ANALYSIS OF THE TEMPERATURE DEPENDENCE OF RESISTIVITY IN N-TYPE—ETC(U)

M. Glaubensklee

DNA-9297F
ANALYSIS OF THE TEMPERATURE DEPENDENCE OF RESISTIVITY IN N-TYPE SILICON

The BDM Corporation
P.O. Box 9274
Albuquerque, New Mexico 87119

16 March 1981

Final Report for Period 11 February 1979—30 April 1980

CONTRACT No. DNA 001-79-C-0138

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE 8323079464 Z99QAXT809707 H2650D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
This work consists of an analytical development of the observed temperature dependence of the resistivity in n-type silicon. This is accomplished by considering the temperature dependence of each physical parameter (such as electron scattering terms) contributing to resistivity in various doping ranges.
PREFACE

This report was prepared by The BDM Corporation, 1801 Randolph Road, S.E., Albuquerque, New Mexico 87106, for Defense Nuclear Agency, Washington, D.C. 20305, to supplement work done under contract DNA 001-79-C-0138. It consists of an analytical development of the observed temperature dependence of resistivity in n-type silicon. This is accomplished by considering the temperature dependence of each physical parameter contributing to resistivity in various doping ranges. Knowledge of this thermal behavior of resistivity is critical to semiconductor device operation under thermal stress. The BDM author was Ms. M. Glaubensklee.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>1</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>3</td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>II BACKGROUND</td>
<td>7</td>
</tr>
<tr>
<td>III QUALITATIVE ASPECTS OF THE DEPENDENCE OF (\rho) ON TEMPERATURE</td>
<td>9</td>
</tr>
<tr>
<td>A. INTRINSIC SEMICONDUCTORS</td>
<td>9</td>
</tr>
<tr>
<td>B. NON-INTRINSIC SEMICONDUCTORS</td>
<td>10</td>
</tr>
<tr>
<td>1. Higher Temperature Region</td>
<td>11</td>
</tr>
<tr>
<td>2. Lower Temperature Region</td>
<td>11</td>
</tr>
<tr>
<td>3. Transition Region</td>
<td>13</td>
</tr>
<tr>
<td>C. NONAPPLICABILITY EQUATION (1)</td>
<td>13</td>
</tr>
<tr>
<td>1. Very High Impurity Desities</td>
<td>13</td>
</tr>
<tr>
<td>2. High (E) Field Effects</td>
<td>14</td>
</tr>
<tr>
<td>IV QUANTITATIVE ASPECTS OF THE DEPENDENCE OF (\rho) ON TEMPERATURE</td>
<td>15</td>
</tr>
<tr>
<td>1. Lattice Scattering</td>
<td>16</td>
</tr>
<tr>
<td>2. Ionized Impurity Scattering</td>
<td>17</td>
</tr>
<tr>
<td>3. Neutral Impurity Scattering</td>
<td>18</td>
</tr>
<tr>
<td>4. Electron-Electron Scattering</td>
<td>19</td>
</tr>
<tr>
<td>5. Mobility Expressions Due to Combined Scattering Effects</td>
<td>20</td>
</tr>
<tr>
<td>6. Temperature Dependence of (\rho)</td>
<td>22</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>Silicon Resistivity Versus Temperature</td>
<td>6</td>
</tr>
<tr>
<td>III-1</td>
<td>Intrinsic Carrier Concentration (n_i) Versus Reciprocal Temperature</td>
<td>12</td>
</tr>
<tr>
<td>III-2</td>
<td>Variation of Electron Concentration (n) with (T) temperature in an n-Type Semiconductor</td>
<td>12</td>
</tr>
<tr>
<td>III-3</td>
<td>Variation of Reduced Mobility with Electric Field Applied to 70 ohm-cm Silicon Along the (<111>) Direction. Carrier Concentration Assumed Constant</td>
<td>14</td>
</tr>
<tr>
<td>IV-1</td>
<td>Theoretical Calculations of Resistivity Versus Temperature for n-Type Silicon for Dopant Densities from (5 \times 10^{13}) to (10^{19}) cm(^{-3})</td>
<td>23</td>
</tr>
<tr>
<td>IV-2</td>
<td>Resistivity Versus Temperature for Seven Phosphorus-Doped Silicon Samples. Solid Lines are the Theoretical Calculation and Dots are the Experimental Data</td>
<td>24</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

This paper attempts to explain some theoretical basis for the observed temperature dependence of resistivity, ρ, in n-type silicon. This dependence is known to be influenced by doping density and these effects can be seen in figure I-1. The aim of this discussion is the explanation of this graph in both a general qualitative sense and a more explicit delineation of the functional dependence of $\rho(T)$. This functional dependence is a composite of the analytical representations of the various physical parameters contributing to resistivity. These parameters and the physical phenomena they describe will be discussed as they relate to resistivity in n-type silicon.

The results of this more or less theoretical treatment of resistivity are then compared to empirical graphs and show remarkable agreement. Such a reliable theoretical basis for the thermal behavior of resistivity is critical to all thermal processes affecting semiconductor device operation.
Figure I-1. Silicon Resistivity Versus Temperature
CHAPTER II
BACKGROUND

The current density transported by electrons and holes in any semiconductor is given by:
\[
\dot{I}_n = ne\mu_n \dot{E}
\]
\[
\dot{I}_p = pe\mu_p \dot{E}
\]
where \(e \) = charge of electron
\(n \) = electron density
\(p \) = hole density
\(\mu_n \) = electron mobility
\(\mu_p \) = hole mobility
\(\dot{E} \) = electrical field intensity.
Thus, the total electrical current density, \(\dot{I} \), may be given as:
\[
\dot{I} = e(n\mu_n + p\mu_p)\dot{E} = \sigma \dot{E}
\]
where the electrical conductivity, \(\sigma \), is expressed as:
\[
\sigma = e(n\mu_n + p\mu_p)
\]
and the resistivity is defined as:
\[
\rho = \frac{1}{\sigma} = \frac{1}{e(n\mu_n + p\mu_p)} \tag{1}
\]
In this expression \(n \) and \(p \) are the actual instantaneous values of electron and hole concentration. \(n, p, \mu_n, \mu_p \) are functions of temperature and thereby determine the temperature dependence of \(\rho \). It is further
assumed in this expression that the charges trapped by donors and acceptors are immobile and that n, p, ν_n, ν_p are independent of \mathbf{E}. This is true only for low \mathbf{E}-field intensities, where no gradients of carrier density are considered that may give rise to diffusion currents.

