BIBB DAM
PIKE COUNTY, MISSOURI
MO 10231

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Bibb Dam (MO 10231), Mississippi - Salt - Quincy Basin, Pike County, Missouri. Phase I Inspection Report.

Final rept.,

DACW43-78-C-0166

John M. Healy Steven L. Brady

PREPARED BY: U. S. ARMY ENGINEER DISTRICT, ST. LOUIS

FOR: STATE OF MISSOURI
Title:
National Dam Safety Program

Subtitle:
Bibb Dam (MO 10231)

Performing Organization:
Pike County, Missouri

Author(s):
Anderson Engineering, Inc.

Perforning Organization Name and Address:
U.S. Army Engineer District, St. Louis
Dam Inventory and Inspection Section, LMSED-PD
210 Tucker Blvd., North, St. Louis, Mo. 63101

Controlled Office:
U.S. Army Engineer District, St. Louis
Dam Inventory and Inspection Section, LMSED-PD
210 Tucker Blvd., North, St. Louis, Mo. 63101

Report Date:
December 1978

Number of Pages:
Approximately 40

Distribution Statement:
Approved for release; distribution unlimited.

Supplementary Notes:
Dam Safety, Lake, Dam Inspection, Private Dams

Abstract:
This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.
INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page. DD Form 1473, in all technical reports prepared by or for DoD organizations.

CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate symbol.

COMPLETION GUIDE

General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank.

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future retrieval of the document.

Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abstracting Scientific and Technical Reports of Defense-sponsored RDT&E," AD-667 000). If the report has a subtitle, this subtitle should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a title in a foreign language, translate the title into English and follow the English translation with the title in the original language. Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers are used, leave this space blank.

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary" or the DD Form 1634, "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding/sponsoring agency. For definition see DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Block 17. Distribution Statement of the abstract (if the abstract entered in Block 20, if different from the distribution statement of the report). Insert here the applicable distribution statement of the abstract from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with ... (or by) ... Presented at conference of ... To be published in ...

Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TST). AD-672 000, can be helpful.

Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report should consist of publicly-releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000.

© U.S. G.P.O. 1980-665-147/1299
This report presents the results of field inspection and evaluation of the Bibb Dam (Mo. 10231). It was prepared under the National Program of Inspection of Non-Federal Dams.

This dam has been classified as unsafe because of extensive seepage at the downstream toe and through the embankment and a seriously inadequate spillway that will pass only 10 percent of the Probable Maximum Flood without overtopping the dam.

SUBMITTED BY: SIGNED 22 FEB 1979
Chief, Engineering Division Date

APPROVED BY: SIGNED 23 FEB 1979
Colonel, USACE District Engineer Date
BIFF DAM
PIKE COUNTY, MISSOURI
MISSOURI INVENTORY NO. 10231

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Prepared By
Anderson Engineering, Inc., Springfield, Missouri
Hanson Engineers, Inc., Springfield, Illinois

For
The Governor of Missouri

December, 1978
PHASE I REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Bibb Dam
State Located: Missouri
County Located: Pike County
Stream: Unnamed Tributary to Noix Creek
Date of Inspection: 28 September 1978

Bibb Dam was inspected by an interdisciplinary team of engineers from Anderson Engineering, Inc. of Springfield, Missouri and Hanson Engineers, Inc. of Springfield, Illinois. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

The guidelines used in the assessment were furnished by the Department of the Army, Office of the Chief of Engineers, and they have been developed with the help of several Federal and State agencies, professional engineering organizations, and private engineers. Based on these guidelines, this dam has been classified by the St. Louis District Corps of Engineers as an intermediate size dam with a high downstream hazard potential. Their estimate of the damage zone extends 6 miles downstream of the dam. Within the damage zone are four farmhouses and associated farm buildings, two improved roads and one state highway. The floodplain is farmed.

Our inspection and evaluation indicates that the combined spillways do not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. The combined spillways will pass 10 percent of the Probable Maximum Flood, without overtopping. The Probable Maximum Flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the region. The guidelines require that a dam of intermediate size with a high downstream hazard potential pass 100 percent of the PMF. The 100-year frequency flood will overtop the dam. A 100-year flood is one that has a 1 percent chance of being exceeded in any given year.

