to date have not, singly or collectively, adequately
dealt with the linking problem in general, however. Reckase (1979)
attempted to compare methods of linking but his comparisons were
primarily between transformation techniques not appropriate for link-
ing. Ree & Jensen (1990) provided data relevant to the comparison of
two data collection designs but the study was too small in scope to
furnish much information regarding the linking problem in general.
The remainder of the studies reviewed were primarily reports of how
linking or equating had been accomplished for an applied problem and
provided little insight into the general linking problem. The need
for a broad investigation into the general linking problem seems
obvious if linking is to be done accurately and efficiently.

The preceding discussion on the need to evaluate calibration and
linking effectiveness separately was not intended to mean that cali-
bration and linking are independent activities. The accuracy with
which items are calibrated will have a definite effect on the accur-
acy with which items are linked. If, due to poor calibration, the
ability levels of the groups are not accurately assessed, the trans-
formation linking two groups will be in error. Similarly, the accur-
acy with which items are calibrated is, to some extent, dependent on
the linking paradigm used.

It is thus important in a study of linking effectiveness to eval-
uate not only the adequacy of the link but also the adequacy of item
calibration under the various paradigms. Ultimately, it is the accu-
racy with which the common-metric item parameters are estimated that
will determine the quality of the tests resulting from these items,
and this accuracy should be evaluated. Causes of inaccuracy in these
parameters must, however, be evaluated by partitioning them into the
effects due to calibration and the effects due to linking.
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II. BASIC RESEARCH DESIGN

There are three general approaches to evaluating competing stat-
istical or psychometric methods such as those considered by this
project: a theoretical study, a real-data study, and a Monte-Carlo
computer simulation (Weiss & Betz, 1973). In a theoretical study,
a statistician or psychometrician, working from a basic statistical
model, analytically derives the relevant characteristics of the
various methods and then compares them. An example of this method
was given oy Lord (1971) in which he analytically derived several
psychometric characteristics of a testing strategy. The theoretical
method provides exact answers to theoretical questions but is usually
limited to simple comparisons and comparisons made simple by restric-
tive assumptions.

Real-data studies answer different kinds of questions than do
theoretical studies. Rather than answering questions about psycho-
metric comparisons, they answer questions regarding characteristics
of people and interactions of people with testing methods. They, in
themselves, cannot answer questions such as which method best recov-
ers true parameters because, in real data, the true parameters are
never known. They are, nevertheless, essential in determining char-
acteristics to use in theoretical or simulation studies and as a
verification of the results of such studies.

A computer simulation is a modified theoretical study in which
theory and data come together in a stochastic model simulating the
responses of human examinees. Examples of a simulation study com-
paring testing methods are provided by Vale and Weiss (1975, 1978).
Examples of simulation studies comparing calibration techniques are
provided by Ree (1978, 1979). The simulation method is often prefer-
red to real-data studies because true parameter values are known and
more information can be collected more quickly. It is often prefer-
red over a theoretical study because less restrictive assumptions
are required. The simulation method is only as good as the theory
underlying it and the reality of the parameters behind it, however.

To assure that the simulation results are meaningful, a simul-
ation model must do two things: first, it must demonstrate a direct
connection to the real-world problem that it simulates, and second,
it must provide explicit answers to the questions of interest regard-
ing the problem. The simulation models used in this project were
anchored to the real world in two areas. First, the test items sim-
ulated were defined to be similar (in terms of their item parameters)
to Armed Services aptitude items likely to be encountered in an
actual linking problem. Second, the populations of individuals taking
the tests were defined to be similar in ability to populations likely
to take Armed Services tests. These procedures are described in the
first of two sections below.
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To address the research questions of interest adequately, the
simulations and subsequent analyses must be properly designed and
executed. In the second major section below, the research questions
and the criteria used to evaluate the procedures are integrated into
a concrete design for implementation of the study.

Development of Simulation Models

Specification of Items

Analyses of ASVAB item parameters. Two distinct sets of item
parameter data were available for evaluation in preparation for the
computer simulations. The first of these was an OGIVIA-produced IRT
parameter set obtained from the subtests of an experimental version
of Armed Services Vocational Aptitude Battery (ASVAB) Form 9 adminis-
tered to Armed Forces Examining and Entrance Station (AFEES) exam-
inees; a sample of 500 examinees was used to obtain the IRT param-
eters. Experimental Form 8 was a form of the ASVAB developed to
parallel then-operational Form 7 (see Fruchter & Ree, 1977). The
second set of data included the classical item parameters (i.e., the
item-total score correlations and proportion correct) obtained from
new Forms 8, 9, and 10 of the ASVAB administered, in a previous pro-
ject, to groups of high school juniors and seniors. Each form was
given to approximately 500 examinees. These parameters were trans-
formed to IRT a and b parameters using Urry's method of simple ap-
proximation (Jensema, 1976). Because all items were four-alternative
multiple-choice items, the c parameters were all set to .25

New ASVAB Forms 9, 9, and 10 differed from the old Forms 5, 6, and
7 (and, hence, from Experimental Form 8 discussed above) in that three
of the original 12 subtests were eliminated, two subtests were com-
bined, and two new subtests were added. Thus, there remained seven
subtests in common between the two sets of available data. One of
these subtests, Numerical Operations, was a speeded test and was there-
fore eliminated from consideration here because the logistic model is
inappropriate for speeded tests. The six remaining subtests were Word
Knowledge (WK), Arithmetic Reasoning (AR), Mathematics Knowledge (MK),
Electronics Information (EI), Mechanical Comprehension (MC), and General
Science (GS). In the new Forms 9 to 10, the lengths of five of these
subtests were increased by 5 or 10 items; only the electronics test was
shortened (by 10 items). See Table 1 for the numbers of items avail-
able in each of these subtests. These six subtests formed the basis
for comparisons between Experimental Form 9 and the new Forms 9 to 10.

Table 2 presents summary statistics of items from the tests
analyzed. The first four columns present values obtained for the
first four central moments on the subtests of Experimental Form 3.
The remaining four columns show values of the four moments obtained
by pooling items from the new ASVAB Forms 9, 9, and 10.
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Table 1. Number of Items in the Two Sets of Item Parameter Data

New Forms 8, 9, 10
Experimental Within Across All

Subset Form 3 One Form Forms Available

Word
Knowledge (WK) 30 35 175

Arithmetic

Reasoning (AR) 20 30 180
Math
Knowledge (MK) 20 25 75

Electronics
Information (EI) 30 20 60

Mechanical
Comprehension (MC) 20 25 75

General
Science (GS) 20 25 75

Note: For WK and AR, a total of 6 different forms existed for each
subtest (e.g., Forms 8A, 8B, 9A, 9B, 10A, 108); only the first five
forms for WK were available for analysis and comparison. Only three
distinct forms of each subtest existed for the last four subtests
listed.

Mean proportions correct were higher on the new forms than on
the experimental form. Values for each of the subtests clustered re-
latively close to the median values, however. The standard devia-
tions were approximately equivalent across forms, again clustering
near their medians. Comparing median skews, the proportions correct
appeared to be nearly symmetric in both data sets. A relatively wide
range of individual values was observed, however. Kurtosis was quite
constant both within and across data sets; all proportion-correct
distributions were quite platykurtic.

Biserial item-total correlations had relatively consistent means
and standard deviations. There was some variation in skew within data
sets. In the experimental form, values of skew ranged from -.872 to
.012. In the new forms, the subtest skew ranged from -.432 to .089.
Both medians were negative and not very different from each other.
Kurtosis showed a wide range in the new forms, ranging from -1.009
to .390. It was less variable in the experimental form, ranging from
-.822 to .120. The medians for the two data sets were not substan-
tially different.

It was the IRT parameters, a, b, and c, that were most relevant
to this project, however, as they were to form the basis for the sim-
ulation models. Mean a parameters were consistent within and across
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Table 2. Item Parameter Summary Statistics
from Experimental Form 8 and New Forms 8, 9, 10

New Forms 8, 9, 10
Experimental Form 8 (Pooled)

Test Mean SD Skew Kurtosis Mean SD Skew Kurtosis

P,:p. WK .602 .152 -.309 -.994 .716 .150 -.338 -1.024
Corr. AR .555 .168 .369 -.568 .656 .130 .121 -.766

MK .518 .141 .172 -.911 .619 .126 .111 -.664
El .598 .126 -.455 -.750 .640 .160 -.230 -.955
MC .492 .165 .650 -.545 .625 .133 -.018 -.693
GS .511 .132 .178 -.997 .660 .148 -.450 -1.004

Mdn .536 .146 .175 -.830 .648 .140 -.124 -.860

Bis. WK .700 .113 -.717 .021 .670 .139 -.362 -.466

AR .667 .071 -.080 -.470 .646 .105 -.432 .390
MK .588 .124 -.744 -.608 .666 .084 -.089 -.862
EI .694 .089 -.872 -. 145 .508 .136 -.097 -1.009
MC .625 .081 .012 -.822 .518 .110 .089 -.325
GS .629 .090 -.019 .120 .565 .112 -.044 -.891

Mdn .648 .090 -.398 -.308 .606 .111 -.093 -.664

a WK 1.769 .536 -.124 -. 180 2.171 .996 -.214 -1.621
AR 1.816 .573 .789 .741 1.999 .904 .212 -1.498
MK 1.602 .449 .706 .500 2.146 .848 .058 -1.581
EI 1.486 .409 .444 -.190 1.183 .748 1.356 1.040
MC 1.613 .388 -.129 -.713 1.116 .584 1.884 4.075
GS 1.478 .627 1.019 1.433 1.439 .824 1.112 .012

Mdn 1.608 .492 .575 .160 1.719 .836 .662 -.743

b WK -.005 .686 .312 -.810 -.333 .707 .309 -.375
AR .198 .772 -.484 -.572 -.126 .627 -.594 1.052
MK .510 .976 .525 -.016 .019 .545 -.226 -.063
EI -.014 .567 .098 -.886 .080 .908 .639 -.671
MC .577 .859 -.495 -.633 .070 .788 .219 .128
GS .413 .650 .456 -.027 -.079 .764 .825 -.376

Mdn .306 .729 .205 -.602 -.030 .736 .304 -.219
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Table 2 (Continued). Item Parameter Summary Statistics
from Experimental Form 8 and New Forms S, 9, 10

New Forms 8, 9, 10

Experimental Form 8 ___ (Pooled)
Test Mean SD Skew Kurtosis Mean SD Skew Kurtosis

c WK .143 .067 .482 -.518
AR .262 .114 .400 .635

MK .293 .098 .754 -.411
EI .170 .069 .626 -.467
MC .287 .091 .938 .?65
GS .225 .113 -.368 -1.039

Mdn .224 .094 .544 -.439

Note: For the new Forms , 9, and 10, the c parameter was set to .25
for all items.

data sets; median values were 1.608 and 1.719. Standard deviations
were quite variable within each data set, and the medians were mark-
edly different (.492 vs. .836). The skews were typically positive but
again somewhat variable. There were wide differences in kurtosis
within and across data sets, as observed for the biserial correlation
coefficients.

Part of the variability in the item statistics for the new ASVAB
forms was undoubtedly due to difficulties with the item calibration
procedure which caused a values to cluster at the upper limit. This
clustering may be attributed to an artifact of the transformation
procedure performed on the classical parameters from the new ASVAB
forms. The theoretical relationship between the item-total biserial
coefficients and the IRT a parameters is exponential, with high values
for the former leading to very high values for the latter. At the
upper end of the a distribution, then, the points are more spread out
than they are at either the low end of the a distribution or the upper
end of the distribution of biserials. (In this transformation proce-
dure, the maximum a value was defined to be 3.20 and any transformed
a which originally exceeded that value was set to 3.20. See Table
3 for the numbers of items which reached this maximum value.) This
phenomenon would produce a distribution of a parameters which had a
larger mean and standard deviation, was more positively skewed, and
was somewhat more platykurtic than might otherwise be found. This,
of course, is exactly what was observed for the new ASVAB forms.

The item parameters for Experimental Form 9, were produced by
the OGIVIA program which relies on the same transformation for the
initial parameter estimates. There are two crucial differences

-44-



Table 3. Numbers and Percentages of Items From the New
Forms 3, 9, 10 With a Parameters Set Equal to the Maximum Value

N in N with Percentage with
Subtest Subtest Maximum a Maximum a

WK 175 72 41.14

AR 180 50 27.78
MK 75 21 ?8.00
EI 60 4 6.67
MC 75 3 4.00
cS 75 9 12.00

Total 640 159 24.84

between these parameters, however. The first is that the OGTVIA-pro-
duced a parameters from Experimental Form 8 were restricted so that
the maximum a during the first and second stages was 2.40. During
the ancillary corrections, however, there was no bound on the a param-
eters, and they were permitted to exceed 2.40 at this stage. The
difference between the two procedures lies in OGIVIA's refinements of
the item parameters based on values of the c parameters. For Experi-

mental Form 8, as will be discussed below, the c parameters were
quite variable. Although this was probably also the case with the
"true" c's in the new ASVAB forms, all these c's were set to .25.
The effects of these restrictions and of the c parameters on the
estimation of a is reflected in the observation that the OGIVIk-
produced a parameters did not cluster at the upper end of the dis-
tribution, and none were unreasonably large. Table '4 presents the

numbers of items whose a parameters were equal to or exceeded 2.110
after the ancillary corrections; these relatively small values should
be contrasted with the numbers of items with a parameters set to the
maximum (3.20) in Table 3. For Experimental Form 3, only two items
had a parameters exceeding 3.20.

The b-parameter means (Table 2) were slightly variable among
subtests of the experimental form and quite constant in the new forms.
Overall, the b parameters were slightly higher in the experimental
form, indicating that either the items were more difficult or the
AFEES examinees were less able than the high school students. Stan-
dard deviations were variable within data sets, but their overall
medians were essentially equivalent. Skews ranged from -.495 to .525
in the experimental form and from -.594 to .825 in the new forms.
Corresponding medians were .205 and .304. Kurtosis ranged from
markedly flat to normal in the experimental form and from markedly
flat to markedly peaked in the new forms; the kurtosis medians dif-
fered somewhat.
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Table 4. Numbers and Percentages of Items From
Experimental Form 8 With a Parameters Equal to or Exceeding 2.40

N in N with Percentage
Subtest Subtest a > 2.40 with a > 2.40

WK 30 4 13.33
AR 20 3 15.00
MK 20 1 5.00
EI 30 0 0.00
r4C 20 1 5.00
GS 19 2 10.53

Total 139 11 7.91

Note: One item from the original 20-item GS subtest was rejected by
OGIVIA. Hence, IRT parameters were available for only 19 GS items.

Moments of the c parameters were calculated only for the experi-
mental form as all c values were set to .25 in the new forms. Means
and standard deviations were relatively consistent about their
medians of .244 and .094, respectively. Skew was typically positive,
with one exception. Kurtosis was variable, ranging from quite flat
to somewhat peaked.

Table 5 presents intercorrelations among item parameters for
Experimental Form 8 and new Forms 3, 9, and 10. For the new ASVAB
forms where c was not estimated but, rather, set to .25, only the
correlations between a and b could be calculated. The individual
correlations exhibited considerable variation in all columns. The
median of each column is presented at the bottom of Table 5. For
Experimental Form 8, these medians were all essentially zero. For
the new forms, the median a-b correlation was -.438.

Specification of a representative item domain. It appeared
reasonable to assume that the item parameters summarized in Table 2
represented, with a few exceptions, a fair picture of the item do-
mains likely to be encountered in the world of military testing. To
form a basis for the simulations, a representative domain of items
had to be specified. As with most scientific problems, there was a
tradeoff between fidelity and practicality. The most faithful pro-
cedure would run all simulations on item sets representing each of
the six subtests evaluated in Table 2. Practically, however, this
would limit the number of simulations that could be run on any one
item set. The approach taken in this project began by evaluating the
item parameter data presented above to determine how far the six sets
could reasonably be collapsed.
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Table 5. Parameter Intercorrelations for
Experimental Form 8 and New Forms 3, 9, 10

Experimental Form 9 NewForms 8,_9, 10
Subtest a-b a-c b-c a-b

WK .254 .311 .718 -.659
AR -.152 -.1511 -.607 -.173
NK .027 -. 334 .233 .037

EI .300 .027 .315 -.625
MC -.526 .011 -.494 -.349
GS -.321 .026 -.104 -.527

Median -.063 .018 .064 -.438

Note: The c parameter was set to .25 for all items in the New Forms
9, 9, 10. Therefore, only the correlation between the a and b para-
meters could be calculated.

The a parameters of the new forms were plagued by extreme esti-
mates in nearly one-fourth of the items (see Table 3). Comparison
of the first three tests with the last three tests hints at the extent
of this problem. The safest route appeared to be to disregard the a
parameters from the new forms and concentrate on those from the ex-
perimental form. 4 single domain with mean a of 1.6 and a standard

deviation of .49 seemed reasonable. Skew and kurtosis values ap-
peared to be nearly rectangularly distributed with few clusters. This
suggested either one or six separate distributions. Six distributions
seemed to be an extreme number to simulate just to capture differences
in skewness and kurtosis. Median values were thus used. For the
computer simulations, then, a was specified as having a mean of 1.60,
a standard deviation of .49, skew of .58, and kurtosis of .16.

Although the medians of most of the b parameter moments were
similar across the two forms, none of the distributions were appro-
priate for an adaptive testing item pool. Since adaptive testing
is one of the major reasons for interest in IRT, the difficulty dis-
tributions were extensively altered for simulation. An item pool
often considered ideal for adaptive testing has b parameters rec-
tangularly distributed between b=-3.0 and b=3.0. Such a distribution
has a mean of 0.0, a standard deviation of 1.73, a skew of 0.0, and
kurtosis of -1.2. It is not unreasonable to expect item writers to be
able to produce items similarly distributed. To allow for the prac-
tical consideration that more weight will undoubtedly be given to the
center of the distribution, these specifications were relaxed somewhat.
Thus, the b distribution used for the simulation was specified to have
a mean of 0.0, a standard deviation of 1.5, a skew of 0.0, and a kur-
tosis of -1.0.
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For input into the computer simulations, the c parameter distri-
bution was specified to be as it was for Experimental Form 3. The
parameters were: mean .24, standard deviation .09, skew .54, and
kurtosis -.44. Because the median inter-parameter correlations were
essentially zero for Experimental Form 8, uncorrelated parameter dis-
tributions were used for the simulations.

Item parameters were generated from the specified mean, variance,
skew, and kurtosis using the power method described by Fleishman
(1978). This procedure allows random numbers to be generated with
the first four moments asymptotically specified.

Item parameters specified as described above did not always pro-
duce acceptable items. A few items were so extreme in difficulty
that either all simulated examinees responded correctly or all res-
ponded incorrectly. When this happened, it was not possible to esti-
mate parameter values for the item and it had to be discarded at the
calibration phase. To prevent this from happening, items were re-
jected at an earlier phase when they were first generated if the ex-
pected proportion correct in a standard normal population was below
.03 or above .97. This expected proportion correct was obtained
from Equation 2 (From Owen, 1969, Eq. 6.2).

P = c + .5 (1-c) [1-erf(D)] [2]

-, ]-I/2
where D = b [2(a +1)]

x

and erf(x) = 2 (T)-I/2 J exp(-t 2 ) dt

0

Rejection of items in this manner was expected to affect the
distributions of the item parameters such that the moments would not
be exactly as specified in the preceding paragraph. Since moments of
the true parameters were needed for evaluation of some of the linking
methods, a simulation was run to estimate these moments. in this
simulation, 10,000 acceptable items were generated using the proce-
dure described above. The first four moments were calculated for the
three item-parameter distributions. For the a parameters, the mean,
standard deviation, skew, and kurtosis, respectively, were 1.585,
.488, .602, and .220; for the b parameters they were .227, 1.337,
.079, and -.995; for the c parameters they were .240, .090, .527,
and -.449. The only noticeable changes resulting from this rejection
were in the b parameters; the mean rose slightly and the standard

deviation and skew dropped slightly.
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Spec ification of Ability Distributions

The objectives of the analysis of the AFEES ability distributions
were threefold. The first was to obtain parameters of ability dis-
tributions for use in simulation models. Since one link between sim-
ulation and the real world is the ability distribution which generates
the response vectors, the parameters describing this distribution
should, as closely as possible, reflect the current AFEES examinee pop-
ulation. The second objective was to determine whether the AFEES exam-
inees were sufficintly variable in mean ability to make item cali-
bration more efficient hy non-random assignment or experimental items.
The final objective was to determine if the AFEES examinees were
sufficiently similar that the equivalent-groups method could be effec-
tively applied using the AFEES as the experimental sampling unit, even
though that would violate a basic assumption of the method.

Examinee data available. The primary data available for analy-
sis consisteJ of ninber-correct scores of 500 applicants from each of
the t33 Continental United States (.ONUS) IFEES on 12 subtests of
ASVAB-7 randomly selected from tests administered during calendar year
1979. Six of the ASVAB-7 subtests were deleted from the analysis
.ither because they were speeded tests or because they had been elim-
inated in the newer versions of the ASVAB. Fifty-six cases, in which
keypunch errors were encountered, were deleted from the 32,500 cases
available for analysis, leaving a total of 32,444 cases for further
analysis. These deletions were essentially random and no single AFEES
lost more than three cases to such errors.

Additionally, data from a sample of 500 applicants tested on an
experimental version of ASVMB-9 were available in summary fo-n. These
data consisted of grouped frequency distributions of modal Baves in
latent trait estimates from the item calibration program, 0G3V71.
They were collected during calendar year 1973.

Score data available. Ideally, latent trait estimates of abili-
ty should be used to evaluate the distributional characteristics of
the underlying trait. The individual item response vectors needed to
compute latent trait ability estimates were not available for analy-
sis, however. The raw number-correct scores that comprised tne pri-
mary data set were less than optimal for evaluation of ability dis-
tributions for several reasons. One major problem with using number-
correct scores is that different response patterns can result in the
same nu.nber-correct score. When test items differ in their cYarac-
teristic functions, differing response patterns to a set of items,
each containing the same number of correct reponses, can result in
differing ability estimates. The effect of this is that the shape
of the distribution of number-correct scores may differ fro' that of
the underlying ability.
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If IRT item parameters are available for a set of items, the
test characteristic curve can be computed. This curve relates abil-
ity levels to true scores and can be used to approximate ability
levels from number-correct scores. The item parameters were not
available for ASVAB-7, however, and this transformation was not
possible. The ability distributions were thus developed by simply
standardizing the number-correct scores. The shape of the distri-
bution of standardized scores would be correct if the test charac-
teristic curve was linear. The degree to which this was true in the
available data was not readily assessable.

The limited set of data available from the experimental form of
ASVAB-8 did, however, provide an avenue for verification that the
distribution shapes were reasonable. Although these data were not
sufficient to draw any conclusions regarding differences among AFEES,
they were adequate for evaluating the representativeness of the third
and fourth moments.

Raw-score analysis. The parameters of the ability distributions
for each subtest were estimated from the first four central moments
of the total AFEES sample. The means and variances were set to zero
and one, respectively, to facilitate subsequent analyses. Table 6
presents the skew and kurtosis for each ASVAB-7 subtest. With the
exception of Word Knowledge and Electronics Information scores, which
had slight negative skews, the remaining subtest scores had slight
positive skews. Almost all subtest scores exhibited marked platy-
kurtosis.

Table 6. Overall Skew and Kurtosis

ASVAB-7 Number-Correct Scores (N=32,444)

Subtest Skew Kurtosis

WK -. 114 -.991
AR .162 -.850
MK .328 -.717
EI -.213 -.247
MC .383 -.429
GS .259 -.560

Median .210 -.639

Because of the extreme flatness of the observed-score distri-
butions, a check was made to ascertain whether this was due to out-
liers or whether it represented the true shape of the distribution.
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The raw-score frequency distributions of a random sample of approxi-
mately 4% of the total AFEES sample for each ASVAB subtest are pre-
sented in Figures 3 to 8. It is apparent from the figures that the
observed flatness was not an artifact caused by a clustering of scores
at the endpoints. Thus the platykurtosis of the ability distributions
is a realistic representation of the actual shape of the distribution.
An earlier study by Fruchter and Ree (1977) describing the psychometric
characteristics of experimental ASVAB Forms 3, 9, and 10 compared to
operational Form 7B presented descriptive statistics from a sample of
DFEES examinees similar to the present sample. Their results indicat-
ed the same trend toward platykurtosis as was found in this project.

Differences among AFEES. Two of the objectives of the AFEES
evaluation centered on the determination of the differences in abil-
ity distributions among AFEES. Raw scores for all subtests were
standardized by a linear transformation to a mean of zero and a stand-
ard deviation of one, as discussed above, to approximate the metric of
a standard ability continuum. This standardization was done across
all 32,444 examinees. The first four moments of these standard scores
were then computed within each of the 65 AFEES groups.

Table 7 present summary statistics on the AFEES for each ASVAB
subtest. The columns are the four central moments computed across
AFEES (i.e., mean, standard deviation, skew, and kurtosis). The rows

Figure 3. Raw Score Frequency Distribution
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Figure 4. Raw Score Frequency Distribution
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Figure 5. Raw Score Frequency Distribution
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Figure 6. Raw Score Frequency Distribution
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Figure 8. Raw Score Frequency Distribution
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represent the ASVAB subtests and within each subtest, the mean,
standard deviation, minimum and maximum of the first four moments.
The mean of the means was zero in all cases since the computation was
done on standard scores. The mean of the standard deviations was
somewhat less than one. This is because part of the overall variance
is due to variance among subgroup means which is not included in this
calculation.

The standard deviations of the AFEES means and standard devia-
tions are of interest in that they provide information regarding
the error that will be introduced into the linked b and a parameters,
respectively, if differences among the AFEES are not controlled in
the linking process. If, for example, the equivalent-groups method
was used and sampling was done non-randomly by assigning different
booklets to each AFEES, these standard deviations are related to the
root-mean-square (RMS) parameter error that would be introduced into
the item parameters (the square of these values would be added to the
mean-square error). The standard deviations of the AFEES means
ranged from .201 to .244 which indicated that the AFEES were rela-
tively homogeneous with respect to deviations about their central
values. The mean-square error expected to be added to the linking
error on the b parameters when sampling by AFEES was thus on the
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order of .040 to .060. Likewise, the range of linking error expected
to be added to the a parameters was on the order of .001 to .003
(squared standard deviations of the AFEES standard deviations).

Table 7. Standard-Score Summary Statistics
Across AFEES for ASVAB-7 Subtests

AFEES Moments by Subtests
Subtest Mean SD Skew Kurtosis

WK Mean .000 .971 -.100 -.878
SD .235 .041 .245 .158
Min -.634 .876 -.512 -1.119
Max .385 1.060 .557 -.408

AR Mean .000 .975 .162 -.739
SD .222 .037 .219 .219
Min -.465 .852 -.350 -1.026
Max .428 1.056 .725 .157

MK Mean .000 .978 .321 -.620
SD .201 .049 .202 .306
Min -.340 .798 -.084 -1.078
Max .409 1.059 .718 .212

El Mean .000 .972 -.188 -. 193
SD .230 .049 .152 .253
Min -.544 .831 -.607 -.598

Max .384 1.056 .818 1.198

MC Mean .000 .969 .384 -.307
SD .244 .050 .196 .365
Min -.518 .794 -.073 -.833
Max .445 1.094 .820 .911

GS Mean .000 .974 .268 -.480
SD .225 .033 .167 .245
Min -.443 .882 -.097 -.867

Max .382 1.031 .680 .469

Comparisons of the overall skew and kurtosis given in Table 6
for each subtest with the skew and kurtosis for AFEES by subtest in
Table 7 revealed virtually the same magnitudes and directions for the
respective subtests. This indicated that the distributions of scores
within AFEES were very similar in shape to the distributions over all
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AFEES. Thus the four central moments computed for each subtest
appeared to be reasonable estimates of the unknown true population
values.

Modal Bayesian trait estimates. A parallel analysis was conduct-

ed on the available grouped frequency data provided by the IRT cal-
ibration program by computing the first four central moments for each
ASVAB subtest. The formulas used to compute the moments were simply
generalized versions of the formulas for ungrouped data where each
element in the sum was the midpoint of its class interval weighted by
the frequency of its occurrence.

As with the number-correct scores, the grouped modal Bayesian
estimates exhibited consistent platykurtosis which ranged from -.607
for Arithmetic Reasoning to -.860 for Word Knowledge (see Table 1).
Similarly, a slight skew was observed. Comparison of Table 8, which

shows the four central moments for the ASVAB-8 modal Bayesian esti-
mates, with Table 6 for the ASVkB-7 number-correct scores, indicates
that the skews observed for the modal Bayesian estimates were similar
to those of the number-correct scores observed over all AFEES. Agree-

ment between data sets on observed kurtosis was also apparent. Both
data sets agreed in direction and magnitude of the observed kurtosis.

Table 8. Mean, Standard Deviation, Skew, and Kurtosis of
ASVAB-8 Modal Bayesian Ability Estimates (N=500)

Subtest Mean SD Skew Kurtosis

WK .086 .854 .177 -.860

AR .094 .805 .164 -.607

MK .110 .736 .195 -.643

E! .078 .807 .026 -.623

MC .087 .785 .145 -.782

GS .137 .729 .280 -.702

Overall, analysis of the modal Bayesian ability estimates tended
to confirm the results of the number-correct score data and support
the observation of flat ability distributions on ASVAB subtests. Al-
though restricted to a fairly small sample (N=500) compared to the
number-correct data, the modal Bayesian estimates were the preferred
type of data. The results from these two rather disparate data sets
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tended to reveal the same general trends; therefore, the actual shapes
of the underlying trait dimensions appeared to be adequately rep-
resented.

Specification of distributional parameters. To form a basis for
the simulations, the ability data summarized in the preceding sec-
tions had to result in specification of a set of parameters to define
the simulation models. To accommodate the simulations to be perform-
ed, two sets of ability parameters were needed. The first set re-
quired ability parameters for the overall AFEES distribution and the
second set required ability parameters to describe each individual
AFEES.