If only the equilibrium state is considered, then:

$$\rho_0 = \frac{1}{e(n_0 \nu_n + p_0 \nu_p)}$$

where n_0 and p_0 are the equilibrium carrier densities.
CHAPTER III
QUALITATIVE ASPECTS OF THE DEPENDENCE OF ρ ON TEMPERATURE

A. INTRINSIC SEMICONDUCTORS

Semiconductors can behave either intrinsically or nonintrinsically. An intrinsic semiconductor is a pure or undoped semiconductor with equal carrier concentrations. For this case the temperature dependence of resistivity can be given in terms of the intrinsic carrier concentration, n_i, where:

$$n_i = n_0 = \rho_0 = \frac{2}{\pi} \left(\frac{M^*_p M^*_n}{\hbar^2} \right)^{1/2} \frac{kT}{\hbar^2} \left(\frac{2\pi e^2}{2kT} \right)^{3/2} \exp \left(\frac{-E_g}{2kT} \right)$$

where:

- M^*_p = hole effective mass
- M^*_n = electron effective mass
- k = Boltzmann constant
- T = absolute temperature
- \hbar = Plank's constant
- E_g = gap energy.

Therefore,

$$\rho_0 = \frac{1}{en_i (\frac{1}{n_i} + \frac{1}{n_p})}$$

The temperature dependence of μ will later be shown to be predominantly a $T^{-3/2}$ dependence. This will generally cancel the $T^{3/2}$ dependence of n_i. Therefore a plot of μ_0 versus $1/T$ in an essentially intrinsic semiconductor should be approximately linear.
A. NON-INTRINSIC SEMICONDUCTORS

A non-intrinsic semiconductor depends on the addition of impurity atoms to provide additional donor and/or acceptor states and thereby enhance its conduction properties. The effect of such dopant densities on resistivity can be explained by considering their contribution to the carrier density in a semiconductor. This can be seen by considering charge neutrality:

\[n + N_a^- = p + N_d^+ \]

where

- \(N_a^- \) = charge density due to occupied acceptor states
- \(N_d^+ \) = charge density due to ionized (or unoccupied) donor states.

At temperatures above room temperature all typical donors and acceptors in silicon are completely ionized; therefore,

\[N_a^- = N_a = \text{acceptor atom dopant density} \]
\[N_d^+ = N_d = \text{donor atom dopant density}. \]

If such total ionization is assumed for an n-type \((N_d > N_a)\) semiconductor, then substitution for \(n \) or \(p \) (from \(np = n_i^2 \)) makes the charge neutrality equation quadratic in \(n \) or \(p \). Solving this equation gives expressions for \(n \) and \(p \) in terms of the donor and/or acceptor densities.

\[
\begin{align*}
 n &= \frac{N_d-N_a}{2} + \sqrt{\left(\frac{N_d-N_a}{2}\right)^2 + n_i^2} \\
p &= -\frac{N_d-N_a}{2} + \sqrt{\left(\frac{N_d-N_a}{2}\right)^2 + n_i^2}
\end{align*}
\]

(2)

(3)
Now these expressions can be substituted into equation (1) to give the resistivity in terms of ν_n, ν_p and N_a, and N_d.

$$\rho = \frac{1}{e\left(\frac{Nd-Na}{2} + \sqrt{\frac{Nd-Na}{2}^2 + n_i^2}\right) \nu_n + \left(-\frac{Nd-Na}{2} + \sqrt{\frac{Nd-Na}{2}^2 + n_i^2}\right) \nu_p}\tag{4}$$

1. Higher Temperature Region

It can be seen in figure III-1 that n_i increases rapidly with temperature; therefore, for sufficiently high temperatures $n_i >> N_d - N_a$, which is just some constant value. Employing this condition then reduces equations (2) and (3) to:

$$n = n_i + \frac{Nd-Na}{2}$$

$$p = n_i - \frac{Nd-Na}{2}$$

When these expressions are substituted into equation (4) the expression for ρ becomes:

$$\rho = \frac{1}{en_i(\nu_n + \nu_p)}$$

which is the intrinsic result. In general, all semiconductors behave intrinsically at sufficiently high temperature. This intrinsic carrier behavior is seen in figure III-2 for an n-type semiconductor.

2. Lower Temperature Region

Again, due to the strong temperature dependence of n_i, for a sufficiently low temperature, $n_i << N_d - N_a$. In this region equations (2) and (3) reduce to:
Figure III-1. Intrinsic Carrier Concentration n_i Versus Reciprocal Temperature.

Figure III-2. Variation of Electron Concentration n with Temperature in an n-Type Semiconductor.
n = \text{Nd} - \text{Na} \\
p = 0

for an n-type ($\text{Nd} > \text{Na}$) semiconductor, see figure III-2. The resistivity then becomes just:

$$\rho = \frac{1}{\text{e}\mu_n (\text{Nd} - \text{Na})}$$

Here the temperature dependence is merely that of μ_n (which will be discussed later in detail). This dependence is, however, primarily a $T^{-3/2}$ dominated function.

