BIVARIATE CUMULANTS OF A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION

AUG 81 Y CHOU, D B OWEN

UNCLASSIFIED

TR-147

SOUTHERN METHODIST UNIV
DALLAS TEX DEPT OF STATISTICS

F/6 12/1

NDD014-76-C-0613

NL
BIVARIATE CUMULANTS OF A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION

by

Youn-Min Chou and D. B. Owen

Technical Report No. 147
Department of Statistics ONR Contract

August, 1981

Research sponsored by the Office of Naval Research
Contract N00014-76-0613

Reproduction in whole or in part is permitted
for any purpose of the United States Government

The document has been approved for
public release and sale; its distribution is unlimited

DEPARTMENT OF STATISTICS
Southern Methodist University
Dallas, Texas 75275
BIVARIATE CUMULANTS OF A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION

Youn-Min Chou

D. B. Owen

Division of Mathematics,
Computer Science and Systems Design
The University of Texas at San Antonio
San Antonio, Texas 78285

Department of Statistics
Southern Methodist University
Dallas, Texas 75275

SUMMARY

A method of obtaining the bivariate cumulants of any order is given for a truncated bivariate normal distribution where one of the variates is truncated at w_0. Some representative values are displayed in tables.

Some key words: Bivariate cumulant; Singly truncated bivariate normal distribution.

1. INTRODUCTION

Let the joint density of a standardized bivariate normal distribution be given by

$$
\phi(x,y;\rho) = (2\pi)^{-1}(1-\rho^2)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x^2 - 2\rho xy + y^2)/(1-\rho^2)\right)
$$

for $-\infty < x, y < +\infty$.

We will also use the notation

$$
G'(x) = (2\pi)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}x^2\right),
$$

and

$$
G(x) = \int_{-\infty}^{x} G'(t) dt
$$

for $-\infty < x < +\infty$,

for the standardized univariate density and cumulative, respectively.
Then if the X variate is truncated below \(w_0 \), the joint density of the singly truncated bivariate normal distribution (STBVND) is given by

\[
f(x,y;\rho) = \frac{\phi(x,y;\rho)}{G(-w_0)} \text{ for } w_0 < x < +\infty, -\infty < y < +\infty.
\]

Our purpose is to obtain the bivariate cumulants corresponding to \(f(x,y;\rho) \).

2. BIVARIATE CUMULANTS

Cook (1951) illustrated three methods of deriving bivariate cumulants. Cumulants of all orders of the bivariate distribution may be worked out by choosing the appropriate operation. She gave all the formulae for bivariate cumulants, \(\kappa_{ij} \), up to \(i + j = 6 \). As the order of the cumulants increases, the number of terms increases greatly. Johnson and Kotz (1972) gave bivariate cumulants only up to \(i + j = 2 \). Gajjar and Subrahmaniam (1978) obtained bivariate moments up to order 4. We give here a general formula for bivariate cumulants for any order.

The moment generating function of a STBVND is given by

\[
M(t_1,t_2) = [G(-w_0)]^{-1} G(t_1 + \rho t_2 - w_0) \exp\left\{ t_1^2/2 + 2\rho t_1 t_2 + t_2^2/2 \right\}.
\]

where \(t_1 \) corresponds to \(x \) and \(t_2 \) corresponds to \(y \). Since the cumulant generating function is \(\ln[M(t_1,t_2)] \), we have the following expression for the cumulant generating function \(K(t_1,t_2) \)

\[
K(t_1,t_2) = -\ln[G(-w_0)] + \ln[G(t_1 + \rho t_2 - w_0)] + t_1^2/2 + \rho t_1 t_2 + t_2^2/2
\]

and the cumulant \(\kappa_{ij} \) is obtained by taking the \(i \)-th partial derivative with respect to \(t_1 \) and the \(j \)-th partial derivative with respect to \(t_2 \) and setting \(t_1 = t_2 = 0 \).
We obtain