The data summarized consisted of six ASVAB subtests, representa-
tive of ability tests used by the Armed Services. To specify the
parameters for the simulations, the first question to be answered was
whether a single set of parameters could represent all of the tests
or whether several sets would have to be included in the simulations.
To answer this question, the skews and kurtoses of the overall distri-
butions were of primary interest as the means and standard deviations
were to be set to zero and one. Tables 6 and 8 allow comparisons
between the skews and kurtoses of the ability distributions on the
six subtests. Although many of the differences between subtests were
statistically significant due to the large sample sizes, the absolute
magnitude of the differences was relatively small. A general state-
ment could be made that the ability distributions were, in most
cases, symmetric and flat. The decision was thus made that a single
subtest's ability distribution could be taken as representative of
Armed Services ability tests.

The question remaining was how to choose the most representative
test. Of two possible solutions, one was to use median values for
the distributional parameters across the six subtests, while the other
was to select a single test as representative and use its parameters
throughout. It is possible, under the first approach, to get im-
possible combinations of parameters. Also, across AFEES, the param-
eters thus defined would have less variability than a typical set of
parameters. A single test was thus chosen as representative of the
ASVAB subtests.

To choose that subtest, the subtests were rank ordered according
to their absolute deviations from the median of the overall skew and
kurtosis values shown in Table 6. General Science and Arithmetic
Reasoning ranked closest to the median for skew. General Science and
Math Knowledge ranked closest to the median for kurtosis.

Across AFEES, it was essential that the test chosen as repre-
sentative have representative variability in mean and standard devia-
tion of the individual AFEES groups. The six subtests were thus
rank-ordered on the standard deviation of'their means across AFEES
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and the standard deviation of their standard deviations across AFEES.
From the data in Table 7, it was determined that the typical tests in
terms of variability of means were Electronics Information and Gen-
eral Science. In terms of standard deviations, the most typical were
Math Knowledge and Word Knowledge.

Of the four comparisons, General Science was one of the most
typical subtests in three out of four comparisons, the most of any
subtest. Its parameters were thus selected for the simulation model.
The overall ability parameters were thus mean of zero, standard devi-
ation of one, skew of .259, and kurtosis of -.560. The four param-
eters from each of the 55 AFEES on the General Science test were used
for individual AFEES simulations. These are listed in Appendix Table
A-i.

Basic Data Sets

Four basic item linking paradigms were to be evaluated. It be-
came apparent from review of the Armed Services calibration environ-
ment that practical administration constraints might, in a predict-
able fashion, violate a basic assumption of at least one of the para-
digms. Specifically, the assignment of experimental test booklets to
AFEES examinees would possibly be done non-randomly. In the limiting
case, it is possible that each AFEES might receive a single form of a
test booklet and, further, might be the only group to receive that
booklet. Thus, two distribution schemes were simulated, the ideal
case reflecting random distribution of test booklets and the worst
case expected, that of non-random distribution.

The additional possibility existed that items might be calibrated
on a selected group of examinees, such as those already in the Armed
Services. A basic data set reflecting this situation was thus also
developed.

Randomly sampled examinees. For the random-distribution case, a
two-way grid composed of 12 combinations of test lengths of 20, 35,
50, and 65 items with examinee group sizes of 500, 1,000, and 2,000
formed the framework of the design. Within each cell, the specified
number of examinees was randomly drawn from a standard ability popu-
lation with a skew of .259 and a kurtosis of -.560. A sample of items
was then drawn with parameters following the domain distribution spec-
ified in an earlier section. This process was repeated five times
in each cell, with new random samples of examinees and items each
time.

Systematically sampled examinees. The non-random procedure was
similar to the random procedure except that for each replication, one
of the 65 AFEES was randomly selected (with replacement) and its dis-
tributional statistics on the General Science test were used to de-
scribe the population from which examinees were drawn. In a real
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calibration design, the non-randomness of the sampling procedure
would probably be less extreme. Each test booklet would probably be
distributed over several AFEES groups. The exact distribution plan
could not be predicted, however, and the limiting case was chosen to
provide a bound to the errors that could be expected.

Selected examinees. One row of the basic matrix corresponding
to 1,000 examinees was simulated at the standard test lengths of 20,
35, 50, and 65 items for the selected examinee condition. As with
the other conditions, five replications were done in each cell. In
this condition, however, 1,500 examinees were generated and sorted on
the basis of the number-correct score. One thousand individuals
with scores at or above the score of the individual ranked 1,000th
were selected. This procedure was done to simulate examinees se-
lected on the basis of a cutting score and the cutting score was
chosen to be similar to that used by Ree (1979).

Composite sets of items. To evaluate the effects of linking
procedures, items from more than one calibration must be combined and
linked. To facilitate this evaluation, two types of composites were
assembled from the basic data sets. In the homogeneous condition,
the five sets in each cell of each 3x4 or 1x4 matrix were linked to-
gether. In cells containing 20-item sets, 100 items were linked to-
gether; in cells containing 65-item sets, 325 items were linked to-
gether. Composite sets so assembled provided data regarding linking
adequacy when all sets included were homogeneous with regard to test
length and size of calibration group.

The second type of composite, the heterogeneous condition, was
formed by selecting 20 items from one set of each of the 12 cells of
the 3x4 matrix to form a set of 240 items. Items beyond the first 20
in a set were ignored. This procedure resulted in five composites
from each matrix, one corresponding to each replication within the
cells. This type of composite yielded data regarding linking ade-
quacy when sets included were heterogeneous with respect to test
length and calibration group size.

Calibration of items. For each of the 140 administrations enum-
erated above, item responses were generated using true ability levels
and true parameters according to the following algorithm:

1. The probability of a correct response to an
item, given an individual's ability and the
true item parameters, was calculated using
Equation 1.

2. A random number from a rectangular distribu-

tion on the range from zero to one was drawn.
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3. A response of "correct" was assigned if the
probability exceeded the random number.
Otherwise, a response of "incorrect" was
assigned. (See Ree, 1980b, for a more detailed
description of this type of procedure)

The item response data thus created were used as input to the item
calibration program OGIVIA. This program provided item parameter
estimates and modal Bayesian ability estimates (using a standard nor-
mal prior ability distribution).

For each of the administrations, the following statistics were
recorded:

1. The first four moments of the population ability

distribution.

2. The true parameters for each of the items.

3. The estimated parameters for each of the items.

4. The true ability level for each examinee.

5. The estimated ability level for each examinee.

6. The response of each examinee to each item.

These data formed the basic data sets used for analyses of the four
basic linking methods. How the same data were used for the four dif-
ferent linking methods is described below.

Evaluative Criteria

Three categories of evaluative criteria were used to evaluate
the adequacy of calibration and linking. The first category included
the usual fidelity-of-estimation criteria used in previous studies.
They were used in this study to provide simple indices of estimation
accuracy and to provide a means of comparing the results of this study
with those of previous studies.

A study of calibration and linking must consider that, ultimately,
the interest will be in the effects of different techniques on the esti-
mation of ability. Fidelity-of-estimation criteria do not afford any
direct inference regarding accuracy of ability estimates. To amelio-
rate this problem, the last two categories of criteria evaluate the
asymptotic (i.e., infinite test length) characteristics of ability
estimates and the efficiencies with which various techniques approach
these characteristics.
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Fidelity of Parameter Estimation

Bias. Perhaps the most basic of the fidelity criteria is bias
in the distributions of the item parameters. To assess the bias in
the distributions of the parameters, means and standard deviations of

the true and estimated parameters were calculated for all conditions
of interest. The biased formula for the standard deviation was used,
as it was throughout this research.

Absolute error. The mean absolute difference between true and
estimated parameters was calculated and is referred to throughout
this report as the absolute error. Algebraic error or bias may can-
cel out even though severe errors of estimation exist. Absolute
error is one method used to eliminate this cancelling effect.

Root-mean-square error. Root-mean-square error is an index
similar to absolute error except it is computed by taking the square
root of the mean of the squared differences between true and esti-
mated parameters. The primary difference in effect is that the root-
mean-square index weights the extreme deviations more heavily than
does the absolute index. Root-mean-square error was calculated for
all conditions of interest.

Correlations. Correlations between true and estimated item

parameters were calculated. The simple Pearson product-moment corre-
lation was used. This index can be thought of as a complement to
indices of algebraic bias. The bias indices are sensitive to changes
in the location of the distribution of parameters. The correlation is
sensitive to differences in relative position between corresponding
true and estimated parameters.

Characteristics of Asymptotic Ability Estimates

Most of the desired knowledge that pertains to the ability to
estimate a trait can be indexed by the bias and the precision with
which the trait is estimated. In an effort to evaluate the bias due
to calibration it is helpful to think of two trait metrics for the
given trait of interest. The theta () metric can be defined as the
absolute or criterion metric on which the true parameters are anchored
and along which the response probabilities are accurately described by
the model incorporating the theta level and the item parameters. A
second metric, gamma (r), can be described as a one-to-one trans-
formation of the theta metric produced by scoring item responses using
item parameters other than those true parameters of the theta metric.
The gamma level corresponding to a given theta level could be deter-
mined, conceptually, from administering a test scored using the errant

parameters an infinite number of times. Each theta value would thus
asymptotically converge on a single gamma value. The difference be-
tween gamma and theta at any value of theta could be defined as the
bias due to use of the errant parameters.
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Practically, it is impossible to administer infinite-length tests
or to repeat a finite-length test an infinite number of times. The
theta-gamma transformation can be determined by more practical means,
however. The maximum likelihood estimate of theta, which is asymp-
totically unbiased, can be obtained by finding the root in theta of
the following equation given by Birnbaum (1968, p. 459):

m m

ag [Dag6-bg)) - 0 [3]

g=1 g=1

where: D 1.7

wg[6] = Da g[(Da (e-bg) - ln(Cg)] [4

and u = I for a correct response to item and 0 other-
g wise.

If each item were repeated r times, Equation 3 could be written as:

M r M r-- w [e]U

) Ea 'YT[Da 9(6-b 9)] D g 5
g=1 h=1 g=1 h=1

or

r m r

rCeY[a(-bg)) EP2U gh 0 5
g=1 g=1 h=1

or

m m )

a Cb)Da ) (-b- Pg 0 [7)

g:1 g=1

where P = the observed proportion of correct responses tog
item j in r repetitions.

If the number of repetitions were allowed to become infinite and the
three-parameter logistic model holds,
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Computing P as above, the root of the likelihood equation is found at
g

0 = e. If, however, P is calculated using e and the errant item pa-g

rieters 5 , , and 8, the root of Equation 7 is found at e = r. If

the errors of calibration are zero or the estimated parameters are
consistent with the true parameters, the transformation of theta to
gamma will be linear. When this is not the case, as in almost all
real calibration situations, the transformation will be non-linear.

The function transforming theta to gamma completely describes
the asymptotic effect of item parameter error on ability estimation.
This empirical function has no simple descriptive parameters, how-
ever, and a method to condense many functions into table values was
needed for this research. To accomplish this, a standard normal den-
sity function was taken as a reference theta population and the de-
scriptive parameters of the corresponding gamma population were tabu-
lated. Methods of calculation are described below.

Mean and standard deviation. For each calculation of the mean
and standard deviation of gamma, 47 theta values equally spaced be-
tween -4.6 and 4.6 were chosen. At each of these values the stand-
ard normal density, the gamma value, and the squared gamma value were
obtained. The gamma and squared gamma values were each numerically
integrated jointly with the density using Simpson's one-third rule of
quadrature to obtain the expected value of gamma and the expected
value of gamma squared. The mean was taken as the former. The stan-
dard deviation was obtained by using the formula for expected values.
To accommodate numerical limitations of the computer used, gamma was
bounded between -5.0 and 5.0.

Absolute and root-mean-square error. Mean absolute and root-
mean-square errors were calculated in a manner similar to the mean
and standard deviation. At each of the 117 theta points, the abso-
lute and squared differences between theta and gamma were calculated.
The expected values of these quantities were obtained through joint
numerical integration with the normal theta density function. The
expected absolute error was the mean absolute error. The root-mean-
square error was taken as the square root of the expected value of
the squared difference between gamma and theta.

Correlation. The correlation between theta and gamma was com-
puted as an index of linearity of the transformation. At each of the
47 theta values, the cross-product of theta and gamma was computed.

Since all of the joint theta-gamma density falls along the regression
function, this cross-product, jointly integrated with the normal
theta density, produces the expected cross-product. The correlation
between theta and gamma was computed from this value and the known
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and previously computed means and standard deviations of the theta
and gamma distributions.

Efficiency of Ability Estimation

Although the transformation function provides a measure of the
bias incurred through use of errant parameters, it tells little about
the precision with which the parameters permit an estimate of the
trait levels. An index closely related to precision of estimation
is the statistical or Fisherian information. For a given test scor-
ing function at a specified level of a trait, theta, this information
can generally be expressed as the ratio of the squared derivative of
the expected value of the scoring function to the variance of the
scoring function at the specified level of theta:

d2

ice) =[9]
0-

xle

When the score, x, is a linear combination of 0-1 item responses, the
components of the information equation can be written as:

m
d E(xle) Zd w E(u le) [10]

g=1

m

g:1

m

SPg (e)
g=l

where m

2 w 2 P (e)QgCe) [11]
e  g g g

g:1

wg a weight assigned to item g
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and Pg(e) (1-cg) Dag i[Dag(e-bg)].

Birnbaum (1968) discussed choosing the weights to be best or "lo-
cally" best in the sense that they would make the information of the
linear combination maximal at a given value of theta. In cases where
guessing is not possible, these weights are simply:

w = Da [12]
g g

In cases where guessing is effective, the weights change as a func-
tion of theta and are given by Equation 4 above. Weights obtained
for a given level of theta would, when used in linear combination,
provide maximum information for making discriminations between two
theta levels arbitrarily close to the theta level of interest. When
true item parameters are used, information computed in this manner
is equal to the test information at the theta level of interest ob-
tained by summing the item information values at that point.

The information in any linear combination can be evaluated;
therefore, it makes sense to evaluate the information available at a
given level of theta from items with errant parameters by evaluating
the information in the linear combination obtained by using the lo-
cally best weights obtained through the errant parameters. This is
done for a given theta level by first finding the corresponding gamma
level. Weights are then determined using this gamma level in place
of theta in Equation 4 and substituting the errant parameters for
the true ones as in Equation 13:

Qg ( ): D9 ,[D9 (- ) - (ln 8 9) [131

The information can then be determined by substituting Qg( ) for w in
g g

Equations 10 and 11. This information is interpretable on the same
scale as the true information, and the relative information of tests
using true and errant parameters can be obtained by taking their ratio.
The reciprocal of this ratio can be interpreted as the relative numbers
of items with true and errant parameters necessary to achieve an equiv-
alent level of measurement precision at the specified trait level.

Information. The information function produced by the method
described above is nearly as awkward to work with as the regression
functions described earlier. The information function data were thus
condensed in a similar manner. For each condition of interest, in-
formation was calculated at the 47 theta points. Expected informa-
tion was then obtained by jointly integrating these information values
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with the standard normal density function. The resulting value repre-
sented the average amount of information that would be extracted by
the test for an examinee selected at random from a standard normal
population. To provide a basis for comparability, information per
item is presented throughout this report.

Relative efficiency. When comparing information extracted by
different procedures, the comparison is often done in terms of a
ratio. The ratio of information from two tests is an index of rela-
tive efficiency. If the ratio of Test A information to Test B infor-
mation is .80, Test A is 80% as efficient as Test B. Test B would
achieve an efficiency equivalent to that of Test A with only 80% as
many items as it currently has.

Whether an index will indicate calibration or linking error is
dependent, in large part, on how it is applied. The indices pre-
sented thus far have all been discussed as indicators of calibration
error. The underlying concepts and the indices themselves may, how-
ever, be used to evaluate linking errors by applying them to the case
where multiple sets of items are calibrated separately and then link-
ed together.

The effects of calibration and linking errors are difficult to
separate using fidelity or asymptotic ability indices. They can be
readily separated using the efficiency indices, however. Loss in
efficiency is caused only by relative errors of calibration, not by
constant errors. A linking error exists when the unit and origin of
the trait resulting from the item parameters differ from the true
unit and origin of the trait. Linking errors are constant within
an item set; thus, they result in no loss of efficiency and are not
usually considered a problem when all items are zalibrated as a single
set. If, however, two or more sets of items are calibrated separately
and then combined into a single pool, errors constant within each set
are now relative in the combined pool. The result will be a loss of
efficiency.

Loss of efficiency in a single item set is due to calibration
error. Loss of efficiency in a combined pool is due to both cali-
bration and linking errors. The index of efficiency used in this
study was information, and information is additive. If information
contained in the combined pool is subtracted from the total inform-
ation contained in the individual pools, the value remaining is the
information lost as a result of linking. The ratio of the informa-
tion available using the linked parameters to the information avail-
able using the true parameters yields an efficiency index of the
linked items. The ratio of the information available from the linked
parameters to the information available from the estimated parameters
within sets yields an efficiency index of the linking procedure.
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III. EVALUATION OF THE BASIC DATA SETS

Three basic data sets comprised the data on which most of the
analyses reported here were based. Evaluation of these data served
two purposes. First, they provided baseline data free of linking
error for comparison in later phases of the study. Second, the data
provided substantial information regarding the characteristics of the

calibration procedure used (i.e., OGIVIA). These data allowed a more
comprehensive analysis than was available from previous research be-
cause the evaluative criteria provided were both more extensive and
more closely related to a test's capacity to estimate ability.

As will be the case with all analyses presented, each data set
will be discussed separately. Within the discussion of each set, the
three categories of evaluative criteria presented in the previous
section will be discussed.

Randomly Sampled Examinees

Fidelity of Parameter Estimation

Table 9 presents parameter bias statistics for each of the three
parameters, a, b, and c, for the randomly sampled calibration groups.
Bias, as used in this table, is the mean of the estimated parameters
minus the mean of the true parameters. Means of values obtained from
five calibrations are presented for each of the 12 cells in the cen-
ter of each section of the table and row and column simple averages
are presented in the margins.

As can be seen from the first section of the table, the a param-
eters exhibited substantial bias at short test lengths. At a length
of 20 items, the estimates were high by approximately .6 units. This
bias proceeded smoothly to zero by a test length of 65 items. No
consistent change was observed in the amount of bias as the number of
examinees in the calibration group increased from 500 to 2,000.

The b parameters exhibited relatively little bias in any of the
12 cells. The highest was .155 in the 20-item tests calibrated on
500 examinees. As shown by the marginal averages, bias decreased

slightly with increasing test length and sample size. The decrease
was very slight, however, and as can be observed from the individual
cell entries, was by no means consistent. It may be observed that
the errors for the b parameters were smaller than those for the a
parameters. These comparisons are not readily interpretable, however,
because the a and b parameters are on different scales.

Bias in the c parameters was also quite small. No obvious trend
with respect to group size was observed but bias did appear to
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Table 9. Item Parameter Bias
Basic Data Set--Randomly Sampled Examinees

Sample Test Len th
Parameter Size 20 35 50 65 Average

a 500 .594 .292 .095 -.029 .238
1000 .623 .232 .094 .009 .239
2000 .531 .248 .079 .017 .231

Average .599 .257 .089 -.001

b 500 .155 .121 .098 .102 .119
1000 .114 .123 .129 .099 .117
2000 .154 .089 .066 .071 .095

Average .141 .111 .098 .091

c 500 .017 .024 .001 .006 .012
1000 .014 .023 .011 -.003 .012
2000 .033 .011 -.004 -.001 .010

Average .021 .020 .003 .001

decrease with increasing test length. Although not as consistent as
with the a parameters, this decrease was fairly consistent with in-
creasing test length.

Table 10 presents correlations between true and estimated item
parameters for the randomly selected calibration groups. Each cell
entry represents Fisher's r-to-z average of correlations obtained in-
dependently in each of five calibrations. The marginal values are,
likewise, r-to-z averages of the cell averages.

These correlations ranged from .435 to .684. Slight increases
in correlations between true and estimated a parameters with increas-
ing test length and calibration group size are apparent in the first
section of Table 10. The increases were not markedly consistent, how-
ever, as may be observed both in the marginal and the cell entries.

Similar observations can be made regarding trends in the b-param-
eter correlations. Slight but consistent increases were observed in
the marginal values. The individual rows and columns did not all
exhibit the same consistency, however. Although the increases were
slight (from .985 to .990), it should be noted that slight increases
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Table 10. Parameter Correlations
Basic Data Set--Randomly Sampled Examinees

Sample Test Length
Parameter Size 20 35 50 65 Average

a 500 .435 .505 .632 .647 .561
1000 .645 .612 .673 .560 .624
2000 .460 .643 .684 .659 .618

Average .520 .590 .664 .624

b 500 .978 .984 .986 .988 .984
1000 .989 .987 .989 .992 .989
2000 .986 .992 .992 .990 .991

Average .985 .988 .989 .990

c 500 .377 .460 .465 .432 .434
1000 .431 .555 .560 .605 .541
2000 .383 .555 .555 .529 .509

Average .397 .525 .528 .526

are important in correlations as near to 1.0 as these. The correla-
tional data presented here suggest that the b parameters are extremely
well estimated at all combinations of test length and calibration
group size considered.

Relatively consistent improvements in the c-parameter correla-
tions were observed as test length increased up to a length of 50
items. At a length of 65 items, two of the three correlations dropped
slightly. Improvement with increasing sample size increased to a size
of 1000 examinees. Increasing the sample size to 2000 resulted in no
improvements. Overall, the c-pa-ameter correlations were slightly
lower than those of the a parameters. Differences of approximately
.1 were observed.

Table 11 presents average absolute errors for each parameter.
The cell values are simple averages of the five calibrations con-
tained in each. The marginal values are simple averages of the cell
values. Relatively consistent decreases in the amounts of a-parameter
error were apparent with increasing test length and calibration group
size. These decreases were probably due to decreases in bias observed
earlier because only minor differences were observed in correlation.

-69-



Table 11. Absoiute Parameter Error

Basic Data Set--Randomly Sampled Examinees

Sample Test Length
Parameter Size 20 35 50 65 Average

a 500 .839 .642 .491 .455 .607
1000 .775 .531 .450 .472 .557
2000 .841 .499 .404 .419 .541

Average .818 .557 .448 .449

b 500 .314 .298 .285 .262 .290
1000 .239 .271 .275 .247 .258
2000 .316 .196 .209 .233 .238

Average .290 .255 .256 .247

c 500 .136 .128 .108 .110 .120
1000 .128 .111 .095 .085 .105
2000 .146 .098 .092 .096 .108

Average .137 .112 .098 .097

Intuitively, these errors appear quite large because an a value of .8
is considered adequate for adaptive testing, and an average error this
large was observed in the first column.

The second section of Table 11 shows slight and inconsistent de-
creases in absolute error of the b parameters with increasing test
length and calibration group size. The decreases were somewhat more
consistent with increasing calibration group size; with the exception
of the 20-item test length, absolute errors decreased with increased
sample size.

Errors in the c parameters generally decreased with increasing
test length and group size. This trend appeared to be somewhat more
consistent relative to group size than to test length. Noting that
an average c parameter is approximately .2, the errors observed in
Table 10 typically exceeded half this amount and seemed quite large.

Table 12 presents root-mean-square errors of estimate for the
item parameters. Root-mean-square error can be interpreted in a
manner similar to absolute error. The marginal averages in Table
11 were computed as the square root of the mean of the squares in
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Table 12. Root-Mean-Square Parameter Error
Basic Data Set--Randomly Sampled Examinees

Sample Test Length
Parameter Size 20 35 50 65 Average

a 500 .710 .522 .368 .359 .510
1000 .680 .430 .341 .344 .469
2000 .735 .422 .305 .295 .474

Average .709 .460 .339 .333

b 500 .242 .239 .212 .196 .223
1000 .195 .203 .202 .185 .196
2000 .261 .155 .156 .163 .189

Average .234 .202 .191 .182

c 500 .108 .101 .083 .080 .094
1000 .103 .088 .074 .066 .084
2000 .122 .074 .067 .071 .087

Average .112 .089 .075 .072

the corresponding rows and columns. Essentially the same observa-
tions made regarding the absolute error can be made here regarding
the root-mean-square errors.

Characteristics of Asymptotic Ability Estimates

Table 13 presents the average absolute error of estimate of
ability that would be obtained if the calibrated items were admin-
istered an infinite number of times to an infinitely large standard
normal population of examinees and were scored using the estimated
parameters. Entries corresponding to the 12 cells are simple aver-
ages of this error obtained with five different sets of items. These
errors are unlike the absolute errors discussed in the previous sec-
tion in that they refer to asymptotic errors in the estimation of
ability and not to errors in the item parameters themselves.

The absolute errors, presented in Table 13, consistently de-
creased as the test lengths increased and, except for one incon-

sistent cell, as calibration group size increased. The unit of these
errors is the same as the standard theta metric and some comparison
can be made with absolute errors in the b parameters presented in
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Table 13. Absolute Asymptotic Ability Error
Basic Data Set--Randomly Sampled Examinees

Sample Test Length
Size 20 35 50 65 Average

500 .170 .140 .104 .107 .130

1000 .123 .102 .101 .093 .105
2000 .157 .093 .085 .086 .105

Average .150 .112 .097 .095

Table 11. The errors in the asymptotic ability estimates were some-
what smaller than those observed with the b parameters. This is
probably due to an averaging effect across items. An important
feature to note, however, is that these errors did not reach zero as
test length reached infinity.

Root-mean-square errors of asymptotic ability estimates are pre-
sented in Table 14. Marginal values in this table were computed as
the square root of the mean of the squared entries in the correspond-

ing rows and columns. All of the same conclusions drawn from the
previous table can be drawn from this one; with the exception of the
lower left cell, all errors decreased with increasing test length and

increasing calibration group size.

Table 14. Root-Mean-Square Asymptotic Ability Error
Basic Data Set--Randomly Sampled Examinees

Sample Test Length
Size 20 35 50 65 Average

500 .222 .172 .120 .129 .166
1000 .180 .156 .119 .112 .144
2000 .229 .118 .102 .102 .148

Average .212 .151 .114 .115

Efficiency of Ability Estimation

Table 15 shows relative efficiencies of calibration. Entries
for each of the 12 cells were computed by first obtaining the aver-
age item information in each calibration sample of the cell, summing
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Table 15. Relative Efficiency
Basic Data Set--Randomly Sampled Examinees

Sample Test Length
Size 20 35 50 65 Average

500 .843 .866 .899 .927 .884
1000 .863 .894 .916 .943 .904
2000 .818 .911 .943 .952 .906

Average .841 .890 .919 .941

the information obtained using the estimated parameters and using the
true parameters, and then dividing the sum obtained from the esti-
mated parameters by the sum obtained from the true parameters. The
marginal efficiencies were computed as the simple average of the
corresponding row or column efficiencies. Average item information
was used as a starting point instead of test information to avoid

implicitly weighting the constituents of the row averages by the
length of the tests.

Efficiencies ranged from a low of .818 to a high of .952. These
efficiency values can be interpreted in an absolute sense; they can be
thought of in terms of effective numbers of items. If, for example, a
100-item test were composed of items calibrated in sets of 65 items
administered to 2,000 examinees, the ability estimation capacity of
the test would be about the same as if 95 items with true parameters
were administered. If a test comprised of 100 items calibrated in
sets of 20 on 500 examinees were used, this would be equivalent to an
84-item test using true parameters. This last test discussed would
require .952/.843 = 1.12 times as many or 12% more items than the
first test to achieve the same measurement precision.

With the exception of the lower left cell, all efficiencies con-
sistently increased with increasing test length and calibration group
size. More interesting than this qualitative evaluation, however, is
the observation that an increase in test length produced a relatively
larger change in efficiency than did calibration group size. Slightly
more than tripling the test length from 20 to 65 items produced a
change in efficiency of 11.9% (.941/.841 = 1.119). Quadrupling the
calibration group size from 500 to 2000 examinees resulted in an in-
crease of only 2.5%, less than one-fourth the increase observed from
tripling the test length. The data from the randomly selected exam-
inees thus suggest that test length is relatively more important than

calibration group size in determining the efficiency of calibration,
at least at test lengths and sample sizes evaluated here.
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Systematically Sampled Examinees

Fidelity of Parameter Estimation

Table 16 presents the parameter bias statistics for item param-
eters calibrated on the systematically sampled examinees. The first
section presents bias of the a parameters. As was observed with the
randomly sampled examinees, the bias dropped as test length increased
and exhibited no definite trend with calibration group size. All mar-
ginal bias values were about .10 units less than those observed with
the randomly sampled examinees. This trend continued even as the bias
values dropped below zero and became negative.

Table 16. Item Parameter Bias
Basic Data Set--Systematically Sampled Examinees

Sample Test Length
Parameter Size 20 35 50 65 Average

a 500 .504 .074 .008 -.105 .120
1000 .478 .184 .021 -.111 .143
2000 .462 .223 .017 -.084 .155

Average .481 .160 .015 -.100

b 500 .090 .298 .207 .151 .187
1000 .186 .214 .045 .141 .147
2000 .045 .073 -.067 .175 .057

Average .107 .195 .062 .156

c 500 .042 -.001 .013 -.024 .007
1000 .029 .007 -.013 -.021 .001
2000 .026 .009 -.022 -.009 .001

Average .032 .005 -.007 -.018

Bias in the b parameters exhibited no obvious trend with in-
creasing test length. This is different from the random-sampling case
which exhibited a slight decrease. The same slight decrease with re-
spect to calibration group size was again observed, however. The
range in bias of the b parameters was somewhat larger in these sam-
ples. Where the range was from .066 to .155 in the random samples,
the range was from -.067 to .298 in these samples.
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Bias values of the c parameters also had a wider range in these
samples. Where the random samples had bias values ranging from -.004
to .033, these samples had values ranging from -.022 to .042. The
slight trend toward less bias observed in the random samples had an
analog in the systematic samples; the trend could better be described
as a trend toward more negative bias, however. Again, no consistent
trend was observed with respect to calibration group size.