As the temperature is progressively lowered, the thermal energy becomes too small to cause sufficient excitations to keep electrons in the conduction band. At these low temperatures free electrons and holes are "frozen out" of the conduction band back into the donor and acceptor states (see figure III-2). Thus, the carrier concentration, $\text{Nd} - \text{Na}$, is depleted, resulting in an increased resistivity.

3. Transition Region

The transition between the two temperature regions where $n_i << \text{Nd} - \text{Na}$ and $n_i >> \text{Nd} - \text{Na}$ occurs where $n_i = \text{Nd} - \text{Na}$. As seen in figure III-1, this transition temperature increases as n_i increases. Therefore, as the impurity density $\text{Nd} - \text{Na}$ increases, the transition temperature also increases.

C. NONAPPLICABILITY EQUATION (1)

1. Very High Impurity Densities

At high impurity densities the wave functions of electrons on neighboring donor atoms or of holes on neighboring acceptor atoms will overlap significantly. This acts to broaden the donor or acceptor level into a narrow energy band. Since there are more states than electrons
(or holes) in this band, the possibility of "impurity band conductivity" exists. We have initially assumed in equation (1) that the charges trapped by the donors and acceptors are immobile. However, at these high impurity concentrations, a trapped charge may hop from one impurity atom to another causing current overflow.

2. High E Field Effects

Equation (1) assumes the mobilities and carrier concentrations to be independent of the applied electric field. For high fields this is not so. The number of carriers may remain essentially constant but their mobility decreases appreciably. Figure III-3 shows the dependence of mobility on field strength for n-type silicon. At high enough field intensities ($> 10^5$ V/cm) carriers can obtain velocities sufficient to form new carriers upon collision.

![Reduced Mobility vs Electric Field](image)

Figure III-3. Variation of Reduced Mobility with Electric Field Applied to 70 ohm-cm Silicon Along the $\langle 111 \rangle$ Direction. Carrier Concentration Assumed Constant.
CHAPTER IV
QUANTITATIVE ASPECTS OF THE DEPENDENCE OF \(\rho \) ON TEMPERATURE

So far only the qualitative features of the temperature dependence of resistivity in semiconductors have been considered. In this section a quantitative approach to the various parametric contributions to the temperature dependence of resistivity will be considered.

Since resistivity is given by the expression:

\[
\rho = \frac{1}{e(n\mu_n + p\mu_p)}
\]

the parameters that determine its functional dependence are \(n \), \(p \), \(\mu_n \), and \(\mu_p \).

Now the temperature dependence of the carrier concentrations are fairly straightforward and are given by:

\[
n = 2 \left(\frac{2\pi m_k T}{\hbar^2} \right)^{3/2} \exp \left(\frac{-E_c - E_f}{kT} \right) \approx \frac{N_d - N_a}{2} \sqrt{\left(\frac{N_d - N_a}{2} \right)^2 + n_i^2}
\]

\[
p = 2 \left(\frac{2\pi m_k T}{\hbar^2} \right)^{3/2} \exp \left(\frac{-E_f - E_v}{kT} \right) \approx \frac{N_d - N_a}{2} \sqrt{\left(\frac{N_d - N_a}{2} \right)^2 + n_i^2}
\]

where \(E_c \) = energy of conduction band
\(E_v \) = energy of valence band
\(E_f \) = Fermi energy.

However, the temperature dependence of the mobilities of these carriers is not deduced in so straightforward a manner. This has to do with the fact that mobility is a measure of the swiftness with which a carrier is propagated through the semiconductor. This swiftness in turn depends on the frequency of collisions the carrier encounters on its way. Such collisions are the result of various scattering mechanisms available to the carrier within the solid, which include:

...
(1) Lattice scattering
(2) Ionized impurity scattering
(3) Neutral impurity scattering
(4) Electron-electron scattering.

These scattering phenomena affect the carrier lifetime (or relaxation time), τ, between collisions, and thereby determine carrier mobility:

$$\mu = \frac{e \tau}{m}$$

Thus, the temperature dependence of mobility is determined by the temperature dependence of the carrier relaxation time due to a variety of scattering possibilities.

Of these the most significant for nonpolar semiconductors, such as silicon, are lattice scattering and scattering due to ionized impurities.

1. Lattice Scattering

Mobility due to lattice scattering was analyzed extensively by Norton, et. al., (2) for n-type silicon over a temperature range of 100 to 500°K. Their calculations include contributions from both intravalley acoustical phonon scattering and intervalley optical phonon scattering, as well as anisotropic considerations. The processes of intervalley and intervalley scattering must be considered in a semiconductor having several equivalent conduction band minima, where carriers can be scattered from one minima to another as well as scattered within the same band minima. Due to the higher energies involved in transition, intervalley scattering becomes important only at temperatures high enough so that an appreciable number of suitable phonons are excited.

Their average lattice scattering mobility expression is given by:

$$\mu_L = \frac{1}{3} e \left(\frac{\langle \tau_{||} \rangle}{M^*_{||}} + 2 \frac{\langle \tau_{\perp} \rangle}{M^*_{\perp}} \right)$$

where $\tau_{||}$ and τ_{\perp} refer to relaxation times in the longitudinal and two mutually perpendicular transverse directions. These are given by:
\[
\frac{1}{\tau_L} = \frac{T^{3/2}x^{1/2}}{\tau_0} \left(1 + \sum_i \left(\frac{\omega_i}{n_i} \left(\frac{\theta_i}{T} \right) \left[n_i \left(1 + \frac{\theta_i}{T} \right)^{1/2} + \left(n_i + 1 \right) \left(1 - \frac{\theta_i}{T} \right)^{1/2} \right] \right) \right)
\]

\(\theta_i\) = temperature of the \(i\)th intervalley phonon
\(n_i = \left[\exp \left(\frac{\theta_i}{T} \right) - 1 \right]^{-1}\)
\(\omega_i\) = the relative coupling strength of the electrons to the \(i\)th intervalley (adjusted to give best fit to observed data)
\(x = \frac{E_g}{kT}\)

\[
\frac{1}{\tau_L} = \frac{1}{\tau_{L1}} + \frac{T^{3/2}x^{1/2}}{2\tau_0}
\]

Each average is then computed using:

\[
\langle \tau \rangle = \frac{4}{3\sqrt{\pi}} \int_0^\infty e^{-x} x^{3/2} \tau(x) dx
\]

where \(x = \frac{E_g}{kT}\), and the integral is numerically evaluated using Simpson's rule. Values of \(\mu_L\) have been tabulated for temperatures in the range of 100° to 500°K for n-type silicon and are available in reference 1.

