MISSISSIPPI-KASKASKIA-ST. LOUIS BASIN

LEVEL 1

DR. COURTNEY DAM
WARREN COUNTY, MISSOURI
MO 30017

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

United States Army
Corps of Engineers
St. Louis District

PREPARED BY: U.S. ARMY ENGINEER DISTRICT, ST. LOUIS

FOR: STATE OF MISSOURI

This document has been approved for public release and sale; its distribution is unlimited.

SEPTEMBER, 1979

41 10 2 173
Phase I Dam Inspection Report
National Dam Safety Program
Dr. Courtney Dam (MO 30017)
Warren County, Missouri

Consoer, Townsend and Associates, Ltd.

U.S. Army Engineer District, St. Louis
Dam Inventory and Inspection Section, LMSFD-PD
210 Tucker Blvd., North, St. Louis, Mo. 63101

Approved for release; distribution unlimited.

National Dam Safety Program, Dr. Courtney Dam (MO 30017), Mississippi-Kaskaskia-St. Louis Basin, Warren County, Missouri.

Phase 1 Inspection Report.

Dam Safety, Lake, Dam Inspection, Private Dams

This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.
INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in all technical reports prepared or for DoD organizations.

CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate symbol.

COMPLETION GUIDE.

General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank.

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future retrieval of the document.

Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see the highest classification of the report). Dates of period covered, such as the life of a contract covered in a final contractor report.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers are used, leave this space blank.

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and Zip Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary" or the DD Form 1634, "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding/sponsoring agency.

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Blocks 15 & 15a. Security Classification of the Report: Declassification/Downgrading Schedule of the Report. Enter in 15 the highest classification of the report. If appropriate, enter in 15a the declassification/downgrading schedule of the report, using the abbreviations for declassification/downgrading schedules listed in paragraph 4-207 of DoD 5200.1-R.

Block 17. Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of the report). Insert here the applicable distribution statement of the abstract from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with . . . Translation of (or by) . . . Presented at conference . . . To be published in . . .

Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST), AD-672 000, can be helpful.

Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report should consist of publicly releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000.
SUBJECT: Dr. Courtney Dam (MO. 30017) Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Dr. Courtney Dam (MO. 30017)

It was prepared under the National Program of Inspection of Non-Federal Dams

This dam has been classified as unsafe, non-emergency by the St. Louis District as a result of the application of the following criteria:

1) Spillway will not pass 50 percent of the Probable Maximum Flood
2) Overtopping could result in dam failure
3) Dam failure significantly increases the hazard to loss of life downstream
DR. COURTNEY DAM
WARREN COUNTY, MISSOURI

MISSOURI INVENTORY NO. 30017

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

PREPARED BY
CONSOER, TOWNSEND AND ASSOCIATES LTD.
ST. LOUIS, MISSOURI
AND
ENGINEERING CONSULTANTS, INC.
ENCEGWOOD, COLORADO
A JOINT VENTURE

UNDER DIRECTION OF
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
FOR
GOVERNOR OF MISSOURI

SEPTEMBER 1979
Name of Dam: Dr. Courtney Dam, Missouri Inv. No. 30017
State Located: Missouri
County Located: Warren
Stream: Unnamed Tributary of the Big Creek
Date of Inspection: May 17, 1979

Assessment of General Condition

Dr. Courtney Dam was inspected by the engineering firms of Consoer, Townsend and Associates Ltd. and Engineering Consultants, Inc. (A Joint Venture) using the "Recommended Guidelines for Safety Inspection of Dams". These guidelines were developed by the Chief of Engineers, U.S. Army, Washington, D.C., with the help of Federal and State agencies, professional engineering organizations, and private engineers. The resulting guidelines are considered to represent a consensus of the engineering profession.

Based on the criteria in the guidelines, the dam is in the high hazard potential classification, which means that loss of life and appreciable property loss could occur in the event of failure of the dam. The estimated damage zone extends about one mile downstream of the dam. Within the damage zone are five houses, two county road crossings, one building, one factory, one
warehouse and a railroad crossing which may be subjected to flooding, with possible damage and/or destruction, and possible loss of life. Dr. Courtney Dam is in the small size classification since it is less than 40 feet high and impounds less than 1,000 acre-feet of water.

Our inspection and evaluation indicates that the spillway of Dr. Courtney Dam does not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. Dr. Courtney Dam being a small size dam with a high hazard potential, is required by the guidelines to pass from one-half of the Probable Maximum Flood to the Probable Maximum Flood without overtopping. Since there is high hazard potential downstream of the dam, the appropriate spillway design flood for this dam is the Probable Maximum Flood. Based on available data it was determined that the reservoir/spillway system can accommodate 45 percent of the Probable Maximum Flood without overtopping the dam. Our evaluation indicates that the spillway and the reservoir will accommodate the 100-year flood; that is, a flood having a 1 percent chance of being equalled or exceeded during any given year, without overtopping the dam.

The Probable Maximum Flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorological and hydrologic conditions that are reasonably possible in the region.

Other deficiencies noted by the inspection team were the heavy brush and tree growth and some rodent activity on the downstream embankment slope, lack of a trash rack over the intake of the service spillway pipe, and need for periodic inspection by a qualified engineer. The lack of stability and seepage analysis on record is also a deficiency that should be corrected.
It is recommended that the owner take action to correct or control the deficiencies described above.

Walter G. Shifrin, P.E.
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

DR. COURTNEY DAM I.D. No. 30017

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Sect. No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 1</td>
<td>PROJECT INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 General</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Description of Project.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Pertinent Data</td>
<td>9</td>
</tr>
<tr>
<td>SECTION 2</td>
<td>ENGINEERING DATA</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.1 Design</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.2 Construction</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.3 Operation</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.4 Evaluation</td>
<td>12</td>
</tr>
<tr>
<td>SECTION 3</td>
<td>VISUAL INSPECTION</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3.1 Findings</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3.2 Evaluation</td>
<td>17</td>
</tr>
<tr>
<td>Sect. No.</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>SECTION 4</td>
<td>OPERATION PROCEDURES</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4.1 Procedures</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4.2 Maintenance of Dam</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4.3 Maintenance of Operating Facilities</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4.4 Description of Any Warning System in Effect</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4.5 Evaluation</td>
<td>20</td>
</tr>
<tr>
<td>SECTION 5</td>
<td>HYDRAULIC/HYDROLOGIC</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>5.1 Evaluation of Features</td>
<td>21</td>
</tr>
<tr>
<td>SECTION 6</td>
<td>STRUCTURAL STABILITY</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>6.1 Evaluation of Structural Stability</td>
<td>25</td>
</tr>
<tr>
<td>SECTION 7</td>
<td>ASSESSMENT/REMEDIAL MEASURES</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>7.1 Dam Assessment</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>7.2 Remedial Measures</td>
<td>29</td>
</tr>
</tbody>
</table>

VI
TABLE OF CONTENTS
(Continued)

LIST OF PLATES

<table>
<thead>
<tr>
<th>Location</th>
<th>Plate No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Map</td>
<td>1</td>
</tr>
<tr>
<td>Plan and Elevation of Dam</td>
<td>2-4</td>
</tr>
<tr>
<td>Geologic Maps</td>
<td>5-6</td>
</tr>
<tr>
<td>Seismic Zone Map</td>
<td>7</td>
</tr>
</tbody>
</table>