Table 17 presents the average correlations between true and
estimated parameters for the systematically sampled calibration
groups. As with the randomly sampled groups, a slight but inconsis-
tent increasing trend of the a-parameter correlations with respect
to test length was observed. No trend with respect to calibration
group size was obvious, however. The overall magnitude of the a-
parameter correlations in the systematically sampled groups was
slightly lower than those observed in the randomly sampled groups.

Table 17. Parameter Correlations
Basic Data Set--Systematically Sampled Examinees

Sample Test Length
Parameter Size 20 35 50 65 Average

a 500 .560 .582 .562 .463 .543
1000 .204 .609 .582 .579 .508
2000 .355 .601 .709 .664 .596

Average .383 .597 .622 .574

b 500 .972 .976 .987 .979 .979
1000 .984 .987 .986 .985 .986
2000 .982 .985 .990 .989 .987

Average .980 .983 .988 .985

c 500 .437 .360 .396 .381 .394
1000 .448 .438 .416 .396 .425
2000 .372 .375 .421 .519 .424

Average .420 .391 .411 .434

The b-parameter correlations exhibited slight increasing trends
with respect to test length and calibration group size. As was ob-
served in the randomly sampled groups, these trends were inconsistent.
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The magnitudes of the correlations were slightly lower in the system-
atically sampled groups.

No trends were apparent in the c-parameter correlations. Unlike
those of the random samples, no notable increase was observed at a
test length of 35 or a sample size of 1000. The magnitudes of the c-
parameter correlations were somewhat lower here than those observed
in the random samples.

Average absolute errors of the item parameters for the system-
atically sampled groups are presented in Table 18. A decreasing trend
in a-parameter errors with respect to test length was apparent but
was not particularly consistent. No trend wqs obvious in the a-
parameter errors with respect to calibration group size. The magni-
tudes of the errors observed here were about the same as those ob-
served in the randomly sampled groups.

Table 18. Absolute Parameter Error
Basic Data Set--Systematically Sampled Examirees

Sample Test Length______
Parameter Size 20 35 50 65 Average

a 500 .772 .535 .500 .549 .589
1000 .911 .545 .471 .468 .599
2000 .758 .574 .402 .433 .542

Average .814 .551 .457 .484

b 500 .519 .577 .451 .496 .511
1000 .500 .466 .322 .435 .431
2000 .380 .437 .325 .440 .396

Average .466 .493 .366 .457

c 500 .166 .134 .120 .123 .136
1000 .149 .121 .116 .123 .127
2000 .153 .1314 .124 .107 .130

Average .156 .130 .120 .113

The b parameters exhibited no trend in absolute error with re-
spect to test length. A consistent decrease in error with respect to
increasing sample size was observed. This supports the findings with
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the randomly sampled groups where no trend was observed with respect
to test length but a slight trend was observed with respect to group
size. The magnitudes of the errors were greater here than in the
randomly sampled groups.

The c-parameter errors showed a relatively consistent decreasing
trend with respect to test length but no consistent trend with re-
spect to sample size. These findings are similar to those of the
randomly sampled groups except that a slight trend with respect to
group size was observed there. Magnitudes of the errors were slight-
ly higher in the systematically sampled groups.

Table 19 presents the root-mean-square errors of estimate for
the three parameters. As was the case in analysis of the randomly
sampled groups, essentially the same observations made regarding the
absolute error can be made regarding the root-mean-square error.

Table 19. Root-Mean-Square Parameter Error
Basic Data Set--Systematically Sampled Examinees

Sample Test Length
Parameter Size 20 35 50 65 Average

a 500 .668 .419 .373 .388 .477
1000 .772 .417 .338 .341 .500
2000 .687 .464 .293 .307 .465

Average .710 .434 .336 .347

b 500 .425 .530 .395 .405 .442
1000 .411 .439 .251 .350 .370
2000 .335 .377 .261 .397 .346

Average .392 .453 .309 .385

c 500 .141 .107 .096 .098 .112
1000 .129 .099 .094 .103 .107
2000 .131 .112 .101 .090 .109

Average .134 .106 .097 .097
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Characteristics of Asymptotic Ability Estimates

Table 20 presents the absolute errors of asymptotic ability esti-
mates for items calibrated using systematically sampled groups. Un-
like the corresponding table for the randomly sampled groups, no con-
sistent trends with respect to test length or sample size were ob-
served. The magnitudes of the errors were consistently larger, how-
ever. Absolute errors in the randomly sampled groups ranged from
.085 to .170; in the systematically sampled groups they ranged from
.124 to .346.

Table 20. Absolute Asymptotic Ability Error
Basic Data Set--Systematically Sampled Examinees

Sample Test Length
Size 20 35 50 65 Average

500 .320 .336 .227 .266 .287
1000 .346 .313 .124 .215 .249
2000 .225 .263 .137 .293 .229

Average .297 .304 .163 .258

Similar observations can be made for the root-mean-square errors
presented in Table 21. No definite trends were apparent and the mag-
nitude of the errors was larger than in the randomly sampled groups.
Root-mean-square errors ranged from .102 to .229 in the randomly sam-
pled groups; in the systematically sampled groups they ranged from
.158 to .466.

Table 21. Root-Mean-Square Asymptotic Ability Error
Basic Data Set--Systematically Sampled Examinees

Sample Test Length
Size 20 35 50 55 Average

500 .366 .434 .303 .330 .362
1000 .456 .349 .158 .249 .327
2000 .289 .305 .179 .346 .286

Average .381 .367 .223 .311
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Efficiency of Abilit, Estimation

Table 22 presents the efficiencies of the items calibrated in
the systematically sampled groups. The general trends observed in
the randomly sampled groups were again observed here. In these groups,
tripling the test length increased the calibration efficiency by 9.A%,
and quadrupling the calibration sample size only increased the effi-
ciency by 3.2%. Although the differences were not as pronounced,
these results corroborated the earlier ones, suggesting that test
length is more important than group size in improving calibration
efficiency. C

Table 22. Relative Efficiency
Basic Data Set--Systematically Sampled Examinees

Sample Test Length
Size 20 35 50 55 Average

500 .851 .851 .904 .901 .877
1000 .797 .877 .910 .930 .879
2000 .870 .854 .930 .934 .905

Average .839 .871 .915 .922

The magnitudes of the efficiencies were approximately equal in
the two conditions. Efficiencies of the randomly sampled groups
ranged from .818 to .952. Efficiencies of the systematically sampled
groups ranged from .797 to .934. It is difficult to say whether the
slight superiority of the randomly sampled groups was due to more
appropriate ability distriLutions, all being standard normal, or sim-
ply to sampling error.

Selected Examinees

Fidelity of Parameter Estimation

Table 23 presents bias statistics for the parameters of items
calibrated on selected samples of examinees. All samples contained
1,000 examinees, so only four cells and their row average are present-
ed in the table. Bias in the a parameters ranged from -.283 to -.416.
A consistent decreasing trend with increasing test length was obvious.
The bias progressed to a value more negative than observed in either
of the calibration groups discussed above.
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Table 23. Item Parameter Bias
Basic Data Set--Selected Examinees

Test Length
Parameter 20 35 50 65 Averae

a .416 -.031 -.164 -.283 -.015

b -.213 -.459 -.377 -.464 -.378

c .145 .128 .095 .075 .111

The b parameters had a consistent negative bias. This was un-
doubtedly due to the fact that the selected population had higher
ability than the standard (i.e., 0,1) population assumed by the cal-
ibration procedure. No trend with respect to test length was observed.

Bias in the c parameters consistently decreased with increasing
test length. The bias was considerably higher than that observed in
corresponding tables for the other samples. Average bias for the
random and systematic samples of 1,000 examinees were .012 and .001.
Both were much lower than the .111 observed here.

Table 24 presents correlations between the true and estimated
parameters for the selected-examinee samples. No consistent trend
was observed in the a-parameter correlations with respect to test
length but the correlations generally rose with increasing test length.
The correlations were somewhat lower than those observed in the cor-
responding rows of previous tables, however.

Table 24. Parameter Correlations
Basic Data Set--Selected Examinees

Test Length

Parameter 20 35 50 65 Average

a .349 .408 .595 .502 .469

b .983 .973 .979 .975 .978

c .335 .323 .319 .388 .342
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The b-parameter correlations exhibited no trend with respect to
test length. Their average value of .978 was slightly lower than
those of .989 and .986 observed for the randomly and systematically

selected groups, respectively.

No trend was apparent in the c-parameter correlations, either.

Their average of .342 was lower than the values of .541 and .425 ob-
served in the two previous calibration groups. This should be ex-
pected, however, because the selected group (in which only the most
able two-thirds of the examinees were selected) provided few of the
low-ability examinees needed to accurately estimate the c parameters.

Table 25 presents average absolute errors of the item param-
eters. The a-parameter errors generally decreased as test length
increased. The magnitude of the row average was slightly higher than

the corresponding row averages for the randomly or systematically
sampled groups.

Table 25. Absolute Parameter Error

Basic Data Set--Selected Examinees

Test Length

Parameter 20 35 50 65 Average

a .800 .655 .535 .560 .638

b .553 .705 .624 .716 .649

c .202 .186 .156 .138 .170

Errors in the b parameters showed no consistent trend with re-

spect to test length. The row average, .649, was considerably higher
than the row averages for the randomly or systematically sampled
groups, respectively .258 and .431.

The c-parameter errors showed a decreasing trend with respect
to test length ranging from .202 to .138. The row average, .170
was somewhat higher than those of corresponding rows in previous
tables.

Table 26 presents root-mean-square errors for the item param-
eters in the selected examinee groups. Again, the results closely
parallel those of the absolute errors.

-81 -



Table 26. Root-Mean-Square Parameter Error
Basic Data Set--Selected Examinees

Test Length
Parameter 20 35 50 65 Average

a .658 .510 .403 .411 .506

b .459 .578 .500 .568 .529

c .181 .158 .125 .111 .146

Characteristics of Asymptotic Ability Estimates

Table 27 presents absolute and root-mean-square asymptotic abil-

ity-estimation errors. Absolute errors showed no trend with respect
to test length. The average of the row, .580, was considerably larger
than the averages of .105 and .249 observed in corresponding earlier
tables.

Table 27. Asymptotic Ability Error

Basic Data Set--Selected Examinees

Test Length

Error 20 35 50 65 Average

Absolute .499 .633 .558 .630 .580

Root-Mean-Square .591 .744 .642 .754 .686

The root-mean-square errors showed an identical lack of trend

with respect to test length. Similarly, the row average of .686
was considerably larger than the row averages of .144 and .327 ob-
served earlier.

Efficiency of Ability Estimation

Calibration efficiencies obtained in the selected samples of ex-

aminees are presented in Table 28. The usual trend with respect to
test length, observed with other statistics, was again observed. The

average efficiency, .823, was somewhat lower than the corresponding
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Table 28. Relative Efficiency
Basic Data Set--Selected Examinees

Test Length
20 35 50 65 Average

.719 .818 .865 .889 .823

efficiencies of .904 and .879 observed earlier. This lowered effi-
ciency cannot be attributed to any particular item parameter because

all three were less precisely estimated in this calibration sample
than in the two discussed previously. It was probably due to the com-
bined effects of poorly estimated c parameters, caused by a paucity of
low-ability examinees, and fewer appropriate items for ability estima-
tion at the higher ability levels encountered. This latter effect is
due to limitations of the item pool used but these limitations were
imposed to reflect reality, and thus the same effect in live-examinee
item calibrations would be expected.

Conclusions

Three general conclusions and an observation can be made from the
data presented in this section. First, the parameter correlation data
were, in general, supportive of other studies investigating the calibra-
tion effectiveness of OGIVIA. The b parameters were very well esti-
mated and the a and c parameters were less well estimated. The a
parameters were estimated somewhat better than the c parameters, but
the difference was not overwhelming.

The second conclusion is that test length is relatively more im-
portant to calibration effectiveness than is sample size, at least at
the test lengths and sample sizes investigated here. This conclusion
is mildly supported by the fidelity of estimation data but its strong-
est support comes from the efficiency analyses. The efficiency anal-
yses suggested that increases in test length are at least three to
four times as effective in improving calibration efficiency as propor-
tionate increases in calibration sample sizes. Given that total test-
ing time required to calibrate a set of items is proportional to the
number of items multiplied by the number of examinees, this finding
suggests that, if sufficient items exist, larger numbers of items
should be calibrated on smaller samples if available total testing
time is short.

The third conclusion is that there appears to be little difference
in calibration efficiency as a function of random versus systematic
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sampling of examinees but a large difference between these and se-
lected samples of examinees (as defined here). Although some differ-
ences were observed between random and systematic samples in the fi-
delity analysis, differences in the efficiencies were trivial and prob-
ably due to sampling error. Efficiencies observed in the selected
samples were noticeably lower, however, and were probably due to a
lack of low-ability examinees for c parameter estimation and to a
distribution of abilities slightly less estimable with available items.

In addition to these conclusions, the parameter bias statistics
presented in Tables 9, 16, and 23 suggest that OGIVIk tends to over-
estimate a parameters at short test lengths. Since the test lengths
used to evaluate the real ASVAB data ranged from 20 to 35 items, and
since OGIVIA was one of the estimation methods used, the average a
value of 1.6 used to generate items for the simulations may have been
too high. As can be seen from Tables 9, 16, and 23, the amount by
which the a parameters are overestimated depends on the method by which
subjects are selected and ranges from an overestimate of .4 units to
.6 units for 20-item tests and from an overestimate of from .3 down to
a nearly zero underestimate for 35 items. It is difficult to deter-
mine the extent to which the value used, 1.6, was biased but the fact
that it was probably slightly high should be kept in mind.
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IV. LINKING WHEN EXAMINEES ARE RANDOMLY SAMPLED

Linking sets of items administered to randomly sampled examinees
presented the simplest linking environment investigated in this re-
search. In this situation, the equivalent-groups, anchor-group, and
anchor-test methods were all reasonable choices. Given the added
assumption that items were randomly assigned to forms, usually an easy
assumption to satisfy, the equivalent-tests method was also an accep-
table method.

The basic data set containing randomly sampled examinees was
used for this portion of the research. Although all four linking
paradigms were conceptually reasonable to apply, only the equivalent-
groups and equivalent-tests methods were evaluated. The anchor-group
and anchor-test linking methods were not evaluated using this data
set where examinees were randomly sampled from a single population.
This deletion was done purely for efficiency of analysis, Since these
methods do not assume randomly sampled examinees, it was reasonable
to expect that data from the systematic examinee samples would yield
sufficient data for comparison. Given the reasonableness of this
expectation and the extensive amount of computer time required to
analyze those methods, a decision was made not to perform this essen-
tially duplicate analysis.

Equivalence Methods

The equivalent-groups and equivalent-tests methods are essen-
tially the same in terms of the data required. The differences be-
tween them stem from the different assumptions invoked in obtaining
the transformation parameters. The two methods have thus, for pur-
poses of this report, been combined into one section. Although they
are discussed as separate methods, they share common tables.

Procedure

Equivalent -.roups. Conceptually, equivalent-groups linking is
accomplished by finding transformation constants which, when applied
to the a and b parameters, will make the mean and variance of ability
in each group equivalent. Two transformation constants are required
to accomplish this. Given that the constants are to be applied in
the form:

a = dk [14]
and

b = (e-m)/k £151
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where a and b are the parameters on the "equivalent" metric and d and
e are The parameters on the unlinked metric, one set of constants
that will result in a common metric with a mean of zero and variance
of one is:

d k = a 
[16]

and
m = £r 17] :

where P and o. are, respectively, the mean and standard deviation of

ability estimates in the unlinked groups. These values may be readi-
ly verified by noting that a satisfactory transformation must satisfy
the equation:

a(e-b) = d(r-e) [18)

If a and b given in Equations 14 and 15 are substituted into Equation
18, gamma can be expressed as a function of k, m, and theta:

ke + m [19)

Given that theta is to be distributed with mean zero and variance
one, the constants k and m are obviously the standard deviation and
the mean of gamma. Thus, the constants in the equivalent-groups meth-
od are simply the mean and standard deviation of the abilities in the
unlinked groups.

In practice, true abilities are not available, however, and they
must be estimated. If errors of measurement are equivalent in each
group or adequately compensated for, equivalent-groups linking may be
accomplished using ability estimates. There are, however, several such
estimates that may be used. Four methods of estimating ability were
investigated including two Bayesian and two maximum-likelihood methods.
In addition to simple means and standard deviations of these estimates,
robust estimation procedures were applied to the maximum-likelihood
estimates. This resulted in six methods for determining the equiva-
lent-groups transformation constants.

The program OGIVIA uses a modal Bayesian estimate with a stand-
ard-normal prior ability assumption. The estimates provided by OGIVIA
were based on an early stage of the program which did not use the final
item parameter estimates. Proceeding in the spirit of OGIVIA but using
better parameter estimates, modal Bayesian ability estimates assuming a
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standard-normal prior were obtained by solving the following equation

for theta:

8 1.7 aexp(xg [i- ig - (1.0 + exp(xg))]1 [20)

g

where u = 1 if the item is answered correctlyg

= 0 otherwise

and Xg = 1.7 a (8-bg)

The Bayesian estimation procedure assuming a normal prior im-

plicitly regresses the estimates at finite test lengths. The prac-

tical effect of this on linking is to bias the linking constants.
The second estimation procedure incorporated an attempt to correct
for this regression by progressing the estimation by an amount equiv-
alent to the suspected regression. This adjustment was accomplished
by using the Bayesian posterior variance estimate obtained from Equa-
tion 21 and the Bayesian ability estimate obtained from Equation 20
as prescribed in Equation 22.

02 1 + 2.89' 1 agexpx g21L z L(cg+exp(xg)) 2

- (1.0 + exp(xg)-j } -1

eB (1 - 2 )-1/2 [22)
BPro B OB)

Another procedure to ameliorate the Bayesian regression is to
use a maximum-likelihood estimation procedure instead of a Bayesian
one. The maximum-likelihood procedure attempts to be unbiased and

does not regress the ability estimates. It has problems, however,
in that it tends to make some extreme estimates when the test length
is finite. Individuals answering all items correctly or less than a
chance number correctly receive infinite ability estimates. Such

estimates, in turn, cause some difficulty in calculation of means and

variances of the ability estimates. Maximum-likelihood estimation was
used as the third estimation procedure. In most cases, these esti-
mates were obtained by finding the root in theta of Equation 2.3:
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+epx) =0 [23)
agexp(xg) e (1.0 + exp(xg)) -  0

g g g

In cases where the estimates were beyond plus or minus 3.5, the es-
timates were artificially bounded at those values.

The Bayesian procedure was corrected for regression. An attempt
was made to correct the maximum-likelihood procedure for erring toward
the extreme. This was accomplished by applying the squared standard
error of estimate obtained from Equation 24 to the ability estimate
obtained from Equation 23 by the method prescribed in Equation 25.

G2 2.89 a2exp(xg) g[24z (cg+eXp(xg) 2 [4

_ (1.0 + exp(xg))_2]

1/2e ((- e) (i-o2) 1 ) + 0 [25)

Truncation of the ability estimates at plus and minus 3.5 was
one method of dealing with extreme ability estimates produced by the
maximum-likelihood procedure. This method was somewhat arbitrary and
still used a least-squares weighting scheme within the range. Gen-
eral procedures of robust estimation were available to deal with
problems such as these. One of the most popular procedures was the
AMT sine-transformation procedure (Andrews, Bickel, Hampel, Huber,
Rogers, & Tukey, 1972; Wainer & Wright, 1980). In this procedure,
the equation

f[(6-T)/S] = 0 [26)

is solved for T and S where T is the robust estimate of location, S
is the median absolute deviation from T divided by the constant 1.349,
and

f[x) = sin(x/2.1) if -6.597 < x < 6.597 [27)

and f[x] = 0 otherwise.
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The procedure was iterated adjusting both T and S on each iteration
until T stabilized within 0.001.

This robust estimation procedure was applied to the maximum-
likelihood estimates and the regressed-maximum-likelihood estimates
obtained above to produce the fifth and sixth methods of estimating
the mean and standard deviation of ability. Unlike the first four
methods, the robust techniques were not methods of estimating ability
but rather methods of obtaining means and standard deviations of es-
timates. The means and standard deviations were the only elements
used for linking, however, and these robust procedures thus produced
two more methods of equivalent-groups linking. It should be noted
that the robust techniques were applied to the truncated maximum-
likelihood estimates and not to estimates permitting infinite values.

Equivalent tests. The equivalent-tests method assumes that the
item parameter distributions of the tests being linked are equivalent.
Linking, under this assumption, is accomplished by setting the a and b
parameters to common values in each of the tests. Practically, these
values can be any values desired. To aid in interpretation of the
fidelity and asymptotic characteristic statistics, these common values
were set to the true means obtained in the simulation reported in the
design section of this report, 1.586 and 0.227 for a and b, respec-
tively. This was accomplished by computing transformation parameters
k and m as follows:

k = 1.586/u d  [283

m = (I e - 0.360)/p d  £293

where pd and Ve are the means of the a and b parameter estimates in

each test prior to linking.

Results

The magnitude of the amount of data generated by this project
made it unreasonable to present all analyses in the body of this re-
port. To meaningfully present the analyses done, individual tables
are presented in the Technical Appendix and summary tables are pre-
sented here in the text. For the homogeneous linking evaluation in
which linking was done separately in each of the 12 cells, 12 indi-
vidual tables are presented for each of the three classes of analyses
in the Technical Appendix. One composite table is presented in the
body of the report for each class of analysis. For the heterogeneous
linking evaluation where five replications pooling 20 items from each
cell were done, five individual tables for each class of analysis are
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presented in the Technical Appendix, and one is presented in the body
of the report.

Fidelity of parameter estimation. Table 29 presents fidelity-of-
parameter-estimation statistics for eight linking methods in the homo-
geneous condition. The first six methods correspond to different meth-
ods of determining the linking constants within the equivalent-groups
method. The seventh is the equivalent-tests linking method. The
"no-linking" method is included as a baseline of comparison in which

Table 29. Item Parameter Error--Equivalence Methods
Homogeneous Condition Using Randomly Sampled Examinees

True Bias in Absolute RMS
Method Mean SD Mean SD Error Error R

Bayesian
a 1.591 .482 -.020 .018 .344 .469 .581
b .221 1.329 .088 .311 .293 .425 .987

Progressed Bayes
a 1.591 .482 .041 .036 .359 .484 .581
b .221 1.329 .072 .250 .255 .370 .987

Max. Likelihood
a 1.591 .482 .344 .125 .527 .693 .576
b .221 1.329 .023 .019 .171 .234 .987

Regressed M.L.
a 1.591 .482 .223 .088 .454 .605 .576
b .221 1.329 .036 .106 .190 .264 .987

Robust M.L.
a 1.591 .482 .263 .112 .473 .616 .578
b .221 1.329 .043 .076 .186 .271 .986

Rob. Reg. M.L.
a 1.591 .482 .202 .093 .435 .572 .579
b .221 1.329 .048 .121 .198 .295 .986

Equivalent Tests
a 1.591 .482 -.006 .015 .337 .456 .577
b .221 1.329 .006 .275 .358 .487 .974

No Linking
a 1.591 .482 .236 .091 .453 .596 .581
b .221 1.329 .110 .087 .198 .268 .987
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the parameters were taken directly from OGIVIA with no explicit trans-
formation. In fact, this procedure approximates an equivalent-groups
linking method because OGIVIA, in an early stage of calibration, sets
its best estimates of the mean and variance of ability to zero and one.

The first column presents the means of the true a and b param-
eters for all cells in the data set. To compute the values in the
first column, means of parameters for all items in a cell were com-
puted for that cell. This included all items in the five calibration
groups. The mean of these 12 cell means was then computed for the
entry in Table 29. The means of the a and b parameters, 1.591 and
.221, were quite close to the means obtained in independent simulation
(discussed with the analysis of the basic data sets) of 1.586 and
.227.

The standard deviations presented in column two were computed as
the square root of the mean variance averaged in the same manner as
the means of column one. The averages of 0.482 and 1.329 were, again,
very close to those obtained in simulation, 0.488 and 1.338.

Biases presented in columns three and four were computed as the
linked value minus the true value for both means and standard devia-
tions. Mean biases were computed for items in each of the 12 cells.
Table 29 presents the means of these 12 cell means.

Absolute error was computed for each cell as the mean of the ab-
solute deviations of linked from true item parameters for all items
in a cell. Table 29 presents the simple average of these means over
all 12 cells.

Root-mean-square error was calculated for each cell in a manner
similar to that of absolute error. The squared deviations were aver-
aged (rather than the absolute deviations), and the square root of the
resultant mean was taken. The RMS error presented in Table 29 is the
square root of the mean of the squared individual cell values.

Correlations between true and estimated parameters were computed
in each of the 12 cells. An r-to-z average of the cell values was
then taken for each entry in Table 29.

Compared in terms of bias, the equivalent-tests method of link-
ing produced estimates closest in mean a and mean b. It also produced
estimates with the least bias in standard deviation of a. Several
methods had superior estimates in terms of standard deviations of the
b parameters, however.

The equivalent-tests method was again superior when absolute
error in the a parameters of the various methods was considered.
Equivalent-groups methods based on either of the Bayesian procedures
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were nearly as good. When b parameters were considered, the maximum-
likelihood procedures appeared to produce less absolute error than
the other methods.

Root-mean-square error comparisons produced the same findings:
the equivalent-tests method was superior in estimation of the a param-
eters with the Bayesian equivalent-groups methods close behind. The
maximum-likelihood equivalent-groups methods produced the best esti-
mates of the b parameters.

Correlational analyses showed the Bayesian and no-linking pro-
cedures to produce the best-linked a parameters. The maximum-likeli-
hood procedures did nearly as well. The equivalent-tests method pro-
duced a-parameter correlations about as high as those of the maximum-
likelihood methods. The b-parameter correlations were nearly con-
stant at .986 to .987 for all but the equivalent-tests method, which
produced a correlation of only .974.

Table 30 presents fidelity statistics for the heterogeneous link-
ing condition containing pooled results of five replications sampling
20 items from each cell. Again, all entries are summary statistics of
several individual tables contained in the Technical Appendix. In this
case each entry represents pooled results of five replications rather
than of 12 cells. The columns of the table all correspond to those of
Table 29, and the pooling, in each case, was done in the same manner.

The means and standard deviations presented in the first two
columns were again close to the true values found in the independent
simulation. That they were slightly different is due to the fact that
only the first 20 items in each calibration group were used for the
heterogeneous analysis. Thus, less than half of the items included in
the homogeneous analysis were used in this analysis.

The bias data in columns three and four presented essentially the
same picture as the bias data in Table 29. Similarly, identical obser-
vations could be made regarding the absolute and root-mean-square error
data of columns five and six. This similarity is more an artifact than
a discovery, however, as neither the biases nor the errors are affected
by composition of the item sets. The fact that they differ at all is
due to fluctuations caused by item sampling.

The change in composition was expected to affect the correlations.
Different test lengths and calibration group sizes do produce different
biases in linking constants. The different biases shift items of the
different cells differentially and this affects the correlations among
the parameters. Marked changes from Table 29 occurred in Table 30.
Where Table 29 showed a-parameter correlations closely clustered in
value, the a-parameter correlations presented in Table 30 had a rela-
tively wide range of values. Furthermore, the equivalent-tests method,
which produced the lowest correlation in Table 29, produced the highest
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Table 30. Item Parameter Error--Equivalence Methods
Heterogeneous Condition Using Randomly Sampled Examinees

True Bias in Absolute RMS
Method Mean SD Mean SD Error Error R

Bayesian
a 1.588 .490 -.014 .038 .348 .470 .580
b .248 1.350 .090 .315 .295 .431 .983

Progressed Bayes
a 1.588 .490 .047 .060 .363 .487 .577
b .248 1.350 .073 .253 .258 .375 .984

Max. Likelihood
a 1.588 .490 .350 .202 .532 .698 .529
b .248 1.350 .020 .018 .175 .240 .985

Regressed M.L.
a 1.588 .490 .229 .152 .459 .610 .535
b .248 1.350 .035 .107 .194 .271 .985

Robust M.L.
a 1.588 .490 .270 .157 .478 .622 .548
b .248 1.350 .042 .073 .191 .279 .983

Rob. Reg. M.L.
a 1.588 .490 .209 .130 .441 .577 .557
b .248 1.350 .047 .125 .204 .303 .983

Equivalent Tests
a 1.588 .490 .001 .032 .340 .459 .596
b .248 1.350 .008 .277 .361 .491 .964

No Linking
a 1.588 .490 .242 .144 .458 .600 .553
b .248 1.350 .108 .086 .200 .273 .986

in Table 30. With the exception of this method, the a-parameter corre-
lations were lower in Table 30 than in Table 29. The b-parameter cor-
relations lost some of the uniformity they exhibited in Table 29 but
the same general conclusions could be drawn. The equivalent-tests
method was still inferior in terms of b-parameter correlations.

Characteristics of asymptotic ability estimates. Table 31 pre-
sents statistics descriptive of linking and calibration errors on
asymptotic estimates of ability in the homogeneous condition. The
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Table 31. Asymptotic Ability Estimates--.Equivalence Methods
Homogeneous Condition Using Randomly Sampled Examinees

Absolute RMS

Method Mean SD Error Error R

Bayesian .004 1.073 .064 .098 .999

Progressed Bayes .001 1.035 .043 .072 .999

Max. Likelihood -.002 .890 .100 .140 .998

Regressed M.L. -.005 .945 .066 .100 .999

Robust M.L. .002 .915 .079 .111 .999

Rob. Reg. M.L. -.003 .944 .061 .088 .999

Equivalent Tests -.086 1.066 .151 .209 .998

No Linking .074 .934 .100 .125 .999

values in the table were compiled from corresponding values in 12
cells. The means and absolute errors in Table 31 represent simple
averages of the cell values. The standari deviations and root-mean-
square errors were computed as the square root of the mean squared
values from the individual tables. The correlations were computed as
the r-to-z average of the individual correlations.

