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Executive Summary

The objective of this research was'to design and implement

model building methodology for simulating UIS. Army computer hardware/

software systems. Computer systems are characterized in terms of

file parameters, hardware specification, and software use of files.

These descriptions reside in a model library and are the building

blocks in the model synthesis process. The Information Processing

System Simulator (IPSS) language was used to encode these descriptions

and to represent the sequence of computer activities for application

program processing (e.g., job scheduling, buffer management, channel

program).

Two computer systems were compared using this methodology.,

Simulation models were written for an IBM 360 Model 30 computer and

a Honeywell Level 6 minicomputer. A subset of the U.S, Army Standard

Installation/Division Personnel System (SIDPERS) provided a common

loading for both systems. Data was collected on an operational IBM

360/30 and the IPSS model was validated. The 9tatistical results,

derived from IPSS Iindicate resource utilization (for both hardware and

software resources), elapsed time, and queueing. Our results project

that an elght hour execution of SIDPERS on the IBM 360/30 would execute

in approximately two and one-hal~fj.,hours on the Honeywell machine. Models

of several hardware variations were prepared in order to demonstrate

responsiveness capabilities of the methodblo-lY A manpower anal, '

provided for guidance in estimating future work. L6
"~~~ H _,r- ' . . - ,'
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1. INTRODUCTION

This report is in response to the Laboratory Research Coope. ative

Program Statement of Work TCN: 79-245, which required the services of

three research scientists on a short-term project to develop simulation

models of computer systems. The objective of this research was to

produce a model building methodology using the Information Processing

System Simulator (IPSS) to develop a ranking and evaluation procedure

for computer hardware/software systems. Five specific tasks were

identified:

1. Using IPSS, specify, design, build, test, validate, verify

and document a model of an existing Army computer hardware/

software system (such as the U.S. Army Base Operations

System (BASOPS) implemented on IBM 360/40 equipment).

2. Using IPSS, specify, design, build, test, validate, verify

and document a model of an advanced Army computer hardware/

software system (such as aminicomputer data base oriented

system).

3. Specify and collect data needed to build the models of

computer hardware/software systems specified in I and 2

above.

.4. Develop measures to allow for the ranking and evaluation of

computer hardware/software systems. Factors should include,

but not be limited ro, growth rate, workload, software,

variance in configurations, and new applications.

5. Arrange for and provide computer support services, to include

computer time, disk storage, and IPSS software support.
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This final report to AIRMICS reflects the background activity,

purpose, procedures, documentation, and sunmmarv of work performed under

each of the above tasks.

Tasks 1, 2, 3 and 5 have been completed in tull; we could not

complete task 4 due to lack of time. As the Army is considering

replacement of certain of its computer systems, we did consider,

relative to task 4, measures for evaluating computer systems when the

major factor is variance in hardware configurations.

1.1 SUMMARY OF RESEARCH ACTIVITIES

The primary objective of this project was accomplished by

designing, building, testing, verifying, and validating two basic

models of Army computer systems. The first model was of an existing

Army computer system, namely, an IBM 360 Model 30 with a selected

subset of the Standard Installation Division Personnel System (SIDPERS)

basic cylce for loading. This model provided a frame of reference

and was validated. The second model was of an advanced computer system

(one not currently operational) that was considered to be typical of

potential Army purchases. This system was a Honeywell Series 60 Level

6 Model 47 minicomputer with the same SIDPERS basic cycle for loading.

Several variations on the basic hardware architecture were modeled and

analyzed.

These models were compared against the same workload, the first

four jobsteps of SIDPERS. The results of such comparisons allow for

a relative ranking of the various systems. Such a ranking is the first

step towards determining what computer will meet the needs of the location
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being examined. The [PSS approach is unique in that almost all

currently available simulation techniques deal only with representative

batc C oriented systems while I'SS has special facilities which will

allow the modeling of advanced computer features such as data bases,

networks, and interactivity.

Of primary concern is the acceptance of the modeling methodology

within the Army. Thus we have concentrated on validating a model of

a simple and typical hardware/software system. The underlying

assumption is that credibility will transfer to models of more

advanced systems given a well validated basic model.

At the start of the project, AIRMICS personnel provided us

assistance in selecting the computer systems that we were to model.

After a preliminary investigation of the type of processing SIDPERS

performs and the hardware configurations, we proceeded as follows:

1. Developed the IPSS Application Processing Svstem (IAPS)

methodology for representing application systems processing.

2. Implemented the methodology in IPSS.

3. Collected data on four SIDPERS job steps and the two computer

hardware configurations.

4. Coded the hardware and software descriptions for the above

in IPSS.

Ver ii i ,d th,, lI'SS mod,1,s.

0. Validato tl mod ,l ot the IBM 360/30.

/. efrfkired 'XptW llk'mten :; iu jg alternate hardware configurations.

t { ~Anal[~ tt th1,, il:t
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1. 2 SUMARY OF RESULTS

"['his section summarizes tile major contribut ion of our reiarch

p l t. Iihe.r resu s .re discu.; ed in detai ii the :,'ctimm

r' ' -L'11k'('d .

ilr:;t, we JW-moll,-trated tile ;1 1 'propr jatetiess of us in,-g [P55 For

riodclin typical U.S. Army computer hardware/software systems, and

showed that the simulation technique can provide data useful for the

comparison of alternative computer systems. To ease the task of

modeling in IPSS, we provided a high level modeling approach through

our IPSS Application Processing System (lAPS) methodology which is

able to accommodate any level of detail desired by the simulation

user. (See Chapter 3)

In conjunction with IAPS, we establ ished a basic library of

model components which allows a user to easily and quickly build a

model of a large number of design alternatives. This library can

be modified and the number of its members increased so as to enhance

future Army modeling needs. The library as it currently exists is

described in Appendix E.

We identified the types of verification and validation data needed

and their sources within the U.S. Army Computer Systems Command. (See

Chapter 4) The ready availability of needed data would greatly shorten

Lht Lime needed to complete any future model ing efforts.

We demonstrated the feasibility of the TAPS methodology, and the

usefulness of the data collected by modeling and comparing several

design alternatives for the Army CS hardware/software system. This
3
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effort included validation of a model of an ,xisting system, development

of models of nine alternative hardware configurations, and a comparison

of the different systems. (St, Section 5.2 for the hardware alternatives,

Sections 4 and 5 for the SIDPERS model, and Section 7 for the simulation

results.) In addition, we have given a manpower analysis of the current

project and several possible future projects. (See Section 8.)

We identified appropriate measures for the comparison and ranking

of production, batch oriented Army computer systems. Those measures

which can be es,,timated via .;imulat ion, and which arc. collected :ut1omatically

by ISS, include job elapsed time, resource utilization, and queuing

statistics. (See Section 7.)

All in all, we believe that the complete IAPS simulation methodology

is a feasible and potentially useful approach in the Army's evaluation

and comparison of alternative computer systems.

The remainder of this report is organized as follows. In Section 2,

we discuss the background to the project and the motivation for our

modeling approach. The methodology for modeling and evaluating computer

hardware/software ,;vstems is pre.;entcd in Section 3. Sections 2, 4, and

pr;cnt the ;pecific probl ems of niodeling SIld'IPR and tle ;c lccLed

computer hardware architectures. Section 6 identifies the structure

of our HPSS model while Section 7 presents the results of our modeling

experiments. A summary of the time required for various modeling

activities is given in Section 8. We finish with a summary, recommendations

and conclusions in Section 9. A number of Appendices contain auxiliary

material.



2 BACKGROUND AND APPRoACH TO COMPUT'R EVA!IPATION

2 I BACKGROUN!) TO TIHF PRO.!ECT

The United States Army is about to enter a period in which

several large purchases of computer hardware,/softwa re systems are

to m hlc lot \;Inpl * ',ie plichast. could involve the rep l.l-ementtt

III over t 40 ctompu I ter install:tions. Choosing one machine to work

at over 40 places would be complex enough, but in this case

theoreticallv there could be over 40 different machines chosen.

A computer vendor can bid on any number of sites with any combination

of equipment. The workload profile at the locations for the machines

is radically different. A minicomputer might work very well at

one place while another must have a large main-frame.

Currently the sites have IBM 360/30's, IBM 360/40's, and

TIVI 360/50's, some with single peripherals, some with dual peripherals,

some running the DOS operating system (or the enhanced DOS system

DOS-E) and some with OS. A major portion of the software is consistent

from location to location, but the volume of transactions is dras-

tically different. All current work is batch oriented.

The Army desires to purchase new equipment to replace these

machines. They want to add interactive capabilities while retaining

batch processing for some applications. One requirement of the new

comptiters is that they process the current work in one eight hour

shift five days a week. (Currently most sites are running 24 hours

a day five to seven days a week).
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With recent technological advances, selecting even one computer

is almost beyond human capability if one is to easily and fairly

compare all of the machines that vendors would contend can do a

given job. Current methods, such as benchmarking, fall short of

solving the problem. Simulation appears to be a very attractive

approach because of its flexibility and power in representing

complex activities. Thus, this project requires the use of discrete

event digital simulation to assist in the selection and evaluation

of computer hardware/software systems.

*This project specifically rtquired the use of the Information

£ Processing System Simulator (IPSS) to rank and evaluate computer

hardware/software systems. IPSS is a special-purpose discrete

event digital simulator system which was specifically designed to

facilitate the investigation of the behavior of complex computer-

based information processing systems (DEL77, DEL78a).

One significant feature of IPSS is its ability to characterize

a Computer's 1/0 subsystem. The IPSS language conta i, ca rich set

of instructions for describing control units, channels, disk and

tape drives, and unit record equipment. The IPSS "service" concept

permits a flexible characterization of the acquisition, use and

release of the secondary storage "facilities".

These features are important because of the Army's predominately

I/O oriented computer systems. Thus, a detailed modeling of the

1/O subsystem should be of great potential value in identifying

1oll IL'm cks .1n( ef fects oif h.rdware/softw;are Changes. IPSS prov des

[li' li-c itv toI deta3iled modeling of this computer subsystem and



also automatically collects elapsed time, resource utiiiz;,tion and

queueing statistics for the user.

Although IPSS is a prototype system, it proved to be an able

tool for characterizing salient features of SIDPERS application as

well as the hardware characteristics of the IBM Model 30 and the

Honeywell Level 6 minicomputer. An overview of the IPSS mothodology

is pirovidtd ii Appendi ; A.