\[\kappa_{10} = \frac{G'(w_0)}{G(-w_0)} \]

\[\kappa_{01} = \rho \kappa_{10} \]

\[\kappa_{20} = w_0 \frac{G'(w_0)}{G(-w_0)} - \left[\frac{G'(w_0)}{G(-w_0)} \right]^2 + 1 \]

\[= w_0 \kappa_{10} - \kappa_{10}^2 + 1 \]

\[\kappa_{02} = \rho^2 (\kappa_{20} - 1) + 1 \]

and

\[\kappa_{ij} = \rho^j \frac{1}{\partial^i x^{i+j-1}} \left(\frac{G'(x)}{G(x)} \right) \quad \text{for } i + j \neq 2 \]

\[x = -w_0 \]

The expressions for \(\frac{\partial^i}{\partial x^i} \left(\frac{G'(x)}{G(x)} \right) \) become very cumbersome as is illustrated by the following.

\[\frac{\partial}{\partial x} \left(\frac{G'(x)}{G(x)} \right) = -x \left(\frac{G'(x)}{G(x)} \right) - \left(\frac{G'(x)}{G(x)} \right)^2, \]

\[\frac{\partial^2}{\partial x^2} \left(\frac{G'(x)}{G(x)} \right) = (x^2 - 1) \left(\frac{G'(x)}{G(x)} \right) + 3x \left(\frac{G'(x)}{G(x)} \right)^2 + 2 \left(\frac{G'(x)}{G(x)} \right)^3, \]

\[\frac{\partial^3}{\partial x^3} \left(\frac{G'(x)}{G(x)} \right) = (-x^3 + 3x) \left(\frac{G'(x)}{G(x)} \right) - (7x^2 - 4) \left(\frac{G'(x)}{G(x)} \right)^2 \]

\[- 12x \left(\frac{G'(x)}{G(x)} \right)^3 - 6 \left(\frac{G'(x)}{G(x)} \right)^4. \]

Hence, we look for a way to generate these derivatives recursively. We let \(g = g(x) = G'(x)/[G(x)] \) and \(h = 1/g = G(x)/[G'(x)] \) and note that the derivatives of \(h \) are easily obtained as

\[h' = 1 + xh \]

\[h^{(n)} = (n-1)h^{(n-2)} + xh^{(n-1)} \quad \text{for } n \geq 2, \text{ where } h^{(0)} = h. \]
Since $gh = 1$, an application of Liebniz's rule gives

\[\sum_{j=0}^{n} \binom{n}{j} g^{(n-j)} h(j) = 0 \]

or

\[g^{(n)} = -g \sum_{j=1}^{n} \binom{n}{j} g^{(n-j)} h(j). \]

Hence, we can obtain any derivative of $G'(x)/G(x)$ in terms of lower order derivatives and derivatives of h which are given by the recursion formula for $h^{(n)}$.

3. APPLICATION

In the problem of screening based on a singly truncated bivariate normal distribution, one needs to know the distribution of the sample correlation coefficient. This can be achieved by supplying the bivariate cumulants given above to Gayen's (1951) results.

4. TABLE

In the accompanying table we give values of κ_{10}, κ_{20}, κ_{30}, κ_{40} and κ_{50}. These cumulants are independent of ρ. However, the remaining cumulants up to order 5 may be obtained from these, using the following simple formulas which were obtained from the general formula for κ_{ij} given above:

- $\kappa_{01} = \rho \kappa_{10}$
- $\kappa_{02} = \rho^2 (\kappa_{20} - 1) + 1$
- $\kappa_{11} = \rho \kappa_{20}$
- $\kappa_{ij} = \rho^j \kappa_{i+j,0}$ for $i + j > 2$
Table 1