Other deficiencies visually observed by the inspection team were: (1) seepage under the dam along much of the downstream toe and apparent seepage through the embankment at one point; (2) a thick cover of brush and trees; (3) erosion gullies on the south abutment; (4) animal burrows all along the downstream face; and (5) brush in the area of the spillway inlet and outlet areas. Another deficiency was the lack of seepage and stability analysis records. It is
recommended that the owners take the necessary action in the very near future to correct the deficiencies reported herein. A detailed discussion of these deficiencies is included in the following report.

John M. Healy, P.E.
Hanson Engineers, Inc.

Steven L. Brady, P.E.
Anderson Engineering, Inc.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Paragraph No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SECTION 1 - PROJECT INFORMATION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Description of the Project</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Pertinent Data</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SECTION 2 - ENGINEERING DATA</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>General</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Design</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>Construction</td>
<td>6</td>
</tr>
<tr>
<td>2.4</td>
<td>Operation and Maintenance</td>
<td>6</td>
</tr>
<tr>
<td>2.5</td>
<td>Evaluation</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SECTION 3 - VISUAL INSPECTION</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>General</td>
<td>7</td>
</tr>
<tr>
<td>3.2</td>
<td>Dam</td>
<td>7</td>
</tr>
<tr>
<td>3.3</td>
<td>Reservoir and Watershed</td>
<td>8</td>
</tr>
<tr>
<td>3.4</td>
<td>Evaluation</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>SECTION 4 - OPERATIONAL PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Procedures</td>
<td>9</td>
</tr>
<tr>
<td>4.2</td>
<td>Maintenance of Dam</td>
<td>9</td>
</tr>
<tr>
<td>4.3</td>
<td>Maintenance of Operating Facilities</td>
<td>9</td>
</tr>
<tr>
<td>4.4</td>
<td>Description of Any Warning System in Effect</td>
<td>9</td>
</tr>
<tr>
<td>4.5</td>
<td>Evaluation</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>SECTION 5 - HYDRAULIC/HYDROLOGIC</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Evaluation of Features</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SECTION 6 - STRUCTURAL STABILITY</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Evaluation of Structural Stability</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>SECTION 7 - ASSESSMENT/REMEDIAL MEASURES</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Dam Assessment</td>
<td>12</td>
</tr>
<tr>
<td>7.2</td>
<td>Remedial Measures</td>
<td>13</td>
</tr>
</tbody>
</table>
APPENDICES

APPENDIX A

 Vicinity Map 1
 Plan and Section of Dam 2

APPENDIX B

 Overtopping Analysis - PMF 1 - 8

APPENDIX C

 Photographs of Dam, Lake and Watershed 1 - 7
SECTION 1 - PROJECT INFORMATION

1.1 GENERAL:

A. Authority:

The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of safety inspection of dams throughout the United States. Pursuant to the above, the St. Louis District, Corps of Engineers, District Engineer directed that a safety inspection be made of Bibb Dam in Pike County, Missouri.

B. Purpose of Inspection:

The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and a visual inspection in order to determine if the dam poses hazards to human life or property.

C. Evaluation Criteria:

Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, "Recommended Guidelines for Safety Inspection of Dams." These guidelines were developed with the help of several federal agencies and many state agencies, professional engineering organizations, and private engineers.

1.2 DESCRIPTION OF PROJECT:

A. Description of Dam and Appurtenances:

Bibb Dam is an earth and rock fill structure approximately 45.5 ft high and 440 ft long at the crest. The appurtenant works consist only of three corrugated metal pipes which are located at the north abutment. Sheet 2 of Appendix A shows a plan of the embankment and spillways and a typical section of the embankment.

B. Location:

The dam is located approximately 1 1/2 miles north of Bowling Green in Pike County, Missouri on a small tributary of Noix Creek. The dam and lake are within the Bowling Green Missouri 15 minute quadrangle sheet (Sections 13 and 14), T53N, R3W-latitude 39° 22.0'; longitude 91° 11.8'). Sheet 1 of Appendix A shows the general vicinity.
According to letter from Mr. Philip R. Bibb, dated 19 March 1979, BiBB Dam (Mo. 10231) is co-owned by:

Mr. Philip R. Bibb
220 E. Champ Clark Drive
Bowling Green, Missouri 63334

Mr. & Mrs. Earl B. Bibb
RFD #3
Bowling Green, Missouri 63334

Reverend & Mrs. Gideon I. Krein
P.O. Box 8
Biggsville, Illinois 61418
C. Size Classification:

With an embankment height of 45.5 ft and a maximum storage capacity of approximately 293 acre-ft, the dam is in the intermediate size category.