The means, presented in the first column, were all fairly close
to the true value of zero. The means produced by the six equivalent
groups methods were all somewhat closer than the means produced by
the equivalent-tests method or by no linking. The standard devia-
tions were near the true value of 1.0 but were, typically, not as
close as the means had been. The most deviant was the maximum-like-
lihood equivalent-groups procedure. The least deviant was the pro-
gressed-Bayesian equivalent-groups procedure.

Columns three and four present absolute and root-mean-square
errors of the asymptotic estimates. The eight linking procedures
ranked essentially the same in the two columns; the absolute errors
produced a tie and the root-mean-square errors did not. The pro-
gressed-Bayesian equivalent-groups procedure produced the least
error. The equivalent-tests procedure produced the most, more than
the no-linking condition. Except for the equivalent-tests method,
all methods (including no-linking) produced lower errors An asymptotic
estimates than were produced by the unlinked individual calibrations
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summarized in Tables 13 and 14. Average values in those tables for
absolute and root-mean-square error, respectively, were .113 and .153.
The observation that error in the no-linking condition decreased was
apparently due to a better averaging of parameter errors when all
five calibration groups within a cell were combined.

The correlations between true and asymptotic ability estimates
were so high as to be uninformative about linking adequacy of the
various methods. All were within .002 of unity and, although the
maximum-likelihood equivalent-groups and the equivalent-tests methods
were slightly inferior, this difference may have been due to accentu-
ation of trivial differences incurred in rounding.

Table 32 presents asymptotic error statistics for the hetero-
geneous condition. Again, all values are summary values and were
prepared, in the same manner as Table 31, from five replications, each
of which sampled 20 items from each of the 12 cells. The first two
columns, those of the mean and standard deviation, were essentially
unchanged from Table 31. The only difference was a slight tendency
toward more extreme deviations of the standard deviations from 1.0.
The two Bayesian methods were exceptions to this, in that they were
slightly less deviant than in the homogeneous condition.

Table 32. Asymptotic Ability Estimates--Equivalence Methods
Heterogeneous Condition Using Randomly Sampled Examinees

Absolute RMSMethod Mean SD Error Error R

Bayesian .006 1.064 .059 .084 .999

Progressed Bayes .003 1.025 .037 .059 .999

Max. Likelihood .002 .870 .108 .139 .999

Regressed M.L. -.001 .927 .064 .089 .999

Robust M.L. .004 .904 .081 .110 .999

Rob. Reg. M.L. -.000 .933 .059 .085 .999

Equivalent Tests -.087 1.075 .100 .143 .998

No Linking .076 .919 .100 .123 .999
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The absolute and root-mean-square errors showed some changes
from the preceding table. The ordering of methods by the two statis-
tics was not identical in Table 32. The Bayesian methods were still
superior to all other methods. The equivalent-groups method improved
to a point where it was nearly as good as no linking and, depending
on the type of error, slightly better or slightly worse than the
maximum-likelihood method.

The correlations presented in the fifth column were, again, par-
ticularly uninformative. Only one, that corresponding to the equiva- 4
lent-tests method, showed any departure from the nearly perfect .999.

Efficiency of ability estimation. Table 33 presents efficiency
data for the homogeneous linking condition. The first column con-
tains the average item information produced in several ways. The
first entry indicates the information available in the average item
using true parameters. The second entry indicates information avail-
able using estimated parameters and (hypothetical) perfect linking.
The remaining entries in the first column indicate information avail-
able from items using parameters linked in various ways.

Table 33. Efficiency Analysis--Equivalence Methods
Homogeneous Condition Using Randomly Sampled Examinees

Average Efficiency Relative to
Item True Estimated

Method Information Parameters Parameters

True Parameters .319

Est. Parameters .287 .898

Bayesian .284 .888 .988

Progressed Bayes .284 .888 .988

Max. Likelihood .284 .889 .989

Regressed M.L. .284 .898 .989

Robust M.L. .284 .388 .989

Rob. Reg. M.L. .284 .889 .983

Equivalent Tests .276 .854 .962

No Linking .284 .887 .988
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Tnformation from the true parameters was calculated separately
in each of the individual calibration groups in each of the 12 cells
using true parameters. The individual information values were then
averaged to produce the value, .319, in Table 33. The information
from the estimated parameters (the second entry) was obtained in the
same way except that estimated parameters rather than true parameters
were used. Since the computations were done within individual cali-
bration groups, linking had no effect on the values.

The remaining values in the first column were obtained by pool-
ing all items in each cell after the linking transformations were
applied. The essential difference between these values and the in-
formation from the estimated parameters (i.e., the second entry) was
that these values were obtained from a pool of all items in each cell
rather than from each calibration group individually. The entries
presented in Table 33 are simple averages of the corresponding en-
tries in the 12 individual cell tables.

Efficiency relative to true parameters shown in column two was
calculated directly from the values in column one of the table. Each
value presented in column two is the corresponding value in column
one divided by .319. Efficiency relative to estimated parameters
was calculated similarly except that column one values were divided
by .287. All columns in Table 33 present essentially the same data
from a different viewpoint.

The efficiencies relative to estimated parameters provide data
most directly relevant to comparisons of linking methods. These values
can be interpreted as an index of linking efficiency. The information
available from the estimated parameters calculated within individual
calibration groups represents efficiency of calibration free of linking
errors. Any degradation from that point, as items from several cali-
bration groups are pooled, represents errors due to linking.

The efficiencies relative to estimated parameters suggest that
there is very little difference among most linking methods in this
condition. The notable exception is the equivalent-tests method.
Where all other linking methods, including no-linking, had efficien-
cies of .988 or .989, the equivalent-tests method had a linking effi-
ciency of only .962.

Table 34 presents efficiency statistics for the heterogeneous
linking condition. All statistics were calculated in essentially
the same manner as before. The primary difference was that the en-
tries were computed as the average of five replication averages rather
than as the average of 12 cell averages.

The information values for the true and estimated parameters
changed very little from those of Table 33. The slight changes were
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Table 34. Efficiency Analysis--Equivalence Methods
Heterogeneous Condition Using Randomly Sampled Examinees

Average Efficiency Relative to
Item True Estimated

Method Information Parameters Parameters

True Parameters .317

Est. Parameters .285 .901

Bayesian .278 .876 .973

Progressed Bayes .277 .876 .972

Max. Likelihood .273 .861 .955

Regressed M.L. .273 .863 .958

Robust M.L. .276 .870 .965

Rob. Reg. M.L. .276 .872 .967

Equivalent Tests .269 .850 .944

No Linking .274 .865 .960

due to the fact that only about half of the items on which Table 33
was based were used in computing the statistics of Table 34.

Marked changes in linking efficiency were noted, however. All
methods, without exception, were less efficient in the heterogeneous
condition. Differences among the methods were also more obvious.
The two Bayesian methods were the most efficient. The robust maximum-
likelihood procedures were next, followed by the no-linking method
and the maximum-likelihood procedures. The equivalent-tests method
was again the least efficient of all.

Table 35 presents linking efficiencies of the Bayesian equiv-
alent-groups linking method for each of the 12 cells arranged by test
length and sample size. The Bayesian procedure was singled out for
this breakdown because it appeared, from data just presented, to be
one of the best equivalent-groups linking procedures. Linking effi-
ciency was chosen as the single statistic to be explored in this

fashion because it seemed to best summarize the data to answer the
question of which linking method allowed the best ability estimation.
Individual cell entries in Table 35 were computed by taking the ratio
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Table 35. Cellwise Efficiency Analysis
Bayesian Score--Randomly Sampled Examinees

Sample Item Set Size

Size 20 35 50 65 Average

500 .968 .991 .991 .959 .977

1000 .984 .990 .993 .996 .991

2000 .972 .993 .992 .996 .988

Average .975 .991 .992 .984

of the information values of the linked parameters to the information
values of the estimated parameters calculated within individual cal-
ibrations. The marginal values presented are simple averages of the
corresponding row and column values. They are not pooled values as
were those in Tables 33 and 34 which were computed as ratios of aver-
aged information values rather than averages of efficiencies.

No obvious relationships between linking efficiency and either
test length or calibration sample size were observed. No trends were
apparent, even in the marginal values. No interactions were appar-
ent in the individual cell averages.

Table 36 presents a similar breakdo,-n of the equivalent-tests
method efficiencies. The marginal averages exhibited a definite
increasing trend with increasing test length. This trend was not par-

ticularly consistent in the individual cell values, however. The

Table 36. Cellwise Efficiency Analysis
Equivalent Tests Randomly Sampled Examinees

Sample Test Length

Size 20 35 50 65 Average

500 .916 .985 .974 .966 .960

1000 .972 .930 .973 .986 .965

2000 .928 .961 .961 .982 .958

Average .939 .959 .969 .978
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trend was apparent at sample sizes of 2,000 but not at 500 or 1,000.
No relationship between efficiency and sample size was apparent in
Table 36.

Discussion

Three sets of analyses have been presented. The fidelity analy-
ses provided no conclusive evidence regarding which linking proced-
ure was most effective. Data relevant to this were weak and con-
flicting. Methods most effective in linking a parameters were not
the ones most effective in linking b parameters. There was no way to
determine in any practical way whether a or b errors were more del-
eterious in regard to ability estimation.

The asymptotic estimation analysis was somewhat more helpful in
that the joint effect of parameter errors on ability estimation could
be observed. These data suggested that the two Bayesian linking pro-
cedures and the robust-regressed maximum-likelihood procedures were
somewhat more effective than the others and that the equivalent-tests
method was typically no better than the no-linking method.

Efficiency analyses suggested that whatever differences there
were among the methods, they were quite small. Efficiency loss due
to linking error was always less than loss due to calibration error,
considerably less in some cases. In the worst case of linking error,
information lost to linking was half as great as that lost to cali-
bration. For the best linking methods, information loss due to link-
ing was 10% to ?0% as large as that due to calibration, depending on
the conditions.

Conclusions

Two general linking methods, the equivalent-groups and the equi-
valent tests methods, were evaluated and compared to each other and
to a no-linking control method. These comparisons were done in both
a homogeneous linking condition, where the items linked were calib-
rated in tests of the same length using examinee samples of equal
size, and in a heterogeneous condition of mixed test lengths and
sample sizes. Several conclusions can be drawn from these data.

First, the equivalent-groups methods were generally superior to
the equivalent-tests method. In some analyses, reported in the fi-
delity of estimation section, the equivalent-tests method appeared to
be superior. In the more readily interpretable asymptotic-estimate
and efficiency analyses, the equivalent-tests method was consistently
one of the poorer linking procedures.
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Second, of the six equivalent-groups procedures evaluated, the
ones based on the Bayesian scores appeared to be slightly superior to
the others. This superiority was apparent only in the heterogeneous
linking condition, however. In this condition a slight superiority
was observed in the asymptotic estimation and efficiency analyses.
Little difference among equivalent-groups procedures was observed
in the homogeneous condition although the Bayesian methods had
slightly less error in the asymptotic estimates than did some of the
other procedures.

Third, it should be noted that the no-linking method worked
reasonably well in these analyses. Although the other procedures
produced slightly more efficient linking, relatively little effic-
iency would be lost, under the sampling characteristics present here,
if the parameters were used as produced by OGIVIA with no explicit
linking done.

Finally, although definite relationships between calibration
efficiency and test length and sample size were shown in a previous
section, no such relationships were found with respect to linking
efficiency. This is counter-intuitive because all equivalence methods
are dependent on sampling error which is dependent on sample size.
Lack of any relationships may have been due to the fact that the range
of sample sizes was too small to produce them. To the extent that
this range covers the range of interest, however, the conclusion of no
differences can reasonably be applied.
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V. LINKING WHEN EXAMINEES ARE SYSTEMATICALLY SAMPLED

Linking with examinees systematically sampled represented an ex-
treme case of violation of the assumption of random sampling essen-
tial to the equivalent-groups linking method. Only the equivalent-
tests and the anchor methods were theoretically appropriate for this
environment. Research reported in the previous section had shown the
equivalent-groups method to be superior to the equivalent-tests method
when the random-sampling assumption was satisfied. Thus, although it
was not theoretically appropriate for this environment, the equivalent-
groups method was evaluated to determine if it was practically accept-
able.

The basic data set containing systematically sampled examinees
was used for this portion of the research. For each calibration, an
AFEES group was selected at random from the 65 available, and exam-
inees were selected from that group. These data were then used in a
manner similar to the data of the randomly sampled examinees.

Equivalence Methods

Procedure

The data used in this portion of the research differed from those
reported in the previous section. The linking procedures used to im-
plement the equivalent-groups and equivalent-tests methods did not dif-
fer, however. All six methods used for determining linking constants
for the equivalent-groups method were again evaluated. The same link-
ing transformation equations were again applied to both the equivalent-
groups and the equivalent-tests methods.

Results

Fidelity of parameter estimation. Fidelity-of-estimation sta-
tistics for the homogeneous condition with systematically sampled ex-
aminees are presented in Table 37. True means and standard devia-
tions, shown in the first two columns, were close to the population
values. The mean of the b parameter. .262, was somewhat more deviant
from the population value of .227 than the value observed in the pre-
vious section. All four values appeared to be well within the limits
of sampling variation, however.

Bias in the estimated parameters is described in columns three
and four. The Bayesian equivalent-groups methods tended to under-
estimate the a parameters. The maximum-likelihood procedures and
the robust-maximum-likelihood procedures tended to overestimate the
a parameters, although this was less the case with the non-robust
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Table 37. Item Parameter Error--Equivalence Methods
Homogeneous Condition Using Systematically Sampled Examinees

True Bias in Absolute RMS
Method Mean SD Mean SD Error Error R

Bayesian ,
a 1.588 .501 -.159 -.012 .374 .519 .533
b .262 1.344 .173 .572 .568 .759 .971

Progressed Bayes
a 1.588 .501 -.099 .008 .376 .517 .533
b .262 1.344 .147 .495 .512 .682 .971

Max. Likelihood
a 1.588 .501 .212 .111 .499 .674 .531
b .262 1.344 .046 .188 .333 .423 .970

Regressed M.L.
a 1.588 .501 .088 .073 .439 .596 .530
b .262 1.344 .077 .295 .388 .493 .971

Robust M.L.
a 1.588 .501 .194 .106 .470 .623 .529
b .262 1.344 .054 .191 .334 .431 .970

Rob. Reg. M.L.
a 1.588 .501 .107 .077 .425 .566 .531
b .262 1.344 .079 .269 .375 .489 .971

Equivalent Tests
a 1.588 .501 -.003 .034 .371 .510 .526
b .262 1.344 -.035 .340 .417 .587 .971

No Linking
a 1.588 .501 .139 .084 .450 .602 .533
b .262 1.344 .130 .237 .364 .464 .971

regressed procedure. The equivalent-tests procedure produced little
bias in the a parameters. No-linking resulted In overestimation of
a parameters. Slight bias in the b-parameter means was produced by
the two Bayesian procedures. The no-linking procedure produced a
similiar amount of bias. The other procedures all produced somewhat
less bias.
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in terms of bias in parameter standard deviations, the Bayesian
procedures produced the least bias for the a parameters. The maxi-
mum-likelihood procedures and the no-linking procedure produced the
most bias in the a-parameter standard deviations. These observations
essentially reversed when the b-parameter bias was considered; the
Bayesian procedures produced the greatest bias, and the maximum-like-
lihood and no-linking procedures produced the least.

When the biases in columns three and four of Table 37 are com-
pared to corresponding values for the randomly sampled examinees
presented in Table 29, several things may be noted: The tendency of
the maximum-likelihood and no-linking procedures to overestimate the
a parameters was observed in both tables; biases in b-parameter means
and a-parameter standard deviations were similiar in both tables; and
the biases in the b-parameter standard deviations were somewhat larg-
er in Table 37.

Absolute and root-mean-square errors of parameter estimation are
presented in columns five and six of Table 37. The equivalent-tests
method produced the least parameter error, evaluated b) either sta-
tistic, for the a parameters. The two Bayesian metids wore nearly
as good, however. The maximum-likelihood and no-lir.<ing procedures
produced the greatest amount of a-parameter error. The least b-param-
eter error was produced by the maximum-likelihood methods; the most
was produced by the Bayesian methods.

Error in the a parameters observed in Table 37 was similar in
magnitude to that observed in Table 29. Absolute errors of the a
parameters ranged from .337 to .527 in Table 29; in Table 37 the
comparable range was from .371 to .499. Error in the b parameters
was somewhat greater in Table 37, however. Absolute errors of the b
parameters ranged from .171 to .358 in Table 29; in Table 37 they
ranged from .333 to .568.

Correlations between true and estimated a parameters, shown in
column seven, were very similar for all linking methods. The Baye-
sian, the robust-regressed maximum-likelihood, and the no-linking
procedures were best, with correlations of .533. The equivalent-
tests method was worst, with a correlation of .526. Correlations
for the b parameters were almost uniformly .971. The exception was
the maximum-likelihood procedure, with a correlation of .970, a
trivial difference.

Compared to correlations in Table 29, these correlations were
somewhat lower. It is difficult to say whether this was due to cali-
bration or to linking errors. Both a- and b-parameter correlations
were lower in analysis of the current basic data set, however, so the
drop was probably due to greater calibration error.



Table 38 presents fidelity-of-calibration data for the hetero-
genenous condition. Means and standard deviations of item parameters,
shown in columns one and two, were essentially the same as for the
homogeneous condition. Differences were due to the fact that less than
half of the items used in the homogeneous condition were used here.

Parameter bias statistics, shown in columns three and four,
were essentially unchanged from the homogeneous condition. Changes
in biases of the a-parameter means were in the third decimal place.

Table 38. Item Parameter Error--Equivalence Methods
Heterogeneous Condition Using Systematically Sampled Examinees

True Bias in Absolute RMS
Method Mean SD Mean SD Error Error R

Bayesian
a 1.586 .500 -.159 -.005 .377 .521 .511
b .281 1.374 .194 .593 .576 .766 .966

Progressed Bayes
a 1.586 .500 -.100 .018 .379 .519 .507
b .281 1.374 .166 .512 .519 .688 .967

Max. Likelihood
a 1.586 .500 .210 .186 .505 .676 .457
b .281 1.374 .062 .197 .335 .423 .970

Regressed M.L.
a 1.586 .500 .087 .122 .444 .598 .469
b .281 1.374 .095 .305 .392 .496 .971

Robust M.L.
a 1.586 .500 .192 .138 .473 .622 .491
b .281 1.374 .068 .198 .334 .427 .970

Rob. Reg. M.L.
0 1.586 .500 .106 .095 .428 .567 .505
b .281 1.374 .094 .280 .376 .488 .968

Equivalent Tests
a 1.586 .500 -.005 .029 .370 .507 .526
b .281 1.374 -.016 .361 .421 .589 .955

No Linking
a 1.586 .500 .138 .127 .455 .604 .484
b .281 1.374 .146 .246 .36R .466 .971
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Changes in the biases of the b-parameter means were in the second
decimal place. Changes in the bias of the a- and b-parameter stan-
dard deviations were somewhat greater, but almost all were in the
second decimal place.

The ranges of parameter errors shown in columns five and six
were essentially unchanged from the homogeneous condition. Similar-
ly, the linking procedures producing the least error were unchanged;
the equivalent-tests method produced the least error In the a param-
eters and the maximum-likelihood procedure produced the least error
in the b parameters.

The magnitude of the a-parameter error showed no apparent change
from that observed in the data set containing randomly sampled exam-
inees. The b-parameter error increased, however. These trends are
similar to those of the homogeneous condition.

Correlations between true and estimated parameters generally
showed a decrease from corresponding values in the homogeneous con-
dition. This decrease was most pronounced for the a parameters. The
highest a-parameter correlation was produced by the equivalent-tests
method. This was followed by the Bayesian methods. The maximum-
likelihood and no-linking methods produced the highest b-parameter
correlations; the equivalent-tests methods produced the lowest.
Where differences were trivial in the homogeneous condition, correl-
ations ranged from .956 to .971 in the heterogeneous condition.

Characteristics of asymptotic ability estimates. Table 39 pre-
sents asymptotic ability estimate statistics for the homogeneous case
of linking with systematically sampled examinees. The mean asymp-
totic ability was close to zero for most methods, but more different
from zero than was observed with the randomly sampled examinees. The
no-linking procedure produced estimates whose means were closest to
zero; the equivalent-tests method produced estimates whose mean was
farthest from zero. The regressed-maximum-likelihood procedure pro-
duced asymptotic estimates whose standard deviation was closest to
1.0; the Bayesian procedures produced estimates with the greatest
bias in the standard deviation.

Absolute and root-mean-square errors are presented in columns
three and four in Table 39. The smallest amount of error was produced
by the regressed and the robust-regressed maximum-likelihood proce-
dures; the largest error was produced by the equivalent-tests proce-
dure. The remaining maximum-likelihood and the no-linking procedures
produced errors slightly greater than the regressed and robust-regressed
procedures. The Bayesian procedures produced error in an amount nearly
midway between the maximum-likelihood procedures and the equivalent-
tests procedure. This ordering of procedures was somewhat different
from that observed in the set of randomly sampled examinees.
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Table 39. Asymptotic Ability Estimates--Equivalence Methods
Homogeneous Condition Using Systematically Sampled Examinees

Absolute RMS

Method Mean SD Error Error R

Bayesian -.044 1.152 .167 .223 .996

Progressed Bayes -.049 1.108 .145 .192 .996

Max. Likelihood -.060 .944 .128 .176 .996

Regressed M.L. -.054 1.003 .121 .159 .996

Robust M.L. -.064 .936 .127 .171 .996

Rob. Reg. M.L. -.060 .978 .121 .159 .996

Equivalent Tests -.200 1.022 .244 .356 .996

No Linking .003 .970 .125 .162 .996

The correlations between true and asymptotic ability were uni-
formly .996. This was a slight decrease from Table 31 where they
were almost all .999.

Asymptotic estimate statistics for the heterogeneous condition
are presented in Table 40. Slight changes from Table 39 appeared in
the means, but the no-linking method still produced the least bias and
the equivalent-tests method produced the most. Slight changes also
occurred in the standard deviations but none were of any consequence.

Tn the heterogeneous condition, the no-linking procedure produc-
ed the least absolute and root-mean-square errors of the parameter
estimates. The maximum-likelihood procedures were typically next in
line but the Bayesian procedures closed the gap considerably. The
equivalent-tests procedure still produced the most error. Root-mean-
square error was invariably less for the heterogeneous condition than
it had been for the homogeneous condition. Absolute error typically
exhibited the same behavior but a few increases were observed. This
decrease was similiar to the one observed in the data set containing
randomly sampled examinees.

The correlations between true and asymptotic ability ranged from
.995 to .996. These were too close in value to make any meaningful
contrast between methods. The decrease from the homogeneous condition
was extremely slight.
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Table 40. Asymptotic Ability Estimates--Equivalence Methods
Heterogeneous Condition Using Systematically Sampled Examinees

Absolute RMS

Method Mean SD Error Error R

Bayesian -.051 1.143 .144 .195 .996

Progressed Bayes -.056 1.100 .121 .166 .996

Max. Likelihood -.075 .928 .130 .157 .995

Regressed M.L. -.066 .992 .107 .136 .996

Robust M.L. -.076 .930 .132 .158 .995

Rob. Reg. M.L. -.071 .972 .114 .142 .995

Equivalent Tests -.207 1.022 .216 .231 .996

No Linking -.013 .962 .095 .127 .995

Efficiency of ability estimation. Table 41 presents calibration
and linking efficiencies for the homogeneous condition with system-
atically sampled examinees. The first entry in the first column in-
dicates that slightly less information was available from true param-
eters in this data set than for the randomly sampled examinees (.314
vs. .319 units per item). Efficiency of calibration, as indicated by
the first entry in the second column, was also slightly less (.887
vs. .898).

Linking efficiencies, presented in the third column (Table 41),
were somewhat lower than those obtained with randomly sampled examinees
(Table 33) and also somewhat more variable. In general, the equivalent-
tests method produced the highest relative efficiency, .971. This was
slightly higher than it produced in the random sampling environment.
The Bayesian methods were next, both with .964. The maximum-likeli-
hood methods ranged from .956 to .961. The no-linking procedure
resulted in an efficiency of .957. By way of comparison, except for
the equivalent-tests method, efficiencies in the random sampling
environment were .988 to .989.

Table 42 presents relative efficiencies for the heterogeneous
condition. The calibration efficiency, .889, was essentially un-
changed (as it should have been since any change would be due solely
to sampling). Linking efficiencies were all lower in this condition,
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Table 41. Efficiency Analysis--Equivalence Methods
Homogeneous Condition Using Systematically Sampled Examinees

Average Efficiency Relative to
Item True Estimated

Method Information Parameters Parameters

True Parameters .314

Est. Parameters .278 .887

Bayesian .268 .855 .964

Progressed Bayes .268 .855 .964

Max. Likelihood .267 .850 .958

Regressed M.L. .267 .853 .961

Robust M.L. .266 .849 .956

Rob. Reg. M.L. .267 .851 .959

Equivalent Tests .270 .862 .971

No Linking .266 .849 .957

with the maximum-likelihood procedure being the lowest, .904. The
equivalent-tests procedure produced the highest efficiency, .949, but
the Bayesian procedure was close, .942.

All equivalent-groups and the no-linking procedures had lower
efficiencies in the systematic sampling environment than in the ran-
dom sampling environment. This was expected since a theoretically
crucial assumption was violated. The equivalent-tests method lost no
efficiency, as should also have been expected since no assumption
violations occurred.

Table 43 presents linking efficiency of the Bayesian equivalent-
groups method as a function of test length and sample size. Effi-
ciencies appeared to increase with increasing sample size, but this
trend was not smooth and was somewhat inconsistent when the 12 cell
entries were compared. No trend with test length was obvious. Again,
essentially no trends were observed in the randomly sampled data set.

Table 44 presents linking efficiency of the equivalent-tests
method as a function of test length and sample size. No trend with
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Table 42. Efficiency Analysis--Equivalence Methods
Heterogeneous Condition Using Systematically Sampled Examinees

Average Efficiency Relative to
Item True Estimated

Method Information Parameters Parameters

True Parameters .305

Est. Parameters .271 .889

Bayesian .255 .837 .942

Progressed Bayes .255 .835 .940

Max. Likelihood .245 .804 .904

Regressed M.L. .249 .816 .918

Robust M.L. .250 .819 .922

Rob. Reg. M.L. .252 .828 .932

Equivalent Tests .257 .844 .949

No Linking .248 .814 .916

Table 43. Cellwise Efficiency Analysis
Bayesian Score--Systematically Sampled Examinees

Sample Item Set Size
Size 20 35 50 55 kverage

500 .961 .917 .954 .970 .951

1000 .969 .939 .990 .982 .970

2000 .966 .971 .994 .950 .970

Average .965 .942 .979 .967
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Table 44. Cellwise Efficiency Analysis
Equivalent Tests--Systematically Sampled Examinees

Sample Test Length
Size 20 35 50 65 Average

500 .969 .907 .985 .990 .963

1000 .977 .990 .978 .992 .984

2000 .926 .957 .991 .986 .965

Average .957 .951 .985 .989

respect to sample size was obvious. Efficiency did appear to increase
with test length in the marginal entries, although this trend was in-
consistent in the individual rows. These findings regarding trends
are consistent with those for the randomly sampled data set.

Discussion

Many of the data presented in this section were conflicting and
inconsistent. Depending on which analyses were done, the different
methods varied from best to worst. Fidelity analyses suggested that
the equivalent-tests method was best and the maximum-likelihood pro-
cedure was second best. Evaluation of asymptotic ability estimates
suggested that the equivalent-tests method produced the greatest asymp-
totic error of estimation. Efficiency analyses suggested that the
equivalent-tests method was most efficient and the Bayesian procedures
were almost as efficient.

The efficiency analysis probably produces the best answers to
questions of which procedure is best. It is the goal of linking,
after all, to produce a set of items that will function efficiently
together. The facts that the parameters are not "most true" or that
the ability scale is not at arbitarily targeted levels are secondary
to the goal of efficiency of measurement. Efficiency analyses are
probably most useful in selecting a procedure.

Accepting the previous argument, several observations can be
made. First, the equivalent-tests method is the most efficient when

examinees are systematically sampled, as they were here. Second, the
Bayesian procedures are nearly as efficient with systematic sampling

and, as was observed earlier, are more efficient when examinees are
randomly sampled. At some point between the extremes in sampling in-
vestigated here, the Bayesian procedures could be expected to become
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superior. Of the two Bayesian procedures, neither was clearly superior,
but the simple (i.e., unprogressed) procedure was easier to compute
and therefore preferable.

Analysis of the two methods by test length and sample size sug-
gested that there was a slight increase in efficiency of the equiva-
lent-tests method as test length increased and a slight increase in
efficiency of the Bayesian equivalent-groups procedure as sample size
increased. These increases were small and inconsistent, however, and
suggested that all of the test lengths and sample sizes investigated
were nearly equivalent in terms of resulting efficiency for both the
equivalent-tests and Bayesian methods.

Anchor Group Method

Procedure

The anchor group linking method is, conceptually, very similar
to the equivalent-groups method. The major conceptual distinction is
that the anchor group method uses a single group of examinees for all
linking and thus does not need to assume the statistical equivalence
of several different groups.

In this research, eight different anchor groups were evaluated.
The eight groups comprised four examinee sample sizes (10. 30, 50,
and 100) and two distribution forms (rectangular and normal). The
rectangular samples consisted of abilities evenly spaced between -1.7

and 1.7. The normal samples were created by selecting normal devi-
ates corresponding to evenly spaced percentiles from 2.0 to 98.0.
Values thus obtained for both normal and rectangular samples were
then standardized to assure that the samples obtained had means of
exactly zero and variances of exactly one.