APPENDICES

APPENDIX A - PHOTOGRAPHS

APPENDIX B - HYDROLOGIC COMPUTATIONS
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

DR. COURTNEY DAM, Missouri Inv. No. 30017

SECTION 1: PROJECT INFORMATION

1.1 General

a. Authority

The Dam Inspection Act, Public Law 92-367 of August, 1972, authorizes the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspections. Inspection for Dr. Courtney Dam was carried out under Contract DACW 43-79-C-0075 to the Department of the Army, St. Louis District, Corps of Engineers, by the engineering firms of Consoer, Townsend & Associates Ltd., and Engineering Consultants, Inc. (A Joint Venture), of St. Louis, Missouri.

b. Purpose of Inspection

The visual inspection of Dr. Courtney Dam was made on May 17, 1979. The purpose of the inspection was to make a general assessment as to the structural integrity and operational adequacy of the dam embankment and its appurtenant structures.
c. Scope of Report

This report summarizes available pertinent data relating to the project; presents a summary of visual observations made during the field inspection; presents an assessment of hydrologic and hydraulic conditions at the site; presents an assessment as to the structural adequacy of the various project features; and assesses the general condition of the dam with respect to safety.

Subsurface investigations, laboratory testing, and detailed analyses were not within the scope of this study. The conclusions drawn herein, therefore, are based on the presence of, or absence of, obvious signs of distress. No warranty as to the absolute safety of the project features is implied by the conclusions presented in this report.

It should be noted that reference in this report to left or right abutments is as viewed looking downstream. Where left abutment or left side of the dam is used in this report, this also refers to west abutment or side, and right to the east abutment or side.

d. Evaluation Criteria

Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in "Recommended Guidelines for Safety Inspection of Dams", Appendix D. These guidelines were developed with the help of several Federal agencies and many state agencies, professional engineering organizations, and private engineers.
1.2 Description of the Project

a. Description of Dam and Appurtenances

Two drawings for Dr. Courtney Dam were obtained. These drawings are given as plates in the report. The drawings do not appear to be as built drawings, and the dimensions and elevation are, therefore, approximate. The description below is based primarily on field measurements, supplemented by information shown in the drawings.

The dam embankment is a compacted earthfill structure. The owner reported the cutoff trench was excavated to bedrock. Preliminary plans in the Warrenton Soils Conservation Service office indicate a core trench 10 feet wide, 6 feet deep and side slope of 1V to 1H. The crest width is 18 feet, the crest length is 600 feet, and the crest elevation is approximately 852.0 feet above MSL. The hydraulic height of the embankment is 36.0 feet, and the 6 foot high cutoff trench makes the structural height equal to 42.0 feet.

The downstream slope of the embankment was measured as 1V to 3.2H. The upstream slope was also 1V to 3.2H, for the top 4 foot. A horizontal berm 7 feet wide was constructed at elevation 845.0, and the remainder of the downstream embankment slope below elevation 845.0 could not be measured.

No riprap was placed on the upstream slope. The crest and upstream embankment slope is protected by a grass cover, while the downstream slope was heavily vegetated with bushes and trees. According to the owner, the dam was constructed from local materials.
The damsite is situated on the border between the
Dissected Till Plain Section of Central Lowlands Physiographic
Province which extends to the north and the Ozark Plateau
Province to the south. Although the area in which the dam and
reservoir are located was glaciated during Pleistocene time,
the till and loess which characterize the uplands of the Till
Plains have been largely removed by erosion since the end of
the Pleistocene. The area is characterized by wooded hills
which have gentle to steep slopes.

The bedrock geology of the area, as shown on the
Geologic Map of Missouri (1979), typically consists of gently
northeastwardly dipping (ca. 30-50 feet/mile) sediments of
Paleozoic age. To the north of Warren County these beds are
often capped by young (Pleistocene) deposits of glacial drift
and wind blown loess. In southern areas of the county the
bedrock is generally covered by residual soil, colluvium, or
alluvium. The rocks underlying the area are predominately
carbonates (limestones and dolomites), although beds of
sandstone and shale are not infrequent.

Structurally, as stated earlier, the rocks are
dipping gently northeastward off the Ozark uplift to the south
of the area of interest.

The bedrock of Warren County contains some minor
folding. The largest known geologic structure in the area is
a gentle anticline centered about 2 1/2 miles northwesterly of
the town of Warrenton. This fold does not appear to affect
the beds at the damsite.
Two spillways are located at Dr. Courtney Dam. The service spillway is a 30-inch diameter vertical drop inlet steel pipe located 220 feet from the right abutment. At the bottom of this pipe a 24-inch diameter steel pipe connects to the vertical pipe and is constructed through the embankment to a discharge point at the downstream toe of the dam. A steel anti-vortex plate is located at the intake end of the drop inlet spillway. The downstream end of the service spillway extends 6 feet out of the embankment fill and discharges into a pool located just downstream of the toe of the embankment.

The emergency spillway is an open channel located just beyond the left abutment of the dam. The channel is grass-lined with a bottom width of 36 feet and side slopes of 1V to 3.95H. The maximum depth of the spillway is 3 feet, 8 inches.

A 12-inch diameter corrugated metal pipe was constructed through the embankment as a low level drain pipe. This pipe discharges near the downstream toe of the dam at a point approximately 10-feet to the left and 2-feet above the discharge end of the service spillway pipe. A 12-inch diameter gate valve operated by a handwheel is located approximately 20 feet upstream of the end of the pipe. The gate valve is housed by a 18 inch diameter corrugated metal pipe without cover. The low level drain pipe is located approximately 230 feet from the right abutment of the dam.

b. Location

Dr. Courtney Dam is located on an unnamed intermittent tributary of Big Creek. The creek flows northeasterly for about one quarter of a mile and then easterly for about one quarter of a mile where it joins Big Creek at the
outskirts of the town of Warrenton. Big Creek is intermittent at
the confluence with unnamed creek but becomes perennial
about three quarters of a mile north at Interstate Highway No.
70. Big Creek continues north-northeastward for about six
miles, then swings eastward for about 14 miles where it enters
the Cuivre River. The Cuivre, about 13 miles below its
confluence with Big Creek, enters the Mississippi about 3
miles east of the town of Old Monroe.