Bivariate Cumulants of a Singly Truncated Bivariate Normal Distribution

<table>
<thead>
<tr>
<th>(w_0)</th>
<th>(K_{10})</th>
<th>(K_{20})</th>
<th>(K_{30})</th>
<th>(K_{40})</th>
<th>(K_{50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.0</td>
<td>0.004438</td>
<td>0.986667</td>
<td>0.035680</td>
<td>-0.081046</td>
<td>0.139672</td>
</tr>
<tr>
<td>-2.8</td>
<td>0.007936</td>
<td>0.977717</td>
<td>0.054810</td>
<td>-0.110766</td>
<td>0.154800</td>
</tr>
<tr>
<td>-2.6</td>
<td>0.013647</td>
<td>0.964333</td>
<td>0.080062</td>
<td>-0.141556</td>
<td>0.148857</td>
</tr>
<tr>
<td>-2.4</td>
<td>0.022580</td>
<td>0.945299</td>
<td>0.111173</td>
<td>-0.168418</td>
<td>0.114778</td>
</tr>
<tr>
<td>-2.2</td>
<td>0.035975</td>
<td>0.919561</td>
<td>0.146778</td>
<td>-0.185535</td>
<td>0.052033</td>
</tr>
<tr>
<td>-2.0</td>
<td>0.055248</td>
<td>0.886452</td>
<td>0.184395</td>
<td>-0.187855</td>
<td>-0.031092</td>
</tr>
<tr>
<td>-1.8</td>
<td>0.081893</td>
<td>0.845887</td>
<td>0.220752</td>
<td>-0.172786</td>
<td>-0.118818</td>
</tr>
<tr>
<td>-1.6</td>
<td>0.117352</td>
<td>0.798466</td>
<td>0.252404</td>
<td>-0.141250</td>
<td>-0.192852</td>
</tr>
<tr>
<td>-1.4</td>
<td>0.162881</td>
<td>0.745436</td>
<td>0.276436</td>
<td>-0.097540</td>
<td>-0.238752</td>
</tr>
<tr>
<td>-1.2</td>
<td>0.219437</td>
<td>0.688524</td>
<td>0.291034</td>
<td>-0.048050</td>
<td>-0.250453</td>
</tr>
<tr>
<td>-1.0</td>
<td>0.287600</td>
<td>0.629686</td>
<td>0.295718</td>
<td>0.000547</td>
<td>-0.230966</td>
</tr>
<tr>
<td>-0.8</td>
<td>0.367562</td>
<td>0.570849</td>
<td>0.291238</td>
<td>0.042875</td>
<td>-0.189622</td>
</tr>
<tr>
<td>-0.6</td>
<td>0.459147</td>
<td>0.513695</td>
<td>0.279206</td>
<td>0.075707</td>
<td>-0.137889</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.561883</td>
<td>0.459534</td>
<td>0.261660</td>
<td>0.098016</td>
<td>-0.085824</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.675073</td>
<td>0.409261</td>
<td>0.240659</td>
<td>0.110477</td>
<td>-0.040233</td>
</tr>
<tr>
<td>0.0</td>
<td>0.797885</td>
<td>0.363380</td>
<td>0.218015</td>
<td>0.114769</td>
<td>-0.004433</td>
</tr>
<tr>
<td>0.2</td>
<td>0.929416</td>
<td>0.322069</td>
<td>0.195158</td>
<td>0.112946</td>
<td>0.020990</td>
</tr>
<tr>
<td>0.4</td>
<td>1.068757</td>
<td>0.285262</td>
<td>0.173110</td>
<td>0.106994</td>
<td>0.037137</td>
</tr>
<tr>
<td>0.6</td>
<td>1.215026</td>
<td>0.252727</td>
<td>0.152523</td>
<td>0.098587</td>
<td>0.045669</td>
</tr>
<tr>
<td>0.8</td>
<td>1.367403</td>
<td>0.224132</td>
<td>0.133752</td>
<td>0.089010</td>
<td>0.049170</td>
</tr>
<tr>
<td>1.0</td>
<td>1.525136</td>
<td>0.199096</td>
<td>0.116935</td>
<td>0.079165</td>
<td>0.048804</td>
</tr>
<tr>
<td>1.2</td>
<td>1.687553</td>
<td>0.177229</td>
<td>0.102061</td>
<td>0.069643</td>
<td>0.046173</td>
</tr>
<tr>
<td>1.4</td>
<td>1.854058</td>
<td>0.158150</td>
<td>0.089030</td>
<td>0.060786</td>
<td>0.042308</td>
</tr>
<tr>
<td>1.6</td>
<td>2.024130</td>
<td>0.141506</td>
<td>0.077687</td>
<td>0.052765</td>
<td>0.037920</td>
</tr>
<tr>
<td>1.8</td>
<td>2.197314</td>
<td>0.126976</td>
<td>0.067859</td>
<td>0.045637</td>
<td>0.033466</td>
</tr>
<tr>
<td>2.0</td>
<td>2.373217</td>
<td>0.114276</td>
<td>0.059367</td>
<td>0.039387</td>
<td>0.029222</td>
</tr>
<tr>
<td>2.2</td>
<td>2.551498</td>
<td>0.103155</td>
<td>0.052040</td>
<td>0.033956</td>
<td>0.025338</td>
</tr>
<tr>
<td>2.4</td>
<td>2.731863</td>
<td>0.093396</td>
<td>0.045722</td>
<td>0.029266</td>
<td>0.021881</td>
</tr>
<tr>
<td>2.6</td>
<td>2.914059</td>
<td>0.084813</td>
<td>0.040273</td>
<td>0.025234</td>
<td>0.018666</td>
</tr>
<tr>
<td>2.8</td>
<td>3.097868</td>
<td>0.077244</td>
<td>0.035568</td>
<td>0.021774</td>
<td>0.016280</td>
</tr>
<tr>
<td>3.0</td>
<td>3.283101</td>
<td>0.070551</td>
<td>0.031561</td>
<td>0.018808</td>
<td>0.014096</td>
</tr>
</tbody>
</table>
REFERENCES