. AP I'I 'RACl ItO MODEI ,NC AND VALIDl)ATION

The completion of the specific research tasks outlined in

Section I required the resolution of two basic issues, namely:

1. How to represent application program software in a

simulation model, and

2. What data was available within the U.S. Army for

validation of simulation models of computer hardware/

software systems.

Sinico our resolution of these tasks was both time consuming and

crite ial to the rcsuilts of the project, an ove rvlew of our approach

is given here.

The first task, how to model computer software, can be rephrased

as: What is the best approach for modeling large software systems by

using IPSS. (IPSS has considerable flexibility and power in represen-

ting computer hardwJare, so that aspect of computer system modeling

was not a problem). Software systems such as SIDPERS contain many

large COBOL programs. We recognized that a detailed statement-by-state-

ment or even paragraph-by-paragraph description of the processing logic
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would be far too time consuming for this project. IPSS is, however,

capable of representing processing logic at this level of detail and

this approach may prove to be valuable for some programs, such as

operating system routines, or for more refined results. Even if this

approach were used, only on. or two simple programs could be character-

ized in the time allowed, giving little insight into the processing

characteristics of a large system. Clearly, we were challenged to

produce a faster model ing approach which would both retain a useful

level of accuracy of the detailed approach and provide flexibility

for the modeler.

SIDPERS, the software system selected, has been modeled before

using the software simulation package CASE (ADL75, SWE76). In

addition, an IPSS model of several SIDPERS programs was part of an

IPSS SIDPERS/IDMS simulation study (BR077, DEL78), and a DIMIUI model

also simulated these programs (SCH77). The methods for representing

software processing in these models were studied hut not adopted

in our Imtt hodology . The CASE approach represents files and file

processing in an easily-understood and consistent manner, but overall

was not judged to be a suitable methodology because of its lack of

flexibility (for an evaluation of CASE versus IPSS see ROS78). The

previous IPSS and DIMUI approaches wure rejected since they modeled

interactive SII)PERS programs by representing every call to a DBMS

I in . 'he h t ,h SI OPERS p rogranis that we mode led reques ted I /0

It, 1 auv (vpes ol Iiles in the absence of a DBMS).

Our ipproach was to detail l/0 processing on a file by file

basis, an d, in less detail, to characterize program CPU loading.

This is consistent with the IPSS methodology and also allows the



i'otel'r freedom to change the procedural structure of the mode] Oilr

me~t.110(101 ogy , called ki As (1IPSs Application Ilroct-ss inr; SN'stm tills

reported in Section 3.

The second task we' faced was the selection of a hardware/software

S V.St OW1 f Or upi i chl i I i dl.it iIoin t.i ta c\xist ed.l V; I i (l.1 t ion is hli p rocs-s;

40 Jet u rli in i n!, t1 dieo:, ret' ot va I i d i t (1 1i s simu I at i oil iiodt' I .A vii I i d

mo thIt I is on li WI i c II in t',I p, I I k' ot attCUriA I k I S I me lr illg, IlWINI itt 1I) ild

rc)p 1'SCInt i i :1 SVS t 0111i. tO V.1 I i ti.1t iOil p'roceSS pr Iocetts to 0 bui Id i

acc ept able levelI of con f idence that anl inference about a siulIated

p~r'ce~ss is a correct or valid inference for the actual process. Valil-

at ion of a model is performed by a comparison of the recorded observations

(if the real process with simulator outputs from a verified model, therebyv

establishing the versimilitude of tihe model and the real world process

(MLH7bo, MIlH76b). Seldom, if ever, will validation result in a "proof"

I lid1 (t k iitool is ;I coiriect or ''t rue'" rejirtsent at iln of the rti I poc-

(VAN6) . Vti if it';i( I ion, onl thle t't her hinil is lit coii i ison of ( lie

ile I 's, resptonses WithI ltise, ant ic ipatc (Ji I the miodlI's striuctunre were

p ro ,rammiine as i ntentdetd (MI H lbb). Thlbis means test i ng thle outputs of the'

random number generators as well as checking that the computer program

correctly executes thr logic desired by the modeler.

With assistance of USACSC personnel we decided, early in the project,

to model a subset of SIDPERS executing on the IBM Model 30 utilized at

the Division of the Army's organization and to compare the results

t),,;iinst a Honeywell Level 6i Model 47 minicomputer using the same STDPERS

work 1 ti;id. We alIso tdet ermined thiat GRASP step acc ount ing dati was thet

modelIs. Detailed val idatilon of n1 SII)PERS _job step requ ires tbe Follow ing:
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1. GRASP step accounting data

1. The operator consol,'s log (for the Job step)

3. SYSLIST (for the job step)

4. Listing of specified data sets

5. VTOC listing of all disk packs which were on-line during

the job step

6. Researchers present in the machine room during execution

of the job step.

Since GRASP step accounting data was not available on a 360/30

but was ava ilable on a 360/50, we considered the following alternatives:

A. Model the 360/50, and validate the model

B. Model the 360/30, which couldn't be validated in detail

C. Do both A and B

The first alternative was rejected since it would not permit the

comparison desired by the Army between the IBM and Honeywell computers.

The advantage to alternative A was that we would produce a model which

could be validated in detail, thus demonstrating the effectiveness of

our methodology. We did not have the time to produce three models so

alternative C was also rejected. Instead, we concentrated on getting as

much data as possiblt from a S DI'EIRS cycle running on a 360/30.

Section 4 details our data collection activities for the SIDPERS

Basic Cycle. The next section presents ;ir approach to modeling hard-

ware/software systems for performance evaluation, ranking and selection.



I. TIlE ItSS APPLICAIl ON PROCESSING SYSTEM METHODOLOCY (lAPS)

3.1 THE [APS MODELING PERSPECTIVE

The problem addressed in this reserach is tile design and

implementation of a model building methodolgy to assist in the

evaluation of computer hardware/software systems. The goal is a

methodol ogy with the widest possible applicabilitv to the user

commun it v . Therefore, tile IPSS design goals havc been adopted.

Ilame I y:

I. B readth of Applicability -- the ability to model the

behavior of contemporary and forseeable system

architectures and operating environments:

2. Functional View of Systems -- the ability to identify and

characterize system components and activities based on

their function, independent of a particular architecture

or environment;

1. Top Down, Moul-rMosel Synthesis -- tihe i I it v to model

to .i It-ve of detail commensur;ite with research object ijes;

4. E.xplindable-Struc'ture -- the capability to incorporate new,

higher level descriptive facilities and performance measures

into the methodology and simulation system: and

5. Flexibility of Use -- the ability to be used by a widk.

spectrum of modelers from the experienced system analyst/

designer and researcher to the pr. ctitioner and student.
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Because of the wide range of knowledge required for modeling

computer systems, the lAPS methodology reported in this research

dist inguishes four distinct model ing fiticLions and provides fac il ities

and tools for each. These funcLions partition the modeling and evalin-

ation of computer hardware/software systems into a set of activities

to be performed by:

1. the User,

2. the Modeler,

3. the Simulator, and

4. the IPSS Analyst.

These activities are summarized in Figure 3-1. As shown, the Modeler

is responsible for the creation and maintenance of model libraries,

the User for the selection of library memb'rs to synthesize a model,

the Simulator and IPSS Analyst for maintaining IPSS source code and

execution facilities. We now define these job functions in more

detail.

User - that person or persons whose responsibility is the evaluation

of computer hardware/software systems. The user conducts

modeling experiments by selecting pre-defined model components

from a model library, and selects execution options. The user

val idates the model , inalYzes tie simu]lat ion results and

11ve It It' [ll i' the eqIit'd t'Vi 1th.t i oii.

I.' .- 1i.1I 11': ;oul 01" pt' l loo - wio.,;,, 11 r'i 1 , 'ol '. I-t1 i S w I lilt'

applicition system to be modeled and with the hardware environ-

ment on which it will execute. The modeler builds and maintains

-k , -r= .... .
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the model library of software and hardware components. The

modeler is not concerned with the structure or execution of the

IPSS model, but is concerned with model verification.

Simulator - that person or persons whose primary concern is with the

structure and execution of the TAPS model. The Simulator codes

user-required special-purpose IPSS routines, incorporates these

routines into the model, and verifies their correctness.

IPSS Analyst - that person or persons who have a detailed knowledge

of the inner workings of the IPSS simulator. This includes

the source language translation process, the simulation driver,

facility definitions. and tables.

User level activities were established so that model synthesis

and experimentation could be easily accomplished. Hardware charac-

terization and workloads can he changed by the User without any change

to the IPSS model itself. This approach assumes a library of computer

system characterizations. Our research is the first step in providing

an IPSS system library for the User.

The role of the User is distinct from that of the Modeler,

Simulator and ll'SS Analyst; the major distinction is that the User

produces no IPSS source code or workload characterizations. The

Modeler and Simulator may be the same person or persons. They must

coordinate their activities so that the resulting simulation can be

validated. For example, the Modeler describes computer hardware using

II'SS statements, but it is the Simulator who describes the sequences

of the IPSS simulator's acquisition, use and release of this hardware.



The Modeler, Simulator and IPSS Analyst each share a common set

of modeling activities. As summarized in Table 3-1, these activities

are: Hardware characterization, software description, sequence of

activit ies, data dosOr i pt ion and model verifiCat ion. As shown i, the

T.111c, the Modo Lr', role, is indepndtlt 0I ,IIIv 'rocL',lliic orititd ,odc.

lho Simulator has tlo r,,sponsihilitv lor maintaining the IAP'. sourc'

code, and relics on the IPSS Analvst for special functions or

r cil i rtmlt s.

The remainder of this section is organized as follows. Section

3.2 outlines the User activities, Section 3.3 presents the Modeler

view, Section 3.4 discusses the Simulator view and relates it to the

Modeler. The IPSS Analyst function is presented in Section 3.5.

3.2 THE lAPS MODELING AePROACH: THE USER'S ROLE

The user is defined to be that person or persons with overall

computer system evaluation responsibility for a given project. As shown

in Figure 3-2, the user accepts and clarifies a set of evaluation

requirements and produces evaluation documentation through:

o interaction with the Modeler function,

o interactive model synthesis,

o validation of model results, and

o ;ai;lysis and evaluation of computer hardware/software systems.