The nearest downstream community is Warrenton,
Missouri, located approximately one mile from the dam. The
main access from Warrenton, Missouri is west on County Road U
one mile to a small gravel road. The dam and lake are located
one-quarter mile west of County Road U. The dam and reservoir
are shown on the Warrenton Quadrangle Sheet (7.5 minute
series) in Section 29, Township 47 North, Range 2 West.

c. Size Classification

According to the "Recommended Guidelines for Safety
Inspection of Dams", by the U.S. Department of the Army,
Office of the Chief Engineer, the dam is classified in the dam
size category as being "Small" since its storage is less than
1,000 acre-feet. The dam is also classified as "Small" in dam
height category because its height is less than 40 feet. The
overall size classification is, accordingly, "Small" in size.

d. Hazard Classification

The dam has been classified as having "High" hazard
potential in the National Inventory of Dams, on the basis that
in the event of failure of the dam or its appurtenances,
excessive damage could occur to downstream property, together
with the possibility of the loss of life. Our findings concur
with the classification. Within one mile downstream from the
dam are five houses, two county road crossings, one factory,
one warehouse, and a railroad crossing.

e. Ownership

Dr. Courtney Dam is owned by private owners, Dr. and Mrs. Courtney. The mailing address is Dr. and Mrs. Courtney, P. O. Box 336, Warrenton, Missouri, 63383.

f. Purpose of Dam

The purpose of the dam is to impound water for recreational use as a private lake.

g. Design and Construction History

Dr. Courtney Dam was designed by the Soil Conservation Service of Warren County in Warrenton, MO. The S.C.S. plan (included in this report) is dated May 10, 1966. The owner Dr. Courtney, agreed that this date coincides with the time of construction.

The lake and dam were created for recreational purposes only and it receives a limited amount of use.

The lake was reportedly built by Selrick Company of Gumbo, Missouri. This information was also obtained from the Soil Conservation Service.
h. Normal Operational Procedures

As stated above, the dam is used to impound water for recreational purposes only. There are no operational procedures. The lake level is controlled by rainfall, runoff, evaporation and the 30 inch diameter steel pipe drop inlet. The lake is also equipped with an 12 inch C.M.P. low level outlet pipe which is rarely used. The gate valve on the downstream side appears to be operable, but could not be reached by the inspection team for trial. There are no operational records kept for this lake and dam.
1.3 Pertinent Data

a. Drainage Area (square miles): 0.43

b. Discharge at Damsite
Estimated experienced maximum flood (cfs): 24
Estimated ungated spillway capacity at maximum pool elevation (cfs): 1148

c. Elevation (Feet above MSL)
Top of dam: 852.0
Spillway crest:
 Service Spillway 846.0
 Emergency Spillway 848.3
Normal Pool 846.0
Maximum Pool: (PMF) 853.22

d. Reservoir
Length of maximum pool: (Feet) 1600

e. Storage (Acre-Feet)
Top of dam: 255
Spillway crest:
 Service Spillway 144
 Emergency Spillway 188
Normal Pool: 144
Maximum Pool: (PMF) 291

f. Reservoir Surface (Acres)
Top of dam: 24
Spillway crest:
 Service Spillway 18
 Emergency Spillway 21
Normal Pool: 18
Maximum Pool: (PMF) 25 +
g. Dam

Type: Rolled Earthfill
Length: 600 feet
Structural Height: 42.0 feet
Hydraulic Height: 36.0 feet
Top width: 18.0 feet

Side slopes:
 Downstream 1V to 3.2H
 Upstream 1V to 3.2H

Zoning: Unknown
Impervious core: Unknown

Cutoff: Unknown

Grout curtain: Unknown

h. Diversion and Regulating Tunnel None

i. Spillway

Type:
 Service Spillway Drop inlet
 Emergency Spillway Uncontrolled channel
Length of weir:

Service Spillway: 30-inch diameter drop-inlet pipe
Emergency Spillway: 36 feet

Crest Elevation (feet above MSL):
Service Spillway: 846
Emergency Spillway: 848.3

j. Regulating Outlets
Type: 12-Inch Diameter Corrugated Metal Pipe
Length: 200 Feet
Closure: 12-Inch Diameter Gate Valve
Maximum Capacity: 6.5 C.F.S.
SECTION 2 : ENGINEERING DATA

2.1 Design

Dr. Courtney Dam was designed by the Department of Agriculture, Soil Conservation service of Warren County, Missouri. The design drawings are dated May 10, 1966 and are included in this report.

2.2 Construction

Information obtained from the SCS office in Warrenton indicates that the dam was built by Selerick Company of Gumbo, Missouri. Efforts to contact the builder were futile. The field inspection revealed several items not constructed in accordance with the design drawings.

2.3 Operation

There are no written records concerning operation for this dam. Information regarding operation has been obtained verbally from the owner.

2.4 Evaluation

a. Availability

Two design drawings were located which show various features of the embankment and appurtenant structures. No design computations, construction data, or operation data are available.

-12-
In addition, no pertinent data was available for review of hydrology, spillway capacity, flood routing through the reservoir, outlet capacity, slope stability, seepage analysis, or foundation conditions.

b. Adequacy

The available engineering data is inadequate to aid in evaluating the hydraulic and hydrologic capabilities and stability of the dam for Phase I investigations.

The lack of engineering data did not allow for a definitive review and evaluation. Therefore, the adequacy of this dam could not be assessed from the standpoint of reviewing and evaluating design, operation and construction data, but is based primarily on visual inspection, past performance history, and sound engineering judgment.

Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were also not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record.

c. Validity

The design drawings found are of questionable validity since they are not as-built drawings.
SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

A visual inspection of the Dr. Courtney Dam was made on May 17, 1979. The following persons were present during the inspection:

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Disciplines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. M.A. Samad</td>
<td>Engineering Consultants, Inc.</td>
<td>Project Engineer,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydraulics and Hydrology</td>
</tr>
<tr>
<td>Jon Diebel</td>
<td>Engineering Consultants, Inc.</td>
<td>Structural and Mechanical</td>
</tr>
<tr>
<td>Peter Strauss</td>
<td>Engineering Consultants, Inc.</td>
<td>Soils</td>
</tr>
<tr>
<td>Peter Howard</td>
<td>Engineering Consultants, Inc.</td>
<td>Geology</td>
</tr>
<tr>
<td>Kevin Blume</td>
<td>Consoer, Townsend & Assoc., Ltd.</td>
<td>Civil and Structural</td>
</tr>
</tbody>
</table>

Specific observations are discussed below.
b. Dam

The exposed portion of the upstream embankment slope and the crest has a heavy grass cover which adequately protects the dam material. The upstream slope has no riprap protection and has consequently undergone minor erosion from wave action. However, there was no indication of any instability along the portions of the upstream face that was above water.

The downstream slope of the embankment is heavily vegetated, mainly on its lower portions. This vegetation is mainly trees and brush. It does not appear that the downstream embankment slope has been cleared since the dam was constructed. Extensive rodent activity was observed on the downstream embankment slope.

No signs of past or present instability were seen on the embankment or in the foundation at any location.

No seepage was observed below the downstream toe of the embankment. A small drainage ditch trenching about east-west below the downstream toe of the left side of the dam contains some standing water. This is believed to be from slope drainage on either side of the ditch.

No rocks crop out in the vicinity of the Dr. Courtney Dam. Based on several well logs, and the state geologic map, the rocks underlying the dam and reservoir are most likely the predominately carbonate rocks of the Burlington Limestones (Mississippian). These rocks are dipping gently northeastward about 40 feet/mile.
Overlying the Burlington limestones is a varying thickness of glacial till which to a great extent has been removed to the south of the damsite. (Soil Conservation Service, Soil Survey of Montgomery and Warren Counties, 1979). The soil survey mentioned above, reports that the bottom land soils at the site consist of silty clay (CL-ML, CL) and the upslope soils consist of silty clay (CL-ML), clay (CL, CH) and sandy clay (SC). The local surficial soils are probably mixed loess and residual soils. If the material in the dam is on the silty side (ML), it would probably be more susceptible to erosion and failure during overtopping than if it is the CL or CH of the residual soils.