Linking by the anchor group method was done for all parameters
in the systematically sampled data set. This was accomplished by ad-
ministering all 60 tests in the data set to each of the examinees in
each of the anchor groups. Item parameters were then adjusted using
the same equations used for the equivalent groups method, Equations

14 and 15. Two scoring proceduires, the modal Bayesian procedure and
the robust-maximum-likelihood procedure were used for this linking.

Results--Modal Bayesian Scores

Fidelity of parameter estimation. Table 45 presents the item
parameter error statistics for the anchor group linking method for
each anchor group size and composition in the homogeneous linking
condition using modal Bayesian estimates. The first two columns pre-
sent the means and standard deviations of the true a and b parameters
averaged over cells in the systematically sampled data set. These
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Table 45. Item Parameter Error--Anchor Groups
Homogeneous Condition Using Systematically Sampled Examinees

True Bias in Absolute RMS
Method Mean SD Mean SD Error Error R

Normal 10
a 1.588 .501 -.080 .033 .393 .540 .519
b . 62 1.344 .180 .479 .440 .671 .977

Normal 30
a 1.588 .501 -.076 .017 .380 .521 .527
b .262 1.344 .168 .443 .409 .614 .979

Normal 50
a 1.588 .501 -.086 .019 .381 .525 .529
b .262 1.344 .186 .469 .424 .644 .979

Normal 100
a 1.588 .501 -.101 .011 .374 .516 .530
b .262 1.344 .193 .480 .432 .659 .979

Uniform 10
a 1.588 .501 -.110 .024 .395 .545 .516
b .262 1.344 .198 .516 .470 .717 .976

Uniform 30
a 1.588 .501 -.135 .006 .386 .529 .520
b .262 1.344 .192 .530 .469 .706 .977

Uniform 50
a 1.588 .501 -.137 .001 .378 .523 .529
b .262 1.344 .203 .530 .470 .712 .979

Uniform 100
a 1.588 .501 -.115 .003 .372 .516 .531
b .262 1.344 .208 .497 .448 .681 .980

No Linking
a 1.588 .501 .139 .084 .450 .602 .533
b .262 1.344 .130 .237 .364 .464 .971

values are the same as those presented in Table 37 and will not be
discussed again here.

Biases in the estimated item parameters are presented in columns
three and four. With the exception of the no-linking group, all
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groups tended to underestimate the a parameters. All groups tended
to overestimate the b parameters, with a trend for increasing bias
with increasing group size. The no-linking method revealed the least
b-parameter bias, while the normal group showed the least bias over-
all. In terms of bias in parameter standard deviations, the uniform
group showed least bias in the a parameters and the normal group show-
ed least bias in the b parameters. Again, the no-linking method show-
ed the least bias in the b parameters overall.

Absolute and root-mean-square errors of the parameter estimates
are presented in columns five and six. A slight trend toward decreas-
ing absolute error in the a parameters with increasing anchor group
size was apparent for both distributions, although it was more pro-
nounced with the uniform anchor groups. No consistent differences
were apparent between the group compositions with respect to a-param-
eter absolute error, but both produced less error than the no-linking
procedure. Absolute error of the b parameters suggested different
conclusions: There were no noticeable decreases with increasing anchor
group sizes for the normal group and there were slight decreases for
the uniform group. The no-linking procedure produced the least error,
and the uniform groups consistently produced the most error. The same
conclusions drawn from the absolute errors could also be drawn from
the root-mean-square errors.

The correlations between true and estimated a and b parameters
are shown in the last column of Table 45. There was a slight in-
creasing trend in both the a- and b-parameter correlations with in-
creasing anchor group size for both shapes of ability distribution.
The no-linking procedure produced a-parameter correlations slightly
higher than those of other methods and b-parameter correlations that
were slightly lower.

The fidelity-of-calibration data for the heterogeneous condition
are presented in Table 46. Since observations about the true item
parameters remain the same across linking methods, they will not be
repeated here.

The parameter biases presented in columns three and four were
essentially the same as those of the homogeneous case. The bias of
the a-parameter means tended to be somewhat smaller for the homogen-
eous case while the same trend was observed with respect to bias in
the a-parameter standard deviations. For the b parameters, however,
the bias in both the mean and standard deviation were greater in the
heterogeneous condition.

Parameter errors depicted in columns five and six were essen-
tially the same as those for the homogeneous case for the a param-
eters. The differences between the heterogeneous and homogeneous
conditions appeared in the third decimal place for the a parameters.
The b-parameter errors for the heterogeneous condition showed a
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Table 46. Item Parameter Error--Anchor Groups
Heterogeneous Condition Using Systematically Sampled Examinees

True Bias in Absolute RMS
Method Mean SD Mean SD Error Error R

Normal 10
a 1.586 .500 -.082 .045 .394 .538 .497
b .281 1.374 .203 .501 .450 .680 .972

Normal 30

a 1.586 .500 -.077 .027 .384 .522 .507
b .281 1.374 .189 .468 .419 .622 .974

Normal 50
a 1.586 .500 -.087 .029 .385 .526 .501
b .281 1.374 .207 .492 .435 .653 .974

Normal 100

a 1.586 .500 -.102 .017 .377 .517 .515
b .281 1.374 .214 .504 .443 .667 .973

Uniform 10
a 1.586 .500 -.111 .040 .400 .547 .477
b .281 1.374 .219 .550 .483 .730 .968

Uniform 30
a 1.586 .500 -.137 .011 .389 .530 .498
b .281 1.374 .215 .557 .482 .718 .972

Uniform 50
a 1.586 .500 -.138 .006 .381 .524 .505
b .281 1.374 .224 .557 .482 .721 .972

Uniform 100
a 1.586 .500 -.117 .008 .374 .516 .513
b .281 1.374 .229 .525 .459 .690 .973

No Linking
a 1.586 .500 .138 .127 .455 .604 .484
b .281 1.374 .146 .246 .368 .466 .971

slight increase over the homogeneous condition. Absolute errors of
the b parameters showed no noticeable trends with increasing anchor
group size for the normal groups but showed a slight decreasing trend
with increasing uniform anchor group size. Many of the same conclu-
sions could also be drawn from the root-mean-square errors.
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Whereas bias and error statistics were quite similar for the
homogeneous and heterogeneous conditions, the correlations between
true and estimated parameters showed a noticeable drop from their
corresponding values in the homogeneous condition. Differences in the
second decimal place were observed for the a parameters and in the
third decimal place for the b parameters. There was a slight tendency
for the correlations to increase with increasing anchor group size.
The no-linking procedure's correlation for the a parameters was, how-
ever, somewhat lower than most correlations produced by the anchor
group procedures.

Characteristics of asymptotic ability estimates. Table 47 pre-
sents descriptive statistics for the asymptotic ability estimates in
the homogeneous case. Mean asymptotic ability estimates were close
to zero for all cases while the corresponding standard deviations
were close to one. For the most part, means were overestimated, as
were the standard deviations.

Table 47. Asymptotic Ability Estimates--Anchor Groups
Homogeneous Condition Using Systematically Sampled Examinees

Absolute RMS

Method Mean SD Error Error R

Normal 10 .005 1.070 .085 .131 .996

Normal 30 -.009 1.066 .081 .129 .996

Normal 50 .004 1.070 .081 .129 .996

Normal 100 .004 1.078 .081 .134 .996

Uniform 10 .003 1.092 .105 .156 .996

Uniform 30 -.005 1.104 .101 .151 .996

Uniform 50 .005 1.108 .09 .157 .996

Uniform 100 .017 1.091 .085 .142 .996

No Linking .003 .970 .125 .162 .996

Absolute error presented in column three was lowest for the nor-
mal anchor group and greatest for the no-linking procedure. Absolute
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error appeared to decrease with increasing anchor group size for the
uniform anchor group. No trend was obvious for the normal group.

Root-mean-square error, presented in column four, showed the same
differences among linking methods. Trends within methods as a function
of anchor group size were not apparent.

Correlations between the true and asymptotic ability, shown in
column five, were uniformly .996.

Statistics for the asymptotic ability in the heterogeneous case
are presented in Table 41. Slight changes were observed from the
homogeneous condition, for the means and standard deviations. Whereas
the homogeneous condition tended to overestimate the means, the heter-
ogeneous condition tended to underestimate them. Standard deviations
of the asymptotic estimates for the heterogeneous condition were
smaller than for the homogeneous condition.

Table 48. Asymptotic Ability Estimates--Anchor Groups
Heterogeneous Condition Using Systematically Sampled Examinees

Absolute RMS

Method Mean SD Error Error R

Normal 10 .004 1.065 .085 .125 .996

Normal 30 -.012 1.061 .075 .117 .996

Normal 50 -.001 1.066 .072 .117 .996

Normal 100 .000 1.075 .078 .125 .996

Uniform 10 -.000 1.082 .085 .130 .996

Uniform 30 -.009 1.100 .096 .139 .996

Uniform 50 -.001 1.103 .095 .140 .996

Uniform 100 .014 1.088 .081 .131 .996

No Linking -.013 .962 .095 .127 .995

Absolute and root-mean-square errors of the asymptotic estimates
were uniformly lower in the heterogeneous condition than in the homo-
geneous condition. Trends with respect to anchor group size were not
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apparent, however, and the no-linking method was not consistently in-
ferior.

Correlations between true and asymptotic ability were identical
to the homogeneous condition (i.e., .996) for the anchor group pro-
cedures. The no-linking procedure produced a correlation slightly
lower in the heterogeneous condition.

Efficiency of ability estimation. Table 49 presents the efficien-
cies achieved by the homogeneous linking condition with systematically
sampled examinees. The average item information, presented in the
first column, was nearly identical for both the normal and uniform
groups and increased as sample size increased. The no-linking group
showed the lowest average item information.

Table 49. Efficiency Analysis--Anchor Groups
Homogeneous Condition Using Systematically Sampled Examinees

Average Efficiency Relative to
Item True Estimated

Method Information Parameters Parameters

True Parameters .314

Est. Parameters .278 .887

Normal 10 .272 .869 .979

Normal 30 .274 .875 .936

Normal 50 .274 .875 .986

Normal 100 .275 .876 .987

Uniform 10 .272 .866 .976

Uniform 30 .274 .873 .983

Uniform 50 .275 .876 .987

Uniform 100 .275 .877 .988

No Linking .266 .849 .957

Linking efficiency, shown in the third column, showed a slight
rise as sample size went from 10 to 30 but negligible change from 30
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to 100. There were no consistent differences between the two anchor
group distributions. The no-linking case showed the lowest efficien-
cy, .957.

Relative efficiencies for the heterogeneous condition are pre-
sented in Table 50. The same trends were apparent here (except for
rounding error) as were shown for the homogeneous case. Information
values and relative efficiencies were markedly lower for the hetero-
geneous condition than for the homogeneous condition. As before, a
sharp rise was noted as sample size increased from 10 to 30, but
there were negligible increases thereafter.

Table 50. Efficiency Analysis--Anchor Groups
Heterogeneous Condition Using Systematically Sampled Examinees

Average Efficiency Relative to
Item True Estimated

Method Information Parameters Parameters

True Parameters .305

Est. Parameters .271 .889

Normal 10 .259 .850 .956

Normal 30 .261 .857 .964

Normal 50 .260 .855 .962

Normal 100 .261 .858 .966

Uniform 10 .257 .845 .951

Uniform 30 .261 .856 .963

Uniform 50 .261 .858 .966

Uniform 100 .262 .860 .968

No Linking .248 .814 .916

Results--Robust-Maximum-Likelihood Scores

Fidelity of parameter estimation. Table 51 is a condensed table
of the modal Bayesian and robust-maximum-likelihood item parameter er-
ror statistics for the anchor group linking design in the homogeneous
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Table 51. Item Parameter Error--Anchor Groups
Homogeneous Condition Using Systematically Sampled Examinees

Bayesian Maximum Likelihood
Bias in RMS Bias in RMS

Method Mean SD Error R Mean SD Error R

Normal 10
a -.054 .060 .562 .489 .699 .391 1.168 .438
b .151 .422 .590 .978 -.035 -.118 .331 .973

Normal 30
a -.076 .037 .552 .488 .454 .256 .834 .444
b .164 .429 .597 .981 -.004 .007 .426 .968

Normal 50
a -.052 .051 .562 .486 .441 .244 .857 .467
b .166 .419 .597 .979 -.016 .002 .320 .975

Normal 100
a -.107 .025 .541 .487 .483 .263 .896 .462
b .203 .468 .653 .980 -.023 -.027 .307 .976

Uniform 10
a -.060 .066 .601 .463 -.007 .182 .706 .381
b .185 .447 .637 .975 .160 .531 .905 .952

Uniform 30
a -.127 .023 .549 .483 .120 .165 .640 .478
b .182 .500 .671 .979 .071 .300 .581 .971

Uniform 50
a -.117 .030 .555 .485 .175 .174 .717 .457
b .207 .499 .684 .979 .079 .222 .426 .974

Uniform 100
a -.105 .028 .546 .487 .169 .160 .670 .453
b .207 .478 .673 .980 .072 .232 .497 .973

No Linking
a .143 .112 .629 .501 .143 .112 .629 .501
b .147 .228 .444 .973 .147 .228 .444 .973

case. The table values represent averages taken over four cells of
the data matrix (i.e. 1000 examinees and 20, 35, 50, and 55 items),
rather than over the entire 3x4 matrix, as in the previous section.

-120-



Whereas the bias in the a-parameter means, using modal Bayesian
estimation, tended to be slightly negative for both the normal and
uniform groups (indicating that the a parameters were underestimated),
the robust-maximum-likelihood procedure grossly overestimated the
means for the normal group and slightly overestimated the means for
the uniform group. The trends with respect to the b-parameter biases
were reversed from those noted for the a parameters. The robust-maxi-
mum-likelihood procedure produced a b-parameter mean that was much
closer to the true value of 0.0 than did the modal Bayesian estimate.
The normal group tended to produce slight underestimates of the b-
parameter mean while the uniform group produced slight overestimates.
Both groups produced overestimates of the b mean when the modal
Bayesian scoring procedure was used.

The same general trends noted for the bias in parameter means
held also for the biases in the parameter standard deviations. The
robust-maximum-likelihood estimates tended to overestimate the a-
parameter standard deviations more than their counterparts in the
Bayesian case. As was the case for the b-parameter means, the ro-
bust-maximum-likelihood estimates of the standard deviations were
much closer to the true value of 1.0 than were the modal Bayesian
estimates. The normal groups revealed a much smaller bias in b-
parameter standard deviations than did the uniform groups using
robust maximum likelihood. The Bayesian modal estimates showed very
little difference between the normal and uniform groups.

In terms of root-mean-square error in the a parameter, modal
Bayesian procedures showed the least error, regardless of distribu-
tion shape. On the other hand, robust-maximum-likelihood procedures
provided the smallest errors for the b parameters. The normal group
produced less error than the uniform group, with a slight tendency
for increasing error with increasing anchor group size.

The correlations between true and estimated parameters were con-
sistently higher with modal Bayesian procedures than with robust-max-
imum-likelihood procedures although in several instances the differ-
ences were in the third decimal place. There were no consistent
differences among group compositions or sizes. As usual, correla-
tions for the b parameters were considerably higher than for the a
parameters.

Characteristics of asymptotic ability estimates. Table 52 pre-
sents summary statistics for the asymptotic ability estimates using
both modal Bayesian and robust-maximum-likelihood procedures. The
robust-maximum-likelihood procedure resulted in slight underestimation
of the means for both the normal and uniform groups. Standard devia-
tions were also underestimated, compared to the modal Bayesian groups
which tended to overestimate the standard deviation. For the robust-
maximum-likelihood procedures, there was a noticeable difference be-
tween the normal group, which produced underestimated standard

-121-



r1

Table 52. Asymptotic Ability Estimates--Anchor Groups
Homogeneous CL-dition Using Systematically Sampled Examinees

?qyestan Maximum Likelihood
RMS RMS

Method Mean SD Error R Mean SD Error R

Normal 10 -.006 1.045 .114 996 -.037 .724 .305 .996

Normal 30 -.009 1.066 .125 .996 -.068 .776 .258 .996

Normal 50 -.004 1.044 .108 .996 -.048 .791 .236 .996

Normal 100 .010 1.080 .131 .996 -.044 .779 .247 .996

Uniform 10 .013 1.061 .126 .997 -.048 .993 .136 .997

Uniform 30 -.009 1.098 .144 .996 -.049 .932 .133 .997

Uniform 50 .012 1.090 .134 .996 -.015 .920 .143 .996

Uniform 100 .016 1.073 .128 .996 -.033 .911 .135 .996

4o Linking .034 .962 .133 .996 .034 .962 .133 .996

deviations, and the uniform group, which produced overestimated

standard deviations.

En terms of root-mean-square error, there were again notable
differences between the normal and uniform groups using robust-maxi-
mum-likelihood procedures. The normal group had bias values consid-
erably greater than its counterpart using modal Bayesian procedures
while the uniform group had error values quite comparable to their
Bayesian counterparts. The normal-group errors, using robust-maxi-
mum-likelihood scoring, were by far the largest of any of the methods.

Correlations between true and estimated parameters using robust-
maximum-likelihood procedures were uniformly high (.996) and virtual-
ly identical to their Bayesian counterparts.

Efficiency of ability estimation. Table 53 presents comparisons
of robust-maximum-likelihood with modal Bayesian procedures in terms
of relative efficiencies achieved by each method. The average amount
of information available per item tended to be higher for the modal
Bayesian procedures than for the robust-maximum-likelihood procedures.
This, of course, meant that the efficiencies relative tc the true and
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Table 53. Efficiency Analysis--Anchor Groups
Homogeneous Condition Using Systematically Sampled Examinees

Bayesian Maximum Likelihood
Efficiencies Efficiencies
Relative to Relative to

Avg. Item True Est. Avg. Item True Est.
Method Info. Params. Params. Info. Params. Params.

True Params. .306 .306

Est. Params. .270 .882 .270 .882

Normal 10 .265 .866 .983 .257 .840 .953

Normal 30 .267 .874 .991 .262 .857 .972

Normal 50 .266 .870 .987 .265 .868 .984

Normal 100 .267 .873 .991 .264 .862 .978

Uniform 10 .263 .860 .976 .252 .8?4 .935

Uniform 30 .267 .872 .989 .262 .856 .971

Uniform 50 .267 .872 .990 .262 .858 .973

Uniform 100 .267 .873 .990 .264 .865 .981

No Linking .260 .850 .964 .260 .850 .964

estimated parameters were also higher for modal Bayesian than for ro-
bust-maximum-likelihood procedures. The magnitude of differences were,
with one exception, in the second decimal place.

The normal group showed no consistent trend with increasing group
size. The uniform group showed a tendency for increasing efficiency
with increasing group size. These trends appeared for both modal
Bayesian and robust-maximum-likelihood procedures.

Discussion

Most of the analyses thus far have presented rather conflicting
results. Different analyses have suggested different procedures that
were "best." Using fidelity-of-parameter estimation as a criterion,
modal Bayesian procedures tended to produce more accurate estimates
of the a parameter while the robust-maximum-likelihood procedures
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tended to produce more accurate estimates of the b parameter. Within
the modal Bayesian procedures, there did not appear to be any clear-
cut advantage to either group composition. For the robust-maximum-
likelihood procedures, there was a clear trend for the normal groups
to produce consistently better estimates for the b parameters than
those estimates produced from the uniform groups.

Using asymptotic ability estimates as the evaluative criterion,
modal Bayesian procedures with normally distributed anchor group abil-
ities appeared to be consistently best. Modal Bayesian procedures
with uniformly distributed abilities were second best. Robust-maximum-
likelihood scoring using uniform and normal anchor groups followed in
that order.

Modal Bayesian procedures showed efficiencies consistently high-
er than robust-maximum-likelihood procedures regardless of anchor
group composition or size. With the modal Bayesian procedures, the
normal groups tended to yield slightly more efficiency than did the
uniform groups. Both groups were superior to the no-linking condition.

Anchor Test Method

Procedure

Generation of the source item pool. The first step in the ap-
plication of the anchor test method was to construct a source item
pool from which the anchor tests could be selected. To obtain the
source item pool, 200 a, b, and c parameters were independently gener-
ated as discussed previously. The first four central moments of each
of these distributions matched those specified earlier as being repre-
sentative of a "typical" ASVAB item pool. These parameters represent-
ed the "true" parameters of 200 hypothetical items.

Dichotomous item responses for these 200 items were simulated
for 4000 examinees randomly selected from a distribution of abilities
with distributional moments representative of the total AFEES popula-
tion. All examinees responded according to the three-parameter logis-
tic IRT model. Item parameter estimates were obtained for these 200
items using program OGIVIA. The items were, due to computer program
limitations, calibrated in two sets of 100 items each.

Selection of anchor-test items. Three different 25-item anchor
tests were constructed by selecting items from the original set of 200
items. These anchor tests were constructed 30 that their test infor-
mation curves were approximately normal, rectangular, and peaked.

The peaked test was constructed by selecting the 25 items which
provided the most information at theta equal to zero, according to
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their estimated item parameters; this is the way items would typically
be selected for inclusion in a peaked test. In order to get an indi-
cation of the amount of information actually contained in this test,
M e true information was computed, using the true item parameters, for
51 theta values at intervals of .10 from -3.00 to 3.00. These infor-
mation values were then averaged across 61 theta values; this average
was 8.320.

Items for the rectangular and normal tests were selected so that
their test information curves were shaped approximately rectangular
and normal, respectively, and so that the true test information,
computed using the true item parameters and averaged as before over 61
theta values from -3.00 to 3.00, approached the value obtained by the
peaked test. These averages were 8.410 and 8.232 for the rectangular
and normal tests, respectively. When the test information was comput-
ed on the basis of the estimated item parameters, these averages were

8.485, 9.294, and 9.121 for the peaked, rectangular, and norinal tests,
respectively. Figure 9 presents the true information curves, basid on
the true item p:araete-s, for the three 25-item annhor tests.

Figure 9. True Information Curves, Using True Item Parameters,

for Each of Three Anchor Tests
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Two additional embedded tests for each of these three anchor
tests were obtained by selecting the first five items and the first
15 items from each. Thus, the nine anchor tests considered here com-
prised three groups of 5-, 15-, and 25-item tests, each of whose test
information curves for these tests were approximately normal, rec-

tangular, and peaked, respectively. The items included in these
anchor tests are presented in Appendix Table A-2.

Determination of the linking transformations. The nine anchor
tests were "administered" to the 70,000 examinees comprising the
systematically sampled basic data set. This simulation was accom-
plished by generating response vectors using the true theta levels
of these examinees and then scoring the anchor tests. Once item re-
sponses were available for the items in each anchor test, a modal
Bayesian estimate of ability was computed for each examinee on each
anchor test, using a standard normal prior distribution of abilities
and scoring each response vector using the estimated item parameters.
For each of the 60 calibration groups, the mean and standard devia-
tion of estimated ability were computed on each of the nine anchor
tests. These values were then used for the transformation constants
for anchor-test linking.

Linking under the anchor-test method is accomplished by trans-
forming the non-anchor-test item parameters such that the mean and
standard deviation of ability of the groups under consideration, as
estimated from the non-anchor test, match the mean and standard devi-
ation of ability estimated from the anchor test alone. When the
transformation constants k and m are applied in the form presented by
Equations 14 and 15, the constants k and m may be expressed as:

k : rl/0 30]

and m = )I - £k [31)

where p and a are, respectively, the mean and standard deviation of

ability estimates in the non-anchor test and p and a are the cor-

responding statistics for the anchor test.

Results--Modal Bayesian Scores

Fidelity of parameter estimation. Fidelity-of-estimation sta-
tistics for the homogeneous condition, using the Bayesian scoring
technique, are presented in Table 54. The true means and standard

deviations of the a and b parameters are presented in the first two
columns of this table. Columns three and four present the bias in
the means and standard deviations of the item parameters. The largest
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Table 54. Item Parameter Error--Anchor Tests
Homogeneous Condition Using Systematically Sampled Examinees

True Bias in Absolute RMS
Method Mean SD Mean SD Error Error R

Normal 5
a 1.588 .501 .574 .237 .718 .874 .532
b .262 1.344 .135 -.091 .258 .350 .979

Normal 15
a 1.588 .501 .095 .076 .414 .552 .531
b .262 1.344 .226 .266 .320 .509 .980

Normal 25
a 1.588 .501 .067 .067 .405 .544 .530
b .262 1.344 .232 .293 .333 .529 .980

Rectangular 5
a 1.588 .501 .400 .182 .589 .738 .530
b .262 1.344 .168 .020 .253 .365 .980

Rectangular 15
a 1.588 .501 .095 .077 .416 .554 .532
b .262 1.344 .227 .267 .321 .506 .980

Rectangular 25
a 1.588 .501 .042 .058 .396 .536 .531
b .262 1.344 .233 .318 .344 .544 .980

Peaked 5
a 1.588 .501 1.092 .418 1.169 1.359 .531
b .262 1.344 .029 -.332 .342 .430 .980

Peaked 15
a 1.588 .501 .617 .255 .754 .914 .531
b .262 1.344 .102 -.115 .255 .344 .980

Peaked 25
a 1.588 .501 .457 .201 .629 .780 .529
b .262 1.344 .145 -.017 .248 .359 .979

No Linking
a 1.588 .501 .139 .084 .450 .602 .533
b .262 1.344 .130 .237 .364 .464 .971
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biases in the mean of the a parameters were observed for the peaked
tests, and ranged from .457 for the 25-item anchor test to 1.092 for
the 5-item anchor test. The smallest biases in the means were ob-
served for the rectangular tests, although the biases for the nor-
mal tests were only slightly higher at the longer test lengths. The
smallest biases were observed for the 25-item normal and rectangular
tests, with values of .067 and .042, respectively. When no linking
was performed, the bias in the mean of the a parameters was .139;
this value was exceeded by all three peaked tests, but only by the
5-item normal and rectangular tests.

Biases in the standard deviations of the a parameters were larg-
est for the peaked tests, ranging from .?01 to .418. Again, there
was little difference observed between the biases in the standard de-
viations of the a parameters for the normal and the rectangular tests,
although they were slightly smaller for the rectangular tests. The
smallest biases were observed for the 25-item normal and rectangular
tests. As before, biases for all three peaked tests exceeded the
value of .084 observed in the no-linking condition, whereas only the
5-item normal and rectangular tests exceeded this value. Biases in
both the means and the standard deviations of the a parameters de-
creased with increased test length.

The smallest biases in the mean of the b parameters were ob-
served for the peaked tests; these values ranged from .029 to .145.
There were essentially no differences between the rectangular and nor-
mal tests in terms of bias in the mean b's; these values clustered
between .135 and .233. These bias figures increased with increased
test lengths for all three anchor test types. Tn the no-linking
condition, bias in the mean b's was .130, which was exceeded by all
tests except the 5- and 15-item peaked tests.

The standard deviations of the b parameters were underestimated
for the peaked tests, since all these bias values were negative, rang-
ing from -.017 to -.332. The differences between the normal and rec-
tangular tests were not consistent, though the normal test was some-
what better at test lengths greater than five items. The bias in the
b-parameter standard deviation was .237 in the no-linking condition,
and this value was exceeded by all the tests except the shortest normal
and rectangular tests and the two longest peaked tests.

Mean absolute and root-mean-square errors in the parameters are
presented in columns five and six of Table 54. The peaked anchor
tests performed most poorly according to both of these indices of
error for the a parameters. The mean absolute error in estimating a
was .629 for the 25-item peaked test, and was as high as 1.169 for the
5-item peaked test. The rectangular tests were best overall, but for
15 and 25 items, the normal tests performed nearly as well. The least
error was observed for the 25-item rectangular and normal tests.
When no linking was performed at all, mean absolute error was .450.
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All three peaked tests exceeded this value, but only the 5-item ver-
sion of the normal and rectangular tests did.

The pattern was identical for the root-mean-square error in
the a parameters. That is, the peaked tests performed most poorly,
and all three peaked tests exceeded the root-mean-square error of
.602 which was observed in the no-linking condition. Again, the
rectangular tests were best overall, but for 15 and 25 items, the

normal tests performed nearly as well. The least error was observed
for the 25-item rectangular and normal tests. For all three kinds
of anchor tests, both absolute and root-mean-square errors in the a
parameters decreased with increasing anchor test size.

The pattern of errors was somewhat different for the b param-
eters. Overall, there were essentially no differences among the an-
chor test types in mean absolute error; these values ranged from .248
to .344 across the nine tests, and all these values were below the
.364 observed in the no-linking condition. For the peaked tests,
mean absolute errors decreased with anchor test size as expected.
For the rectangular and normal tests, however, these errors increased
with test size, as was observed for the bias statistics.

The peaked tests were better, in general, than the other two
kinds of tests in terms of root-mean-square errors in the b param-
eters. These values ranged from .344 to .430 and, although there
was no trend observed with respect to anchor test size, all these
values were below the .464 observed in the no-linking condition. The
normal tests were slightly superior to the rectangular tests in terms
of root-mean-square error. In both cases, errors increased with in-
creasing anchor test length.

There were small differences observed across anchor tests in
terms of the correlations between the true and estimated item param-
eters. For the a parameters, these values clustereA between .529
and .532 for all nine anchor tests; all these correlations were lower
than the .533 observed in the no-linking condition. There were no
systematic trends observed with anchor test size.

For the b parameters, these correlations were approximately .980
for all nine tests, and therefore, all of them were higher than the
.971 observed in the no-linking condition.