2. "Ionized Impurity Scattering"

For lightly doped n-type silicon the main contribution to the electron mobility comes from lattice scattering. However, as dopant density increases (or temperature decreases) the role of impurity scattering becomes more and more important. The most classic formula for ionized impurity scattering is the Brooks-Herring formula (6) which is derived assuming fixed scattering centers, spherically energy surfaces, and negligible electron-electron scattering contributions. The expressions in this derivation are given by:

\[
\tau_L = \frac{(2M_n^{\ast})^{1/2} \varepsilon_s x^{3/2}}{n e^4 N_I G(b)} \times 10^{-6}
\]
where \(\varepsilon_s \) = permittivity of Si \((11.7 \varepsilon_0)\)

\(E \) = electron energy

\(N_I \) = net ionized impurity density

\[G(b) = \ln(b+1) - \frac{b}{b+1} \]

where

\[b = \frac{24\pi M_n^* \varepsilon_s (kT)^2}{e^2 h^2 n} \times 10^{-6} \]

and

\[n' = n \times \left(2 - \frac{n}{N_D}\right) \quad \text{for } N_a = 0 \]

The expression for \(\tau_I \) gives the following result for ionized impurity scattering:

\[\mu_I(BH) = \frac{2^{7/2} \varepsilon_s^2 (kT)^{3/2}}{n^{3/2} e^2 M_n^* \varepsilon_s^{1/2} N_IG(b)} \times 10^{-2} \]

However, this expression neglects the effects of anisotropic scattering. Norton, et al., (2) have made this adjustment to give:

\[\mu_I = \frac{7.3 \times 10^{17} \tau^{3/2}}{N_IG(b)} \]

where \(b \) makes the replacement of \(M_n^* = 0.98 M_n \) in the expression for \(b \).

3. Neutral Impurity Scattering

By considering neutral impurity scattering as a problem analogous to the scattering of slow electrons by hydrogen atoms, Sclar (3) has derived a temperature-dependent electron mobility expression given by:
\[\mu_N = 0.82\mu_{NE} \left[\frac{2}{3} \left(\frac{kT}{E_N} \right)^{1/2} + \frac{1}{3} \left(\frac{E_N}{kT} \right)^{1/2} \right] \]

where

\[E_N = 1.136 \times 10^{-19} \left(\frac{M^*_n}{M_0} \right) \left(\frac{E_0}{E_S} \right) \] (binding energy)

\[\mu_{NE} = \frac{2\pi^3 e M_n^*}{5N_n e^3 h^3} \times 10^{-2} \]

\[N_N = \text{neutral donor density} \]

Note \(\mu_N \sim T^{-1/2} \) for \(kT > E_N \)

4. **Electron-Electron Scattering**

The last contribution to electron mobility that has so far been neglected is that due to electron-electron (e-e) scattering.

Electron-electron scattering does not affect current density directly since it can alter the momentum distribution among electrons without altering the total momentum. Electron-electron scattering allows momentum to be transferred from those electrons which dissipate momentum less efficiently to those which dissipate it more efficiently; resulting in a greater overall rate of momentum transfer and a lower mobility.

On the basis of such an argument, the effect of e-e scattering mobility will depend on the electron energy, \(E \). Thus, ionized impurity scattering relaxation time \(\sim E^{3/2} \) will be more strongly affected by e-e scattering than lattice scattering relaxation time \(\sim E^{-1/2} \). The effects of both scattering modes have been analyzed by Li, et al., (1) and are given as follows:
corrected ionized impurity mobility -

\[\mu_I' = (1 - e^{-n/N_i}) \cdot \mu_I \]

The effect of e-e scattering becomes more important on ionized impurity mobility as doping increases \((N_0 > 2 \times 10^{16} \text{cm}^{-3})\).

corrected lattice mobility -

\[\mu_L' = 0.88 \mu_L \]

5. Mobility Expressions Due To Combined Scattering Effects

Now that the necessary mobility expressions for the various scattering processes have been defined, their contributions must be combined in some suitable manner. The combined mobility due to both lattice and ionized impurity scattering contributions can be calculated according to a formula developed by Debye and Conwell (4). This formula is the result of an integrated average given by:

\[\mu_{LI} = \frac{e}{m} \frac{\langle v^2 \tau_{LI} \rangle}{\langle v^2 \rangle} \]

where

\[\frac{1}{\tau_{LI}} = \frac{1}{\tau_L} + \frac{1}{\tau_I} \]

The form of this integral can be evaluated in closed form only when the \(G(b)\) temperature dependence in \(\tau_I\) is approximated by a suitable constant. When this is done the integral obtained is the so called "mixed scattering formula" given by:

\[\mu_{LI} = \mu_L \left[1 + X^2 \left\{ \text{Ci}(X) \cos X + \sin X \left(\text{Si}(X) - \frac{n}{2} \right) \right\} \right] \]
where $C_i(X)$ and $S_i(X)$ are the cosine and sine integrals of X respectively. However, X is dependent on the degree of e-e scattering, which in turn depends on the dopant density.