The owner states that the core trench under the axis of dam is in bedrock. The Burlington Limestone should make an excellent foundation for a dam.

c. Appurtenant Structures

(1) Spillway

The service spillway was not provided with a trashrack at the upstream end of the vertical drop inlet pipe. The anti-vortex plate appeared to be in satisfactory condition. The downstream end of the pipe was extended beyond the embankment materials, and erosion of the embankment is not occurring to any significant extent. The pond formed by spillway discharges is sufficiently downstream of the embankment to avoid saturation of fill or foundation materials.

The emergency spillway contains an adequate grass cover to prevent significant erosion during discharges. Discharges through the spillway will flow away from the embankment, and will not erode embankment materials.
(2) Outlet Works

The low level drain pipe appears to be in satisfactory condition. The 12-inch diameter gate valve is located in an 18-inch diameter corrugated metal pipe pit for protection. The gate valve appeared to be operable. The downstream end of the corrugated metal pipe has steel deflectors welded to the pipe to dissipate energy during releases. The downstream end of the pipe is blocked 1/3 with local materials (See Photo D5 in Appendix A).

d. Reservoir Area

The water surface elevation was 845.75 feet above MSL at the time of inspection. The reservoir rim is gently sloping with trees and woods near the shore. No evidence of any instability was observed.

e. Downstream Channel

The downstream channel is well defined. Some vegetative growth is present in the channel. The channel banks were eroded in the vicinity of the discharge point of the emergency spillway. No major obstructions or debris were found in the channel.

3.2 Evaluation

The following items were observed which could affect the safety of the dam, or which will require maintenance within a reasonable period of time.
a. The heavy vegetative growth on the downstream embankment slope, which includes trees and brush.

b. Extensive rodent activity on the downstream embankment slope.

c. Need for a trashrack at the intake end of the vertical drop inlet pipe for the service spillway.

d. Wave erosion on the unprotected upstream slope of the embankment.
SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

There are no specific operational procedures for Dr. Courtney Dam. As mentioned previously, the lake level is controlled by rainfall, runoff, evaporation and the service spillway. According to the owner, Dr. Courtney, the water level has never reached the emergency spillway.

4.2 Maintenance of Dam

Dr. Courtney Dam is maintained by Mr. Schatler, the current caretaker. It appears that the dam crest and upstream slope are maintained very well. There is a heavy vegetative growth of brush and trees on the downstream slope. This cover of brush hinders access to the handwheel operator and gate valve for the low level outlet. The upstream slope at the water level shows slight signs of erosion from wave action.

4.3 Maintenance of Operating Facilities

The service spillway, a 30 inch diameter steel drop inlet pipe, seems to be operating adequately. A new trashrack is required at the inlet of this pipe. The existing trashrack is composed of 2 x 4s which form a box like structure around the inlet and anti-vortex plate. There is a low level outlet composed of an 12 inch diameter C.M.P. with a handwheel operated gate valve on the downstream side. The valve is at the bottom of a 5 foot vertical 18 inch diameter C.M.P. and a key or long rod is needed to operate the valve. It would appear that the valve has not been operated in several years.
The discharge end of the 12 inch diameter C.M.P. was half buried and appeared as if it had not been operated for several years.

4.4 Description of Any Warning System in Effect

The inspection team is not aware of any warning system in use at Dr. Courtney Dam.

4.5 Evaluation

It would appear that the maintenance and care of the dam is adequate with the exception of the growth on the downstream embankment slope. It also appears that the service spillway is in satisfactory condition and operating properly. There is a need, however, for a new trashrack structure around the inlet for the service spillway.
5.1 Evaluation of Features

a. Design

The watershed area of Dr. Courtney Dam upstream from the dam axis consists of approximately 278 acres. Most of the watershed area is wooded and covered with grass. Land gradients in the higher regions of the watershed average roughly 5 percent, and in the lower areas surrounding the reservoir average about 3 percent. The Dr. Courtney Lake Reservoir is located on an unnamed tributary of Big Creek. The reservoir is about half a mile upstream from the confluence of the unnamed tributary and Big Creek. At its longest arm the watershed is approximately 0.8 mile long. A drainage map showing the watershed area is presented as Plate 1 in Appendix B.

Evaluation of the hydraulic and hydrologic features of Dr. Courtney Dam was based on criteria set forth in the Corps of Engineers' "Recommended Guidelines for Safety Inspection of Dams", and additional guidance provided by the St. Louis District of the Corps of Engineers. The Probable Maximum Flood (PMF) was calculated from the Probable Maximum Precipitation (PMP) using the methods outlined in the U.S. Weather Bureau Publication, Hydrometeorological Report No. 33. The probable maximum storm duration was set at 24 hours, and storm rainfall distribution was based on criteria given in EM 1110-2-1411 (Standard Project Storm). The SCS method was used for deriving the unit hydrograph, utilizing the Corps of
Engineers' computer program HEC-1, (Dam Safety Version). The unit hydrograph parameters are presented in Appendix B. The SCS method was also used for determining loss rate. The hydrologic soil group of the watershed was determined by use of published soil maps. The hydrologic soil group of the watershed and the SCS curve number are presented in Appendix B. The curve number, the unit hydrograph parameters, the PMP index rainfall and the percentages for various durations were directly input to the HEC-1 (Dam Safety Version) computer program to obtain the PMF hydrograph. The computed peak discharge of the PMF and one-half of the PMF are 4,941 cfs and 2,471 cfs respectively.

Both the PMF and one-half of the PMF inflow hydrographs were routed through the reservoir by the Modified Puls Method also utilizing the HEC-1 (Dam Safety Version) computer program. The reservoir was assumed at the spillway crest level at the start of routing computation. The peak outflow discharges for the PMF and one-half of the PMF are 3,967 and 1,404 cfs respectively. Both the PMF and one-half of the PMF, when routed through the reservoir results in overtopping of the dam.

The stage-outflow relation for the spillway was prepared from field notes, and sketches, prepared during the field inspection. The reservoir stage-capacity data were based on the U.S.G.S. Warrenton Quadrangle topographic map (7.5 minute series). In the routing computations, the discharge through the outlet facilities was excluded due to its insignificant magnitude as compared to the spillway discharge and the PMF. The spillway and overtop rating curve and the reservoir capacity curve are presented in Plates 2 & 3 respectively in Appendix B.
From the standpoint of dam safety, the hydrologic design of a dam aims at avoiding overtopping. Overtopping is especially dangerous for an earth dam because the downrush of waters over the crest can erode the dam embankment and release all the stored water suddenly into the downstream floodplain. The safe hydrologic design of a dam requires a spillway discharge capability, in combination with an embankment crest height that can handle a very large and exceedingly rare flood without overtopping.