Fidelity-of-estimation statistics for the heterogeneous condi-
tion are presented in Table 55. As was observed for the homogeneous
condition, bias in the mean a parameters was largest for the peaked
tests and smallest for the rectangular tests; bias for the normal
tests was only slightly larger than that for the rectangular tests.
In the no-linking condition, bias in the mean a parameter was .138,
which was exceeded by all the peaked tests and by the 5-item normal
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Table 55. Item Parameter Error--Anchor Tests
Heterogeneous Condition Using Systematically Sampled Examinees

True Bias in Absolute RMS
Method Mean SD Mean SD Error Error R

Normal 5
a 1.586 .500 .571 .246 .714 .871 .513
b .281 1.374 .143 -.084 .261 .347 .975

Normal 15
a 1.586 .500 .093 .082 .417 .552 .515
b .281 1.374 .242 .285 .328 .514 .974

Normal 25
a 1.586 .500 .066 .075 .410 .544 .513
b .281 1.374 .248 .313 .341 .535 .974

Rectangular 5
a 1.586 .500 .397 .193 .590 .738 .512
b .281 1.374 .178 .029 .257 .363 .975

Rectangular 15
a 1.586 .500 .093 .085 .419 .554 .515
b .281 1.374 .242 .284 .328 .511 .975

Rectangular 25
a 1.586 .500 .041 .065 .401 .535 .514
b .281 1.374 .250 .338 .352 .550 .975

Peaked 5
a 1.586 .500 1.088 .431 1.161 1.355 .512
b .281 1.374 .032 -.332 .347 .431 .974

Peaked 15
a 1.586 .500 .615 .266 .750 .913 .513
b .251 1.374 .110 -.107 .258 .341 .974

Peaked 25

a 1.586 .500 .455 .212 .628 .780 .511
b .281 1.374 .155 -.005 .251 .359 .973

No Linking
a 1.586 .500 .138 .127 .455 .604 .484
b .281 1.374 .146 .?46 .368 .466 .971
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and rectangular tests. These bias figures decreased with increased
test length for all three anchor test types.

Bias in the standard deviation of the a parameters was greatest
for the peaked tests, ranging from .212 to .431. There were only
small differences between the normal and rectangular tests, with the
slight advantage going to the rectangular test at the longer test
lengths. The smallest biases were observed for the 25-item normal
and rectangular tests. The bias in the no-linking condition, .127,
was exceeded by all the peaked tests and the 5-item normal and rec-
tangular tests. As before, all these bias figures decreased with in-
creased test lengths.

In terms of the bias in the mean b parameters, the peaked tests
performed best, with bias equal to .032 for the 5-item test and in-
creasing to .155 for the 25-item test. Bias in the mean b's was some-
what larger for the other two types of anchor tests, although there
were fewer differences between them. For the normal and rectangular
tests, the bias figures fell between .143 and .250. All but one of
these values were greater than the .146 observed in the no-linking
condition. Only the 25-item peaked test exceeded this value.

The standard deviations of the b parameters were consistently
underestimated by the peaked tests; bias was as high as -.332 for the
5-item test, but was only -.005 for the 25-item test. Bias values
for the other two types of tests were essentially the same, with a
slight advantage going to the normal test at the longer test lengths.
In the no-linking condition, bias in the standard deviation of the b
parameters was .246, which was exceeded by all but the shortest normal
and rectangular tests and the two longest peaked tests.

The patterns of mean absolute and root-mean-square errors in the
a and b parameters in the heterogeneous condition were identical to
what was observed in the homogeneous condition. In terms of mean abso-
lute error, the peaked anchor tests performed most poorly, with errors
ranging from .628 to 1.161 for the a parameter. Again, the rectangular
tests were best overall, with the normal tests closely following. When
no linking was performed at all, mean absolute error for the a param-
eter was .455. All three peaked test exceeded this value, but only
the 5-item normal and rectangular tests did. This pattern of the ab-
solute errors was repeated for the root-mean-square errors.

The pattern of errors in the b parameters for the heterogeneous
case paralleled that observed in the b parameters for the homogeneous
case. Overall, there were essentially no differences among the an-
chor test types in mean absolute error; all values were below the

.368 observed in the no-linking condition. For the peaked tests,
mean absolute errors decreased with anchor test size as expected.
For the rectangular and normal tests, however, these errors increased
with test size, as was observed for the bias statistics.
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The peaked tests were better, in general, than the other two
kinds of tests in terms of root-mean-square error for the b parameters.
These values ranged from .341 to .431 Pnd, although there was no trend
observed with respect to anchor test size, all these values were below
the .466 observed in the no-linking condition. The normal tests were
slightly superior to the rectangular tests in terms of root-mean-square
error. In both cases, errors increased with increased test length.

Small differences were observed across anchor tests in terms of
the correlations between the true and estimated item parameters. For
the a parameters, these values clustered between .511 and .515, with
the lowest correlations observed for the peaked tests. All these
correlations were higher than the .484 observed in the no-linking
condition. There were no systematic trends observed with anchor test
size.

For the b parameters, these correlations were between .973 arid

.975, with the lowest correlations again observed for the peaked tests.
All these correlations were higher than the .971 observed in the no-
linking condition.

Characteristics of asymptotic ability estimates. Table 55 pre-
sents the summary characteristics of asymptotic ability estimates for
the homogeneous case. Columns 1 and 2 present the mean and standard

deviation of the asymptotic ability metric. The peaked tests came
closest to producing an ability metric with a mean of zero; this
value increased with increased test lengths. There were essentially

no differences observed between the normal and rectangular tests.
For the normal tests, the means also increased with increased test
length; for the rectangular tests, the means decreased.

The peaked tests performed most poorly in producing ability esti-
mates with a standard deviation of 1.0. The rectangular tests produced

estimates with a standard deviation closest to 1.0. For all three
types of anchor tests, the standard deviation increased with increased
test length.

The no-linking condition produced estimates whose mean, .003,
was closer to zero than were the means from any of the nine anchor
tests. The standard deviation for the no-linking condition, .970,

was exceeded only by the 25-item normal and rectangular tests.

Although the estimates from the peaked tests had means closer to
zero than did the other anchor tests, the peaked test estimates had
the highest mean absolute errors. The rectangular tests had the
smallest errors, but the errors for the normal tests were only slightly
larger. Errors for all three peaked tests exceeded the value of .15
observed in the no-linking condition. Only the 5-item normal and
rectangular tests exceeded this value. In all cases, mean absolute
error decreased with increased test length. The pattern for the
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Table 56. Asymptotic Ability Estimates--Anchor Tests
Homogeneous Condition Using Systematically Sampled Examinees

Absolute RMS

Method Mean SD Error Error R

Normal 5 .089 .745 .217 .285 .996

Normal 15 .091 .955 .095 .144 .996

Normal 25 .092 .971 .094 .140 .996

Rectangular 5 .093 .809 .170 .233 .996

Rectangular 15 .093 .955 .097 .146 .996

Rectangular 25 .086 .985 .089 .135 .996

Peaked 5 .043 .601 .324 .410 .996

Peaked 15 .062 .729 .225 .292 .996

Peaked 25 .081 .786 .184 .247 .996

No Linking .003 .970 .125 .162 .996

root-mean-square errors in ability estimates was identical to that
observed for the mean absolute error.

The correlations between true and asymptotic ability were uni-
formly .996 for the nine anchor tests, which is the same value ob-
served when no linking was performed.

The summary characteristics of the asymptotic ability estimates
for the heterogeneous case are presented in Table 57. These summary
statistics had much the same pattern as those of the homogeneous
case. As in the homogeneous case, the peaked tests produced estimates
with means closer to zero than did the other anchor tests; these means
increased with increased test length. The means for the normal and
rectangular tests were essentially the same, and clustered between
.083 and .090; they did not vary systematically with test size. The
standard deviations of ability estimates were smallest for the peaked
tests. They were closest to 1.0 for the rectangular tests, although
the standard deviations for the normal tests were only slightly lower.

The no-linking condition produced estimates with a mean of
-.013, closer to zero than any of the anchor tests. The standard
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Table 57. Asymptotic Ability Estimates--Anchor Tests
Heterogeneous Condition Using Systematically Sampled Examinees

Absolute RMS
Method Mean SD Error Error R

Normal 5 .086 .742 .216 .284 .996

Normal 15 .089 .951 .091 .136 .996

Normal 25 .089 .967 .091 .132 .996

Rectangular 5 .090 .806 .167 .231 .995

Rectangular 15 .090 .951 .092 .138 .996

Rectangular 25 .083 .982 .085 .126 .996

Peaked 5 .041 .598 .325 .411 .996

Peaked 15 .060 .726 .226 .292 .996

Peaked 25 .079 .782 .183 .245 .996

No Linking -.013 .962 .095 .127 .995

deviation of estimates from the no-linking condition was .962; this
was exceeded only by the 25-item normal and rectangular tests.

As before, the peaked tests performed most poorly in terms of
mean absolute error, with values ranging from .183 to .325. The rec-
tangular test performed slightly better than the normal test, al-
though differences were small at the longer test lengths. At test
lengths of 15 or larger, mean absolute error was less than .092 for
both the normal and rectangular tests; these were the only tests with
mean absolute error below the .095 observed for the no-linking con-
dition. Mean-absolute error decreased with increased test length.

The pattern for root-mean-square error was similar. The peaked
tests performed most poorly, with root-mean-square error from .245 to
.411. The rectangular tests performed only slightly better than the
normal tests, particularly at the longer test lengths. Under the no-
linking condition, root-mean-square error was .127, which was ex-
ceeded by all tests except the 25-item rectangular test.

The correlation between true and asymptotic ability was .995 in
all cases but one; when no linking was done, this correlation was .995.
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Efficiency of ability estimation. The relative efficiencies of
the various anchor test linking procedures for the homogeneous case
are presented in Table 58. The average item information with the
true item parameters was .314. This dropped to .278 with the estima-
ted item parameters and, hypothetically, perfect linking.

Table 58. Efficiency Analysis--Anchor Tests
Homogeneous Condition Using Systematically Sampled Examinees

Average Efficiency Relative to

Item True Estimated

Method Information Parameters Parameters

True Parameters .314

Est. Parameters .278 .887

Normal 5 .274 .875 .986

Normal 15 .275 .877 .988

Normal 25 .275 .877 .988

Rectangular 5 .274 .873 .984

Rectangular 15 .275 .876 .987

Rectangular 25 .275 .876 .987

Peaked 5 .274 .875 .986

Peaked 15 .275 .876 .987

Peaked 25 .275 .876 .987

No Linking .266 .849 .957

The efficiencies of these linking methods, relative to that
achieved by using true parameters, clustered between .873 and .887,
with the highest figures observed for the normal tests. With respect
to the estimated parameters, the efficiencies of these anchor tests
ranged from .984 to .988, with the normal tests being slightly supe-
rior to the rest. All these values were higher than the .957 ob-

served in the no-linking condition.

-135-

.4



The relative efficiencies of the various anchor test linking
procedures are presented in Table 59 for the heterogeneous case. The
average item information with the true item parameters was .305.
This dropped to .271 with the estimated item parameters and perfect
linking.

Table 59. Efficiency Analysis--Anchor Tests
Heterogeneous Condition Using Systematically Sampled Examinees

Average Efficiency Relative to

Item True Estimated
Method Information Parameters Parameters

True Parameters .305

Est. Parameters .271 .889

Normal 5 .261 .858 .965

Normal 15 .262 .860 .968

Normal 25 .262 .859 .967

Rectangular 5 .261 .855 .962

Rectangular 15 .261 .858 .966

Rectangular 25 .262 .859 .966

Peaked 5 .261 .857 .964

Peaked 15 .262 .858 .966

Peaked 25 .262 .859 .967

No Linking .248 .814 .916

The efficiencies of these linking methods, relative to that
achieved by using true item parameters, clustered between .855 and

.860. Once again, slightly higher figures were observed for the
normal tests. With respect to the estimated parameters, the ef-
ficiencies of these nine anchor tests ranged from .962 to .968, with
the normal tests being slightly superior to the rest. All these

values were higher than the .916 observed in the no-linking condition.
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Results--Robust-Maximum-Likelihood Scores

In addition to the Bayesian ability estimates which were comput-
ed for all simulated examinees, maximum-likelihood estimates were
computed for the examinees included in the calibration groups of
1000. Identical analyses of item parameter error, asymptotic ability
estimates, and efficiency were computed for these estimates for the
homogeneous condition. For direct comparison with the results ob-
tained using the Bayesian scores, summary statistics for the Bayesian
scores were recomputed using only the 1,000-examinee calibration
groups.

Fidelity of parameter estimation. Table 60 presents the com-
bined results of item parameter error for the maximum-likelihood and
Bayesian scores. For the maximum-likelihood scores, biases in the
means of the a parameters were largest for the peaked tests and small-
est for the rectangular tests although, again, differences between the
normal and rectangular tests were small. All of the anchor tests ex-
cept for the shortest two peaked tests, yielded smaller (in absolute
value) bias figures than did the no-linking condition. Bias in the
mean of the a parameters decreased with increased test lengths for
the peaked tests, but no trends were observed with test lengths for
the other anchor tests.

The bias in the standard deviation of the a parameters was of
approximately the same magnitude for all three anchor test types,
and showed no consistent trends with test lengths. The no-linking
condition yielded a bias of .112, which was exceeded only by the
5-item tests.

With respect to the Bayesian scores, the largest bias in the
mean of the a parameters was also observed for the peaked tests, the
smallest bias for the rectangular tests. In general, bias figures
were larger for the Bayesian scores. Biases for the standard devia-
tions of the a parameters for the Bayesian scores, however, were of
approximately the same magnitude as those observed for the maximum
likelihood scores, although the maximum-likelihood scores yielded
somewhat smaller bias for the peaked tests.

For the maximum-likelihood scores, the biases in the means of the
b parameters were largest for the peaked tests, with small differences
between the normal and rectangular tests. P11 of the bias values were
larger than the .147 observed in the no-linking condition, although
they all decreased with increased test lengths. Biases in the stand-
ard deviation of the b parameters were largest for the peaked tests,
and again, there were only small differences between the normal and
rectangular tests. These values decreased with increased test length,

and all were greater than the .228 observed with no linking.
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Table 60. Item Parameter Error--Anchor Tests
Homogeneous Condition Using Systematically Sampled Examinees

Bayesian Maximum Likelihood
Bias in RMS Bias in RMS

Method Mean SD Error R Mean SD Error R

Normal 5
a .575 .264 .906 .493 -.035 .248 .822 .329
b .114 -.091 .338 .980 .453 .599 .962 .946

Normal 15
a .101 .100 .586 .489 -.003 .069 .594 .472
b .217 .258 .506 .980 .232 .353 .535 .981

Normal 25
a .073 .089 .578 .489 .045 .081 .606 .479
b .222 .281 .517 .980 .217 .300 .488 .982

Rect. 5
a .399 .202 .767 .491 .050 .191 .687 .423
b .149 .018 .350 .980 .285 .439 .740 .955

Rect. 15

a .095 .096 .584 .492 -.022 .066 .606 .474
b .219 .260 .497 .980 .249 .381 .560 .981

Rect. 25
a .043 .080 .566 .491 .037 .079 .598 .479
b .227 .314 .544 .980 .213 .308 .490 .982

Peaked 5
a 1.087 .447 1.384 .496 -1.047 -.185 1.182 .319

b -.007 -.324 .419 .980 1.964 4.508 5.075 .954

Peaked 15

a .620 .281 .945 .494 -.688 -.075 .880 .370
b .072 -.116 .328 .980 1.100 2.050 2.508 .943

Peaked 25
a .457 .226 .811 .492 .017 .074 .599 .467
b .123 -.017 .348 .980 .337 .327 .583 .980

No Linking
a .143 .112 .629 .501 .143 .112 .629 .501
b .147 .228 .444 .973 .147 .228 .444 .973
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Biases for the Bayesian scores were smaller, in general, than
they were for the maximum-likelihood scores. They tended to increase
with increased test lengths, and approximately half were smaller than
the values observed with no-linking.

For the maximum-likelihood scores, root-mean-square error in the
a parameters was largest for peaked tests. The advantage of the rec-
tangular tests was slight. There was no consistent trend with test
length; about half of the values were smaller than the value of .629
observed with no-linking.

This same pattern of root-mean-square errors in the a parameters
was observed for the Bayesian scores, and the magnitude of the errors
was approximately the same for the two scoring methods.

Root-mean-square errors in the b parameters for the maximum-
likelihood scores were largest for the peaked tests, and the normal
and rectangular tests performed equally well. There was a strong
tendency for the root-mean-square error to decrease with increased
test length, although all values were larger than the .444 observed
with no-linking.

For the Bayesian scores, root-mean-square errors increased with
test length for the normal and rectangular tests; the magnitude of
the errors was much smaller for the Bayesian scores than for the max-
imum-likelihood scores.

The correlations between the true and estimated a parameters
were smallest for the peaked tests and largest for the rectangular
tests when using the maximum-likelihood scores. When the Bayesian
scores were used, all the anchor tests produced correlations which
were of approximately the same magnitude, and consistently higher
than those observed for the maximum-likelihood scores.

For the maximum-likelihood scores, the correlations between true
and estimated b parameters were of about the same magnitude for all
the anchor tests, with the 15-item peaked test performing worse than
would otherwise have been expected. For the Bayesian scores, these
correlations were uniformly .980 for all nine anchor tests.

Characteristics of asymptotic ability estimates. Table 61 pre-
sents the summary statistics for the asymptotic ability estimates with
maximum-likelihood and Bayesian scoring. When maximum-likelihood
scores were used, the 5-item normal and all of the peaked anchor tests
produced means somewhat deviant from zero. The remaining anchor tests
produced means near .1. The no-linking procedure produced a mean of
.034, better than that produced by any of the linking procedures.

The linking procedures did a better job of producing estimates
with a mean of zero when these estimates were scores computed with a
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Table 61. Asymptotic Ability Estimates--Anchor Tests
Heterogeneous Condition Using Systematically Sampled Examinees

Bayesian Maximum Likelihood
RMS RMS

Method Mean SD Error R Mean SD Error R

Normal 5 .092 .739 .290 .996 .225 1.027 .285 .995

Normal 15 .091 .945 .143 .996 .098 1.023 .147 .996

Normal 25 .092 .962 .138 .996 .098 .995 .147 .996

Rect. 5 .092 .805 .235 .995 .107 .965 .146 .997

Rect. 15 .093 .950 .143 .996 .117 1.044 .172 .996

Rect. 25 .084 .979 .130 .996 .088 .997 .138 .996

Peaked 5 .040 .597 .412 .996 .259 2.694 1.781 .980

Peaked 15 .058 .723 .295 .996 .490 1.796 .956 .997

Peaked 25 .079 .780 .249 .996 .204 1.008 .233 .995

No Linking .034 .962 .133 .996 .034 .962 .133 .996

modal Bayesian algorithm. No mean was larger than .093. This was not
surprising since the Bayesian algorithm explicitly regressed estimates
toward zero. Again, there were but slight differences between the
normal and rectangular tests. This time, however, the peaked tests
performed best, with means between .040 and .079. Even these, how-
ever, were still larger than that obtained by not linking at all.
Neither data set revealed a trend toward decreasing means with in-
creased test length.

The normal and rectangular tests, coupled with maximum-likeli-
hood scoring, produced estimates whose standard deviations were close
to 1.0, typically between .965 and 1.044, with slightly "better"
estimates produced using the normal tests. The peaked tests produced
estimates with standard deviations quite large, at least for the 5-
and 15-item tests. The longest peaked test, and all the normal and
rectangular tests, produced estimates with standard deviations closer
to 1.0 than was observed with no-linking.

With the Bayesian scores, ability estimates were systematically
less variable, as would be expected from a procedure which regressed
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all estimates away from the extremes. The peaked test produced esti-
mates less variable than the others; no standard deviation here was
greater than .780. Although the differences were minor, the rectangu-
lar test produced estimates with standard deviations closer to 1.0
than did the normal test. Still, the no-linking value of .962 was
exceeded only by the 25-item rectangular test.

There were few differences between the scoring procedures in
terms of mean absolute and root-mean-square errors. For both proce-
dures, the normal and rectangular tests performed best, with a slight
advantage given to the rectangular test. Overall, the Bayesian scores
performed slightly better than did the maximum-likelihood scores. In
both cases, the peaked tests performed worst, although here the dif-
ference was much more marked for the maximum-likelihood scores. Only
for the 25-item rectangular test with Bayesian scores did the errors
ever drop below the level observed with no-linking.

All the correlations between true and estimated ability cluster-
ed near .996 when Bayesian scoring was used. These correlations were
more variable with maximum-likelihood scoring and, for the peaked and
rectangular anchor tests, showed a slight decrease with increasing
anchor-test length.

Efficiency of ability estimation. Table 62 presents the effi-
ciency figures for the maximum-likelihood and Bayesian scores. For the
Bayesian estimates, average item information was essentially .267 for
all nine anchor test conditions. For the maximum-likelihood scores,
this level was not reached until the 15-item normal and rectangular
anchor tests were used; for the peaked test, 25 items were necessary.
For the Bayesian scoring, efficiencies were essentially the same for
the three anchor test types, and these values increased only slightly
with test length. All were above the level achieved in the no-linking
condition. For the maximum-likelihood scores, the efficiencies were
generally lower than for the Bayesian scores, even at the longest test
lengths. All of the 5-item tests performed poorly, as did the 15-item
peaked test. Efficiency, with respect to the estimated parameters,
increased with test length, but still half the tabulated entries were
below the value of .964 achieved with no linking.

Discussion

The data on anchor-test linking methods can be summarized rather
briefly since there were several distinct trends with few exceptions.
In terms of parameter bias, the peaked tests performed most poorly,
often yielding large errors in parameter and ability estimation.
There were few consistent differences noted between the normal and
rectangular tests, especially for longer tests, although at the
shorter test lengths, the rectangular test was usually superior.
Differences among the test types tended to fade when the criterion
was no longer bias but was the correlation between true and estimated
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Table 62. Efficiency Analysis--Anchor Tests
Homogeneous Condition Using Systematically Sampled Examinees

Bayesian Maximum Likelihood
Efficiencies Efficiencies
Relative to Relative to

Avg. Item True Est. Avg. Item True Est.
Method Info. Params. Params. Info. Params. Params.

True Params. .306 .306 7.

Est. Params. .270 .882 .270 .882

Normal 5 .267 .872 .989 .235 .770 .873

Normal 15 .267 .873 .990 .266 .870 .987

Normal 25 .267 .874 .992 .267 .872 .989

Rect. 5 .266 .871 .988 .254 .831 .943

Rect. 15 .267 .873 .990 .265 .867 .983

Rect. 25 .267 .873 .990 .266 .870 .986

Peaked 5 .267 .871 .988 .227 .741 .841

Peaked 15 .267 .873 .991 .249 .813 .922

Peaked 25 .267 .874 .991 .266 .869 .986

No Linking .260 .850 .964 .260 .150 .964

parameters or true and estimated ability. Differences among the test
types also disappeared when their relative efficiencies were taken as
the criterion.

Anchor test length was a salient factor when one investigated
the errors of a-parameter and ability estimation. Across test types,
there were only small differences observed between the 15- and the
25-item tests; the 5-item tests were typically much worse than the
others. The trend toward decreasing errors with increasing test
lengths was expected, but was observed only for the a parameters.
For the b parameters, this trend was reversed, with smaller errors
observed with the shorter tests.
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The test length effects disappeared when correlations and effi-
ciencies rather than biases and errors were considered.

When comparisons were made between the Bayesian and the maximum-
likelihood scores, the former were consistently better based on all
the criteria used in this research.

Conclusions

Data presented in this section of the report provided the first
opportunity to compare all four linking methods. In an effort to a-
void confusion, only data relevant to the conclusions drawn are pre-
sented. Since the parameter-error statistics bear little direct re-
lation to the utility of the linked items, they will not be discussed.

In terms of capacity to produce an asymptotic metric with the
correct mean, the anchor-group method was generally superior. In
nearly all configurations investigated, the anchor-group method pro-
duced a mean correct to the second decimal place. The Bayesian
equivalent-tests method produced the most deviant mean. Asymptotic
means for each of the methods were essentially equivalent in the
homogeneous and heterogeneous conditions.

The most accurate asymptotic standard deviations were produced
by the anchor-test method. With a 25-item rectangular anchor test, it
produced an asymptotic standard deviation within .015 of the true
value. In less favorable configurations, however, it produced stand-
ard deviations .4 unit in error. The equivalent-tests procedure pro-
duced results nearly as good as the best anchor-test configuration.
The equivalent-groups and anchor-group procedures produced results
somewhat less accurate.

Using root-mean-square error as a composite error-of-metric
index, the anchor-group and anchor-test methods produced the least
error and were approximately equivalent. The equivalent-tests method
produced the most error.

Viewed in terms of linking efficiency, the anchor-test method
produced the most efficient item pools. Its efficiencies ranged from
.986 to .988 in the homogeneous condition and from .965 to .967 in
the heterogeneous condition. Configured properly, the anchor group
procedure resulted in equivalent efficiencies, but with smaller groups,

the efficiency dropped somewhat. The equivalent-tests method produced
efficiencies slightly lower than the least efficient of the two anchor
procedures. The equivalent-groups method, whose assumptions were vio-
lated by these data, produced efficiencies slightly lower than those
of the equivalent-tests procedure.
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Although not considered in the previous discussion, the no-link-
ing condition should not be forgotten. In terms of errors in the
asymptotic distribution, it produced parameters as good as those pro-
duced by the best of the other methods. Its efficiencies were some-
what lower than those of the equivalent-groups procedure, however.

Use of the maximum-likelihood scoring procedure with the anchor-
group or anchor-test procedures did not seem to be warranted by the
data. In addition to producing less efficient item pools than did
the Bayesian scoring procedure, this procedure appeared to bias the
asymptotic metric more severely. Since it was investigated primarily
as a means of reducing bias in the metric, these results suggest that
it is not a useful scoring procedure for linking in the environment
investigated here.

Neither of the anchor methods were evaluated in the randomly
sampled data set because their performance in that set was assumed to
be equivalent to their performance in the systematically sampled data
set. The same assumption was reasonable for the equivalent-tests
method but that method was, nevertheless, evaluated in both sets and
thus provides a test of the assumption. In this data set the equiva-
lent-tests method produced parameters with root-mean-square errors of
.356 and .231 in the homogeneous and heterogeneous conditions, respec-
tively, and efficiencies of .971 and .949. In the randomly selected
data set, corresponding values were .209, .143, .962, and .944. The
asymptotic error statistics appeared somewhat smaller in the randomly
sampled condition but the efficiencies were comparable.

Efficiencies for the Bayesian equivalent-groups procedure were
.988 and .973 for the homogeneous and heterogeneous conditions,
respectively. These efficiencies compare very favorably with .988
and .968, the best efficiencies obtained by any method in the sys-
tematically sampled data set. This suggests that, if examinees are
randomly sampled from the population of interest, the Bayesian
equivalent-groups procedure can produce item pools as efficient as
any of the more complicated methods.
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VIT. LINKING WHEN EXAMINEES ARE SELECTED

Investigations of linking discussed in previous chapters were
limited to populations that could, more or less, occur in nature. No
explicit selection had been done in defining the population and the
distributions of abilities were essentially symmetric. The research
discussed in this section of the report dealt with a selected popula-
tion. The examinee samples used were those of the selected data set
described in an earlier section. Briefly, the upper two-thirds of a
sample were selected, on the basis of number-correct scores, to simu-
late selection that occurs in Air Force recruits. The procedure was
very similar to that used by Ree (1978).

The selected data set contained only one row of the matrix of
test lengths and sample sizes corresponding to a sample size of 1,000.
This restriction of the data set was done primarily to save computer
costs since adequate data regarding the joint effects of test length
and sample size had been collected and discussed in earlier sections
of this paper. Since the entire matrix was not available, only the
homogeneous analyses were done.

Equivalence Methods

Procedure

The equivalence linking procedures used on the selected data set
were similar in form to those used in previous sections; the same
equations were used to perform the linking. Because of findings of
previous sections, however, only the modal Bayesian scoring method
was used for equivalent-groups linking. The remaining five linking
methods were not used. The equivalent-tests and no-linking proce-
dures were the same as before.

Results

Fidelity of parameter estimation. Table 63 presents fidelity-
of-estimation statistics for the homogeneous condition using selected
examinees. Columns one and tvio present means and standard deviations
of the true a and b parameters for the items used with the selected
data set. As was the case with items used in previous data sets, no
notable departures from the population values were observed.

Biases in the parameter estimates are presented in columns three
and four. The a-parameter means were essentially unbiased for the
equivalent-tests and no-linking procedures. The a parameters were
underestimated by .335 units when the Bayesian equivalent-groups pro-
cedure was used. The equivalent-tests procedure produced b parameters
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Table 63. Item Parameter Error--Equivalence Methods
Homogeneous Condition Using Selected Examinees

True Bias in Absolute RMS
Method Mean SD Mean SD Error Error R

Equiv. Groups

a 1.601 .501 -.335 -.008 .476 .624 .466

b .176 1.340 -.530 .843 .893 1.102 .974

Equivalent Tests
a 1.601 .501 -.015 .112 .444 .589 .458
b .176 1.340 .051 .390 .456 .622 .968

No Linking
a 1.601 .501 -.015 .112 .491 .651 .465
b .176 1.340 -.378 .400 .522 .657 .975

with nearly the correct mean. The other two procedures produced under-

estimates of the b parameters.

The Bayesian equivalent-groups procedure produced a parameters
with nearly the correct standard deviation. Standard deviations of
the a parameters were slightly greater than the correct values for the

other two methods. All linking procedures produced b-parameter stand-
ard deviations that were larger than those of the true parameters.
The equivalent-groups procedure produced the largest standard devia-
tions.

Columns five and six present absolute and root-mean-square
errors of parameter estimation. Errors in a-parameter estimates were
approximately equal for all methods. The equivalent-tests method
produced the least error and the no-linking procedure produced the
most. Errors in the b parameters were about equal for the equiva-
lent-tests and no-linking procedures. The equivalent-groups pro-
cedure produced b-parameter errors substantially greater than those
produced by the other procedures.