The User interacts with the Modeler in order to ensure that the desired

Ilde, I i iIrv me'mib ens arc present for the modcl s,,,nt csis phise. Tho

Mot It I V b relq i I r od to Ichange' the 10_xiSt l I Ibrary members , It I

now onues, or to -]dd calpIbilities to the IPSS model itself (such as DBMS

1,rocessughi) in order o sat isfy the User's modeling requirements.
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Requirements

Results

SUser

Requirements Interactive Validation,
for the Model Analysis,
Modeler Synthesis Evaluation

Fire 3-2. User's Role in the LAPS Methodology
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The next step in the User process is interactive model synthesis.

This produces an execution-ready model through the selection of

a priori defined model components from the model library. This

process is illustrated in Figure 3-3. We have implemented interactive

model synthesis, and used it to produce the results reported in this

research. An example of the User-computer interaction sequence is

presented in Figure 3-4.

We designed, but did not implement (due to lack of time) a more

elaborate model synthesis procedure which would allow the user to

m.dify some of the existing library members in order to tailor them

for specific processing needs. As shown in Figure 3-5, we envision

that the softuare processing and data base description members of the

model library could be so tailored. This would require more user

interaction than now required but would enhance flexibility. This

approach is further discussed in Section 9.

3.3 THE TAPS MODELER VIEW OF COMPUTER HARDWARE/SOFTWARE SYSTEMS

Figure 3-6 shows that the Modeler's responsibilities include

the prt'paration of data for input to the model, and the verification

of resultant simulation statistics. Input data preparation involves

th tol lowing:

1. Description ol the system hardwaire,

2. Description of the applicaiton processing workload

3. Description of the characteristics of the data files used

by the application, and

4. Representing these descriptions according to the TAPS method-

ology specifications and storing them in the IAPS model library.
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Figure 3-4. Example of Interactive Model Synthesis
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An overview of these Modeler activities is now presented. Details

are found in the Appendices as noted in the text.

Description of System Hardware

The Modeler is responsible for identifying the basic types of

computer devices for the system being modeled. As shown in 'l'ab] 3-?,

the devices primarilIv reflect the computer's mainfrmne and seconda rv

.Stor:lc subsystem. For each device identified, the modeler provides

a detailed functional specification which indicates capacity, speed,

and special features. A list of the type of data collected for

disk, drum, tape, and unit record devices is given in Table 3-3.

This type of data is usually readily available in vendor's technical

system reference manuals. The Modeler then encodes this data into IPSS

statements in a straight-forward way. Examples of these IPSS statements

.ire Ifo1d in Appendix B.

scriptIon of A ication Processing Characteristics

The application workload and its data files are characterized by

two types of tables which are prepared by the modeler. These tables

are called the Application File Table (AF Table), and the Application

Processing Table (AP Table). The Application File Table gives

detailed information about the files being processed from the application

program point of view. The Application Processing Table gives, in

outline fashion, a step by step description of application processing.

The ApplicationFile Table (AF Table)

The AF Table describes the characteristics of files as known by

the application program. Each entry in this table describes a single

file and contains: a file-identifier, the logical record length and
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Table 3-2. Modeler Checklist for Computer System Hardware

Device Type

CPU

Main memory, cache

Channels (multiplexor, selector)

Disk Units, Disk Controller

Tape Units, Tape Controller

Drum Units, Drum Controller

Operator's Console

Line Printer

Card Reader

Card Punch
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Table 3-3. IPSS Data Required to Model I/O Devices

Device Type Data

Disk, Drum number of packs per control unit

number of cylinders per pack

number of tracks per cylinder

maximum track capacity

maximum block size allowable for the device

rotational speed

data transfer rate

cylinder access times

T ae number of tape units per control unit

tape recording density

tape speed (reading/writing)

inter-block gap size

maximum block size recorded on the tape

tape start-stop time

forward erase length

rewind rate

Unit Record maximum block size
(Card reader, transmission mode
punch,
operator's transmission rate

console,etc.)
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block size, and the number of records processed. An example is

given in Figure 3-7. This example shows two files, one an unblocked

card-image file of 554 records which is identified through the comment

as SIDPERS file COOAAC. The other file, CICAAC, contains 987 506-byte

records. Note that the block size specified in the AF Table is the

unit of I/0 for the application program and need not represent the

secondary storage block size.

The Application Processing Table (AP Table)

The AP Table mimics the I/O processing done by an application

program. Each table entry consists of two records, first a processing

specification record, followed immediately by a processing definition

record.

The specification record identifies the type of processing,

(D for any delay due to the operator, I for input, P for CPU activity,

and 0 for output). The "D" definition record quantifies the delay;

the "I" and "0" definition records specify: the file, a concurrency

index, random or sequential processing, and percentage of file processed;

and the "P" definition record specifies the type of activity engaged in

by the application program, such as EDIT, SORT, or REPORT.

Figure 3-8 depicts a typical example of a job step (for example,

SIIOPERS). First, there is a delay of 10 to 15 seconds due to operator

re'sponses to Ctonsole messiages, or tape mounts. Then all of file 01, and

50% of file 10 are read concurrently, file 01 sequentially and file 10

randomly; one of the files is edited, and the output is sent to file 04.

Finally, 5% of file 10 is rewritten after all other processing is

complete. Note that the order of application record processing is



F i e .ReccI Block #I Commnents
id Size Records

01 80 80 554 Card Image Input - COOAAC

10 506 506 987 1Fdit Table File - CICAAC

Figure 3-7. An Example of the Application File Table
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* A Typical Jobstep in SIDPERS

D
1000. 15000. 1.0 TAPE MOUNT

COOAAC

01 X S 100.

CICAAC
10 X R 50.

P CPU PROCESSING
X EDIT

0 B IAAAC
.04 X S 100.

ClCAAC
10 Y R 10.

Figure 3-8. An Example of the Application Processing Table
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determined by the concurrency indicator (the "X" and "Y" in Figure 3-8).

The "X" indicates that files 01, 10 and 04 are processed concurrently,

(i.e., read one record of file 01, one of file 10, write one to filL'

04, then repeat until alH three files are exhaust ed). TI ' "N' of Fiu1rt.

3-8 indicates that file 10 is written after the cnjL etc processing

of files 01, 10, and 04. (Any alphanumeric characters, except blank,

may be used as a con<arrency indicator). As also shown in this figure,

comments may appear on the right hand side of any data card, and on

any "comment" card (which is designated by an asterick in the first

column).

Description of Database Characteristics

The term database is used here to mean the data files managed by

the hardware system's data files. Those files required by an application

must be characterized by the Modeler and the results placed in the System

File Table.

In this table, each record gives secondary storage information

about a single file. Each file is assigned a volume type (disk, tape,

or console) and a volume number. The logical record length, blocksize,

and file size (number of logical records) are recorded. Disk file

information includes the extent type (index (I), primary (P), or

overflow (0)) the percentage of records on the primary extent (%PE),

the number of secondary extents (#SE). If the file placement is known,

it is given in terms of low and high cylinder and track addresses.

(If unknown for disk files (U), the file is placed randomly on the

volume during lAPS simulation). Finally a comment field is provided

as an aid to the modeler. Provision is made to define VTOC files (V),
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sort work files, and messages to and from an operator's console.

For detailed formatting, information, see Appendix F.

The examples in !-1 are typical. System file 01 has 554 unblocked

records with an LRECL of 80. It resides on tape unit TOI with an IRECL

and blocksize of 80, and an "unknown" placement (U), which for tape

files means that the file begins at the beginning of the reel. Note

that the modeler has used conments to identify the file as COOAAC -card

image input. User file 10 (the third line of Table 3-9), is also

unblocked with an LRECL of 506; it has 987 records in its prime extent (P),

which resides on disk unit D03, with allocated space from cylinder 153

track 0, to cylinder 170, track 19. This file is an ISAM file and thus

has an index extent which resides on disk unit D02, giving among other

things, its known placement.

3.4 THE lAPS SIMULATOR VIEW

The IPSS Simulator function requires a person or persons who

are knowledgeable programmers and analysts of the IPSS language and

execution facilities. The basic simulator role is to augment the IPSS

model structure we have provided in order to be responsive to changing

Modeler requirements.

A Simulator overview of the TAPS methodology is given in Figure

3-10. This figure shows the interaction among three components of IPSS:

Th, Exogeniuns Event Stream Component. The IPSS Define Model Component

is represented by the Equates between the two latter components.

We have completed the simulator function for the present TAPS

methodology. A large class of computer systems can be simulated and
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Exogenous Event Stream Component

Event 
I 

Event 
2

System Resources Component

START
Service

INIT

Service

APPL Procedure

Service

Appi. EXGP

File Service Application

Table I Processing

RSUF Table

Procedure INTF
Service

Systea

File - o.FI4Ap
Table Service IPSS

HardwareDescription

BUFNR

Service

i
GARDU -' CHPGM
Service Service

Databae Equ te E te Eq ate

[IPSS Database Description

Figure 3-10. Overview of the Service Hierarchy in'the IPSS Model -

The Simulator's View of the IAPS Methodology

EA-
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evaluated without any further Simulator activity. The Simulator is

required if a svsttem outside the scope of the present IAPS is to be

mode led. Examples of such systems are: Database management systems,

I lepinc'sa iii',. d ti ~t ib L'd ,n;vst'ms a1nd 'p"t il' ,vn;tvm m .nk Ilil;I.l

i. S i THE's ANALY,:I VIKEW OF COPVT :FI, SYSI:.'S

The IPSS Analyst is a specialist in the IPSS Modeling and

Execution facilities (see Appendix A). The IPSS Analyst view of the

simulation process is represented in Figure 3-11. This role requires

a knowledge of the details of the IPSS translation process, the simulation

nucleus, and facility definition tables. The need for the IPSS Analyst

will be further reduced over time as IPSS evolves into a more full-y

developed product. We required the type of knowledge represented by

the IPSS Analyst role only a few times during the course of our project.

Examples of what we required (and easily ascertained through source

listings) were IPSS statement options, random number generation

algorithms, and facility table value offsets.
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USER CO.-M4,NICATION ARLA

Stmulaton NucleusI

Service j Procedure
Entity Facility

Interface Interface

D rl

S F F C Procedure. Used

E A F L as Faraeter
- C I A v a In - -

v I N t ion-Irncedurali
I L I A Faclit,

-- C I T T Definitions

E T I IK-
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SSS
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Ftgure 3-11. IPSS Program Control and Data Interfaces - The IPSS

Analyst View of IPSS (DEI,78a)
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4. MODELING SIDPERS USING IAPS

4.1 SELECTION OF A SIDPERS SUBSET

SIDPERS is a standard, automated integrated personnel system

designed to provide personnel information systems support at division,

i1stallation, brigade, battalion and unit levels (SID76). SDPERS

pit'lornm. tour ma ioi Inrtion' i support of Act ive Army pirsonut' I

and organizations:

1. Strength accounting,

2. Organization and personnel recordkeeping,

3. Information exchange with other automated systems, and

4. Command and staff reporting.

A SIDPERS activity is designed to support a data base of computer

files for up to 50,000 personnel and 1,000 organizations.