The Corps of Engineer designs its dams to safely pass the Probable Maximum Flood that is estimated could be generated from the upstream watershed. This is the generally accepted criterion for major dams throughout the world, and is the standard for dam safety where overtopping would pose any threat to human life. According to the Corps criteria, the hydrologic requirement for safety for this dam is the capability to pass from one-half of the Probable Maximum Flood to the Probable Maximum Flood without overtopping.

b. Experience Data

No records of reservoir stage or spillway discharge are maintained for this site. However, according to the representative of the owner, the maximum reservoir level was about 6 inches above the crest of the service spillway.

c. Visual Observations

Observations made of the spillway during the visual inspection are discussed in Section 3.1c(1) and evaluated in Section 3.2.
d. Overtopping Potential

As indicated in Section 5.1-a, both the Probable Maximum Flood and one-half of the Probable Maximum Flood, when routed through the reservoir, resulted in overtopping of the dam. The peak outflow discharges for the PMF and one-half of the PMF are 3,967 and 1,404 cfs respectively. The PMF overtopped the dam crest by 1.22 feet and one-half of the PMF overtopped the dam crest by 0.17 feet. The total duration of embankment overflow is 1.00 hour during the PMF, and 0.33 hour during one-half of the PMF. The spillway for Dr. Courtney Dam is capable of passing a flood equal to approximately 45 percent of the PMF just before overtopping the dam.

The computed one percent chance flood using 100-year, 24 hour rainfall data was routed through the reservoir, and is given in the last section in Appendix B. The routing results indicate the spillway and the reservoir will accommodate the 100-year flood without overtopping the dam.

The failure of the dam could cause extensive damage to the property downstream of the dam and possible loss of life. There are five dwellings, two county road crossings, one building, one factory, one ranchouse and a railroad crossing within about a mile downstream from the dam.

The local surficial soils at the dam site are probably mixed loess and residual soils. If the material in the dam is on the silty side (ML), it would probably be more susceptible to erosion and failure during overtopping than if it is the CL or CH of the residual soils.

-24-
6.1 Evaluation of Structural Stability

a. Visual Observations

There were no signs of settlement or distress observed on the embankment or foundation. Some minor wave erosion was observed on the upstream slope of the embankment. This condition has not progressed to a serious degree at this time, but should be monitored and repairs made as required.

The heavy vegetative growth on the downstream embankment slope should be cleared as soon as possible. This growth prevents proper inspection of the embankment in addition to providing a hazard to the embankment. The rodent activity should also be eliminated from the downstream embankment slope.

The service and emergency spillways appear to be in adequate structural condition. Discharges through each spillway will flow away from the embankment to avoid erosion of embankment materials. The service spillway pipe appears to be constructed satisfactorily. Anti-seep collars are shown on the available drawings of Dr. Courtney Dam.

No problems were observed with the outlet works which will jeopardize the structural stability of the dam.
b. Design and Construction Data

The incomplete design drawings are the only data relating to the structural stability of the dam or appurtenant structures that were found. No seepage and stability analyses were available for review.

c. Operating Records

No operating records are available relating to the stability of the dam or appurtenant structures. Water levels have not been recorded, however, the reservoir was full on the day of inspection, and is assumed to be close to full at all time.

d. Post Construction Changes

No post construction changes exist which will effect the structural stability of the dam.

e. Seismic Stability

According to the Seismic Zone Map of Contiguous States, Form TM 5-809-10/NAVFAC P-355/AFM 88-3 Chapter 13; April 1979 the portion of Missouri in which Dr. Courtney Dam is located in Seismic Zone 2. This means there is only moderate damage probability. A detailed seismic analysis is not felt to be necessary for this embankment under present conditions. If a stability analysis is to be performed, the seismic coefficient recommended is 0.05.
SECTION 7: ASSESSMENT/REMEDIAL MEASURES

7.1 Dam Assessment

The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, testing, and detailed computational evaluations...the scope of a Phase I investigation; however, investigation is intended to identify any need for such studies.

It should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team.

It is also important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that an unsafe condition could be detected.

a. Safety

The spillway capacity of Dr. Courtney Dam was found to be "Seriously Inadequate". The spillway/reservoir system was found to accommodate only 45 percent of the PMF without overtopping the dam.
The major problem with the embankment is the heavy brush and tree growth on the downstream embankment slope. The extensive tree growth is considered unsatisfactory in terms of dam safety for several reasons: First, trees toppled by wind expose holes that invite rapid erosion, and second, decay of large existing root systems could form channels for eventual piping. The trees on the downstream embankment slope should be removed. Removal of large trees should be under the guidance of an engineer experienced in the design and construction of earthen dams. Indiscriminate clearing could jeopardize the safety of the dam. Rodent activity should be eliminated from the embankment.

The sloughing and erosion due to wave action on the upstream embankment slope is not a problem at this time. The conditions, however, should be monitored and repairs made as required.

No seepage and stability analyses were available for review. Seepage and stability analyses comparable to the "Recommended Guidelines for Safety Inspection of Dams" should be performed and made a matter of record.

A trashrack should be provided at the intake of the service spillway pipe. The pipe is susceptible to plugging in its present condition during continued flows through the spillway.

b. Adequacy of Information

Satisfactory information concerning the dam and appurtenant structures is not available. It is recommended that the following programs be initiated to help alleviate this problem:
1. Periodic inspection of the dam by an engineer experienced in the design and construction of earthen dams should be made and this inspection report made a matter of record.

2. Set up a maintenance schedule and log all visits to the dam for operation, repairs and maintenance.

3. Perform seepage and stability analyses comparable to the "Recommended Guidelines for safety Inspection of Dams".

c. Urgency

A program should be developed as soon as possible to monitor at regular intervals the deficiencies described in this report. The remedial measures recommended in paragraph 7.2 should be accomplished in the near future. The item recommended in paragraph 7.2a. should be pursued on a high priority basis.

d. Necessity for Phase II Inspection

Based on results of the Phase I inspection, and if the remedial measures recommended in Paragraph 7.2 are undertaken as soon as possible, a Phase II inspection is not felt to be necessary.

7.2 Remedial Measures

a. Alternatives

Spillway capacity and/or height of dam should be increased to pass the PMF without overtopping the dam.
b. O & M Procedures

1. Clear the trees and brush from the downstream embankment slope.

2. Eliminate rodent activity from the downstream embankment slope.

3. Place a trashrack over the intake of the service spillway pipe.

4. Monitor the sloughing and erosion on the upstream embankment slope, and make repairs as required.

5. Remove the blockage of the outlet pipe at the downstream end due to local debris.

6. Seepage and stability analyses should be performed by a professional engineer experienced in the design and construction of dams.

7. The owner should initiate the following programs.

 (a) Periodic inspection of the dam by a professional engineer experienced in the design and construction of earthen dams.

 (b) Set up a maintenance schedule and log all visits to the dam for operation, repairs and maintenance.
QUARTERNARY
- Qa1 - ALLUVIUM

PENN-SYLVANIAN
- Pm - MARMATON GROUP
- Pcc - CHEROKEE GROUP

MISSISSIPPIAN
- Mn - ST LOUIS LIMESTONE OPHIOVICIAN
 - SALEM FORMATION
 - WARSAW FORMATION
- Mo - BURLINGTON-KEOKUK FORMATION
- Mk - CHOTEAU GROUP

X LOCATION OF DAM MO. 30017

REFERENCE
GEOLOGIC MAP OF MISSOURI,
MISSOURI GEOLOGIC SURVEY,
1979.