For low donor densities ($N_D < 2 \times 10^{16} \text{cm}^{-3}$), the effect of e-e scattering is negligible and X^2 is given by:

$$X^2 = \frac{6 \mu_L}{\mu_I}$$

In the intermediate dopant density range ($2 \times 10^{16} < N_D < 2 \times 10^{17} \text{cm}^{-3}$), the effects of e-e scattering on μ_L and μ_I are gradual and not well defined. Therefore, theoretical mobility calculations for lattice and ionized impurity scattering in this range, are empirically fit to observed data by the use of so-called "mobility reduction factors." The ranges of these factors are given for both scattering processes in the mobility expressions:

$$\mu_L^n = ((1.013 \text{ to } 6.63) \times 10^{-19} \times N_D) \mu_L$$

$$\mu_I^n = ((1.04 \text{ to } 2.04) \times 10^{-18} \times N_D) \mu_I$$

In this range X^n is substituted into the mixed scattering formula where X^n is given by:

$$(X^n)^2 = \frac{6 \mu_L^n}{\mu_I^n}$$

The effects of lattice scattering as well as ionized impurity scattering and e-e scattering have been considered in deriving the expression for μ_{LI}. If neutral impurity scattering is also included the electron mobility due to all the discussed scattering phenomena is given by:
\[\mu_n = \left(\mu_{LI}^{-1} + \mu_{N}^{-1} \right)^{-1} \]

6. Temperature Dependence of \(\rho \)

Recall for n-type silicon the carrier concentration is given by:

\[n = N_c \left(\exp \left(\frac{E_c - E_f}{kT} \right) + 0.27 \right)^{-1} \quad \text{for} \quad E_f < 1.3kT \]

where

\[N_c = 2 \left(\frac{2\pi M^*_d kT}{h^2} \right)^{3/2} \]

and \(M^*_d = \) density of states effective mass.

Using this and the final result of section IV.5, the expression for resistivity is given by:

\[\rho = \frac{1}{en\mu_n} \]

where

- \(e = \) charge of electron
- \(n = \) given above
- \(\mu_n = \) given in section IV.5

\(\rho \) can now be calculated using these expressions and plotted as a function of \(T \). This was done for a range of temperatures from 100 to 500\(^\circ\)K for various dopant densities and the results are given in figure IV-1. These results correspond very well to experimental resistivity data as can be seen in figure IV-2. Thus, the functional dependence of \(\rho \) on \(T \) as determined by the parametric dependence of \(\mu_n \) and \(n \) on \(T \) derived herein must be correct. That is, the temperature-dependent scattering modes discussed must be the principle phenomena determining electron mobility in an n-type semiconductor.
Figure IV-1. Theoretical Calculations of Resistivity Versus Temperature for n-Type Silicon for Dopant Densities from 5×10^{13} to 10^{19} cm$^{-3}$.
Figure IV-2. Resistivity Versus Temperature for Seven Phosphorus-Doped Silicon Samples. Solid Lines Are the Theoretical Calculation and Dots Are the Experimental Data.
In addition to this graphical dependence of \(\rho \) on \(T \), table 1 summarizes the analytical dependence of \(\rho \), \(n \) and \(\mu \) for various dopant density ranges in \(n \)-type silicon.

TABLE 1. ANALYTICAL TEMPERATURE DEPENDENCE OF THE RESISTIVITY (\(\rho \)) OF \(n \)-TYPE SILICON FOR VARIOUS DOPING RANGES

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>(\rho = \frac{1}{eN \mu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(n = N_c \left(\exp \left(\frac{E_c(f)}{kT} \right) + .27 \right)^{-1}) where (N_c = 2 \left(\frac{2N_d r k}{h^2} \right)^{3/2})</td>
</tr>
</tbody>
</table>

DOPANT DENSITY
- \(10^{13} < N_d < 2 \times 10^{16} \text{ cm}^{-3} \)
- \(2 \times 10^{16} < N_d < 2 \times 10^{17} \text{ cm}^{-3} \)
- \(2 \times 10^{17} < N_d < 10^{19} \text{ cm}^{-3} \)

LATTICE MOBILITY
- \(\mu_L \) values tabulated in ref. 1 Table 1.
- \(\mu_L^* = R(N_d) \mu_L \)
- \(R(N_d) = (1.013 \text{ to } 6.62) \times 10^{-19} \times N_d \)
- \(\mu_L^* = 0.88 \mu_L \)

IONIZED IMPURITY MOBILITY
- \(\mu_I = \frac{2.3 \times 10^{17}}{N_d} \left(\frac{G(b_d)}{G(b_i)} \right)^{3/2} \)
- \(\mu_I^* = 5(N_d) \mu_I \)
- \(\mu_I^* = 0.632 \mu_I \)

MIXED IMPURITY MOBILITY
- \(\mu_{LI}^* = \frac{\mu_L^*}{f(X)} \)
- \(f(X) = 1 + X^2(C_1(X) \cos X + \sin X)(S_1(X) - n/2) \)
- \(X^2 = 6 \mu_L/\mu_I \)

NEUTRAL MOBILITY
- \(\mu_{N} = \left(\frac{3 \times 10^{30}}{N_N} \right) X \)
- \(\frac{0.14951^{1/2} + 1.4821^{1/2}}{X} \)
- \(\mu_{N} = \frac{1}{\mu_L \mu_{R}} \)

TOTAL ELECTRON MOBILITY
- \(\mu_n = \left(\frac{1}{\mu_{L1} + \frac{1}{\mu_{W}}} \right)^{-1} \)
- \(\mu_n = \left(\frac{1}{\mu_{L1} \mu_{W}} \right)^{-1} \)
- \(\mu_n = \left(\frac{1}{\mu_{L1} \mu_{N}} \right)^{-1} \)
REFERENCES

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Assistant to the Secretary of Defense
Atomic Energy
ATTN: Executive Assistant