D. Hazard Classification:

The St. Louis District, Corps of Engineers has classified this dam as a high hazard dam. Their estimate of the damage zone extends 0 miles downstream of the dam. Within the damage zone are four farmhouses and associated farm buildings, two improved roads and one state highway. The floodplain is farmed.

E. Ownership:

The dam is owned by Mr. Phillip Bibb, 220 East College Street, Bowling Green, Missouri 65334.

F. Purpose of Dam:

The dam forms a 15 acre recreational lake.

G. Design and Construction History:

The dam was built in 1955 by the Bibb family. Information from a present city employee who helped build the dam and the owner indicates that the dam was originally built up to approximately the present crest elevation from a mixture of soil and boulders (overburden from a nearby rock quarry). It was indicated that this material was placed in layers with bulldozers. It also was reported that this initial embankment did not impound water. The city employee indicated that a clayey material was then obtained from abutment and reservoir areas and placed as a 20 ft wide section along the entire upstream face of the dam. The owner has indicated that two 12 in. diameter corrugated metal pipes were installed in the north abutment when the dam was built. The owner indicated that the dam was overtopped four or five years ago (+1973), and that a 15 in. diameter corrugated metal pipe was placed after that event (see Sheet 2 of Appendix A). To our knowledge, no cutoff trench or internal drainage features were incorporated. The owner indicated an awareness of the seepage along the downstream toe of the dam, which was noted during our inspection. To our knowledge, no other modifications have been made to the dam.
H. Normal Operating Procedure:

Normal flows will be passed by three corrugated metal pipes (two 12 in. diameter and one 15 in. diameter), which are located in the north abutment. According to the owner, these pipes come into operation mainly in the spring months. There is no emergency spillway.

1.5 PERTINENT DATA:

Pertinent data about the dam, appurtenant works, and reservoir are presented in the following paragraphs. Sheet 2 of Appendix A is a plan of the embankment and spillways with a typical cross section of the dam.

A. Drainage Area:

The drainage area for this dam, as obtained from the U.S.G.S. quad sheet, is equal to approximately 140 acres.

B. Elevations (Feet Above M.S.L.):

(1) Top of Dam (measured): North End 778.3; Center 779.5; South End 782.0; Low Point 776.9.

(2) Spillway Crest (inverts, corrugated metal pipes): Measured 775.0.

(3) Pool on Date of Inspection: Measured 772.8.

(4) Streambed: Estimated 751.4.

(5) Maximum Tailwater: Unknown.

C. Discharge at Dam Site:

(1) Discharge through the corrugated metal pipes in the north abutment is uncontrolled.

(2) Estimated Discharge Capacity at Top of Dam (El. 776.9): 13 cfs.

D. Reservoir Surface Areas:

(1) At Principal Spillway Crest: Estimated 15 acres.

(2) At Top of Dam: Estimated 16 acres.
E. Storage Capacities:
(1) At Principal Spillway Crest: Estimated 204 acre-ft.
(2) At Top of Dam (El. 776.9): Estimated 293 acre-ft.

F. Reservoir Lengths:
(1) At Principal Spillway Crest: 1500 ft.

G. Dam:
(1) Type: Earth and Rock Fill.
(2) Length at Crest: 440 ft.
(3) Height: 45.5 ft.
(4) Top Width: Varies - 15 ft to 40 ft.
(5) Side Slopes: Varies - 1.25H:1V to 2.0H:1V.
(6) Zoning: Earth and rock in downstream portion; silt and clay in upstream portion; no internal drainage.
(7) Cutoff: None reported.

H. Spillway:
(1) Location: North Abutment.
(2) Type: Three corrugated metal pipes--two 12 in. diameter and one 15 in. diameter. Pipes are approximately 15 ft long and essentially level with inverts at approximate elevation 775.0. There is no emergency spillway.
SECTION 2 - ENGINEERING DATA

2.1 GENERAL:

No engineering data exist for this dam. No construction inspection records or documented maintenance and operation data exist to our knowledge.

2.2 DESIGN:

A. Surveys:

No detailed surveys have been made of this dam, to our knowledge. U.S.G.S. benchmark K-137, which is located as described on Sheet 2 of Appendix A, was used as datum to make our inspection survey of the dam (B.M. elev. = 739.68).