SIDPERS software consists of five DOS-E jobs:

o AACROI - Labels and Assignments

o AACRO2 - SIDPERS Basic Cycle

o AACRO3 - SIRCUS

o AACRO4 - SIDPERS Back-up Cycle

o AACRO5 - SIDPERS Recovery Cycle

The focus of our project was on the SIDPERS Basic Cycle,

Job AACRO2. This job consists of 19 job steps which proceed from

editing functions, through file update, to reporting. Since the project

dtrat ion and objectives did not permit the modeling and evaluation of

all of SIDPERS, a sutset of programs was selected with the assistance

ol USACSC Quality Assurance personnel (WIl79).
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T|he ec dit iIg prograims, two oJ Lle m1lstl I i It' uipdite prOgrlis aild

one report preparation program were selected from all the programs in

the STDPERS basic cycle. Each editing program was a single job step

and thus some validation data could be obtained. The selected update

and report preparation programs were, however, single phases loaded

and executed dynamically as part of a larger job step. While the

modeling of the logic of these programs was not a problem, obtaining

validation data for these phases was not possible. In addition, the

modeling of the entire job step in which these phases were located

woul d be almost ;s dlft icullt , aga ini, for I;ick of ;idequ it vailidition

data. Thus, the selected update and report preparation programs were

not modeled.

The programs we modeled represent transaction classification,

sorting, and validity editing; and incorporate concurrent direct and

sequential access to disk files and sequential access to tape files.

These programs are:

PIAAACA - transaction classification and scheduling,

PIBAACS - transaction sort,

PICAAC - t ransactioll validity edit ing, and

P I(AAACS - sort and update "u,ue" production.

For convenience and readability, these programs will be referred

to as PIA, P1I1, PIC, and PIG, respectively.

4.2 MODELING THE SIDPERS SUBSET

0Oicf this sibel of" tho e SII)PERS prograums was identif-ied, we

olt ained cur rent COlOl, soorcco listings, the DOS version of the SIDPERS



Oper It iots and -I tu I ing 'I. III 1 I (. )/t)/ ), ti til si I)I'.I{KS i.ic C 't 0c

1CI. I isting. Wk. ,in v.ed tiht s sources in order to obt Iin basic f ilc

data which is constant to anv S I)PERS processing tyc le. Tho type ot

dit a we . btiined wt.re I il, names, type of file (c.g., ISAY, Sequential),

lise ot ic (hiput , otiput, both input ind output), rccord pro~os.in'

mode (soeuntiii l or r.andor). The details of our findings arc um r

N,.. , w,- dot, rmi r d th.it tilic dat.I wt' requi red for v~i i.t i ' i ,

nw,,, I ,I IMlI'l K", w.ts vii Ii t' I oil tofo r sources , 1a,'1e lv:

SYSI,!S'[,

3. Operator Console Log, and

4. 1) ITTO (t I ity.

I'lic type of data provided by each of these sources is summarized in

Table 4-1.

We visited the Ft. Stewart Division Data Center on August 2nd and

ird, I979, nd obsv, rvt-d tilt, computer oper.ition duri i . SIIM'FlRS I.isi,'

Cyclh i)roce silu . Wc obto(ned coinpiltor list ings Ior tilt' data solrces

listed above. Table 4-2 presents a summary of the data we collected

at Ft. Stewart for the first four job steps of the SIDPERS Basic Cycle

on August 2, 1979, and indicates the source of the data items.

The following is a discussion of these data sources in more detail.

GRASP

GRASP provides a wealth of accounting data which is extremely

useful in validating simulation models. For completeness, a list of the

type of data available through GRASP is provided in Appendix G.
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Table 4-1. Sources of System Data

1. GRASP Step Accounting

CPU time
Wait on operator time

Job duration time
Interference duration time
I/0 wait time
I/0 device usage time
Start I/O counts
Time waiting for and using the LTA
SYSRES usage time
Channel activity time

2. SYSLIST

Gives Job step start and stop time
Number of records sorted
Some file counts

3. Operator Console Log

Number and length of console messages

4. DITTO Utility

Record counts
Type of records processed
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lablt 4-2. 2 August 1979 Ft. Stwart Record I'roco'ssi)n, for I'rt 'grmw;)
PIA lhrotigh PI(G

Concurrently Number Source of

Input/ Processed % File of Record
File Name Media Output with Processed Records Count Data_

PIA

COOAAC Tape I 100 554 Card count

BIAAAC Tape 1 100 2111 BIAAAC out
+ 31 Grade

Changes

COOAAC Tape L 100 661 Tape )1 TTO

AIAAAC Tape 0 100 1249 SYSLIST
sort count
in PIB

EIAAAC Tape 0 100 1171 Tape DITTO

B1AAAC Tape 0 100 2080 Tape DITTO

CICAAC Disk I/O 987 Program
source and #
rut rIIIs.1n0ns

XUTAAC Disk 1 0 - Program

(X=A, B,C, source
EF,G,H) listing

P1B

A1AAAC Tape I 100 1249 SYSLIST

B1AAAC Tape 1 0 - Monthly

only

C1CAAC Disk 1/0 .3 987

AIBAAC Tape 0 100 1249 SYSIIST

BIAAAC Tape 0 0 - (see above)

SORTWK1-5 Disk I/O Computed

-
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'ablev 4-2 Continued.

Concurrently Number Source of
Input/ Processed % File of Record

File Name Media Output with Processed Records Count Data

PlC

AIBAAC Tape I 100 1249 SYSLIST

a C1CAAC Disk 1/0 125 987 Source
program and
input

transactions

AICAAC Tape 0 100 1249 SYSLIST

P IC

AICAAC Tape I 100 1249 SYSLIST

R1GAAC Tape 1 100 50

CICAAC Disk 1/0 987

SORTWKI-6 Disk I/O Computed

XIGAAC Disk 0 (A) 0 - SYSLIST
(X=A,B,C, (B) 0 - SYSLIST

E,FG,I,J, (C) 100 30 SYSLIST
K,M,N,Q,R) (E) 100 1210 SYSLIST

(F) 100 7 SYSLIST

(C) 0 - SYSLIST

(1) 0 -- SYSL I1T
(.1) 0 - SYS,I ST

(K) 100 2 SIi ST
(M) 0 - SYS I ST
(N) 0 - SYSLIST

(Q) 0 - SYSLIST
(R) 0 - SYSLIST
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GRASP, however, wais a li mited us, t u I I I'I Il:\l' : te'p .C)a1 1 -

L ing was not avai lab le at the Ft. Stew;ird Div is ion [).II a Cete r. T;b Ie

4-. summarizes the data we obtained from GRASP for the August 2 , 1979,

exectit ion of the SI )PERS xis ic Cyc Iv. As shown in this table. GRASP

job accounting statistics did not provide us with any useful data for

programs PIA through PIG. Since the cycle we observed was initially

cancelled in program PIG, we were able to use the GRASP CPU time of

approximately twelve minutes as an estimate of the complete PlA through

PIC CPU time.

SYSLI ST

SYSLIST was of Va lue in determining file record counts only when

the job contained a sort. Program PIB and PIG sort entire files and

the number of records sorted is reported on the SYSLIST.

Operator Console

The operator console log did not provide us with any data on the

ntmbe r of records prot'ess, d. However, we observed tha t, because of t he

amount of time spent displaying and responding to messages, the operator's

console was a more important element in the system from a performance

perspective than we originally anticipated.

Tape DITTO

By far the most useful method of determining the number of records

processed on a per file basis is the Tape Utility DITTO. This utility

simply lists the entire file, allowing not only an accurate count

but also insights into the types of data being processed. We obtained

I) ITTO listings of the trans:ction inpult ftils and the sta'ker files.



43

Table 4-3. SIDPERS Basic CycLe, 2 August 1979, Ft. Stewart (Extracted
from GRASP Accounting Reports)

Complete PIA through PIA through
Activity Cycle PIG cancel PIG complete

Elapsed time 4/33/27 38/54 17/50**

Non-MPS time 4/25/23* 38/53 N/A

CPU time 2/36/12 11/56 N/A

Pages spooled 165 11 N/A

Pages loaded 4443 363 N/A

Transient Area time
Wait 10 0 N/A
Use 1/15/34 26/05 N/A

RES I/O 31622 1893 N/A

Operator console 42/28 23/10 2/27***
time

Does not include 07/11 restart time

** from SYSLIST

*** from Console log



44

',. I AI )I:,NC TlWO) (OMPUTFI'R HIARD)WARE ARCH!ITECTURES IN lAPS

I 1I'5 lh\RI)WARI. IARACTII.RIZATION

This section discusses the modeling of the IBM 160 Model 30

computer (CS ) and the Honevwell Series 60 Level 6 Model 47 minicomputer
3

(WAS,3 ) systems. A computer architecture is typically represented in

IPSS by cha ractcrizitng the following:

1. the hardware devices, their capacities and processing

characteristics,

2. the interconnections among the hardware devices, and

I. thc operat inc. system.

larda_, rc [yVice:s, Cap ci ties. - and lroCessing_ Characteri st ic s

The Hlock diagram for the two modeled systems are shown in

Figure 5- 1 and 5-2. The connecting edges between primary and secondary

storage represent the paths along which data is transferred. Note

that in the 360/30, the dual channel tape controller allows either

channel 1 or channel 2 to complete an 1/0 request. Thus, there

are two paths to the tape units and one to the disk. We assume

that channel I will be used to access a tape unit when channel

2 is busy.