Command & Control Technical Center
ATTN: C-362, G. Adkins

Defense Advanced Rsch Proj Agency
ATTN: J. Fraser
ATTN: R. Reynolds

Defense Electronic Supply Center
ATTN: DEFC-ESA

Defense Logistics Agency
ATTN: DLAS-SE
ATTN: DLAS-QEL, J. Slattery

Defense Nuclear Agency
ATTN: RAEV (TREE)
4 cy ATTN: TITL

Defense Technical Information Center
12 cy ATTN: DD

Field Command
Defense Nuclear Agency
ATTN: TCPR

Field Command
Defense Nuclear Agency
Livermore Branch
ATTN: TCPR

National Security Agency
ATTN: P. Deboy
ATTN: T. Brown
ATTN: G. Daily

NTG School
SHAPE
ATTN: U.S. Documents Officer

Under Secretary of Defense for Rsch & Engrg
ATTN: Strategic & Space Sys (OS)

DEPARTMENT OF THE ARMY

BMD Advanced Technology Center
Department of the Army
ATTN: ATC-O, F. Hoke
ATTN: ATC-T

BMD Systems Command
Department of the Army
ATTN: BMSC-HW, R. DeKalb

Deputy Chief of Staff for Rsch Dev & Acq
Department of the Army
ATTN: Advisor for RDA Analysis, M. Gale

DEPARTMENT OF THE ARMY (Continued)

Harry Diamond Laboratories
Department of the Army
ATTN: DELHD-N-RBH, J. Halpin
ATTN: DELHD-N-RBH, H. Eisen
ATTN: DELHD-N-RBC, J. McGarrity
ATTN: DELHD-N-P
ATTN: DELHD-N-RBH

U.S. Army Armament Rsch Dev & Cnd
ATTN: DRDAR-LCA-PD

U.S. Army Communications R&D Command
ATTN: D. Huewe

U.S. Army Material & Mechanics Rsch Ctr
ATTN: DRUM-H, J. Hofmann

U.S. Army Missile Command
3 cy ATTN: RSIC

U.S. Army Nuclear & Chemical Agency
ATTN: Library

White Sands Missile Range
Department of the Army
ATTN: STEWS-TE-AN, T. Leura
ATTN: STEWS-TE-AN, M. Squires

DEPARTMENT OF THE NAVY

Naval Air Systems Command
ATTN: AIR 350F

Naval Electronic Systems Command
ATTN: Code 5045.11, C. Suman

Naval Ocean Systems Center
ATTN: Code 4471

Naval Postgraduate School
ATTN: Code 1424, Library

Naval Research Laboratory
ATTN: Code 6627, C. Guenzer
ATTN: Code 6601, A. Wolicki
ATTN: Code 6816, H. Hughes
ATTN: Code 6816, D. Patterson
ATTN: Code 6600, J. McEllinney
ATTN: Code 5213, J. Killiany

Naval Sea Systems Command
ATTN: SEA-06J, R. Lane

Naval Surface Weapons Center
ATTN: Code F31
ATTN: Code F30

Naval Weapons Center
ATTN: Code 233

Naval Weapons Evaluation Facility
ATTN: Code AT-6
DEPARTMENT OF THE NAVY

Naval Weapons Support Center
ATTN: Code 7024, J. Ramsey
ATTN: Code 70242, J. Munarin

Office of Naval Research
ATTN: Code 220, D. Lewis
ATTN: Code 427, L. Cooper

Office of the Chief of Naval Operations
ATTN: OP 915F

Strategic Systems Project Office
Department of the Navy
ATTN: NSP-230, D. Gold
ATTN: NSP-2015
ATTN: NSP-27331, P. Spector
ATTN: NSP-2701, J. Pitsenberger

DEPARTMENT OF THE AIR FORCE

Air Force Aeronautical Lab
ATTN: LTE
ATTN: LPO, R. Hickmott

Air Force Geophysics Laboratory
ATTN: SULL 5-29
ATTN: SULL

Air Force Institute of Technology
ATTN: ENP, J. Bridgeman

Air Force Systems Command
ATTN: DLCA, D. Gold
ATTN: DLCA, J. Munarin
ATTN: XRLA

Air Force Technical Applications Center
ATTN: TAE

Air Force Weapons Laboratory
ATTN: NTYC, Mullis
ATTN: NTYC, Capt Swenson

5 cy
ATTN: NTYC

Air Force Wright Aeronautical Lab
ATTN: POD, P. Stover

Air Force Wright Aeronautical Lab
ATTN: TEA, R. Conklin
ATTN: OME

Air Logistics Command
Department of the Air Force
ATTN: MWEOD
ATTN: MMETH
ATTN: GO-ALC/MM, R. Blackburn

Assistant Chief of Staff
Studies & Analyses
Department of the Air Force
ATTN: AF/SAMI

DEPARTMENT OF THE AIR FORCE

Ballistic Missile Office
ATTN: MNH
ATTN: MNH, J. Tucker
ATTN: SYOT
ATTN: MNL

Foreign Technology Division
ATTN: PDUV
ATTN: TOTO, B. Ballard

Headquarters Space Division
ATTN: AQJ, W. Blakney
ATTN: AOM

Headquarters Space Division
ATTN: OJ, R. Davis

Rome Air Development Center
Air Force Systems Command
ATTN: RBRP, C. Lane

Rome Air Development Center
Air Force Systems Command
ATTN: ESE, A. Kahan
ATTN: ESR, P. Waal
ATTN: ESER, W. Shedd
ATTN: ESER, R. Buchanan
ATTN: ETS, R. Dolan

Strategic Air Command
Department of the Air Force
ATTN: XPSF, M. Carra

DEPARTMENT OF ENERGY

Department of Energy
Albuquerque Operations Office
ATTN: WSB

OTHER GOVERNMENT AGENCIES

Central Intelligence Agency
ATTN: OSWR/STD/MTB, A. Padgett

Department of Commerce
National Bureau of Standards
ATTN: Sec Ofc for K. Galloway
ATTN: Sec Ofc for J. Humphreys
ATTN: Sec Ofc for J. French