B. Geology and Subsurface Materials:

The general geology of the area indicates 5 ft to 10 ft of loess over a thin mantle of glacial till and residual materials in upland areas. Bedrock in the area consists of the Bowling Green dolomite member of the Edgewood Formation, the Saverty and Grassy Creek shales and the Louisiana limestones. No geology reports or boring logs were available for this dam.

C. Foundation and Embankment Design:

No design computations are available. Information from the owner and local residents indicates that the dam is composed of soil and boulders from a nearby rock quarry. A liner section along the entire upstream side of the dam is reported to consist of 20 ft of silts and clays from the abutment and reservoir areas. To our knowledge, no cutoff trench or internal drainage features were incorporated. No construction inspection records were obtained.

D. Hydrology and Hydraulics:

No hydrologic or hydraulic design data were obtained. Our analyses of the PMF and the 100-year flood are presented in Appendix B. These analyses were based on our field survey and observations and estimates of areas and volumes from the U.S.G.S. quad sheet (Bowling Green, 15 min., 1937). It was concluded that the structure will pass 10 percent of the Probable Maximum Flood without overtopping. The 100-year frequency flood will overtop the dam.
E. Structure:

No structural design computations were available.

2.3 CONSTRUCTION:

No construction inspection data have been obtained. The dam was constructed by the Bibb family in 1955. According to the owner, the two 12 in. corrugated metal pipes were installed at that time. After the dam was overtopped in 1973, the 15 in. CMP was installed (see Sheet 2 of Appendix A). No other modifications are known to exist.

2.4 OPERATION AND MAINTENANCE:

The owner indicated that the corrugated metal pipes come into service mainly in the spring. The appearance of the dam indicates that no regular maintenance is done.

2.5 EVALUATION:

No engineering data were available. Thus, a detailed assessment of the design, construction and operation could not be done. The owner should have an engineer experienced in the design of dams perform detailed seepage and stability analyses.
SECTION 3 - VISUAL INSPECTION

3.1 GENERAL:

The field inspection was made on 28 September 1978. The inspection team consisted of personnel from Anderson Engineering, Inc. of Springfield, Missouri and Hanson Engineers, Inc. of Springfield, Illinois. The team members were:

Louis Williams - Anderson Engineering (Instrument Man)
Steve Brady - Anderson Engineering (Civil Engineer)
Dave Daniels - Hanson Engineers (Geotechnical and Hydraulics Engineer)
Dan Kerns - Hanson Engineers (Geotechnical Engineer)

3.2 DAM:

The dam is an earth and rock fill embankment reportedly constructed from borrow obtained from a nearby rock quarry. According to a local resident, a 20 ft section of clay and silt from the abutment and reservoir areas was later placed along the entire upstream portion. This was placed after the initial embankment would not hold water.

The dam is covered with brush, small trees and some trees as large as 12 in. in diameter. Apparent seepage under the dam was noted along the north one-half to two-thirds of the downstream toe. The embankment appeared to be fairly dry except for an area at approximate station 2+20 where seepage was apparently coming through the embankment up to approximate elevation 760.6 (17 ft down from the crest). At one location on the downstream toe near the north abutment, seepage was evident at the base of a 12 in. diameter tree.

The seepage was manifested by pools of water and soft, spongy areas with growths of reeds and cattails (see photographs on Sheets 3 and 4 of Appendix C). No boils or obvious piping was evident. The owner indicated that the seepage has been evident for some years, and he was not aware of any noticeable increase in its intensity.

The downstream face of the embankment was quite steep (slopes ranging from 1.25H:1V to 2.0H:1V). Numerous animal burrows were noted along the downstream face. Erosional gullies were noted primarily at the south abutment-embankment contact.
The horizontal alignment appeared as constructed. No surface cracking or unusual movement was obvious. There was apparently no riprap on the upstream face.

No instrumentation (monuments, piezometers, etc.) was observed.

A. Spillway and Outlet:

The corrugated metal pipes appeared to be in fairly good condition, except for two which were slightly bent on one end. The inlet and outlet areas are overgrown with brush and weeds. The outlet channel is overgrown with brush. Some erosion was noted at the outlet end of the corrugated metal pipes. There was no riprap in this area.