SCALE OF MILES

GEOLGIC MAP
OF
WARREN COUNTY
AND
ADJACENT AREA
APPENDIX A

PHOTOGRAPHS TAKEN DURING INSPECTION
OVERVIEW

PHOTO INDEX
FOR
DR. COURTNEY DAM
DR. COURTNEY DAM

D1 - Crest of Embankment
D2 - Crest of Embankment
D3 - Downstream Embankment Slope
D4 - Pit Housing Gate Valve
D5 - Discharge End of C.M.P. Drain Pipe
D6 - Intake of Service Spillway
D7 - Discharge of Service Spillway
D8 - Emergency Spillway Crest
D9 - Emergency Spillway Crest
D10 - Emergency Spillway Discharge Channel
D11 - Emergency Spillway Discharge Channel
D12 - Downstream Embankment Slope
Dr. Courtney Dam

D7

DF
APPENDIX B

HYDROLOGIC COMPUTATIONS
CONTOUR INTERVAL 20 FEET
DATUM IS MEAN SEA LEVEL
DRAINAGE BOUNDARY — — — —

DR. COURTNEY DAM (MO. 30017)
DRAINAGE BASIN
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.95</td>
<td>2294.9</td>
<td>2344.6</td>
<td>2395.3</td>
<td>2446.0</td>
<td>2497.0</td>
<td>2548.0</td>
<td>2599.0</td>
<td>2650.0</td>
<td>2701.0</td>
<td>2752.0</td>
<td>2803.0</td>
</tr>
<tr>
<td>2.00</td>
<td>1853.4</td>
<td>1895.7</td>
<td>1938.1</td>
<td>1980.6</td>
<td>2023.0</td>
<td>2065.0</td>
<td>2107.0</td>
<td>2149.0</td>
<td>2191.0</td>
<td>2233.0</td>
<td>2275.0</td>
</tr>
<tr>
<td>2.05</td>
<td>361.7</td>
<td>366.5</td>
<td>371.4</td>
<td>376.3</td>
<td>381.2</td>
<td>386.1</td>
<td>391.0</td>
<td>395.9</td>
<td>400.8</td>
<td>405.7</td>
<td>410.6</td>
</tr>
<tr>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td>2.35</td>
<td></td>
</tr>
<tr>
<td>2.40</td>
<td></td>
</tr>
</tbody>
</table>

Critical depth assumed in spillway section.

Moment = 184.2 ft-

Weight = 18.4 ft-

Critical depth assumed in spillway section.

Moment = 184.2 ft-

Weight = 18.4 ft-

Critical depth assumed in spillway section.

Moment = 184.2 ft-

Weight = 18.4 ft-
DROP INLET SPILLWAY RATING CURVE

DROP INLET SPILLWAY

EL = 846 (ASSUMED)

2 4" STEEL PIPE

EL = 821.5'

EL = 821

EL = 822

SPILLWAY DISCHARGE (ASSUMED NO TAILWATER EFFECT)

AT W.L. 847.5:

a) WEIR FLOW:

ASSUME C = 3.0

\[Q = C L H^{3/2} = 3.0 \times 11 \times (2.8)^{1.5} \]

\[Q = 23.56 \text{ cfs} \]

b) PRESSURE FLOW:

\[H_f = (1 + K_p + f \cdot \frac{L}{D}) \frac{V^2}{2g} \]

ASSUME \(K_p = 0.10 \)

\[f = 0.027 \text{ for } m = 0.016 \]
b) \(WL = 847 \) (cont.)

\[
H_t = \left(1 + 0.10 + 0.027 \frac{1103}{2} \right) \frac{V^2}{2g}
\]

\[
= 2.59 \frac{V^2}{2g}
\]

\[
V = \sqrt{\frac{2gH_t}{2.59}}
\]

\[
V = 4.99 \sqrt{H_t}
\]

\[
Q = A \cdot V = \pi x 1^2 \cdot 4.99 \sqrt{H_t}
\]

\[
Q = 15.67 \sqrt{H_t}
\]

\[
H_t = 847 - 822 = 25
\]

\[
Q = 15.67 \sqrt{25} = 78.33 > 23.56
\]

\[
\therefore Q = 23.56 \text{ cfs} \text{ at } \ WL = 847
\]

\[
WL = 848 \quad H_t = 848 - 822 = 26
\]

a) WEIR FLOW

\[
Q = (LH)^{1/2} = 3.0 \times \pi \times 2.5 \times 2.34
\]

\[
Q = 66.69 \text{ cfs}
\]

b) PRESSURE FLOW

\[
Q = 15.67 \sqrt{H_t} = 15.67 \sqrt{26}
\]

\[
Q = 77.90 > 66.69 \Rightarrow \text{ safe}
\]
\[WL = 849.3 \quad H_c = 899.3 - 822 = 76.3 \]

1) **Weir Flow**

\[Q = cLH^{3/2} = 3.0 \times \pi \times 2.5 \times 2.3^{3/2} \]

\[Q = 82.19 \]

2) **Pressure Flow**

\[Q = 15.67 \sqrt{H_c} = 15.67 \sqrt{76.3} \]

\[Q = 80.36 < 82.19 \]

Therefore, use 80.36 cfs.

\[\text{USE EQUATION: } Q = 15.67 \sqrt{H_c} \]

For all elevations above 849.
<table>
<thead>
<tr>
<th>Reservoir Water Surface Elev.</th>
<th>Head on Drop Inlet Spillway (fe)</th>
<th>Drop Inlet Spillway Discharge ($Q_{in} = 15,627 ft^3/ft^2$)</th>
<th>Emergency Spillway Discharge (cfs)</th>
<th>Overtop Discharge (cfs)</th>
<th>Combined Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>846</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>847</td>
<td>25</td>
<td>*23.6</td>
<td>-</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>848</td>
<td>26</td>
<td>*66.6</td>
<td>-</td>
<td>-</td>
<td>67</td>
</tr>
<tr>
<td>848.3</td>
<td>26.3</td>
<td>*80.4</td>
<td>0</td>
<td>-</td>
<td>80</td>
</tr>
<tr>
<td>849.75</td>
<td>27.75</td>
<td>82.55</td>
<td>216.3</td>
<td>-</td>
<td>299</td>
</tr>
<tr>
<td>851.15</td>
<td>29.15</td>
<td>84.60</td>
<td>647.96</td>
<td>-</td>
<td>733</td>
</tr>
<tr>
<td>852.50</td>
<td>30.50</td>
<td>86.54</td>
<td>1262.12</td>
<td>572.76</td>
<td>1921</td>
</tr>
<tr>
<td>853.39</td>
<td>31.39</td>
<td>87.79</td>
<td>1779.79</td>
<td>2595.8</td>
<td>4452</td>
</tr>
<tr>
<td>854.64</td>
<td>32.64</td>
<td>89.52</td>
<td>2603.98</td>
<td>6768.82</td>
<td>9462</td>
</tr>
</tbody>
</table>

* Weir Flow Controls
DR. COURTNEY DAM (MO. 30017)
SPILLWAY & OVERTOP RATING CURVE
Dr. Courtney