The focal point of the IPSS modeling of these systems is on

the socondary storage subsystem. We examined technical specifications

provided by the respective vendors and extracted performance charac-

teristics and capacities for both the direct access storage devices

and the magnetic tape units. These characteristics are reported

in Tables 5-1 and 5-2 respectively. This data was incorporated into
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IBM 3(,c
Model 30
CPU

Multiplexor Channelcp

I Selector

Unit ecord Channel

Devices 2

1052 Console

Selector Channel I - j
____ ______ ______Dual

~ ~ -~ -- ChalnneI
_______ _______ ontrol

Unit
2314A1 Direct Access Storage Facility

0000 00 00 0 0 0

2401-2 Tape Drives

Figure 5-1. Typical CS3 Hardware Configuration

. "3
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Honeywell Level 6

Model 47 CPU Operator's
CRT
Console

7

E

o 0
0 0 0 A

B

0 0 0

- .. - - -- U

MTU9110 Tape Drives S

MSU 9102/9106 Mass Storage System

Figure 5-2. Honeywell Level 6 Architecture- DAS 3
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Table 5-1. Direct Access Storage Devices

Disk Units

IBM IBM Honeywel
Physical Characteristics 2314A 3330 MSU 9102/9106

Drives per unit 8 8 3

Bytes per unit 233.4M 800M 201M

Speed

Average Seek 60 ms 30 ms 30 ms

Average Rotational Delay 12.5 ms 8.4 ms 8.33 ms

Data rate (kilobytes per
second) 312 806 1,200

Capacity

Cylinders per pack 200 404 893

Tracks per cylinder 20 19 5

Tracks per pack 4,000 7,676 4,115

Bytes per track 7,294 13,030 16,384*

Bytes per cylinder 145,880 247,570 81,920

Bytes per pack 29.18M loom 67

*Based on 64.2910 bytc-sectors wl(r trackj
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Table 5-2. Magnetic Tape Units*

rape nit

J IBM Honeywell Honeywell
'j 2400-1 MTU 9109 MTU 9110

Physical Characteristics Model 5

Drives 6 2 6

T racks 9 9 9

Density 800/1600 800/1600 800/1600

Inter-block gap (inches) .6 .6 .6

Block length - 2048 -

Speed

Read/write (inches per second) 75 45 75

Rewind rate (inches per

second) 350 200 250

Data transfer rate (bytes per
second) 120k 36k/72k 60k/120k

Start/stop time 13 ms. 8.33 ms 5 ms

*Where more than one characteristic is listed, the underlined number was

included in the model(s).
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IPSS models through IPSS hardware-facility statements. A sample

of these statements is given in Appendix B.

Interconnections Among Hardware Devices in IPSS

In the IPSS System Resources component, device characteristics

are associated with an access mechanism and volume. However,

channels, control units, and the CPU are independent, unrelated

facilities. These facilities are interrelated in IPSS models by

a service which represents a channel program. This service, usually

cail led CIH1GM, is almost a standard pa rt of every IIPSS model and

plays a central part in the lAPS methodology. Its function is to

generate a physical (device) address and to seize, use and release

all the facilities (e.g., CPU, channel controller, access mechanism,

volume) in the path from the CPU to the secondary storage device in

order to simulate a data transfer. The IPSS CHPGM service is listed

in Appendix B.

Operating System Representation in IPSS

In IPSS, an operating system is represented by one or more services

which simulate job scheduling, task management and resource allocation

activities. We investigated but did not represent the operating

system functions in either the IBM or the Honeywell model. The reason is

that we did not have time to analyze these function, or model them, in

sufficient detail to warrant their inclusion in the models.

However, our investigation revealed that the IBM 360 Model 30

supports a Disk Operating System (DOS) with the following major support

packages:
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o GRASP , hint ig pickgeg

o PYNAN/T (npct, niuliger,

o AI)AS disk ma.nuirger, and

o SYNCSORT sort package.

We attempted to ascertain how these packages interaict with

DOS and under what conditions they request 1/0. The next step

would hive been to represent processing, resource allocation. 1/0

characteristics, ard dispatching of each of these packages (including

D10) in oe or more IPSS Endogenous Services. Following this,

we would include these services at the appropriate place in the

IPSS model (i.e., ;it the INTF service), then verify and validate

the rtesulting model.

5.2 ARCHITECTURAL VARIATIONS

For convenience in referencing the hardware systems that we

modeled, we designated the model of the IBM 360 Model 30 as Model Al,

and will refer to the model of the Honeywell Level 6 minicomputer as

model IB1. In addition, we considered three variations of model Al

and one variation of model BI in order to demonstrate the capabilities

of IPSS and the IAPS methodology.

As shown in Table 5-3, the variations on modcl Al are the

replacement of the 2314 disk unit with a 3330 disk unit (A2), the

replacement of the 14 character per second operator console with a

960 cihr; cter per second console (A3), and both of the above rep]ace-

ments (A4). These experiments were designed base (1i (1ohe rva t i oils

of the current 360 Model 30.

i

I .... . , .. . . , -- -- -, _ - , ., ., - -_ ¢. , . . .. . . ., .J
-1 - - II I1I



Table 5-3. Hardware Differences

Model Designation Summary of Architecture Differences

Al Standard 360 Model 30

o 14 characters per second operator
console

o 2314 direct access storage facility

A2 360 Model 30

o 14 characters per second operator
console

o 3330 direct access storage facility

A3 360 Model 30

o 960 characters per second operator
console

o 2314 direct access storage facility

A 360 Model 30

* 960 characters per second operator
console

o 3330 direct access storage facilit
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Trable 5-3 Continued.

Model Designarion Summary of Architecture Differences

BI Standard Honeywell Level 6 Model 47

o 6 MSU9]06 disk drives

o ) MT1I1 qII tape drives

R2 Honevwell Level 6 Model 47

o 3 MSU9106 disk drives

o 2 MTU9109 tape drives

I All 360 Model 30 architectures had six 2400-1 Model 5 tape drives.
All Honeywell Level 6 Model 47 architectures had a 960 character
per second operator console.

- - __ I
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The variation on model 81 was the deletion of threc disk

drives and the replacement of the 6 MTU 9110 tape units with 2

MTU 9109 tape units.

Table 5-4 shows the performance characteristics of these

architectural variations relative to model Al (the standard 360

Model 30). Model B1 is clearly superior to Al in every way except

tape concurrency (each has six tape drives), and all the variations

show at least one area of superiority.
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Table 5-4. Performance Characteristics of Alternate Hardware

Architectures Relative to Model A] (Standard 360

Model 10)

Performance (haracterist ic Designation
-Al A2 Al A4 RI 8 2

'a pa i tv

Disk (bvtes) 13.4 1 1.4 1.7 .0

'rape (available for 1 1 i 1 1 .3

concurrent use)

ped

Disk* (1/0 per unit time) 1 2 1 2 2 2

Tape** (I/0 per unit time) 1 1 1 1 2.5 1.4

CPU (Instructions executed
per unit time) 1 1 1 1 7.3 7.3

Operator Console (Characters
per unit time) 1 1 68.6 68.6 68.6 68.0

*Based on average seek and average rotational delay and time to

transfer (me 100 bvte record

**Based on time to transfer one 100 byte record and start/stop time
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6. OVERVIEW OF lAPS MODEL STRUCTURE AND EXECUTION

An tAPS model consists of a collection of IPSS servicr

facilities whose invocation sequence is hierarchial. Figure 6-1

depicts the relationships among the services and indicates their

generic function. As shown in the Figure, the arrival of an appli-

cation job on a computer is represented by the START service.

Several different applications could be started simultaneously and,

if so, would compete for systems resources (such as the operating

system, main memory, data channels). In the models we synthesized,

only one application was started, namely SIDPERS. The START service

invokes the application processing service APPL and waits for its

completion. The APPL service determines the processing r.quirtd for

an execution group (DOS job step), invokes the EXGP service to perform

this processing and waits for its completion. The EXGP service

represents the processing performed by a user-determined unit of work.

This service is driven by the values provided by the RDGP procedure.

Its main functions are to schedule I/O activities to data files, and

to represent CPU processing. I/O is represented by an invocation of the

INTF service and a wait for response. The INTF service is essentially

a null routine which is a system link to future processing activities

(such as DBMS or the operating system). Currently, INTF invokes the

FMAP service which represents the mapping of the application files

to spec'if ic system fi les which are locoted on secondarv st or.i-,. A

single appl icat ion 1/0 request to MHAI' wi I I getterate ont, or more

requests for system records. FMAP issues a request for a system
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record hv invoking t he BIUMN service andl then wa i t s for :I reSPOnse('

I4IRhIZ rpretsenIt S th 11'I If I orI 111;lgemenI func't i onI. I f a1 -sV.t Le1m rec-lOrd

is in onet. of the hot forus , an1 mmciiid Liu response t o FMAI' is gener t,

othe rw ise the CHPGM service is invoked. CHPGM represent s ('11h11n11k.

program processing: it uses the IPSS data base structure and hiardw~irc

fic ili tics to generate a hardware address, computes the read /write

hue.L' 111d 'dVJI aCes the simulator clock accordingly. 'table 0-I re 1.11 I

the IPSS services identified in Figure 6-1 to the corresponding

SLOPERS processing activities.

Model Svn Lhes is-

One of the advantages of IPSS in general, and TAPS in particular,

is the ease of synthesis oif experiments. Figure 6-2 outlines our

bas ic app roach to p roduc'ing modelis with different hiardware arch iteec-

tures. We functionally divided the IPSS models and placed the parts

into members of a part itioned datai set (member names are in parenthes is

in the Figure). We then chose members from each of the following

categories to form a complete model:

1. Application processing

2. Architectuire

3. Ief ine ModeI

4. 1load ing

'F'lie %ppl icat ion Processing group is the nucleuis of our lAPS

miet hod 'ogwy . It con ta ins all the I PSS services and fac' ilities of the

;y!;f ci'i Ri'sourccs Componenlt except for hardware fac ilit ies and the( c liunne I

prmg ram service. Al so inclu tded in this grouip are the I PSS Exogenous-

t 1vvnt St ream component and the Data Base Structure Component.
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Application Processing

Services (SERVICES)

Buffer Mgr (BUFMR)

Get Adderss (GADRU)

Get Input (RSUF,RDGP)

Database (STORAGE)

Architecture
IBM 360 Honeywell Level 6
Model 30 Model 47

Hardware (HDWM30) (HDWM47)

Channel Program (CHPGM30) (CHPGM47)

Define Model

Standard (STD30Al) (STD47B1)

3330 Disk (M30A2)

Fast Console (M30A3)

Fast Console & 3330 (M30A4)

3 Disk - 2 Tape _ (STD47B2)

Loading

System File Table (SIDSTV) (SIDSFTB2)

User File Table (SIDUFT)

I/O Processing Table (SIDIOPT)I
Figure 6-2. Sumary of Models Synthesized for Evaluation of

Alternate Hardware Configurations
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Table 6-1. Index to Modeled SIDPERS Processes

IPSS
Endogenous
Exogenous

Level SIDPERS Process Service Name

I (IPSS initialization) £NIT

2 Arrival of SIDPERS job, START
job scheduling

3 SIDPERS processing APPL

4 Job Step Execution EXCP

5 Processing link for OS, INTF
DBMS, etc. (future use)

6 SIDPERS logical record to FMAP
DOS physical record mapping

7 Buffer management BUFMR

8 Channel program, retrieval CHPGM
of records from secondary
storage



The Archit C-ture group contains services and hardware specific'

to the two ,eneric 1' sses of hardware systems being modeled, nameI%

th I BM 60/ 30 an1d t lie Hon(Vwe II Level . One set ( i . e hardwa rt

specil i ction and channel program) was selected for each execution

o! the model.