3.3 RESERVOIR AND WATERSHED:

The immediate periphery of the lake is wooded with moderate slopes. No sloughing of the reservoir banks was noted. The watershed is primarily wooded with some pasture. It should be noted that a new roadway is planned to be constructed across the upper reaches of the Bibb Lake drainage area (see Sheet 1 of Appendix B). Depending on how the drainage is handled, this construction may somewhat affect the contributing drainage area and the runoff characteristics. Future analyses of this lake should take the planned new construction into account.

3.4 EVALUATION:

Trees and brush on the dam, animal burrows, erosion, and seepage are considered deficiencies. If these deficiencies are not corrected, they could lead to a serious potential of failure. An engineer experienced in the design and construction of dams should evaluate and recommend methods to correct and/or control these deficiencies. Remedial action is required in the very near future.

The owner has indicated that the seepage which was noted along the downstream toe of the dam has been occurring for some years. However, this condition could deteriorate rapidly and lead to a serious failure potential. This condition should be evaluated by an engineer experienced in the design and construction of dams and remedial action taken in the very near future.
SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES:

There are no controlled outlet works for this dam; therefore, no regulating procedures exist. The pool is controlled by rainfall, runoff, evaporation, and rather minimal capacity of the uncontrolled spillways.

4.2 MAINTENANCE OF DAM:

Based on the amount of brush and size of trees on the dam, it appears that it has been many years since the vegetation has been cut.

4.3 MAINTENANCE OF OPERATING FACILITIES:

No operating facilities exist at this dam.

4.4 DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT:

The inspection team is not aware of any existing warning system for this dam.

4.5 EVALUATION:

If the uncontrolled vegetation is allowed to continue, a serious potential of failure may develop. Erosional areas should be corrected and maintained. Animal burrows should be filled. The seepage condition should be evaluated by an engineer experienced in the design and construction of dams, and remedial action should be taken.
5.1 EVALUATION OF FEATURES:

A. Design and Experience Data:

No design data are available. The drainage area and the lake area were developed from the U.S.G.S. Bowling Green quadrangle. The spillway and dam layout are from surveys made during the inspection. Appendix B contains our overtopping analysis, which is based on U.S. Army Corps of Engineers guidelines.

B. Visual Observations:

The metal pipe spillways (see Sheet 2 of Appendix A) are in fairly good condition, except for two which are slightly bent on one end. Some erosion has taken place at the outlet end, and the outlet channel is overrun with brush. These conditions should be corrected. The owner has indicated that the corrugated metal pipes come into service mainly in the spring.

No facilities are available to draw down the pool. Normal spillway releases would not be expected to endanger the integrity of the dam, provided the erosional area in the outlet area is corrected.

C. Overtopping Potential:

Based on the hydrologic and hydraulic analysis as presented in Appendix B, the metal pipe spillways will pass 10 percent of the Probable Maximum Flood. The Probable Maximum Flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the region. The recommended guidelines from the Department of the Army, Office of the Chief of Engineers, require that this structure (intermediate size with high downstream hazard potential) pass 100 percent of the PMF without overtopping. One hundred percent of the PMF will overtop the dam by 2.08 ft for a duration of 14.0 hours with a resultant peak outflow discharge of 2145 cfs (see Sheet 6 of Appendix B). The 100-year flood event will overtop the dam by .13 ft for a duration of 9 hours with a resultant peak outflow discharge of 31 cfs (see Sheet 8 of Appendix B).
SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY:

A. Visual Observations:

Visual observations which could adversely affect the structural stability of this dam are discussed in Sections 3.2 and 3.4.

B. Design and Construction Data:

No design or construction data relating to the structural stability of the dam were found.

C. Operating Records:

No appurtenant structures requiring operation exist at this dam.

D. Post-Construction Changes:

To our knowledge, the only post construction change was the installation of the 15 in. diameter CMP after the dam was topped in approximately 1973.

E. Seismic Stability:

The structure is located in seismic zone 1, which is historically the least active zone in terms of occurrence and magnitude of earthquakes. The seismic loading prescribed for zone 1 is generally not critical for a well constructed earth dam of this size. However, considering the lack of field density control during construction and the possible weakened condition of the embankment due to seepage pressures, it is recommended that the prescribed zone 1 seismic loading be applied in the stability analyses recommended in Section 7.2.
SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT:

A. General:

This Phase I inspection and evaluation should not be considered as being comprehensive since the scope of work contracted for is far less detailed than would be required for an in-depth evaluation of dams. Latent deficiencies, which might be detected by a totally comprehensive investigation, could exist.