Reservoir Area Capacity

<table>
<thead>
<tr>
<th>Elev. M.S.L. (ft)</th>
<th>Reservoir Surface Area (Acres)</th>
<th>Incremental Volume (Ac.-ft)</th>
<th>Total Volume (Ac.-ft)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>822</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Est. Streambed at Center of Dam</td>
</tr>
<tr>
<td>846</td>
<td>18</td>
<td>144</td>
<td>144</td>
<td>Spillway Crest Elev. (from U.S.G.S. map)</td>
</tr>
<tr>
<td>848.3</td>
<td>30.5</td>
<td>44.2</td>
<td>188.2</td>
<td>Emergency Spillway Cav.</td>
</tr>
<tr>
<td>852</td>
<td>24</td>
<td>46.7</td>
<td>251.9</td>
<td>Top of Dam</td>
</tr>
<tr>
<td>860</td>
<td>35</td>
<td>235</td>
<td>490</td>
<td>Area measured on U.S.G.S. map</td>
</tr>
<tr>
<td>880</td>
<td>96</td>
<td>1260</td>
<td>1750</td>
<td>Area measured on U.S.G.S. map</td>
</tr>
</tbody>
</table>
DR. COURTNEY DAM (MO. 30017)
RESERVOIR CAPACITY CURVE

PLATE-3, APPENDIX-B
DAM NO. MO 30017

DETERMINATION OF PMP

1. Determine drainage area of the basin
 D. A. = 278 Ac = 0.43 Sq. Mi.

2. Determine PMP Index Rainfall
 Location of centroid of basin:
 Long. = 91°10’12”, Lat. = 38°48’10” => PMP = 24” (From Fig. 1, XMR No. 33)

3. Determine basin rainfall index in terms of percentage of PMP Index Rainfall for various durations;
 Location: Long. = 91°10’12”, Lat. = 38°48’10”
 => Zone 7

<table>
<thead>
<tr>
<th>Duration (Hrs.)</th>
<th>Percent of Index Rainfall (%)</th>
<th>Total Rainfall (inches)</th>
<th>Rainfall Increment (inches)</th>
<th>Duration of Increment (Hrs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>100</td>
<td>24</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>120</td>
<td>28.8</td>
<td>4.8</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>130</td>
<td>31.2</td>
<td>2.4</td>
<td>12</td>
</tr>
</tbody>
</table>
FIGURE 2
SEASONAL VARIATION
DEPTI-AREA-DURATION RELATIONSHIPS
Percentage to be applied to 200 square miles
24-hour probable maximum precipitation values
for THE-ALL SEASON ENVELOPE
ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI

DR COURTNEY DAM U 30017

UNIT HYDROGRAPH PARAMETERS

SHEET NO. 1 OF

JOB NO. 1240-001-1

BY KLB DATE 5-29-79

1. DRAINAGE AREA = 778 ACRES = 0.43 SQ. MI.

2. LENGTH OF STREAM = (1.50" x 2000' = 3000') = 0.57 MI.

3. ELEVATION OF DRAINAGE DIVIDE ALONG THE LONGEST STREAM, H1 = 933'

4. RESERVOIR ELEVATION AT THE SPILLWAY CREST, H2 = 846'

5. DIFFERENCE IN ELEVATION, AH = 933 - 846 = 87'

6. AVERAGE SLOPE OF STREAM = AH / L = 87 / 3000 = 2.9%

7. TIME OF CONCENTRATION:

a) BY KIRPICH FORMULA,

Tc = (11.7 x L^3) / (AH) = (11.7 x 0.57^3) / 87 = 0.24 HR

b) BY VELOCITY ESTIMATE,

SLOPE = 2.9% ⇒ AVERAGE VELOCITY = 3 FPS

Tc = 0.57 x 5280 / (3 x 60 x 60) = 0.28 HR

USE Tc = 0.26 HR.

8. LAG TIME, Lt = 0.6 x 0.26 = 0.156

9. UNIT DURATION, D = Lt / 3 = 0.156 / 3 = 0.052 < 0.083

USE D = 0.083 = 5 min.

10. TIME TO PEAK, Tp = D / 2 + Lt = 0.083 / 2 + 0.156

Tp = 0.196

11. PEAK DISCHARGE, qP = (454.1 A) / Tp = 4544 x (0.43) / 0.196

qP = 1062 CFS
DAM SAFETY INSPECTION / MISSOURI
DAM # MO. 30017
Job No. 1240-001
DETERMINATION OF SOIL GROUP & CURVE NUMBER
By MAS
Date 5/31/79

Missouri Dam # MO. 30017

DETERMINATION OF HYDRAULIC SOIL GROUP & SCS CURVE NUMBER

1. Watershed soils consist of mainly D group soils.
 Assume soil group 'D' for the whole watershed.

2. About 50 percent of the watershed is wooded land. Assume 'Fair' hydrologic condition for infiltration purpose.
 Thus:
 \[\text{CN} = 79 \text{ for Soil Group D & AMC-2} \]
 \[\text{CN} = 91 \text{ for AMC-III} \]
HEC1DB INPUT DATA
INFLOW PMF AND ONE-HALF PMF HYDROGRAPHS
SUMMARY OF PMF AND ONE-HALF PMF FLOOD ROUTING
<table>
<thead>
<tr>
<th>PUMP</th>
<th>ELEVATION</th>
<th>INITIAL VALUE</th>
<th>SPILLWAY CREST</th>
<th>TOP OF DAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>2</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>3</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RATIO</th>
<th>MAXIMUM</th>
<th>MAXIMUM</th>
<th>MAXIMUM</th>
<th>DURATION</th>
<th>TIME OF</th>
<th>TIME OF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OBSERVATION</td>
<td>DEPTH</td>
<td>STORCTR</td>
<td>OUTFLOW</td>
<td>OVER TOP</td>
<td>MAX OUTFLOW</td>
</tr>
<tr>
<td>1.00</td>
<td>352.17</td>
<td>1.17</td>
<td>291.4</td>
<td>306.8</td>
<td>1.00</td>
<td>14.93</td>
</tr>
<tr>
<td>0.50</td>
<td>357.17</td>
<td>1.17</td>
<td>291.4</td>
<td>306.8</td>
<td>1.00</td>
<td>14.93</td>
</tr>
</tbody>
</table>
PERCENT OF PMF FLOOD ROUTING
EQUAL TO SPILLWAY CAPACITY
DAM SAFETY INSPECTION - MISSOURI

ON COURTNEY DAM (50617)

PERCENT OF PMF DETERMINATION AND ROUTING

<table>
<thead>
<tr>
<th>JOB SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
</tr>
<tr>
<td>310</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JOPLR</th>
<th>NRT</th>
<th>LRT</th>
<th>TRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