Thc Dofinc Model group is the IPSS Model component. Each

:':2'r ,f this group specifies a hardware alternative. Using these

lc~Ihrn, we were easily able to replace disk and operator console

units in the model and to ascertain the effects on the overall per-

flormnce of the system. The members of this group were easy to

generate and use. Clearly this type of experimentation is one of the

primary benefits of modeling in IPSS and using the lAPS methodology.

The last group of members which were selected were from the

loading group which represents the external (i.e., SIDPERS) loading

on the computer system. These can be easily modified to represent

different application processing characteristics.

At the completion of this research project our program library

contains members which represent (a) at least eight variations on the

basic hardware of the IBM 360/30 (CS3 ) system; (b) two variations of

the Honeywell Series 60 Level 6 Model 47 (DAS3 ) system; (c) a general

model of computer software, including submodels of application programs,

a buffer manager, and a channel program; (d) tables of data which

describe in detail the files used by SIDPERS (Section 4.3); (e) a table

whiih describes the sequence of I/O and processing performed by the

first four job s:teps of SIDPERS, which table is processed by the first

4;11,mhd l menti oned prr vi o,.;1v iii (c). (f) ; ('oma nd procedure in simlk'

(Blestion and answer form which allows a user to put together and execute
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a complete model from the library members described in a-c, and thus

easily to compare design alternatives (Figure 3-4). For a listing

o~f library member names and contents, see Appendix E..

These models were executed on an Amdahl- 470 V/6-11 with 0S/MVS.'

Each model contained approximately 2800 lines of code (IPSS, Fortran,

and comments). Each model required approximately 400KB of main

storage and four minutes of CPU time (compilation plus execution).

Modeling experiments were facilitated through the creation of load

modules which were repeatedly executed. This reduced the simulation

run time by approximately one minute.
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7. ANALYSIS OF RESULTS OF THE lAPS SIMULATIONS

The ultimate purpose of an lAPS simulation is to present the

decision-maker with data which will prove useful in the overall

evaluation and comparison of alternative designs. The decirion-

maker wilt take many things into account which are not addressed

by any simulation, such as the availability of appropriate

compilers and the projected cost of maintenance. A valid

simulation, however, can provide information which can be obtained

from no other source except the much more expensive alternative of

running the actual workload on the actual computer system.

Examples of such information include answers to the following

questions:

1. What is the projected run-time of SIDPERS on the DAS 3

system, and how does it compare to the existing system?

2. Which of the hardware resources is over-utilized, and

thus potentially a bottleneck as system workload increcses?

3. How will the system respond to an increase in workload

over time?

4. How will the system respond if one or more tape, or disk,

units become dysfunctional?

For the simulation user to have confidence in the results

produced by any simulation, he needs a systematic approach to the

validation and analysis of the output statistics of the simulation.

It is our purpose in this chapter to outline such an approach in the

context of our application of the lAPS methodology to the hardware
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comparison of the CS3 and DAS3 configurations when run against

the same SIDPERS workload. However, we were unable to carry out

this approach in its entirety due to lack of data and lack of

time.

In the following sections we discuss model verification and

model validation, an analysis of the results of simulating the

CS3 and DAS3 systems in six configurations, and the results

of some additional simulations.

7.1 MODEL VERFICATION AND VALIDATION

Model verification is the act of testing the logic of the

model to determine that it behaves as the simulator intended.

In short, it is "debugging" the computer program. During the

verification process, the model may be driven by real or imaginary

data, but is usually driven by simplified data so that the modeler

can follow the logic of the model in detail by hand calculations.

We verified the lAPS model components by using a detailed trace

which printed the occurrence of each event in chronological order

and the value of any variable whenever it changed. Further

discussion of verification techniques can be found in standard

simulation texts such as those by Shannon (S1A751, or Fishman

IVIS731.

Verification is to be distinguished from validation, which

is the act of comparing the model to the existing system. As a

part of our lAPS simulations, we compared the IPSS output statistics

from the model of the standard IBM 360/30 to data collected at the
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Ft. Stewart DDC on 2 August 1979 during an actual run of the SIDPERS

application system. Results are presented in Table 7-1. All times

are in minutes and seconds.

The first three rows of Table 7-1 give the actual data collected

at tie Ft. Stewart DDC and used for validat ion purposes. The I ir: t

row gives the elapsed time for each job step (PIA, PIB, PlC, and PlC)

and the total elapsed time for all four job steps, the source of

this data being the SYSLST. Since we did not model the operating

system, we adjusted the elapsed times of row one by an estimated time

which represented the operating system's I/0 to the SYSRES pack.

The amount of SYSRES I/0 was again known from the SYSLST. The

adjusted elapsed times, row two of Table 7-1, thus provide the

primary data for validation purposes. Operator console times, row

three of Table 7-1, provide a secondary source of validation data.

These times were computed by actually counting the number and lengths

of messages on the console log from the 2 August SIDPERS run, and

by using our observation of console speed, namely 11 characters per

second and approximately 1/2 second for carriage return. (IBM rates

their 1052 console at 14 characters per second, but our observations

and timings indicated otherwise.)

Other types of system data useful for validation purposes include

CPU busy and idle times, other resource utilization, and queueing

information. Due to the lack of job-step accounting we were unable

to obtain any validation data other than that in Table 7-1. It is

also recommended that validation data be collected from more than

i7
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Table 7-1. Validation Results

_______ SIDPERS JobStep

PIA PIB P PlC PlC Total

2 Aug '79

Elapsed time (minutes: 4:59 2:33 9:23 3:41 20:44

second)

Elapsed time less

RES 1/O 4:17 2:13 8:04 3:16 17:50

Operator Console* 1:40 :45 :30 :41 3:36

(computed)

IPSS Model

Elapsed time 4:12 1:59 8:0 3:8 17:19

% difference -2% -10% -0% -3% -'3%

Operator Console 1:35 :54 :25 :41 3 :3 5

% difference -5% +20% -17% +0% - .5%

*at 11 characters/second and 1/2 second carriage return
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one run of SIDPERS, and if such data is used for model calibration

purposes, that a second independent set of data be collected for

val idation purposes. Due to lack of time and the difficulty of

obtaining such data, we were unable to obtain more than one set

of data. Our identification of data sources (Table 4-1) should

ease data collection in future studies.

'Fable 7-1 also gives IPSS output statistics of elapsed time and

console times for the model of the IBM 360/30, plus percent difference

between the validation data and the model data. As can be seen,

overall elapsed time differed by only 3% and console time by less

than 1%. Based on the limited data available to us, we accepted our

model as valid.

7.2 ANALYSIS OF SIMULATION RESULTS

The main statistic of interest in our simulation study was job

(and job-step) elapsed time. These results are presented in Tables

7-2 and 7-3.

Table 7-2 presents the simulation elapsed time per lob step and

the total elapsed time for all four job steps for four variations

on the IBM 360/30 system and two variations on the Honeywell system.

All of the decreases in elapsed time except for B2 over BI are to

be expected, judging by the hardware characteristics and comparisons

presented in Tables 5-1 through 5-4. The decrease in elapsed t ime

of 2 over B. (abou t I minute, 4 seconds) is due, to a different

placement ol certain files. In its first four Joh-,,;teps, SDlI)PI, S

ha; 8 tape files, and models Al, A2, A3, A4 and Bt model these I i l,;
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Table 7-2. Simulation Elapsed Time per Job Step
(minutes:seconds)

SIDPERS Job Step

Experiment PlA PIB PiC PiG Total

Al- Standard CS3  4:12 1:59 8:0 3:8 17:19

A2- fast disk 4:12 1:53 7:30 2:45 16:20

A3- fast console 2:38 1:05 7:36 2:27 13:46

A4- both 2:38 1:0 7:05 2:04 12:47

BI- DAS 3  1:24 0:42 2:22 1:08 5:36

B2- DAS3 (2 tape, 3 1:02 0:22 2:21 0:47 4:32
disk) ,



Table 7-3. System Comparison

Alternate System
Alternate System STDPERS Run-time on

I System**l time/Base Systeml Alternate System *

Base System time (hours:minutes)

Al B1 .32 2:34

(Standard CS3) 82 .26 2 :05

A2 .94 7:31

A3 .80 6:24

A4 .74

A4 Bi .44 3: 31
(CS, with fast
console and B2 .35 2:48

3330 disk)

*Assumes a base system run time of 8 hours

*Bl - Honeywell Level 6 Model 47 (DAS3 )

B2 - DAS3 with 2 tape, 3 disk units
A2 - CS3 upgraded by 3330 disk
A3- CS3 upgraded by fast console
A4 - CS 3 with both 3330 and fast console

3 .. ..
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as tape files. For model B2, however, the last six of the tape files

are placed on disk. (The remaining two tape files are the SIDPERS

input transactions.) As can be seen by examining Tables 5-1 and

5-2, the average time to transfer a block of data is faster for

disk than for tape.

Two things should be kept in mind when examining Table 7-2.

First, we did not model the availability of storage space. No

claim is made that any configuration (especially B2) will be

adequate for the storage of SIDPERS files. Second, we assumed

that all tapes are premounted and that the operator takes no more

than 10 seconds per job-step to respond to console messages. These

two assumptions are consistent with our observations at Ft. Stewart.

However, premounting of tapes may become more difficult on a faster

system (e.g., Bl) or impossible on a smaller system (e.g., B2 with

only 2 tape units).