B. Safety:

The following items were noted during the visual inspection which should be corrected or controlled: (1) seepage at the toe and through the embankment; (2) a thick cover of trees and brush; (3) erosion gullies on the south abutment; (4) animal burrows on the downstream face; and (5) erosion in the spillway outlet area and brush overgrowth in the outlet channel.

The dam will be overtopped by flows in excess of 10 percent of the Probable Maximum Flood and also by the 100-year flood. Overtopping of an earthen embankment could cause serious erosion and could lead to failure of the structure.

C. Adequacy of Information:

The conclusions in this report were based on construction and performance history as related by others, and visual observation of external conditions. The inspection team considers that these data are sufficient to support the conclusions herein. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency.

D. Urgency:

The remedial measures recommended in paragraph 7.2 should be accomplished in the very near future. If these items are not corrected and if good maintenance is not provided, the embankment condition will continue to deteriorate and may lead to a serious failure potential.

E. Necessity for Phase II:

Based on the result of the Phase I inspection, no Phase II inspection is recommended.
E. Seismic Stability:

The structure is located in seismic zone 1, which is historically the least active zone in terms of occurrence and magnitude of earthquakes. The seismic loading prescribed for zone 1 is generally not critical for a well-constructed earth dam of this size. However, considering the lack of field density control during construction and the possible weakened condition of the embankment due to seepage pressures, it is recommended that the prescribed zone 1 seismic loading be applied in the stability analyses recommended in Section 7.2.

7.2 REMEDIAL MEASURES:

The following remedial measures and maintenance procedures are recommended. All remedial measures should be performed under the guidance of a professional engineer experienced in the design and construction of dams.

1. The seepage which was noted at the downstream toe and through the embankment at station 2+20 should be evaluated in the very near future by an engineer experienced in the design of dams, and remedial action should be taken.

2. Tree growth on the dam is considered a deficiency and should be removed under the direction of a competent engineer. Indiscriminate clearing methods could jeopardize the safety of the dam.

3. Animal burrows should be filled.

4. Erosional areas on the south abutment should be regraded. Future erosion can possibly be minimized with the use of riprap.

5. The area below the spillway outlet pipes should be riprapped to prevent future erosion and undermining. The outlet channel area should be cleared.

6. The downstream slope should be checked periodically for seepage and stability problems. If wet areas or seepage flows are observed, or if sloughing is noted, then the dam should be inspected immediately, and the situation should be evaluated by an engineer experienced in design and construction of dams.
(7) After deficiencies are remedied, a detailed inspection of the dam should be made periodically by an engineer experienced in the design and construction of dams. More frequent inspections may be required if new slides, seeps, or other items of distress are observed.

(8) The spillway size and height of dam should be increased to pass the PMF. In either case, the spillway should be protected to prevent erosion.

(9) Seepage and stability analyses comparable to the requirements of the guidelines were not available, which is considered a deficiency and should be corrected.
BENCHMARK - K-137

2.1 MILES EAST ALONG THE CHICAGO & ALTON RR
FROM THE STATION AT BOWLING GREEN, PIKE COUNTY,
AT STEEL BRIDGE D 2847, IN THE TOP OF THE SOUTH
SIDE OF THE EAST ABUTMENT, AND 2 YARDS SOUTH OF
THE CENTERLINE OF THE TRACK. A STANDARD DISK,
STAMPED "K 137 1935". ELEV.: 739.684
HYDRAULIC AND HYDROLOGIC DATA

Design data: From Field Measurements and Computations

Experience Data: No records are available. The apparent high water mark was about 2.5 ft above the present level of the lake. According to the owner, the dam was overtopped in 1975. The owner said also that the two 12 in. diameter corrugated metal pipes were installed when the dam was built and that a 15 in. diameter pipe was placed after the dam was overtopped in 1975. These three pipes act as the only spillway for the dam. They are located in the north abutment under a private road. The owner said that these pipes operate generally during the period of spring runoff.

Visual Inspection: At the time of inspection, the pool was at elevation 775 ft, which is 2.2 ft below normal pool (elevation 775.0).

Overtopping Potential: Flood routings were performed to determine the overtopping potential. Since the dam is of intermediate size with a high hazard rating, a spillway design storm of 100 percent probable maximum flood was prescribed by the guidelines. The PMF is defined by the guidelines as the flood discharge that may be expected from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the region. The watershed drainage and the reservoir surface areas were obtained by planimeter from the U.S.G.S. 15 min. Bowling Green, Ky.-Ill. quadrangle map. The storage volume was developed from this data.