REPORT DOCUMENTATION PAGE

1. **REPORT NUMBER**
 - F-147

2. **GOVT ACCESSION NO.**
 - AD-A104914

3. **RECIPIENT'S CATALOG NUMBER**
 - 147

4. **TITLE (and Subtitle)**
 - BIVARIATE CUMULANTS OF A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION

5. **AUTHORS**
 - Youn-Min Chou and D. B. Owen

6. **TECHNICAL REPORT NUMBER**
 - 147

7. **PERFORMING ORG. REPORT NUMBER**
 - 147

8. **CONTRACT OR GRANT NUMBER(S)**
 - N00014-76-C-0613

9. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 - Southern Methodist University
 - Dallas, Texas 75275

10. **PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS**
 - NR 042-389

11. **CONTROLLING OFFICE NAME AND ADDRESS**
 - Office of Naval Research
 - Arlington, VA 22217

12. **REPORT DATE**
 - Aug 1981

13. **NUMBER OF PAGES**
 - 6

14. **MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)**

15. **SECURITY CLASS. (of this report)**

16. **DISTRIBUTION STATEMENT (of this Report)**
 - This document has been approved for public release and sale; its distribution is unlimited. Reproduction in whole or in part is permitted for any purposes of the United States Government.

17. **DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)**

18. **SUPPLEMENTARY NOTES**

19. **KEY WORDS (Continue on reverse side if necessary and identify by block number)**
 - Bivariate cumulant; Singly truncated bivariate normal distribution.

20. **ABSTRACT (Continue on reverse side if necessary and identify by block number)**
 - A method of obtaining the bivariate cumulants of any order is given for a truncated bivariate normal distribution where one of the variates is truncated at w_0. Some representative values are displayed in tables.