NASA
Goddard Space Flight Center
ATTN: V. Danchenko
ATTN: J. Adolphsen

NASA
George C. Marshall Space Flight Center
ATTN: L. Hanfter
ATTN: M. Howakowski
ATTN: EG0
OTHER GOVERNMENT AGENCIES (Continued)

NASA
 ATTN: J. Murphy

NASA
 Lewis Research Center
 ATTN: M. Baddour

NASA
 Ames Research Center
 ATTN: G. Deyoung

DEPARTMENT OF ENERGY CONTRACTORS

Lawrence Livermore National Lab
 ATTN: Tech Info Dept Library

Los Alamos National Scientific Lab
 ATTN: J. Freed

Sandia National Lab
 ATTN: R. Gregory
 ATTN: J. Bernard
 ATTN: W. Dawes
 ATTN: J. Hood
 ATTN: F. Coppel

DEPARTMENT OF DEFENSE CONTRACTORS

Advanced Microdevices, Inc
 ATTN: J. Schlageter

Advanced Research & Applications Corp
 ATTN: L. Palcuti
 ATTN: R. Amistead

Aerojet Electro-Systems Co
 ATTN: D. Toomb

Aerospace Corp
 ATTN: D. Fresh
 ATTN: S. Bower
 ATTN: R. Crollius

Aerospace Industries Assoc of America, Inc
 ATTN: S. Siegel

Battelle Memorial Institute
 ATTN: R. Thatcher

BDM Corp
 ATTN: D. Wunch
 ATTN: R. Pease
 ATTN: D. Alexander
 4 cy ATTN: M. Glaubensklee

Bendix Corp
 ATTN: E. Meeder

Boeing Co
 ATTN: D. Egelkraut

Boeing Co
 ATTN: I. Arimura
 ATTN: A. Johnston
 ATTN: W. Rumpza
 ATTN: C. Rosenberg

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Burr-Brown Research Corp
 ATTN: H. Smith

California Institute of Technology
 ATTN: A. Shunka
 ATTN: W. Price
 ATTN: A. Stanley

Charles Stark Draper Lab, Inc
 ATTN: R. Bedingfield
 ATTN: A. Freeman
 ATTN: C. Lai
 ATTN: Tech Library
 ATTN: P. Greiff
 ATTN: R. Ledger
 ATTN: A. Schutz

Cincinnati Electronics Corp
 ATTN: L. Hammond
 ATTN: C. Stump

University of Denver
 Colorado Seminary
 ATTN: F. Venditti

E-Systems, Inc
 ATTN: K. Reis

Electronic Industries Association
 ATTN: J. Hessman

EMM Corp
 ATTN: F. Krch

Exp & Math Physics Consultants
 ATTN: T. Jordan

Ford Aerospace & Communications Corp
 ATTN: Tech Info Svcs
 ATTN: J. Davison

Franklin Institute
 ATTN: R. Thompson

Garrett Corp
 ATTN: R. Weir

General Dynamics Corporation
 Conval Division
 ATTN: W. Hansen

General Dynamics Corp
 Fort Worth Division
 ATTN: R. Fields
 ATTN: O. Mood

General Electric Co
 Space Division
 ATTN: R. Casey
 ATTN: J. Andrews
 ATTN: J. Peden
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

General Electric Co
Re-Entry Systems Division
ATTN: Tech Library
ATTN: R. Benedict
ATTN: R. Casey
ATTN: J. Palchefskey, Jr
ATTN: W. Patterson

General Electric Co
Ordnance Systems
ATTN: J. Reidl

General Electric Co
Aircraft Engine Business Group
ATTN: R. Hellen

General Electric Co
Aerospace Electronics Systems
ATTN: D. Cole
ATTN: J. Gibson

General Electric Co
ATTN: D. Pepin

General Research Corp
ATTN: R. Hill
ATTN: Tech Info Ofc

George C. Messenger
ATTN: G. Messenger

Georgia Institute of Technology
ATTN: R. Curry

Georgia Institute of Technology
ATTN: Res & Sec Coord for H. Denny

Goodyear Aerospace Corp
ATTN: Security Control Station

Grumman Aerospace Corp
ATTN: J. Rogers

Harris Corporation
ATTN: J. Cornell
ATTN: T. Sanders
ATTN: C. Anderson

Honeywell, Inc
Avionics Division
ATTN: R. Gumm

Honeywell, Inc
Aerospace & Defense Group
ATTN: C. Cerulli

Honeywell, Inc
Radiation Center
ATTN: Tech Library

Hughes Aircraft Co
ATTN: R. McGowan
ATTN: J. Singletary

Hughes Aircraft Co
ATTN: A. Narovsky
ATTN: D. Shumake
ATTN: M. Scott
ATTN: E. Smith

IBM Corp
ATTN: T. Martin
ATTN: F. Tietse
ATTN: H. Mathers

IIT Research Institute
ATTN: J. Mindel

Institute for Defense Analyses
ATTN: Tech Info Svcs

International Business Machine Corp
ATTN: J. Ziegler

International Tel & Telegraph Corp
ATTN: Dept 608
ATTN: A. Richardson

Intersil, Inc
ATTN: D. MacDonald

IRI Corp
ATTN: N. Rudie
ATTN: J. Harrity

JAYCOR
ATTN: L. Scott
ATTN: T. Flanagan
ATTN: R. Stahl

Johns Hopkins University
ATTN: P. Partridge

Kaman Sciences Corp
ATTN: M. Bell
ATTN: J. Lubell
ATTN: N. Beauchamp

Kaman Tempo
ATTN: DASIAC
ATTN: M. Espig

Kaman Tempo
ATTN: DASIAC

Litton Systems, Inc
ATTN: J. Retzler

Lockheed Missiles & Space Co, Inc
ATTN: J. Smith
ATTN: J. Crowley

Lockheed Missiles & Space Co, Inc
ATTN: E. Hessee
ATTN: M. Smith
ATTN: E. Smith
ATTN: C. Thompson
ATTN: P. Bene
ATTN: D. Phillips