A 5 minute interval unit graph was developed for this watershed which resulted in a peak inflow of 502 c.f.s. and a time to peak of 10 minutes. Application of the probable maximum precipitation, minus losses resulted in a flood hydrograph peak inflow of 2018 c.f.s. Rainfall distribution for the 24 hour storm was according to EM 1110-2-1411.

The crest elevation of the dam varies considerably. For a more realistic overtopping analysis, the existing shape of the crest of the dam, obtained by survey, was used in the computation of the rating curve for the dam. Considering the top of the dam at the lowest point of the crest (EL 776.90), the combination of dam, spillway and storage is not sufficient to pass the PMF, (nor the 100 yr. flood) without overtopping the embankment. The PMF would overtop the crest of the dam by 2.08 ft (EL 778.98).

Fifty percent of the PMF was routed through the spillway, resulting in an overtopping of 1.29 ft (pool elev. 778.19). The portion of the PMF that will just reach the top of dam is about 10 percent which is also less than the 100 yr. flood event. The 100 yr. flood was also routed through the spillway, resulting in an overtopping of 0.15 ft (elev. 777.03). The discharge capacity of the spillway (5 CMP pipes at elevation 775) is very minimal. For additional information see the Summary of Dam Safety Analyses on Sheets 3 and 4.

Sheet 2, Appendix B
OVERTOPPING ANALYSIS FOR Bibb Lake Dam

INPUT PARAMETERS

1. Unit Hydrograph - SCS Dimensionless - Flood Hydrograph Package (HEC-I); Dam Safety Version was Used.
 Hydraulic Inputs Are As Follows:
 a. Twenty-Four Hour Rainfall of 25 Inches
 For 200 Square Miles - All Season Envelope
 b. Drainage Area = 140 Acres; = 0.22 Sq. Miles
 c. Travel Time of Runoff 0.26 Hrs.; Lag Time 0.16 Hrs.
 d. Soil Conservation Service Runoff Curve No. 80 (AMC III)
 e. Proportion of Drainage Basin Impervious 0.11

2. Spillways
 a. Primary Spillway: Two 12" # and one 15" # pipe
 (insert 11.775)
 b. Emergency Spillway (None)
 Length ___ Ft.; Side Slopes _____; C = ___
 c. Dam Overflow
 Length varies Ft.; Side Slopes irregular, C = 3.0

Note: Combined Spillway and Dam Rating Curve Prepared by Hanson Engineers. Data Provided to Computer on Y4 and Y5 Cards.

SUMMARY OF DAM SAFETY ANALYSES

1. Unit Hydrograph
 a. Peak - 502 c.f.s.
 b. Time to Peak 10 Min.

2. Flood Routings Were Computed by the Modified Puls Method
 a. Peak Inflow (see Sheet 6 Appendix B)
 50% PMF 1309 c.f.s.; 100% PMF 2618 c.f.s.

Sheet 3 Appendix B
b. Routed Peak Elevation
 50% PMF 778.19 100% PMF 778.98

c. Portion of PMF That Will Reach Top of Dam
 10%; Top of Dam Elevation (varies) 776.90 ft. (Lowest Point)

3. Computer Input and Output Data Sheets for the PMF and 100 Yr. Flood are shown in Sheets 5, 6, 7 and 8.
Operation Station

<table>
<thead>
<tr>
<th>Operation Station</th>
<th>Plan Ratio 1</th>
<th>Plan Ratio 2</th>
<th>Plan Ratio 3</th>
<th>Plan Ratio 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiBB Lake Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of Dam Safety Analysis

Plan 1

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Initial Value</th>
<th>Spillway Crest</th>
</tr>
</thead>
<tbody>
<tr>
<td>775.00</td>
<td>775.00</td>
<td>204</td>
</tr>
</tbody>
</table>