Keeping these limitations in mind, plus the restriction of our

model to the first four jobsteps of SIDPERS, we can make a few

tentative conclusions based upon Table 7-2. We see that the best

upgrade of the CS3 system, namely A4, improved performance in terms

of elapsed time by approximately 25%. On the other hand, either

of the two DAS3 configurations improved performance by approximately3l
70% or more.

Table 7-3 presents a comparison of system Al to its alternates,

and a projection of SIDPERS run time. For example, the first four

jobsteps of SIDPERS ran on system Bl in 32% of the time required on Al.
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If the first four job-steps were representative of all of SIDPFRS, then

we would predict that an 8 hour SIDPERS run on Al, the IBM 360/30,

would take 2 hours and 34 minutes on BI, the Honeywell Level 6 Model

47 (with 6 disk and 6 tape units). We emphasize that the right-hand

column of Table 7-3 should not be taken as a firm prediction, but is

merely for illustrative purposes. Such a prediction could only be

made after modeling all or at least a substantial portion of SIDPERS.

Table 7-3 also contains comparisons of the "best" upgraded version of

Al, namely A4, to the two Honeywell configurations, B1 and B2.

The results in Tables 7-2 and 7-3 are illustrative of the type

of results and comparisons that can be made when evaluating computer

systems. Similar comparisons could be made of other quantities of

interest, such as resource utilization, queueing times for resources

under contention, and response time in an interactive environment.

7.3 ADDITIONAL EXPERIMENTS PERFORMED

To demonstrate the ease of model building after a library

of model components is in place, we made a number of additional

simulation runs.

The purpose of the first set of runs was to investigate the

variability of the estimate of elapsed time due to the random

elements in the model. In all experiments, random access was

modeled by picking the next record to be read (or written) in

a random fash ion, by making use of the GGU3 random number generator,

a routine in the IMSL mathematical and statistical subroutine

package which is documented in [LEA731. Another so,.rce of

randomness was the random placement of files on disk when their
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placement was unknown. 'Me resujlt of these and other uses of the

random number generator is to make the estimate of elapsed time

a random variable.

For experiment Al, three independent runs were made using

three independent sources of random numbers. (Run 1 in each case

is the run presented in Table 7-2.) The results are presented in

the first 3 rows of Table 7-4. As can be seen, elapsed times for

runs 1 and 3 were identical (when rounded to the nearest second),

and the elapsed time for run 2 differed by only 1 second in job-step

PlC. This lack of variability of the estimate of elapsed tine

increases our confidence in its precision. Table 7-4 also presents

the results for 2 independent runs each of experiments BI and B2.

Similar conclusions can be drawn from these results.

The purpose of the second set of runs (A5, A6, A7. and A8)

was to demonstrate the ease of building models from an existing

library. All of the eight additional runs in Table 7-4 were made

by recombining existing elements of the library, and took less than

one hour to submit from an interactive terminal using the technique

illustrated in Figure 3-4. All four of these models represented

upgrades of the CS 3 system (Al). In experiment A5, the 2314 disk

units were replaced by 3340 disks. In A6, the memory cycle time

was reduced by 50% to measure the effect of doubling CPU speed.

In A7, six of the eight tape files in the first four jobsteps of

SIDPERS were placed on disk, so that model A7 faced the same loading

as did model B2. Finally, model A8 was identical to model A4 hut

its loading was that of A7 and B2.
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Table 7-4. Simulation Elapsed Time per Job Step

SIDPERS Job Step
(Elapsed time in minutes:seconds)

Experiment Run
P-A PIB Pic PIG Torat

A] 1 4:12 1:59 8:0 3:08 17:1'

2 4:12 1:59 7:59 3:08 17:18

3 4:12 1:59 8:0 3:08 17:19

Bl 1 1:24 0:42 2:22 1:08 5:36

2 1:24 0:42 2:22 1:08 5:36

B2 1 1:02 0:22 2:21 0:47 4:32

2 1:09 0:22 2:24 0:47 4:42

*k

A5 4:12 1:51 7:17 2:39 15:5Q

A6 3:25 1:46 5:04 2:30 12:451

A7 3:35 1:41 7:31 2:47 15:34

A8 1:57 0:40 6:35 1:41 10:53

A5 - Al with 3340 disk

A6 - Al with memory cycle time reduced by 50%

A7 - Al with 2 tape files (loading identical to that for B2)

A8 - A4 with 2 tape files
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Again we emphasize that the systems modeled whose results are

exhibited in Table 7-4 were chosen only to ilustrate tlhe ease of

model building when using the lAPS methodology and the types of

results which a valid simulation can give a decision-maker.
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8. SUI'L\RY OF PROJECT ACTIVITIES

Three people were assigned to this project for the methodologv nnd

model building tasks. In addition, IPSS maintenance support was provided

bv a hal I-t ime uidergr.1duate student. Work began on approximatelv

14 Jhn. 107L) and continued through 14 September 1979. The IPSS mod l;

oi" tiih_, iBM and Honey-well computer systems were developed, verified

and validated as of 21 August 1979.

Excluding the half-time student, a total of 189 man-days were

authorized for this project, of which approximately l 0 were used.

Trable 8-I provides a breakdown by major category. Twelve days were

spent in developing the methodology and 24 in determining what

validation data was available at which computer installations. This

is considered to be a one-time cost. The User activities took 18

mar-days. excusive of documentation. The Modeler activities consumed

38 man-days, 25 of which were in examining SIDPERS. Fiftv-six days

were spent developing the IPSS code for the IAPS methodology, and 5

doys were spent at the IPSS Analyst level of detail. Documentation

,',tsumed 21 days and project start-up used 5 days.

I.hlv 8-2 compares the current research project with estimated

'.et -,. ,-.,t, I or ,,ver.j] different continuing projects of similar

1', 1 " , ", ., . . I. t tt co lutnr tive t te actua l man-days for

I, ' ,tr, " l, I ' - 1 . Our I irat project ion

,,., ,, ' , , , .11 b,- .1 C' nt i nuat i on of t he

tl'l- i It ,i t r I r 1! 1 W.11t con!i ii dulit on

.Idd~l .'i t .l] , om l I il ~ . .. /r I ,i w i~ , o iO l; (
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'Fable 8-1. Breakdown of Project Activities

Methodology

o Design of lAPS methodology 12

o Determine availability of validation data 24

36

User

o Determine architectures and variations to be
modeled 2

o Execute IPSS models from libraries 1

o Validation 5

o Analysis and Evaluation _.l 0

18

Modeler

o Characterize IBM 360 Model 30 in IPSS 4

o Characterize Honeywell Level 6 in IPSS 9

o Develop SIDPERS processing characteristics
(site visit, study COBOL programs and console
logs and SYSLIST and tape DITTO, encode data) 25

38

Simulator

o Develop IPSS routines to input application processing
tables 10

o Ihvel Op 1I1S rout iut'ws to p rocess appli cation

p'rocess ing tablo's 21

o Code and verify the overall structure of the IPSS
model 25

5-



Tablet 8-1 Cont inued.

IIPSS Analyst

c S Lud-V th' i -Itl rim I tog ic of I P55 oil a splck ia I-

0 Po t;t arL-ip t ime 0

o Documentation 21 2
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Table 8-2. Man-Power Analysis and Projection

Projections in Man-Days

Further Different Operating
Current CS3 , DAS3  Evaluation Hardware System,
Research SIDPERS With All of and CS3

Activity Project Evaluation SIDPERS Software DAS 3

Methodology 36 0 0 0 30

User 18 10 10 15 15

Modeler 38 0 20 40 45

Simulator 56 0 0 15 50

IPSS Analyst 5 0 0 0 5

Start-Up and
Documentation 27 10 10 10 25

Total Man-Days 180 20 40 80 170



a man-day cost of 10 days for running the simulations and analyzing

the results, plus 10 days for start-up and documentation.

The second project we consider, of slightly greater scope,

consists of comparing the CS 3 and DAS 3 systems with all of SIDPERS

as the workload. Modeler activities would consist of a projected

20 days to examine the relevant COBOL application programs and to

translate the sequence of I/O processing into the lAPS App] ic Ition

Pr, h, , h1 Ic, to col lert the necessary data and to encode it

into tihe System Iilc Table and Applic'ation Ii I.0 Table; and final ly

to add these new members to the library. User activities would then

consists of a projected 10 days for making runs and analyzing the

results, plus 10 days for documentation.

The third project involves the development of the capability

to model hardware other than the CS. and DAS systems, and to model
3

add it ional application software such as STANFINS. The addition of

new hardware capabilities would require a projected 20 days of

Modeler activities and 15 days of Simulator activity. Specific

tasks to be performed would include characterization of the new

hardware, data collection, coding of the data into IPSS statements,

the writing of a channel program, and the addition of these new

members to the library. The modeling of additional software would

he a project of approximately the same scope as the second project.

In summary, this third project, with a total of 80 projected man-days,

would be of a scope similar to the current project, but would require

100 fewer man-davs of effort becuase of our previous development of

the tAPS methodology and the pre-existing library of model components
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which represent application (I/0) processing and thus can be used

with any hardware configuration or any new application software.

The fourth proposed project consists of extending the

currently exiFting models to include operating system components.

The current models do not include a representation of the operating

system. New methodology would have to be developed, taking a

projected 30 man-days and involving persons highly familiar with

the operating systems for the IBM 360/30 (namely, DOS-E) and with

that for the Honeywell system. Modeler, Simulator, and IPSS Analyst

activities would require a projected 100 man-days. Specific tasks

would include extensive consultation with operating system experts

and data collection, plus the development of IPSS code to represent

the operating system. User activities to run the model, validate

it, and evaluate the output would take a projected 15 days, plus

a projected 25 days to document the new members of the library

and the simulations performed. At least 90 of the total projected

170 man-days would be one-time costs, after which the operating

system odel components would be available in the model library

for future use.

Provided that an extensive library of model components were

built up and maintained, future projects of the scope discussed here

would tend to take less time than projected. The building and

maintaining of a large and extensive model library of various

ha rdware anid softwart 'omponc'ztis is the key to providing timely

answers to those questions which can be addressed by simulation.