MULTI-PHASE ANALYSIS TO BE PERFORMED

PLANS: 1. RATIOS: 2. LOCAL

RTIOS: 1.45, 1.46, 1.47, 1.49, 1.46, 1.50, 1.51, 1.52, 1.53

SUB-Area RUNOFF COMPUTATION

INPUT INDEX PRECIPITATION AND RATIOS: INPUT SCS UNIT HYDROGRAPH PARAMETERS

<table>
<thead>
<tr>
<th>ISTAG</th>
<th>ICOMP</th>
<th>ICON</th>
<th>IFAH</th>
<th>IATP</th>
<th>JPLT</th>
<th>JRT</th>
<th>INAM</th>
<th>INAME</th>
<th>IAUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>30017</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDROG</th>
<th>IUNG</th>
<th>ITAPA</th>
<th>SNAP</th>
<th>TREDA</th>
<th>TREP</th>
<th>RATIO</th>
<th>ISONW</th>
<th>IREPF</th>
<th>LOCAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRECIP</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFRT</td>
<td>PHS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOSS</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRTF</td>
<td>STMR</td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

| CURV | W8 | = | 91.00 | WETNESS | = | 1.00 | EFFECT | CN | = | 91.00 |

UNIT HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>TAR</th>
<th>0.00</th>
<th>LAG</th>
<th>0.16</th>
</tr>
</thead>
</table>

RECESSION DATA

<table>
<thead>
<tr>
<th>STMT</th>
<th>5.00</th>
<th>DRCST</th>
<th>0.00</th>
<th>RTIDR</th>
<th>1.09</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>END-OF-PERIOD FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.00 Hr. PRD</td>
</tr>
<tr>
<td>Stage</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Flow</td>
</tr>
<tr>
<td>Capacity</td>
</tr>
<tr>
<td>Elevations</td>
</tr>
</tbody>
</table>

Peak Outflow 18:11 at Time: 21:42 hours
SUMMARY OF DAM SAFETY ANALYSIS

<table>
<thead>
<tr>
<th>PLAN</th>
<th>ELEVATION</th>
<th>INITIAL VALUE</th>
<th>SPILLWAY CREST</th>
<th>TOP OF DAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STORAGE</td>
<td>MAXIMUM</td>
<td>MAXIMUM</td>
<td>MAXIMUM</td>
</tr>
<tr>
<td></td>
<td>OUTFLOW</td>
<td>MAXIMUM</td>
<td>STORAGE</td>
<td>OUTFLOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAXIMUM</td>
<td>DEPTH</td>
<td>CFS</td>
</tr>
<tr>
<td>1</td>
<td>101.05</td>
<td>0.00</td>
<td>255.5</td>
<td>1142.5</td>
</tr>
<tr>
<td>43</td>
<td>102.07</td>
<td>0.00</td>
<td>256.5</td>
<td>1197.5</td>
</tr>
<tr>
<td>44</td>
<td>103.07</td>
<td>0.00</td>
<td>257.5</td>
<td>1252.5</td>
</tr>
<tr>
<td>45</td>
<td>104.07</td>
<td>0.00</td>
<td>258.5</td>
<td>1307.5</td>
</tr>
<tr>
<td>46</td>
<td>105.07</td>
<td>0.00</td>
<td>259.5</td>
<td>1362.5</td>
</tr>
<tr>
<td>47</td>
<td>106.07</td>
<td>0.00</td>
<td>260.5</td>
<td>1417.5</td>
</tr>
<tr>
<td>48</td>
<td>107.07</td>
<td>0.00</td>
<td>261.5</td>
<td>1472.5</td>
</tr>
<tr>
<td>49</td>
<td>108.07</td>
<td>0.00</td>
<td>262.5</td>
<td>1527.5</td>
</tr>
<tr>
<td>50</td>
<td>109.07</td>
<td>0.00</td>
<td>263.5</td>
<td>1582.5</td>
</tr>
<tr>
<td>51</td>
<td>110.07</td>
<td>0.00</td>
<td>264.5</td>
<td>1637.5</td>
</tr>
<tr>
<td>52</td>
<td>111.07</td>
<td>0.00</td>
<td>265.5</td>
<td>1692.5</td>
</tr>
<tr>
<td>53</td>
<td>112.07</td>
<td>0.00</td>
<td>266.5</td>
<td>1747.5</td>
</tr>
<tr>
<td>54</td>
<td>113.07</td>
<td>0.00</td>
<td>267.5</td>
<td>1802.5</td>
</tr>
<tr>
<td>55</td>
<td>114.07</td>
<td>0.00</td>
<td>268.5</td>
<td>1857.5</td>
</tr>
<tr>
<td>56</td>
<td>115.07</td>
<td>0.00</td>
<td>269.5</td>
<td>1912.5</td>
</tr>
<tr>
<td>57</td>
<td>116.07</td>
<td>0.00</td>
<td>270.5</td>
<td>1967.5</td>
</tr>
<tr>
<td>58</td>
<td>117.07</td>
<td>0.00</td>
<td>271.5</td>
<td>2022.5</td>
</tr>
<tr>
<td>59</td>
<td>118.07</td>
<td>0.00</td>
<td>272.5</td>
<td>2077.5</td>
</tr>
<tr>
<td>60</td>
<td>119.07</td>
<td>0.00</td>
<td>273.5</td>
<td>2132.5</td>
</tr>
<tr>
<td>61</td>
<td>120.07</td>
<td>0.00</td>
<td>274.5</td>
<td>2187.5</td>
</tr>
<tr>
<td>62</td>
<td>121.07</td>
<td>0.00</td>
<td>275.5</td>
<td>2242.5</td>
</tr>
<tr>
<td>63</td>
<td>122.07</td>
<td>0.00</td>
<td>276.5</td>
<td>2297.5</td>
</tr>
<tr>
<td>64</td>
<td>123.07</td>
<td>0.00</td>
<td>277.5</td>
<td>2352.5</td>
</tr>
<tr>
<td>65</td>
<td>124.07</td>
<td>0.00</td>
<td>278.5</td>
<td>2407.5</td>
</tr>
<tr>
<td>66</td>
<td>125.07</td>
<td>0.00</td>
<td>279.5</td>
<td>2462.5</td>
</tr>
<tr>
<td>67</td>
<td>126.07</td>
<td>0.00</td>
<td>280.5</td>
<td>2517.5</td>
</tr>
<tr>
<td>68</td>
<td>127.07</td>
<td>0.00</td>
<td>281.5</td>
<td>2572.5</td>
</tr>
<tr>
<td>69</td>
<td>128.07</td>
<td>0.00</td>
<td>282.5</td>
<td>2627.5</td>
</tr>
<tr>
<td>70</td>
<td>129.07</td>
<td>0.00</td>
<td>283.5</td>
<td>2682.5</td>
</tr>
<tr>
<td>71</td>
<td>130.07</td>
<td>0.00</td>
<td>284.5</td>
<td>2737.5</td>
</tr>
<tr>
<td>72</td>
<td>131.07</td>
<td>0.00</td>
<td>285.5</td>
<td>2792.5</td>
</tr>
<tr>
<td>73</td>
<td>132.07</td>
<td>0.00</td>
<td>286.5</td>
<td>2847.5</td>
</tr>
<tr>
<td>74</td>
<td>133.07</td>
<td>0.00</td>
<td>287.5</td>
<td>2902.5</td>
</tr>
<tr>
<td>75</td>
<td>134.07</td>
<td>0.00</td>
<td>288.5</td>
<td>2957.5</td>
</tr>
<tr>
<td>76</td>
<td>135.07</td>
<td>0.00</td>
<td>289.5</td>
<td>3012.5</td>
</tr>
<tr>
<td>77</td>
<td>136.07</td>
<td>0.00</td>
<td>290.5</td>
<td>3067.5</td>
</tr>
</tbody>
</table>