Summary of Runoff

<table>
<thead>
<tr>
<th>Ratio of PMF</th>
<th>Maximum Reservoir Elevation</th>
<th>Maximum Depth</th>
<th>Maximum Storage</th>
<th>Maximum Outflow</th>
<th>Maximum Over</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>776.37</td>
<td>0.00</td>
<td>293</td>
<td>13</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0.12</td>
<td>777.05</td>
<td>0.15</td>
<td>296</td>
<td>47</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0.15</td>
<td>777.14</td>
<td>0.24</td>
<td>297</td>
<td>107</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0.20</td>
<td>777.42</td>
<td>0.52</td>
<td>302</td>
<td>293</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>0.40</td>
<td>778.00</td>
<td>1.10</td>
<td>311</td>
<td>685</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>0.50</td>
<td>778.19</td>
<td>1.29</td>
<td>315</td>
<td>974</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>0.80</td>
<td>778.68</td>
<td>2.73</td>
<td>323</td>
<td>1636</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>1.00</td>
<td>778.98</td>
<td>4.03</td>
<td>328</td>
<td>2145</td>
<td>14</td>
<td>12</td>
</tr>
</tbody>
</table>
OR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
AND (CUBIC METERS PER SECOND)
(SQUARE KILOMETERS)

<table>
<thead>
<tr>
<th>RATIO</th>
<th>RATIO 3</th>
<th>RATIO 4</th>
<th>RATIO 5</th>
<th>RATIO 6</th>
<th>RATIO 7</th>
<th>RATIO 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>1047</td>
<td>1309</td>
<td>2094</td>
<td>2618</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>29.65</td>
<td>37.06</td>
<td>59.30</td>
<td>74.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.07</td>
<td>685</td>
<td>974</td>
<td>1696</td>
<td>2145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.93</td>
<td>19.39</td>
<td>27.58</td>
<td>48.03</td>
<td>60.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DAM SAFETY ANALYSIS

<table>
<thead>
<tr>
<th>SPILLWAY CREST</th>
<th>TOP OF DAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>775.00</td>
<td>776.90</td>
</tr>
<tr>
<td>264</td>
<td>293.2</td>
</tr>
<tr>
<td>0</td>
<td>13.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAXIMUM OUTFLOW CFS</th>
<th>DURATION OVER TOP HOURS</th>
<th>TIME OF MAX OUTFLOW HOURS</th>
<th>TIME OF FAILURE HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0.00</td>
<td>18.92</td>
<td>0.00</td>
</tr>
<tr>
<td>47</td>
<td>5.25</td>
<td>18.00</td>
<td>0.00</td>
</tr>
<tr>
<td>107</td>
<td>6.42</td>
<td>16.17</td>
<td>0.00</td>
</tr>
<tr>
<td>293</td>
<td>7.50</td>
<td>15.92</td>
<td>0.00</td>
</tr>
<tr>
<td>685</td>
<td>11.50</td>
<td>15.92</td>
<td>0.00</td>
</tr>
<tr>
<td>974</td>
<td>12.00</td>
<td>15.83</td>
<td>0.00</td>
</tr>
<tr>
<td>1696</td>
<td>12.92</td>
<td>15.83</td>
<td>0.00</td>
</tr>
<tr>
<td>2145</td>
<td>14.00</td>
<td>15.83</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Sheet 6 of Appendix B
<table>
<thead>
<tr>
<th></th>
<th>0.06</th>
<th>0.06</th>
<th>0.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
</tbody>
</table>

AT BIEB D.M. (PRIMARY OUTLET PIPES)
Sheet 7 Appendix B

264 -1
781 783
7004 14048
322
783
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>STATION</th>
<th>FLOW RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1:00</td>
</tr>
</tbody>
</table>

Graph At:

Summary of Dam Speed Analysis

<table>
<thead>
<tr>
<th>CFS</th>
<th>MAXIMUM</th>
<th>MINIMUM</th>
<th>MAXIMUM</th>
<th>MINIMUM</th>
<th>DAM GROSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>777.03</td>
<td>0.13</td>
<td>295</td>
<td>31</td>
<td>90</td>
</tr>
</tbody>
</table>
Ratios and Folds

| Sheet 8 of Appendix B |
APPENDIX C
Aerial Views of Lake and Dam

Sheet 1, Appendix C
View of Crest From North Abutment - Looking South

View of Crest From South Abutment - Looking North

Sheet 2, Appendix C
Upstream Face - Looking South

Downstream Face - Looking West From Floodplain

Sheet 3, Appendix C
Seepage Area - At Toe Near North Abutment

Seepage Area - At Toe Near Center of Dam

Sheet 4, Appendix C
Entrance Corrugated Metal Pipes - Spillway

Outlet End - Corrugated Metal Pipes - Spillway

Sheet 5, Appendix C
Outlet Channel - Looking Upstream

Outlet Channel - Looking Downstream