Correlations between true and estimated parameters are presented
in the last column of the table. The equivalent-groups and no-link-
ing procedures were trivially different in terms of this correlation.

The equivalent-tests procedure produced correlations somewhat lower
than the other two procedures.

Characteristics of asymptotic abilit estimates. Table 64 pre-
sents statistics descriptive of asymptotic ability estimates. These
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Table 64. Asymptotic Ability Estimates--Equivalence Methods
Homogeneous Condition Using Selected Examinees

Absolute RMS
Method Mean SD Error Error R

Equiv. Groups -.813 1.565 .823 1.000 .996

Equivalent Tests -. 156 1.250 .265 .369 .996

No Linking -.566 1.265 .566 .642 .996

statistics should be interpreted relative to a standard normal popu-

lation even though the items were calibrated on a population distinct-
ly different. The first column presents asymptotic means resulting
from application of the items to a standard normal population. All

procedures resulted in net underestimates of abilities. The equiv-
alent-tests procedure produced the mean closest to the true value of
zero, and the equivalent-groups procedure produced the one most devi-
ant.

Asymptotic standard deviations are presented in the second
column. All three linking procedures produced estimates that were
quite deviant from the mean. The equivalent-groups procedure pro-
duced the most deviant estimates, however, and the other two methods
produced estimates about equally deviant.

Absolute and root-mean-square errors of the asymptotic estimates
are presented in columns three and four. The equivalent-tests proce-
dure produced the least error, according to both statistics, and the
equivalent-groups procedure produced the most error.

Column five presents correlations between true and asymptotic
ability estimates. All three procedures resulted in correlations of
.996, indicating that the regressions were about equally linear.

Efficiency of ability estimation. Table 65 presents calibration
and linking efficiencies for the selected data set. As was true of
corresponding tables in previous sections, columns two and three are
simply manipulations of the data in column one and column three is
most informative relative to linking efficiency. As can be seen from
column three, linking efficiencies of the equivalent-groups and no-
linking procedures were equal. The linking efficiency of the equiv-

alent-tests procedure was scmewhat lower.

Linking efficiencies were quite high for all methods. These
figures are not, however, directly comparable to those from previous
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Table 65. Efficiency Analysis--Equivalence Methods
Homogeneous Condition Using Selected Examinees

Average Efficiency Relative to
Item True Estimated

Method Information Parameters Parameters

True Parameters .325

Est. Parameters .268 .824

Equiv. Groups .265 .814 .988

Equivalent Tests .262 .807 .979

No Linking .265 .814 .988

data sets because these figures represent averages of only four cells
rather than the 12 represented in previous tables.

Anchor Group Method

Procedure

The anchor-group linking procedure used for the selected data
set was essentially the same as that used for the systematically
sampled data set. The modal Bayesian scoring procedure was used
throughout this section, as the maximum-likelihood procedure demon-
strated no distinct advantages in previous analyses. Details of the
linking procedure were presented in the previous section and will not
be repeated here.

Results

Fidelity of parameter estimation. Table 66 presents parameter
error for the anchor-group design in the selected data set. Bias in
the estimates of the mean a parameter was positive for the normal
group (indicating overestimates) and slightly negative for the uni-
form group (indicating underestimates). Bias tended to decrease
with increasing anchor group size for both normal and uniform groups.
Bias in the standard deviation of the a parameters showed the same
trends as the means. Bias tended to decrease with increasing anchor

group size and was smaller for the uniform group than for the normal

group. The no-linking condition very slightly underestimated the
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Table 66. Item Parameter Error--Anchor Groups
Homogeneous Condition Using Selected Examinees

True Bias in Absolute RMS
Method Mean SD Mean SD Error Error R

Normal 10
a 1.601 .501 .220 .213 .536 .703 .466
b. .176 1.340 .063 .182 .306 .429 .972

Normal 30
a 1.601 .501 .181 .192 .517 .682 .464
b .176 1.340 .044 .205 .309 .429 .973

Normal 50
a 1.601 .501 .163 .187 .505 .672 .465
b .176 1.340 .060 .221 .315 .434 .974

Normal 100
a 1.601 .501 .144 .179 .503 .666 .467
b .176 1.340 .043 .243 .321 .440 .974

Uniform 10
a 1.601 .501 .129 .184 .492 .657 .456
b .175 1.340 .030 .262 .348 .508 .972

Uniform 30
a 1.601 .501 -.010 .125 .448 .601 .461
b .176 1.340 .065 .395 .425 .577 .974

Uniform 50
a 1.601 .501 -.005 .123 .460 .609 .464
b .176 1.340 .057 .388 .417 .548 .974

Uniform 100
a 1.601 .501 -.015 .119 .459 .610 .467
b .176 1.340 .055 .401 .425 .561 .974

No Linking
a 1.601 .501 -.015 .112 .491 .651 .465
b .176 1.340 -.378 .400 .522 .657 .975

a-parameter mean and showed less bias in the a-parameter standard de-
viations than did any of the linking methods.

The biases in the means of the b parameters were very much alike

for both anchor groups, but the no-linking condition substantially
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underestimated the mean. Bias in the standard deviation of the b
parameters revealed a tendency for increasing bias with increasing
anchor group size for both normal and uniform groups. The normal
group, however, showed smaller bias in standard deviation than the

uniform group, while the no-linking method had one of the largest
biases in standard deviation.

Absolute and root-mean-square error for the a parameter showed a
decreasing trend with increasing anchor group size for the normal
group3. The uniform groups showed less error than the normal groups
overall. The no-linking group showed errors midway between the uni-
form and normal groups.

Errors in the b parameters followed the opposite trends noted
for the a-parameter errors; errors increased with increasing anchor
group size and error was less for uniform groups than for normal
groups. The no-linking group showed the greatest b-parameter error.

Correlations between true and estimated parameters tended to in-
crease with increasing anchor group size and to be somewhat higher in
the normal groups than in the uniform groups for the a parameter.
For the b parameters, there were negligible differences between the
groups. The correlation between true and estimated a parameters in
the no-linking group was comparable to that observed in the normal
and uniform groups and the b-parameter correlation in the no-linking
group was the highest of all groups.

Characteristics of asymptotic ability estimates. Table 67 pre-
sents descriptive statistics for asymptotic ability estimates for
each anchor group in the selected data set. Column one, showing the
means, indicates that parameters linked using normal or using uniform
anchor groups tended to underestimate the population mean of zero.
The normal groups appeared to have closer estimates than the uniform
groups over all grc'-p sizes, while the no-linking condition showed
the greatest deviation from zero. There were no apparent trends
with respect to increasing anchor group size.

Standard deviations were somewhat higher than the population
value of 1.0 and showed a trend for increasing values as the anchor
group size increased. The normal groups produced standard deviations
closer to 1.0 than did the uniform groups, and the no-linking condi-
tion produced the largest standard deviation.

Absolute and root-mean-square error, presented in columns three
and four, showed a tendency to increase with increasing anchor group
size and to be larger for uniform than for normal groups. No-linking
produced the largest errors.

There were no differences across group composition or group size
in terms of the correlation of the true with the asymptotic ability
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Table 67. Asymptotic Ability Estimates--Anchor Groups
4omogeneous Condition Using Selected Examinees

Absolute RMS

Method Mean SD Error Error R

Normal 10 -.084 1.081 .119 .161 .996

Normal 30 -.109 1.111 .130 .185 .996

Normal 50 -.094 1.118 .128 .181 .996

Normal 100 -.118 1.131 .143 .203 .996

Uniform 10 -.143 1.146 .168 .236 .996

Uniform 30 -.130 1.241 .217 .295 .996

Uniform 50 -. 136 1.236 .217 .294 .996

Uniform 100 -. 138 1.244 .222 .299 .996

No Linking -.566 1.265 .566 .642 .996

estimates. ll correlations, including the no-linking group, were
uniformly .996.

Efficiency of ability estimation. Table 68 presents the average
item information and relative efficiencies for the anchor-group link-
ing method. The efficiencies relative to the estimated parameters,
shown in column three, revealed a slight tendency to increase as
anchor group size increased. The normal groups showed an almost
trivial advantage over the uniform groups, while the no-linking con-
dition showed the highest efficiency.

Discussion

Much of the information presented thus far has been less than
definitive. Different analyses suggested different interpretations.
Fidelity analyses, for example, suggested that anchor groups using a
uniform distribution yield less parameter error than those using a
normal distribution. Asymptotic ability statistics suggested that a
normally distributed sample yields results superior to those of a
uniform distribution. Efficiency analyses, on the other hand, showed
both normal and uniform anchor groups to have about the same effi-
ciency.
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Table 68. Efficiency Analysis--Anchor Groups
Homogeneous Condition Using Selected Examinees

Average Efficiency Relative to
Item True Estimated

Method Information Parameters Parameters

True Parameters .325

Est. Parameters .268 .824

Normal 10 .263 .810 .983

Normal 30 .265 .813 .987

Normal 50 .265 .813 .987

Normal 100 .265 .813 .987

Uniform 10 .263 .809 .982

Uniform 30 .263 .810 .983

Uniform 50 .263 .810 .983

Uniform 100 .264 .812 .986

No Linking .265 .814 .988

Results of the efficiency analysis for the anchor-groups proce-
dure were especially noteworthy in view of the rather large discrep-
ancy between the distributions of ability used in the anchor groups
and those used in the calibration samples. The anchor groups had
abilities with a mean of zero and a standard deviation of one. The
selected examinees in this data set had a mean greater than zero and
a standard deviation less than one.

Although the no-linking condition showed the highest efficiency,
the b-parameter mean and asymptotic ability mean were quite deviant
from their true values. The reason the efficiency of the no-linking
condition did not reflect these deviant parameter estimates is be-
cause efficiency statistics, like correlations, are insensitive to
linear transformations of the data. If, however, an attempt was made
to link items calibrated on groups widely different in ability (verti-
cal equating), the no-linking procedure would show much lower effi-
ciencies because each set of items would tend to shift the scale
closer to its own metric.
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As discussed earlier, efficiency analyses are the most appropri-
ate evaluative criteria to apply to the linking procedures. The
efficiency analyses suggested the following observations: (a) group
composition tended to make very slight differences in observed
efficiency, (b) there was a tendency for higher efficiency as test
length increased and anchor group size increased, the latter being
less pronounced than the former, and (c) increasing anchor group size
did not substantially increase the efficiency.

Anchor Test Method

Procedure

The anchor-test linking procedures used for the selected data
set presented in this section were identical to those used for the
randomly and the systematically sampled data sets. Details of these
linking procedures were presented earlier and will not be repeated
here. Analyses were performed only for the condition where the items
were originally calibrated on 1,000 cases for four different test
lengths. Only the homogeneous condition is presented here. Modal
Bayesian ability estimates were used throughout.

Results

Fidelity of parameter estimation. Fidelity-of-estimation stat-
istics for the homogeneous condition are presented in Table 69. All
of the anchor test procedures overestimated the a parameters, although
this bias systematically decreased with increased anchor-test lengths.
The smallest biases in the mean of the a parameters were observed for
the rectangular tests, although at the longer test lengths the normal
tests produced biases nearly as small. Much larger biases were ob-
served for the peaked tests at all three test lengths. When no link-
ing was performed on the data, bias in the mean of a parameters was
-.015. This figure was exceeded by all nine anchor test methods.

Biases in the standard deviations of the a parameters were larg-
est for the peaked tests. There were few differences observed in the
biases for the normal and rectangular tests. All the biases system-
atically decreased with increased test length. In the no-linking
condition, bias in the standard deviation of the a parameters was
.112. This figure was exceeded by all nine anchor test methods.

All anchor test methods produced b-parameter estimates that were
essentially unbiased in their means. The largest bias observed,
-.082, was quite small. The no-linking group produced considerable
bias, by comparison. This was expected, however, as the mean ability
levels of the calibration groups were substantially above zero.
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Table 69. Item Parameter Error--Anchor Tests
Homogeneous Condition Using Selected Examinees

True Bias in Absolute RMS
Method Mean SD Mean SD Error Error R

Normal 5
a 1.601 .501 .617 .366 .794 .998 .466
b .176 1.340 -.030 -.088 .262 .353 .973

Normal 15
a 1.601 .501 .181 .194 .514 .672 .466
b .176 1.340 .037 .219 .317 .450 .973

Normal 25
a 1.601 .501 .156 .188 .506 .662 .467
b .176 1.340 .050 .241 .329 .464 .973

Rectangular 5
a 1.601 .501 .552 .337 .744 .939 .466
b .176 1.340 -.007 -.054 .252 .344 .974

Rectangular 15
a 1.601 .501 .188 .197 .518 .677 .466
b .176 1.340 .044 .211 .313 .445 .973

Rectangular 25
a 1.601 .501 .123 .174 .493 .646 .467
b .176 1.340 .055 .273 .347 .489 .973

Peaked 5
a 1.601 .501 1.192 .588 1.273 1.541 .465
b .176 1.340 -.082 -.346 .344 .462 .973

Peaked 15
a 1.601 .501 .748 .416 .896 1.113 .465
b .176 1.340 -.033 -.157 .271 .367 .973

Peaked 25
a 1.601 .501 .566 .345 .755 .951 .466
b .176 1.340 -.002 -.057 .257 .353 .973

No Linking
a 1.601 .501 -.015 .112 .491 .651 .465
b .176 1.340 -.378 .400 .522 .657 .975
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As was observed for the b-parameter means, all three peaked
tests underestimated the b-parameter standard deviations; this bias
decreased with increased test length. Biases in the standard devia-
tion of the b parameters were of approximately equal magnitude for
the normal and rectangular tests. Except at the 5-item test lengths,
this bias was positive; for both the normal and rectangular tests,
bias increased with test length. All of the anchor tests produced
biases smaller than that observed for the no-linking condition.

Mean absolute and root-mean-square errors in the parameters
are presented in columns five and six of Table 69. The peaked an-
chor tests performed most poorly according to both of these indices
of error for the a parameters. In general, errors for the rec-
tangular tests were smaller than for the normal tests although, as
before, these differences were small. Both indices of error de-
creased with increased test length. In most cases, the no-linking
condition yielded smaller absolute and root-mean-square errors in
the a parameters than did any of the anchor test conditions.

Overall, the magnitude of absolute and root-mean-square errors
in the b parameters was approximately equivalent for all three types
of anchor tests. Both types of errors decreased with increased test
length for the peaked tests, but increased with test length for the
normal and rectangular tests. The no-linking procedure yielded
larger absolute and root-mean-square errors in the b parameters than
did any of the anchor-test methods.

The anchor-test-method correlations between true and estimated
a parameters clustered between .465 and .467; for the no-linking
condition, this value was .465. The anchor-test correlations for
the b parameters were almost uniformly .973 (the correlation for the
5-item rectangular test was .974), slightly lower than the value of
.975 observed with no linking.

Characteristics of asymptotic ability estimates. Table 70 pre-

sents the summary characteristics of asymptotic ability estimates for
the homogeneous case. Columns one and two present the means and
standard deviations of the asymptotic ability metric. All of the
anchor tests produced means slightly below the targeted zero. None
of the three test types produced means consistently closest to zero
but the normal tests consistently produced means most deviant. Dif-
ferences among these means were small, however. Means consistently
decreased with test length for the rectangular tests and increased for
the others. The no-linking procedure produced a mean much more
deviant from zero than did any of the anchor-test methods.

All of the peaked tests produced ability estimates with standard
deviations less than 1.0. The 5-item normal and rectangular tests
did likewise. The longer normal and rectangular tests produced esti-
mates with standard deviations greater than 1.0. In all cases, the
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Table 70. Asymptotic Ability Estimates--Anchor Tests
Homogeneous Condition Using Selected Examinees

Absolute RMS

Method Mean SD Error Error R

Normal 5 -.117 .892 .135 .188 .996

Normal 15 -.115 1.111 .130 .195 .996

Normal 25 -.107 1.126 .133 .198 .996

Rectangular 5 -.102 .918 .115 .164 .996

Rectangular 15 -.107 1.105 .125 .186 .996

Rectangular 25 -. 110 1.148 .145 .215 .996

Peaked 5 -. 116 .709 .230 .325 .996

Peaked 15 -.106 .843 .145 .213 .996

Peaked 25 -.097 .913 .113 .165 .996

No Linking -.566 1.265 .566 .642 .996

standard deviations of ability estimates increased with anchor test
length. The standard deviation of the no-linking condition was 1.265,
a value further from 1.0 than was produced by any of the anchor tests.

Mean absolute and root-mean-square errors in the ability metric
are presented in columns three and four of Table 70. The magnitude
of absolute error was approximately the same across the three types
of anchor tests, with a tendency for the smallest peaked test to
produce errors larger than the rest. Mean absolute errors increased
with test length for the rectangular tests, and decreased with test
length for the peaked tests. For the normal tests, these errors did
not vary systematically with test length. Mean absolute error in the
no-linking condition was much higher than that observed for any of
the anchor tests. Exactly the same patterns were observed for the
root-mean-square errors in the ability estimates.

The correlation between true and estimated ability was uniformly
.996 for all the anchor tests and for the no-linking procedure.

Efficiency of ability estimation. Information and the relative
efficiencies for the anchor-test procedures for the homogeneous case
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are presented in Table 71. The average item information with the
true parameters was .325. This dropped to .268 with the estimated
parameters and, hypothetically, perfect linking. The average item
4nformation with the anchor-test procedures and with no-linking was
.265.

Table 71. Efficiency Analysis--Anchor Tests
Homogeneous Condition Using Selected Examinees

Average Efficiency Relative to

Item True Estimated
Method Information Parameters Parameters

True Parameters .325

Est. Parameters .268 .824

Normal 5 .264 .813 .987

Normal 15 .265 .815 .989

Normal ?5 .265 .814 .988

Rectangular 5 .265 .815 .989

Rectangular 15 .265 .815 .989

Rectangular 25 .265 .814 .988

Peaked 5 .265 .814 .988

Peaked 15 .265 .814 .988

Peaked 25 .265 .814 .988

No Linking .265 .814 .988

The efficiencies of these linking methods, relative to that
achieved by using true parameters, clustered between .813 and .815.
With no linking, the relative efficiency was .814. With respect to
the estimated parameters, the efficiencies of the anchor test pro-
cedures ranged from .987 to .989, with no overall difference observed
across anchor tests. The corresponding efficiency figure for the
no-linking condition was .988.
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Discussion

Overall, the peaked anchor tests tended to perform most poorly
when errors in item parameters were taken as the criteria. There
were few differences observed between the normal and rectangular
tests but, when differences were found, they tended to favor the
rectangular tests. In most cases, the indices of bias decreased
with increased test length; the 15-item tests performed nearly as
well as the 25-item tests and better than the 5-item tests. There
were essentially no differences across anchor test types and test
lengths in the correlations between true and estimated item param-
eters.

More relevant to the study of linking methods are the character-
istics of the asymptotic ability estimates produced by each method.
There were few differences observed across anchor test types in
terms of their ability to produce estimates with a mean of zero and
standard deviation of one, and in the absolute and root-mean-square
errors in these estimates. When differences were found, they typi-
cally indicated that the peaked tests were somewhat worse than the
others. There were no consistent trends with test length. The cor-
relations between the true and estimated ability were identical across
all nine anchor tests.

Perhaps most important in this study, however, were the indices
of efficiency of the anchor test procedures. Essentially no differ-
ences were found across anchor test types and test lengths; all
efficiency figures were between .987 and .989.

Conclusions

Analyses presented in this section have been, in part, a repli-
cation of analyses done on the randomly sampled examinees. Examinees
used in this section were randomly sampled from a single population.
The difference between these groups and those of the previous data
set was simply that the single population was redefined as having
been selected, and thus skewed in distribution.

Many of the findings with the selected sample paralleled those
of the randomly sampled data set. Specifically, equivalent-groups or
no-linking methods produced pools of items as efficient, in terms of
linking, as did the more complex anchoring methods. The equivalent-
tests method, as before, was inferior to the other methods.

The anchoring methods were far superior to the equivalence and
no-linking methods in reproducing the original standard ability metric.
This was simply due to the fact that only the anchoring methods had
information regarding the "correct" metric.
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As a general conclusion, it appears that the equivalent-groups
method is simple and effective for linking sets of items if examin-
ees used in calibration are all sampled from a common population,
regardless of its shape. If, however, the original metric must be
reproduced, the equivalent-groups method has no way to reproduce it.
Mixing items calibrated on a selected group with items calibrated on
-..i unselected group would be one example where an original, or at
least a common, metric would need to be reproduced.
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VII. PRACTICAL APPLICATIONS OF LINKING

Development of a Composite Approach

The linking tasks the Armed Services must face in developing
adaptive-testing item pools can be reduced to two. First, the items
comprising the initial pool will be calibrated in several sets on
several groups and must be linked onto a common metric. Second, new
items will be added to the pool at later dates and must be linked on-
to the same metric. Data presented in the preceding sections provide
good solutions to the first problem. These solutions will be sum-
marized below. Data presented in these sections provide some solu-
tions to the second problem. More complex solutions, however, re-
quire further analyses. (See Appendix C for a summary of a meeting
with Air Force personnel in which the Armed Services linking problem
was discussed.)

The primary objective of linking is to produce a pool of items
that will function together efficiently. Efficiency of the method
is thus the most important criterion for choosing a method to link
the initial pool. Since norms will undoubtedly be constructed on
the basis of the metric of the initial pool, additional criteria must
be considered in choosing a method for linking future items to the
original pool. Specifically, addition of the new items should not
distort the original metric and, therefore, a method that produces
little distortion should be chosen. Hence, the asymptotic-estimate
criteria are also relevant to this linking problem. Discussion and
analyses presented below will be limited to these relevant criteria.

Linking the Initial Item Set--A Summary of Findings

Given that the objective in calibrating and linking the initial
item pool is to obtain a set of items that function efficiently,
several methodological suggestions can be made. The equivalent-
groups linking method using modal Bayesian scoring works as well as
any of the more complicated linking procedures when examinees are
randomly sampled from a common population. If it is possible to
sample in this manner, there is no advantage to using a more compli-
cated procedure. The method worked about equally well at all test
lengths investigated. It exhibited a sli ,," tendency toward greater
efficiency with larger examinee samples, but these findings were in-
consistent. The differences were not sufficiently consistent to sug-
gest whether 500, 1,000, or 2,000 examinees should be used; in prac-
tice, the largest available sample would probably be used.

Analyses of calibration efficiency provided some guidance re-
garding the sample size and test length necessary for item calibra-
tion. Generally, larger samples and longer tests produced more
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efficient parameter estimates. If a tradeoff could be made between
test length and sample size, however, these analyses suggested that
emphasis should be placed on increasing the test length, since in-
creases in test length were three to four times as effective as pro-
portionate increases in sample size.

In the Armed Services environment, it is conceivable that new
test items might be calibrated in conjunction with AFEES administra-
tion of the current ASVAB. If the new items were to parallel a
subtest on the ASVAB, this subtest would be a potential anchor test,
but random distribution of experimental subtests across the AFEES
population would eliminate the need for an anchor test. Simul-
taneous calibration of the new and old ASVAB items would, however,
result in a longer test and, therefore, better calibration so the
two tests should be calibrated together, even if the ASVAB subtest

is not used for linking.

If random distribution were to prove impractical, the analyses

of previous sections suggest that an anchoring method should be
used. Either 100 anchor examinees or 15 to 25 anchor items would
provide efficiency equivalent to that obtained by randomly sampling
examinees. If the new items were to be administered concurrently
with the ASVAB, the anchor-test method of linking would be an obvious
choice. Previous analyses suggest that rectangular and normal anchor
tests work about equally well. Each of the present ASVAB subtests has
an information curve which is similar to one of these two forms.

Linking Across Time--Further Analyses

An item pool, regardless of the care taken in its creation, is
not likely to remain static forever. For a variety of reasons, new
items will be ad,'iu and old items will be removed during the life of
the item pool. These new items must be calibrated and linked onto
the metric of the original items.

Since the examinee population is likely to change over time,
the equivalent-groups procedure is not an appropriate method of link-
ing the new items to the old. The equivalent-tests procedure, even if
its assumptions could be met, would still be an inefficient proce-
dure. Given that individuals are likely to change over time, the
anchor-grotLp procedure would not be appropriate.

The anchor-test method, if the anchor test remained constant,
would be as efficient over time as it is at a single time. Therefore,
it appears to be the method of choice for linking over time. If a
constant anchor test can be maintained, linking over time will pro-
duce no more difficulty than linking within a single time period.

It is conceivable, however, to perform anchor-test linking
using several anchor tests over time. A current ASVMB subtest may be
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used as an anchor test for new items. These new items may be used to
form a new ASVAB subtest. This new ASVAB subtest may then be used as
an anchor test for linking the second new set of items. Before this
cascading procedure is attempted, however, it is important that its
effects on efficiency and the ability metric be known. (This is
probably an oversimplification of the problem since future versions of
the ASVAB are likely to be adaptive. It provides a manageable model
for analysis, however, and should provide some insight into the prob-
lem.)

Method. Item parameters and ability levels for a sample size of
1000 and test lengths of 20, 35, 50, and 65 items were taken from the
systematically sampled data set. This data set was chosen because
each group within each of the four cells was sampled from a different
population. This is analogous, to some extent, to what would happen
if groups were sampled at different time periods.

Within each cell, five calibration groups were arbitrarily
ordered. The first group was linked, using the equivalent-groups
procedure, to a standard (i.e., mean zero, variance one) population.
(Note that this does not imply anchoring, and each initial group was
linked to a different standard population.) Fifteen items were then
selected from the test given to the first group as an anchor test.
The first 15 were selected and, since the items in the tests were ran-
domly ordered, represented a randomly sampled subset of items. These
items were administered to the second calibration group and, using
these items as an anchor test, the items in the second test were
linked to the first. Fifteen items were selected from this linked
second test and used to link the third test. This procedure was re-
peated until the fifth test had been so linked.

Asymptotic-ability-estimate and efficiency statistics were then
calculated. They were calculated on the first test alone and then
on each of the remaining tests in combination with the first. Cumu-
lative effects of linking could thus be observed as more new tests
were cascaded upon the old.

Although the modal Bayesian scoring procedure had proved superi-
or to the maximum-likelihood procedure when a single anchor test was
used, it was not obvious to what extent its inherent bias would
affect linking in a cascaded environment. The robust-maximum-likeli-
hood procedure was thus additionally considered as an unbiased pro-
cedure.

Results. Table 72 presents asymptotic-ability-estimate means
and standard deviations for cascaded linking using modal Bayesian
scoring. The level of linkage refers to the number of linkages re-
quired to link back to the original test. Average errors represent
the average absolute deviation of the row or column entries from the
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Table 72. Asymptotic Ability Metric
of Cascaded Tests--Modal Bayesian Scoring

Level of Test Length Average
Linkage 20 35 50 65 Error

Mean 0 .118 .488 .053 .154
1 .052 .434 .064 -.032 .079
2 -.152 .337 .047 -.048 .157
3 -.028 .279 -.027 -.034 .156
4 .116 .329 -.009 .073 .076

Average Error .121 .143 .040 .164 .117

Standard 0 1.136 1.189 1.089 1.194
Deviation 1 1.057 1.080 .936 .914 .155

2 .893 .909 .912 .872 .256
3 .854 .801 .943 .842 .292
4 .949 .880 .918 .887 .244

Average Error .198 .272 .161 .315 .237

zero-level values. The zero-level values differ from each other be-
cause no anchor method was used to anchor the first tests to any
common metric.

The most notable observation that can be made from the first
half of Table 72 is that there were no apparent trends in error with
increasing linkage distance at any of the four test lengths with
respect to the means. The column with the most deviant starting
value, .488, showed some tendency to drift toward zero but this trend
was not consistent.

The standard deviations exhibited a tendency to drop with the
first one or two linkages. After that they appeared to stabilize at
approximately .9. No differences in this tendency were apparent
across the various test lengths.

Table 73 presents asymptotic-estimate means and standard devia-
tions for robust-maximum-likelihood scoring. Unlike the Bayesian
procedure, the maximum-likelihood procedure showed a slight tendency
to produce increasing means with increasingly distant linkages. This
tendency was inconsistent, however.
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Table 73. Asymptotic Ability Metric
of Cascaded Tests--Maximum-Likelihood Scoring

Level of Test Length Average
Linkage 20 35 50 65 Error

Mean 0 .079 .406 .048 .103
1 .061 .497 .070 .145 .043
2 .120 .537 .062 .163 .062
3 .225 .592 .040 .210 .112
4 .174 .558 .044 .247 .100

Average Error .075 .140 .012 .088 .079

Standard 0 .876 .951 .906 1.018
Deviation 1 .845 1.015 .945 1.121 .059

2 1.009 1.026 .998 1.123 .101
3 1.083 1.107 1.047 1.183 .167
4 .995 1.073 1.038 1.232 .147

Average Error .123 .104 .101 .146 .119

Standard deviations, using the robust-maximum-likelihood proce-
dure, rose rather than fell. By the third linkage, they were deviant
from the initial values by .167, on the average. This dropped to
.147 by the fourth linkage and may be indicative of a stabilization.

Table 74 presents linkage efficiencies of the cascaded tests
using modal Bayesian scoring. No consistent trends in efficiency
were observed. A slight inconsistent trend toward lower efficiency
with increasing linkage distance and an inconsistent increasing trend
with respect to test length were observed. The overall level of
efficiency was somewhat lower than levels observed previously in the
systematically sampled data set; efficiencies with Bayesian anchor-test
linking using a constant anchor test were .970, compared to .929 here.
It should be noted, however, that the conditions of linking were some-
what different as five tests at a time were linked before, and only
two at a time were linked here.