M.I.T. Lincoln Lab
ATTN: P. McKenzie

Magnavox Govt & Indus Electronics Co
ATTN: W. Richeson
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Martin Marietta Corp
ATTN: W. Janocko
ATTN: R. Gaynor
ATTN: H. Gates
ATTN: S. Bennett
ATTN: W. Brockett

Martin Marietta Corp
ATTN: E. Carter

McDonnell Douglas Corp
ATTN: R. Kloster
ATTN: M. Stitch
ATTN: D. Dohm
ATTN: Library

McDonnell Douglas Corp
ATTN: J. Holmgren
ATTN: D. Fitzgerald

McDonnell Douglas Corp
ATTN: Tech Library

Mission Research Corp
ATTN: C. Longmire

Mission Research Corp
EM System Applications Division
ATTN: R. Pease

Mission Research Corp
ATTN: J. Raymond
ATTN: V. Van Lint

Mission Research Corporation
ATTN: W. Ware

Mitre Corp
ATTN: M. Fitzgerald

Motorola, Inc
Government Electronics Division
ATTN: A. Christensen

Motorola, Inc
Semiconductor Group
ATTN: O. Edwards

National Academy of Sciences
ATTN: R. Shane
ATTN: National Materials Advisory Board

National Semiconductor Corp
ATTN: R. Wang
ATTN: A. London

University of New Mexico
Electrical Engineering & Computer Science Dept
ATTN: H. Southward

Norden Systems, Inc
ATTN: Tech Library
ATTN: D. Longo

Northrop Corp
Northrop Research & Technology Ctr
ATTN: J. Srour

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Northrop Corp
Electronic Division
ATTN: L. Apodaca
ATTN: H. Gates
ATTN: T. Jackson

Pacific-Sierra Research Corp
ATTN: H. Brode

Physics International Co
ATTN: Division 6000
ATTN: J. Shea

R & D Associates
ATTN: S. Rogers
ATTN: P. Haas

Rand Corp
ATTN: C. Crain

Raytheon Co
ATTN: J. Ciccio

Raytheon Co
ATTN: A. Van Doren
ATTN: H. Flescher

RCA Corp
Government Systems Division
ATTN: G. Brucker
ATTN: V. Mancino

RCA Corp
David Sarnoff Research Center
ATTN: D. O'Connor
ATTN: Office N103

RCA Corp
Government Systems Division
ATTN: R. Killion

RCA Corp
Somerville Plant, Solid State Div
ATTN: W. Allen

Rensselaer Polytechnic Institute
ATTN: R. Gutmann

Research Triangle Institute
ATTN: Sec Ofc for M. Simons, Jr

Rockwell International Corp
ATTN: V. De Martino
ATTN: V. Michel
ATTN: J. Brandford

Rockwell International Corp
ATTN: TIC BA0B
ATTN: T. Yates

Rockwell International Corp
Collins Divisions
ATTN: D. Vincent

Sanders Associates, Inc
ATTN: L. Brodeur
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Science Applications, Inc
ATTN: D. Millward
Science Applications, Inc
ATTN: D. Long
ATTN: J. Naber
ATTN: V. Verbinski
ATTN: V. Ophan
Science Applications, Inc
ATTN: W. Chadsey
Science Applications, Inc
ATTN: D. Stribling
Singer Co
ATTN: J. Brinkman
Singer Co
Data Systems
ATTN: R. Spiegel
Sperry Rand Corp
Sperry Microwave Electronics
ATTN: Engineering Laboratory
Sperry Rand Corp
Sperry Division
ATTN: R. Viola
ATTN: F. Scaravaglione
ATTN: P. Maraffino
ATTN: C. Craig
Sperry Rand Corp
Sperry Flight Systems
ATTN: D. Schow
Sperry Univac
ATTN: J. Inda
Spire Corp
ATTN: R. Little
SRI International
ATTN: B. Gasten
ATTN: P. Dolan
ATTN: A. Whitson
Sylvania Systems Group
Communication Systems Division
ATTN: C. Thornhill
ATTN: L. Pauples
ATTN: L. Blaisdell

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Sylvania Systems Group
Electronics Systems & Services Organization
ATTN: J. Waldron
ATTN: H. Ullman
ATTN: P. Fredrickson
ATTN: H & V Group
Sytron-Donner Corp
ATTN: J. Indelicato
Teledyne Ryan Aeronautical
ATTN: J. Rawlings
Texas Instruments, Inc
ATTN: A. Peletier
ATTN: R. Stehlin
Texas Instruments, Inc
ATTN: F. Poblenz
TRW Defense & Space Sys Group
ATTN: A. Pavelko
ATTN: A. Witteles
ATTN: P. Guifoyle
ATTN: R. Kingsland
ATTN: G. Adams
ATTN: H. Holloway
TRW Defense & Space Sys Group
ATTN: M. Gorman
ATTN: F. Fay
ATTN: R. Kitter
ATTN: W. Willis
TRW Systems and Energy
ATTN: B. Gililland
ATTN: G. Spehar
Vought Corp
ATTN: Library
ATTN: R. Tomme
ATTN: Tech Data Ctr
Westinghouse Electric Co
Aerospace & Electronic Systems Div
ATTN: L. McPherson
Westinghouse Electric Corp
Defense and Electronic Systems Ctr
ATTN: H. Kalapaka
ATTN: D. Crichi

32