Table 75 presents linkage efficiencies of the cascaded tests
using robust-maximum-likelihood scoring. A more definite decreasing
trend in efficiency with linkage distance was observed here than had
been observed using Bayesian scoring. An inconsistent increasing
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Table 74. Linkage Efficiency of
Cascaded Tests--Modal Bayesian Scoring

Level of Test Length
Linkage 20 35 50 65 Average

1 .943 .981 .983 .930 .959
2 .874 .914 .954 .918 .915

3 .895 .862 .969 .911 .909
4 .953 .883 .959 .936 .934

Average .918 .910 .966 .924 .929

Table 75. Linkage Efficiency of
Cascaded Tests--Maximum Likelihood Scoring

Level of Test Length
Linkage 20 35 50 65 Average

1 .968 .962 .993 .972 .974
2 .972 .923 .989 .965 .962
3 .865 .892 .967 .940 .917
4 .920 .911 .972 .863 .917

Average .931 .922 .980 .935 .942

trend with respect to test length was again observed. In general,
the maximum-likelihood scoring procedure produced somewhat more ef-
ficient linkage than did the Bayesian procedure. Where the average
linking efficiency was .929 for the Bayesian procedure, it was .942
when maximum-likelihood scoring was used.

Discussion. Linking using cascaded anchor tests with Bayesian
scoring did not exhibit any substantial tendencies toward decreasing
efficiencies with increasing linkage distances. Slightly more con-
sistent tendencies toward lowered efficiency were observed with max-
imum-likelihood scoring. Maximum-likelihood scoring produced slightly
higher average efficiency than did Bayesian scoring across the con-
ditions investigated. Slight trends in bias were observed with
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respect to asymptotic standard deviations using either method but
none were observed with respect to means or efficiencies.

It should be noted that no trends were built into the true abil-
ities used in this simulation. Abilities of each group were differ-
ent but not in any predictable fashion. If trends were present in
the true abilities, a trend might be noted in the estimation errors.
Asubstantial long-term trend in ability is unlikely to be observed
in Armed Services testing, however. Short-term trends produced by a
military draft situation are unlikely to affect more than one or two
generations of test items. Such a situation is similar to the one
simulated here.

Design for a Specific Application

Following is an example of how the information learned about
linking techniques in the preceding sections could be applied to a
practical linking problem such as might be faced by the Armed Ser-
vices. The problem presented below is one developed, in cooperation
with Air Force personnel, to be representative of the linking problem
the Armed Services will encounter in the development of an item pool
for computerized adaptive administration of the ASVAB or its succes-
sor. The problem described is presented only as a hypothetical link-
ing environment. The test described, while intended to reflect
expected conditions, is not based on specific studies and should
not be considered optimal, in any sense, for test design.

Description of the Problem

A new adaptive version of the ASVAB is to be developed. It will
contain 10 subtests, 8 of which will be power subtests. Only the
power subtests will require calibration by IRT methods. For each
of these eight subtests, a pool of approximately 200 items will be de-
veloped. These items will be similar to items previously used in the
ASVAB, with the exception that they will be written to cover the dif-
ficulty range from b = -?.5 to b = 2.5. The distribution of difficulty
is expected to be nearly rectangular with somewhat heavier representa-
tion in the center.

Examinees for use in calibration will come primarily from all the
AFEES. One additional hour of examining time to take experimental
tests will be provided for 1,000 examinees at each of the AFEES. This
means that roughly 50 new items, on the average, can be administered
along with the current ASVAB. The eight item pools, in total, will
contain 1,600 items. If 65.000 examinees each take 50 items and the
1,600 items are equally apportioned, each item will be administered
to 2,031 examinees.
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Some of the new subtests will parallel subtests on the current
ASVAB; others will not. It is not essential that all individuals
within a given AFEES take the same test. It is essential that the
administration instructions and time requirements be identical for
all experimental tests given within a single AFEES.

The objective of calibration and linking of these items is to
obtain eight item pools, each of which contains items which function
efficiently together for estimating ability. The actual scale on
which the items are linked is not critical but, if the new items
parallel an old ASVAB subtest, there should be a way of translating
the new test scores to the familiar ASVAB scores. Furthermore, there
should be some provision by which new items can be added to a pool
and linked to the original metric.

A Proposed Linking Design

When applicable, the equivalent-groups method of linking pro-
vides the most trouble-free and efficient linking available. It

appears that tests can be randomly distributed among AFEES if care
is taken and thus the equivalent-groups procedure is the method of
choice. The Bayesian scoring procedure is the preferred scoring
method.

Three major factors should be kept in mind when assembling the
experimental tests. First, administrative constraints require that
all tests use the same administration instructions and that each
requires no more than an hour to complete. Second, calibration effi-
ciency is enhanced with longer tests. Third, calibration of each pool
in equal-sized sets of items on equal numbers of examinees results in
greatest linking efficiency.

Prior to assembling the administration packets, rough time es-
timates for completion of items in each of the pools should be ob-
tained either from pilot administration or from past experience.
Each pool should then be divided into the largest equal parts that
can be administered within the time allowed. No item overlap is
required.

Examinees can be apportioned across the eight pools equally
or unequally. If they are to be apportioned equally, the number
of examinees can be decided by simply dividing 65,000 by the number
of item subsets. It may be more appropriate, however, to apportion
unequally. The number of examinees apportioned to each subtest may
be decided by the relative importance of the pools, the relative
ease of calibration of the various item types, the number of subtests
within each of the item pools, or by other considerations. Samples
used within a pool should be of equal size; samples for different
pools do not need to be of equal size.
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Experimental tests should be randomly distributed among AFEES
(and their mobile testing sites). While data presented in preceding
sections have suggested that the equivalent-groups procedure works
reasonably well even when tests are systematically distributed, non-
randomness may result in the equivalent-groups method being less effi-
cient than one of the anchoring methods. If the items in a pool par-

allel an ASVAB subtest which is routinely administered to all exam-
inees, the ASVAB items should be combined with each of the individual
experimental tests when calibration is done. If distribution of test
packets is done randomly, no explicit attempt at anchoring need be
done; the purpose of including the ASVAB items is simply to increase
calibration efficiency by increasing the test length. If distribution

is non-random, explicit anchoring may be desirable.

Conceptually, expressing scores of the new tests in terms of the
old ASVAB scores may seem to be a simple matter of using the appropri-
ate ASVAB subtest as an anchor test and then anchoring new items to
it. Ability estimates from the new tests should, it seems, be equiv-
dlent to ability estimates from the old. There are two reasons why
this is not the case. For finite-length tests, regardless of the
scoring procedure used, ability estimates will contain some error and

be biased to at least a small degree. Unless the ability estimates
from the ASVMB subtest and the new items have equivalent error and
bias, ability estimates of one will not be equivalent to the other,
even if linking is perfect. Secondly, the old ASVAB is not expressed
in an IRT ability metric. Obviously, then, ability estimates from
the old ASVAB will not be equivalent to ability estimates from the
new tests, even for infinitely long tests.

So even after the item pools are linked, correspondence be-
tween the new adaptive ASVAB and the old conventional ASVAB will not
be immediately available. These correspondences can be developed by
conventional equating procedures but only after the item pools are
incorporated into a testing strategy and its error properties are
known.

Addition of new items to the pool at a later time will require
an anchor test. The most straightforward choice for such a test
is a conventional test composed of items from the original ASV&B or
the original new item set and kept constant in composition for all
future additions. Research in a previous section suggested, however,
that new anchor tests can be selected as time passes with slight
efficiency loss and little bias. Use of the new ASVAB as an adaptive
anchor test is another possibility. Further research into adaptive
anchor tests should be done before such a method is applied, however.
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VIII. SUMMARY AND CONCLUSIONS

Summary

Previous Literature

This report began with a review of the psychometric literature
relevant to linking and equating which resulted in a number of find-
ings. The first was a general framework for classification of link-
ing and equating designs. Linking methods were classified on two
general aspects: the design by which data are collected and the al-
gorithm by which the linking transformations are made. The data
collection designs were of four types: (a) sampling of equivalent
examinees (equivalent-groups method), (b) sampling of equivalent
items (equivalent-tests method), (c) anchoring through a common group
of examinees (anchor-group method), and (d) anchoring through a com-
mon set of items (anchor-test method). There were a variety of trans-
formation algorithms which can be grouped into linear, nonlinear, and
Item-Response-Theory (IRT) methods.

Since the overall research project was limited to linking of
IRT-calibrated items, the review concentrated on IRT linking and
equating studies. The vast majority of the reported studies used
the Rasch IRT model. These tended to be more descriptive than evalu-
ative. The more evaluative studies suggested that Rasch equating
worked well for examinees of average or above average ability but
worked poorly when low-ability groups were equated to higher-ability
groups. This deficiency was probably due to the model's inability
to handle guessing.

Among the studies investigating linking using the more appro-
priate three-parameter IRT models, there was some confusion regarding
the distinction between prediction, linking, and equating. A distinc-
tion was made here by defining prediction as relating scores on one
psychological dimension to scores on another using regression tech-
niques, by defining equating as establishing a correspondence between
two tests measuring the same psychological dimension using non-regres-
sion techniques, and by defining linking as putting parameters of items
measuring the same psychological dimension on the same scale. Examples
of research which inappropriately confounded these techniques were
discussed.

Linking Criteria

The criteria used in past studies for evaluating the adequacy
of calibration, linking, and equating were not only confusing but,
typically, not useful for comparing various techniques. Two new
classes of criteria were developed for use in this project. The
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first considered the asymptotic characteristics of ability estimates
using estimated item parameters. Through this class of criteria, the
biasing effects of calibration and linking errors could be assessed.
The second class of criteria consisted of the information and rela-
tive efficiency of ability estimation resulting from the use of item
parameters containing calibration and linking errors. These criteria
were used to assess the relative test lengths required by the various
methods to produce equivalent precision of measurement. Techniques
for separating amounts of inefficiency due to calibration and to
linking were presented.

Simulation Design

Considering deficiencies in previous studies of linking, a simu-
lation study to determine appropriate linking methods was designed.
In developing the simulation model, care was taken to ensure that the
test items specified were similar (in terms of their item parameters)
to Armed Services items likely to be encountered in actual linking
problems, and that the populations of simulated examinees were defined
to be similar in ability to those likely to take such tests.

Item parameters were specified after analysis of available data
on current ASVAB forms. Included in these data were IRT item param-
eters for an experimental ASVAB form paralleling Form 7 and conven-
tional item parameters from norming administrations of new ASVAB Forms
8, 9, and 10. The ability distributions were determined from samples
of 500 examinees from each of 65 AFEES responding to ASVAB Form 7.

The distributions of both ability levels and item parameters
were generated from the mean, variance, skew, and kurtosis of the
AFEES or A3VAB distributions using a random number generator capable
of generating distributions of shapes specified by these four moments.
Three basic data sets were created. The first, the randomly sampled
data set, contained five replications at each of 12 combinations of
test length and calibration sample size and simulated the condition in
which test booklets were randomly distributed among the entire AFEES
population. The second, the systematically sampled data set, contained
the same combinations of test length and sample size but simulated the
condition in which test booklets were distributed systematically among
relatively few AFEES. The third, the selected data set, contained
only one sample size and simulated the condition in which a selected
recruit population was used.

Three categories of evaluative criteria were used to assess the
adequacy of calibration and linking. The first category, fidelity
of estimation, examined the relationships between true and estimated
item parameters. Statistical indices used included the familiar
bias, absolute error, root-mean-square error, and correlation used
in previous studies. The second category, characteristics of asymp-
totic ability estimates, examined the relationships between true and
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asymptotic (i.e., infinite-test-length) ability estimates. Statis-
tical indices included the mean, standard deviation, absolute and
root-mean-square error of the estimates, and the correlation between
true and asymptotic ability. The last category, efficiency of abil-
ity estimation, included average item information (an index closely
related to the precision of estimation) and relative efficiency, the
ratio of information from two sources. In this study, efficiencies

were computed relative to the true and estimated item parameters,
yielding efficiency indices of the linked items and linking proce-
dure, respectively.

Results

In evaluating the basic data sets, three general conclusions
were reached. First, the parameter correlation data generally sup-
ported other studies which assessed the calibration effectiveness of

OGIVIA, the calibration program used in this study. The b parameters
were very well estimated and the a and c parameters were Tess well
estimated. Second, test length appeared to be relatively more impor-
tant to calibration effectiveness than was sample size; efficiency
analyses suggested that increases in test length were at least three
to four times as effective in improving calibration efficiency as pro-
portionate increases in calibration sample sizes. Finally, there was
little difference in calibration efficiency between randomly and sys-
tematically sampled examinees, but there was a large difference in ef-
ficiency between these and the selected examinee groups.

In the randomly sampled data set, two general linking methods,
the equivalent-groups and the equivalent-tests methods, were evalu-
ated and compared. Comparisons were done in both a homogeneous link-
ing condition, where the items to be linked were calibrated in tests
of equal length using examinee samples of equal size, and in a heter-
ogeneous condition of mixed test lengths and examinee sample sizes.

The fidelity-of-parameter-estimation analyses were unable to
provide any conclusive evidence regarding which linking procedure
was most effective. The asymptotic ability analyses, however, sug-
gested that two linking procedures based on Bayesian ability estima-
tion (an equivalent-groups procedure) were somewhat more effective
than the others and that the equivalent-tests method was typically
no better than not linking at all. The third set of analyses, those
using the relative efficiency criteria, suggested that the equivalent-
groups procedures were superior to the equivalent-tests procedures
and that those using Bayesian scoring procedures were slightly superior
to the others tested. Relatively little efficiency was lost when the
OGIVIA-produced parameters were used with no explicit linking. Effi-
ciency loss due to linking error was always less than that due to
calibration error and, although test length and sample size had a
definite effect on calibration efficiency, no strong effects appeared
with respect to linking efficiency.
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In the systematically sampled data set, two additional linking
methods were considered along with the equivalence methods. The
anchor-group method linked item sets using common examinee groups
of different sizes and compositions. The anchor-test method linked
item sets using common tests of different sizes and compositions. In
terms of linking efficiency, the anchor-test method produced the most
efficient item pools. The anchor-group method resulted in efficien-
cies equivalent to those of the anchor-test procedure if large groups
were used, but with smaller groups the efficiencies dropped somewhat.
The equivalence methods were somewhat less efficient than either of
the anchor methods. Bayesian scoring was the method of choice.
Maximum likelihood appeared not to be a useful scoring procedure
for the linking conditions investigated.

Results from analyses based on data from linking when exami.iees
were selected tended to parallel those of the randomly sampled d!ata
set. The equivalent-groups and no-linking methods produced item
pools as efficient as the more complex anchoring methods. These
methods were ineffective in recovering the original metric, however.
Mean asymptotic estimates were biased downward considerably from the
true values, and standard deviations were larger than the true values.
One of the more complex methods would have to be used if recovery of
the original metric was desired.

Application to a Practical Linking Problem

An application of the results of this research to a practical
linking problem was described. The problem consisted of calibration
and linking of item pools for computerized adaptive administration
of the ASVAB. The general suggestion was that experimental test
booklets be randomly distributed and equivalent-groups linking be
used. For addition of itemr st later times, an anchor-test linking
method was suggested. A further simulation was done to investigate
the effect of cascaded anchor tests in which a new anchor test was
created for each link. Neither excessive drift nor loss in efficien-
cy was noted. It was concluded that such cascading could be used if
necessary but that a constant anchor test should be preferred. When
maximum-likelihood and Bayesian scoring procedures were compared, in
the cascaded condition, the maximum-likelihood procedure showed a
slight efficiency advantage over the Bayesian procedure.

Conclusions

If the item-linking procedures suggested in this report are
followed, parameter errors due to imperfect linking should be a rela-
tively minor problem in the development of an adaptive-testing item
pool. With proper procedures the efficiency loss due to linking
errors should be approximately 1%. This is small in comparison to
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the 10% to 12% efficiency loss due to calibration errors. This study
thus appears to have answered the question: How should different
item sets calibrated in different examinee groups be linked?

Next to the findings regarding linking, perhaps the most impor-
tant results of this project were the developments of new classes of
criteria of calibration and linking adequacy. It is conceivable
that calibration, noted to be a greater problem than linking, might
be improved by using a different calibration program. Prior to this
study, no adequate method of comparing calibration effectiveness of
various calibration programs and algorithms had been available. The
efficiency statistics presented here allow a direct comparison of var-
ious procedures in terms of their capacity to provide parameters con-
ducive to accurate estimation of ability. Since ability estimation
is the objective of ability testing, these criteria seem ideal.

4nalyses of the basic data sets using the program OGIVIA were
presented in sufficient detail that they could easily be replicated
using other calibration techniques. Evaluation of other calibration
techniques using the efficiency criteria should quickly answer the
question of which procedure is best. Since efficiency has a direct
translation into test length, it should be useful in a cost-benefit
analysis of the various procedures if the best procedure also should
turn out to be the most expensive.

The asymptotic-estimate criteria should have application in
evaluating various equating methods. In this study, these criteria
showed that, using estimates of the item parameters, the relationship
between true and asymptotic ability was not perfectly linear. In
populations such as those considered here, this did not appear to be
a great problem. This nonlinearity may be a problem in the vertical
equating of tests of widely different difficulty levels. It was not
uncommon for tests investigated in this project to fail to yield abil-
ity estimates much below -2.0. If two tests were substantially dif-
ferent in difficulty and the parameters were less-than-perfect estim-
ates, the relationship between the two tests might be nonlinear. This
is an area that should be investigated before IRT vertically equated
tests are used for real decisions.

ks a third area for application of the new criteria, efficiency
analysis might be applied to investigating the appropriate number of
parameters in an IRT model. Rasch enthusiasts, and some others, have
suggested that the Rasch model is the appropriate method to use be-
cause other parameters in the multi-parameter models are too difficult
to estimate. Using efficiency analysis, it should be possible to de-
termine how many examinees and items are required for the additional
parameters in a two- or three-parameter model to produce a net gain in
measurement efficiency.
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In summary, it is likely that there will be few questions con-
cerning the development of Armed Services adaptive testing pools that
cannot be answered from data presented in this report. Calibration
presents somewhat more of a problem than does linking, but further
research using criteria developed here should help solve this prob-
lem. Finally, developments resulting from this project may aid in
the solution of some other IRT-related psychometric problems.
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APPENDIX A--SUPPORTING TABLES

Table A-I. Characteristics of the ASVAB
General Science Subtest by AFEES

AFEES N Mean SD Skew Kurtosis

1 500 .2759 .9975 -.2559 -.9677
3 500 -.2700 .9629 .2230 -.6493
5 500 .0424 .9233 -.2850 -.4963
6 499 .1316 1.0036 -.3345 -.5874
7 500 .1577 .9717 -.3273 -.5866

3 500 -.1189 .9899 -.0409 -.6064

9 497 -.1391 .9960 -.0434 -.7140
10 500 .0586 .9589 -.1956 -.6268
12 500 .1587 .9123 -.2064 -.7096
13 498 -.0388 .9763 -.1974 -.6223
14 498 .3436 .8849 -.4363 -.3761
15 500 -.3154 1.0679 .0466 -.7725
16 500 .0173 1.0550 -.1409 -.8760
18 498 -.3935 1.0101 .0824 -.6752

19 498 .0021 .9756 -.0912 -.8322
20 497 .4389 .8544 -.5075 -.3148
22 500 -.2880 .9980 .1660 -.7573
24 500 .1239 .9449 -.2193 -.6742
25 499 .3173 .9534 -.5289 -.4252
26 500 .2643 .9311 -.3749 -.4579
27 498 -.5292 .9194 .3814 -.4544
28 499 -.4400 .9658 .4163 -.6887
29 499 -.1850 .9564 -.0341 -.8177
30 498 -.2212 1.0073 .1015 -.7309
31 500 -.4460 .9945 .2912 -.6558
32 500 -.6476 .8614 .4003 -.1635
33 500 -.2171 1.0002 .0805 -.7691

34 499 -.0318 .9542 -.1562 -.6444

35 499 -.5602 .9253 .4211 -.3806
36 498 -.4483 .9480 .1514 -.4097

37 499 -.0875 .9508 -.1301 -.6380
38 499 -.4957 .9286 .2750 -.3721
41 500 .0943 .9005 -.1907 -.6111
42 499 .0197 .9267 -.0553 -.5823
43 499 -.1200 1.0224 -.0694 -.7847
44 499 -.0471 .8941 .0706 -.6153
45 500 -.1833 .9828 .0308 -.7571
46 500 -.2542 1.0306 .0859 -.8044

47 500 -.4734 .9692 .2842 -.4526
48 499 .0146 .9763 -.0841 -.7965
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Table A-i. Characteristics of the ASVAB
General Science Subtest by AFEES (Continued)

AFEES N Mean SD Skew Kurtosis

49 498 -.1054 .8751 -.0421 -.4645

50 500 -.4349 .9739 .2451 -.8044
51 495 -.2721 .9763 .1777 -.7167
52 500 .2393 .9309 -.4302 -.3879
53 499 .3122 .9180 -.4255 -.4789
54 498 .0830 .9668 -.2421 .5689
55 500 .3658 .9486 -.5263 -.3761
56 499 .1372 .9923 -.3800 -.4164
57 500 .1026 .9327 -.0894 -.8000
58 500 .2050 1.0407 -.3811 -.6244
59 500 .3496 .9476 -.5014 -.4554
60 499 .1688 .9222 -. 1803 -.7032
61 499 .3851 .9024 -.6893 .3777
62 498 -.0607 1.0162 -.1157 -.8639
63 497 .3890 .9301 -.3154 -.7974
64 500 .4154 .9066 -.4386 -.5772
65 500 .3866 .9587 -.4136 -.6086
66 500 .0442 .9446 -.0944 -.6210
67 500 -.0438 .9523 -.0587 -.6479
68 500 .1077 .9942 -.2687 -.8586
69 497 .2357 .9770 -.2619 -.8596

70 500 .4520 .8901 -.6993 .5596
71 499 .2950 .9245 -.2888 -.6018
72 500 .4413 .9064 -.6921 .2333
76 498 .2952 .9114 -.4868 -.3101

-182-



Table A-2. Items Selected for Inclusion in the
Normal, Rectangular, and Peaked Anchor Tests

True Item Parameters Estimated Item Parameters

Anchor Test a b c 8 8

Normal 2.2766 .0338 .1401 2.2717 .0078 .1059
1.8243 -1.8344 .3763 1.4526 -2.3105 .1748
1.7780 1.9989 .1893 3.0000 1.7863 .0955
1.8098 .4236 .1170 2.2358 .4736 .1079
3.8753 -.7242 .2951 3.0000 -.7405 .1901
2.5663 -.3764 .1719 2.3082 -.4020 .0924
1.9929 .3155 .1834 1.9821 .3446 .1689
1.5909 1.0338 .1102 1.7310 1.1774 .1342
2.5162 -1.1096 .1104 2.1824 -1.1509 .0059
2.1169 -.5406 .2442 1.6920 -.6036 .1106
2.6324 .6080 .3174 2.3324 .6768 .2907
2.3331 .7268 .3429 1.9484 .7717 .3210
2.1136 -1.2472 .1364 1.8686 -1.2710 .0643
2.2304 -1.6778 .1435 2.0307 -1.5930 .1640
2.2070 1.3933 .3067 3.0000 1.4893 .2275
1.8899 -.0312 .1902 1.6845 -.0108 .1378
1.8079 -.3500 .2895 1.7847 -.2940 .2531
1.5047 -.5989 .1256 1.6149 -.4958 .1126
1.8009 .2759 .2322 1.6597 .3591 .2240
1.4296 .7051 .2286 1.69?9 .8457 .2637
1.7189 -.9806 .3265 1.6022 -1.0177 .2227
1.8392 -1.5184 .1105 1.7279 -1.4533 .0377
1.6760 1.4379 .3101 1.9381 1.5048 .3151
1.7838 -.1039 .2143 1.4660 -.1524 .1183
1.3747 -.4829 .1456 1.3737 -.3864 .1557

Rectangular 2.2766 .0338 .1401 2.2717 .0778 .1059
1.8243 -1.8344 .3763 1.4526 -2.3105 .1746
2.3086 2.1240 .1439 2.4515 2.1056 .1259
2.0181 .9706 .1966 2.6381 .9975 .1558
2.5162 -1.1096 .1104 2.1824 -1.1509 .0059
3.8753 -.7242 .2951 3.0000 -.7405 .1901
1.8098 .4236 .1170 2.2358 .4736 .1079
2.2070 1.3933 .3067 3.0000 1.4893 .2275
2.2304 -1.6778 .1435 2.0307 -1.5930 .1640
2.1136 -1.2472 .1364 1.8666 -1.2710 .0643
2.6324 .6080 .3174 2.3324 .6768 .2907
1.6750 1.4379 .3101 1.9381 1.5048 .3151
1.8392 -1.5184 .1105 1.7279 -1.4533 .0377
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Table A-2. Items Selected for Inclusion in the
Normal, Rectangular, and Peaked Anchor Tests (Continued)

True Item Parameters Estimated Item Parameters

Anchor Test a b c 8 6

Rectangular 1.4949 -1.9274 .1493 1.2598 -2.1565 .0977
(Cont.) 1.3346 2.3002 .1202 2.1999 2.3542 .1633

1.9929 .3155 .1834 1.9821 .3446 .1689
2.5663 -.3764 .1719 2.3082 -.4020 .0924
1.8353 -.7625 .1751 1.5589 -.8333 .0606
2.3331 .7268 .3429 1.9484 .7717 .3210
1.5909 1.0338 .1102 1.7310 1.1774 .1342

1.7525 -1.8702 .2204 1.6999 -1.7462 .2693
1.3909 -1.8081 .1144 1.3265 -1.8646 .0699
1.3888 1.8744 .1674 1.9353 1.9720 .1973
1.8009 .2759 .2322 1.6597 .3591 .2240
1.5617 -.4916 .1561 1.7318 -.3962 .1286

Peaked 2.2766 .0338 .1401 2.2717 .0778 .1059
2.5241 -.1973 .2941 2.2957 -.1850 .2327
2.5663 -.3764 .1719 2.3082 -.4020 .0924
2.1322 -.2409 .1218 1.8271 -.2715 .0364
1.9838 .0308 .1765 1.8246 .0482 .1243
2.1322 .1437 .1296 1.7626 .1053 .0788
2.5678 -.0124 .2990 2.0325 -.0081 .2535
1.7472 -.2444 .1108 1.7626 -.1665 .1060
1.8899 -.0312 .1902 1.6845 -.0108 .1378
1.8609 -.4670 .1111 1.7860 -.4194 .0573
2.1462 -.3844 .1625 1.8270 -.4245 .0751
2.8007 -.4404 .3155 2.4904 -.4772 .2332
2.2596 -.0840 .2209 1.5028 -.1956 .0838
1.5617 -.4916 .1561 1.7318 -.3962 .1286
1.8079 -.3500 .2895 1.7847 -.2940 .2531
2.1945 -.4158 .2529 1.7870 -.4213 .1749
1.7838 -.1039 .2143 1.4660 -.1524 .1183
2.1038 -.2952 .3263 1.6991 -.3497 .2141

1.4159 -.1788 .1443 1.4204 -.1162 .1102
1.5732 -.2968 .2128 1.5095 -.2477 .1697
1.8253 -.1994 .2239 1.4196 -.3236 .0758
1.9929 .3155 .1834 1.9821 .3446 .1689
1.7777 -.3484 .2414 1.5750 -.3496 .1905
2.2983 -.2297 .3771 1.6622 -.2980 .2831
2.2819 -.3800 .3237 1.7573 -.4519 .2241
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APPENDIX B--REVISIONS TO PROGRAM OGIVI

The item calibration program, OGIVIA, was obtained from James
McBride of the Navy Personnel Research and Development Center in San
Diego. The version received was written by Jerry Edwards of the
University of Washington and had been revised and updated by John F.
Gugel of the U.S. Civil Service Commission. A review of the program
revealed several problems. Their possible impact and the corrections
made are detailed below.

A variant of the test information value was originally used for
the scaling factor in the Newton-Raphson ability estimation routine.
This factor was replaced with the second derivative of the log of the
Bayesian posterior density function. In theory, this substitution
should have made little difference in the ability and parameter esti-
mates obtained. In fact, differences in the second and third decimal
place were occasionally observed. This was assumed to be due to the
fact that the criterion for termination of the iteration was a change
in the absolute value of the estimate of less than 0.005 and that when
the original scale factor was used, there was no assurance that the
estimate was within 0.005 of the final value at this point. The dif-
ferences were thus attributed to increased accuracy of estimate ob-
tained with the modification. It was also noted that changing to the
second derivative resulted in an average 20% decrease in the computer
time required to estimate ability.

Another inefficiency was noted in the Newton-Raphson procedure.
It appeared that this procedure, by itself, was not always successful
in locating the modal Bayesian ability estimate. In some cases, the
Bayesian posterior density function can be of a sufficiently irregu-
lar shape that a starting value very near the final estimate is re-
quired for convergence. The original program discarded examinees
whenever the ability estimate failed to converge in 20 iterations.
To preclude such examinee loss, the original algorithm was augmented
by adding a bisection routine. Tne bisection was invoked whenever
the Newton-Raphson procedure failed to converge within seven itera-
tions. Following the bisection procedure, providing that a root
existed in the interval -8.0 < < 8.0 (a virtual certainty), the
Newton-Raphson procedure was caled again to refine the estimate and
was allowed to iterate up to eight times.

A final problem was encountered when OGIVIA discarded items
whose parameter estimates exceeded pre-established bounds. While in
practical calibration applications this may be an acceptable solution,
in the present research design it presented a serious biasing effect
on the comparisons of different cells in the design. To alleviate
this problem, items whose parameter values would have caused them to
be discarded were arbitrarily bounded as follows:
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0.5 < 9 < 3.0,

-3.0 < B < 3.0,

0.0 < 8 < 0.5.

Although somewhat arbitrary, these values appear to reflect
reasonable ranges for the parameters and seemed preferable to loss of
the item. These item parameters were bounded on both the first and
second stages of the OGIVIA program.
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