C



9. SUMMARY AND CONCLUSIONS

SUMMARY

This proik lct w.:1s All intnSiVe, SlhOrt-trt1i ri,.ir1li and dcw lopin

, i if loii ;&d oit fl " irii(il.a lol, 0 ('O lluIt -or v o v;ur;n: j ou, I l-e |1..'. \, ;

(:MuII It ' I SystL111; C(oMtuIn nd . Spec i ica LLy, we addressed tlhe 1)ro 1l1 0 1

providing a model development tool which weuld be responsive to

meeting Command simulation objectives. This required a methodology

for model development, use, and analysis which would be easy-to-use,

widely applicable to many types of computer systems, amenable to cliange,

and time-efficient.

We designed, developed, implemented, and tested a methodology

to meet thse objectives. Our methodology, called lAPS (IPSS

Application P'rocessing, System), structure,; the modeling process

oto bi(-. rchic/iI fovll:; which ident ilv spec iic task.. in tlie

modeling cycle. These levels are named for the person or persons

who are responsible for the activities defined within a level. A

User is responsible for the overall evaluation effort. He produces

an evaluation of a specific computer performance problem through

(a) interactive model building in an easy question and answer format

(which results in the submission of a model for computer execution)

and (b) analysts of the results. The procedure for building a model

oa'o lbuilding-block componzent s from a model l ibrarv. The role ol th,

lI>!;ur preo;iipposee that a Modeler has provided the ;ippropriate

lh I ildli-bIocks ld h.1, madIte, thevm ;vailiable I or the l ser in thel model
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library. The Modeler characterizes computer hardware, the software

for application processing systems, and the data files. These

latter two elements are characterized in a language that we designed

and implemented as part of this project. In the role of Simulator,

we also wrote the program which translates these characterizations

into performance statistics. The Information Processing System

Simulator (IPSS) language served as our base. IPSS provides specially

designed built-in hardware and software language statements which

greatly facilitated our programming task. We completed the Simulator's

task for a large class of application processing systems. Further

effort, however, is required for modeling advanced features such as

data base management systems, operating system functions, and teleprocessing.

This methodology was applied to an existing U.S. Army software

system (SIDPERS) run on several IBM and Honeywell computer configurations.

As Modelers, we visited an operational computer installation and

collected data on a SIDPERS daily cycle. We also determined performance

specifications on the IBM Model 30 computer and the Honeywell Level 6

minicomputer. This software and hardware data was encoded into TAPS

source statements. Then, as Users, we built models using our interactive

approach and conducted a set of experiments to analyze the performance

ot several architectural variations, all executing with the standard

,;IIj'IAS w4o1 1, . Wc VtI iI i -d IIId v;l I i(d1 dt I our modtl I IDPWv ,; .1Id

ii:, -x ,lit loll 1Iv il 11 n1 tII I ( I ido Model 10 umlultut el ) . We th i '

proj ect d exect iton times for Si)I' .ERS on a Ilonevwel ILevel () miniicompu tIr.

Our results reflect the faster CPU and peripherals of the Level b minicomputer.
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We varied the type and speed of the peripherals on both systems to

demonstrate the responsiveness capabilities inherent in our TAPS

methodology. Our primary measure in eval at in, tes, i I ternat i ve

configurations was total elapsed time to run the SIDPERS job. We

also obtained queuing and resource utilization statistics since thes

are automatically generated by IPSS.

CONCLUSIONS

The objective of this project was i-o produce a model building

methodology for simulating U.S. Army computer hardware/software

systems. The project definition required a demonstration of our

methodology by building models of an existing as well as a future

U.S. Army computer system.

We designed our methodology based on our perception of current

Army simulation needs. We implemented the methodology using the

Inforiation Processing System Simulator (IPSS), and we tested it us-ing

a s;ubset of the programs in the SIlPERS basic cycle. Two major

conclusions can be drawn from our efforts. One relates to the u1se

of IPSS in modeling U.S. Army computer systems, and the other relates

to the TAPS methodology for expressing application processing software

and files. We conclude that IPSS is an appropriate tool for simulat infg

the type of computer systems found within the U.S. Army. These

,p; r ems are t vp if led bV I s ingle processor, support ing either

niprogramming or mu ltiprogramming, with 1/0 oriented COBOl. ile

process ing applications. IPSS incorporates special language featur,,;

for chara't ,rizinp computer hardware and files which make it e,;pe'ii1 I,

- -i-.. r
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suited for the performance modeling and evaluation of these systems.

The IPSS "service" concept helps the Simulator to produce a structured

solution to complex model design problems.

The IPSS methodology and language proved to be relatively easy

to learn and use. Two of the three researchers involved in this

pro ICt had no pr ior I PSS model ing experience. With o few iwtorials

and IPSS models as a guide, they became productive IPSS modelers io a

short period of time. The services of an IPSS expert, however, were

required throughout the project.

Although IPSS is a prototype system, no IPSS source code had to

be changed to generate the results produced in this report. We did

identify enhancements, however, and these are detailed in the next

section.

Our second major conclusion is that the lAPS methodology, and

our implementation of its concepts, is an appropriate and useful

method for characterizing U.S. Army computer hardware/software systt,.

Using lAPS, we were able to represent many types of f ile processing

quickly and easily. In addition, the representation of computer hardware

and the use of this hp:dware during file processing is one of the

recognized advantages of IPSS.

We specifically designed TAPS with the objective of flexibility,

generality, ease of use, and responsiveness. We tested and revised

the methodology and the implementation during the project to more

completely satisfy these objectives. We demonstrated flexibility and

htdte IV 1V 1l itll)', Iwo d if Ir or nt tVles of u'Os Lely 1 ISVtblrr buld siV l' l

hI~ll'dwar{e vai ai~t ion:;. Wo, inlcorporalted tilqt, Of 1t.'S.O hV ,1 1libraIry llktildin),



block approach to model synthesis and an inte'ract iwy dialogue. We

verifled the responsiveness of the lAPS methodology by modeling som,

of the variations on short notice.

RECOMMNDATIONS

)lr rLe4)lllt'I4hltdIt iOn s locs oil n tree areas . Fi rst we presentI

our recommendations for (1) further development of the lAPS

methodology; (2) use of the methodology by the Computer System

Command for further modeling of computer systems; (3) enhancement

of the IPSS system itself.

lAPS Recommendations

Our experience as a User of the TAPS methodology suggests that

it could be extended to allow a more sophisticated dialogue during

model synthesis. We recommend the generation of library members from

parameters input b\, the tuer. For example, the User could enter a

small number of parameters for a sort operation, and the lAPS cool d

generate the appropriate library member for this particular sort file

processing. This enhancement would speed the modeling process by

increasing the flexibility and generality of the library members.

In addition, the interactive model synthesis could have an option

such as "tutorial mode" to guide the novice model builder in great

detail through every step of building a model from the model librarv.

:;iib in addit ioni to lAPS would greatly increl!;e its ease of u;e and

make model building a self-taught procedure.

The TAPS methodology could also be extended to include the

simu lation of dat;i base management systems, operating system proe.: i u"
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and networks of computers. These would increase the scope of the

methodology as well as the accuracy of the results obtained.

In addition, the lAPS methodology could be enhanced to allow

the Modeler to represent computer hardware as he now represents

computer files. This would allow greater flexibility in accommodating

variations of hardware characterizations during experimentation.

Reconmmendations oln the Usae of IAPS

We recommend a continuation of the modeling effort which began

with this project. In particular, we recommend modeling more of the

SIDPERS basic cycle in order ti further test the methodology and to

verify our projections. This study should produce insights into

selecting representative subsets of large systems for modeling and

analys is.

We recommend the establishment of model libraries incorporating

common computer architectures and software systems. This will enable

th,, Computer Systems Command to respond quickly to future simulation

lieeds.

We also recommend an lAPS simulation study be undertaken which

involves a hardware modification. This would involve simulation and

measurement of the system before and after the modification. This

type of study would provide insights into the computer modeling process

as well as a validation of the tAPS approach. The result would he

increased confidence in the results of this type of simulation study.



1 P1S Recommendat i 011--

With minor exceptions, IPSS proved to be a useful and appropriate

tool for our modeling purposes. Many of our recommendations for the

improvement of 11P8S are already recognized and are in tle proc's (io

bem remedi-ed. In particular, we make the following recommendations:

I. IPSS contains few implemented features for modeling CPU

activity. Since circumstances did not permit us to model

the CPU in any detail, this problem did not have a major

impact upon our project, but may indeed affect any future

modeling projects.

2. We were forced to rely on existing models and statement parsers

to determine which options of the IPSS source code have been

implemented. We were provided with a preliminary copy of

a document that would remedy this situation, but its numerous

errors rendered it useless. The corrected version of this

document should be published, however, in the near future.

3. IPSS provides only 10 seeds to a random number generator

and better random number generators are known to exist. This

limits the number of independent experiments one can run to

10. We included a better random number generator and programmed

a routine to accept a seed as input to the model and write out

the last seed on model termination. These changes should he

incorporated as a standard part of the IPSS package.

4. IPSS does not allow the modeler to save the load module and to

execute the load module as a separate job (IPSS abnormal ly
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terminates when we tried this). As a consequence,

every time an experiment is to be performed, the IPSS

source language compilation and Fortran source language

compilation process must occur. This consumed at least

one minute CPU time for our models. We wrote special

routines to bypass this problem. These routines should

be incorporated as a standard part of the IPSS package.

5. We could not conveniently model concurrent activities

since the IPSS automatic save/restore feature was not

present in our copy of IPSS.

6. We could not declare data sets with a BLOCK reference

unit due to an error in the Fortran built-in $CRDS routine.

However, we were able to work around this error.

7. IPSS does not automatically collect statistics on UNIT

RECORD or UNSPEC type devices. CREATE DATA SET and GET

ADDRESS are two very useful IPSS built-in routines that

only work on disk and tape devices. We modeled the

operator's console as a Tape device to easily generate

the utilization statistics we wanted.

8. A final area of possible enhancement of IPSS lies in

the presentation and choice of statistical results. If

desired by the user, quantities such as elapsed time should

be converted from the simulation time unit (e.g. millisecond.;)

to hours, minutes, seconds. It also should be possible to

have results tauilated and printed both cumulatively and

over user specified intervals. We modeled SIDPERS at the
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APPENDIX A

AN OVERVIEW OF THE INFORMATION PROCESSING

SYSTEM SIMULATOR (IPSS)

This Appendix highlights the IPSS methodology for
characterizing salient features of information processing
systems, the IPSS simulator, and the IPSS execution facility.
This Appendix was extracted from previous reports prepared
by Dr. L. L. Rose, Assistant Professor, The Ohio State
University (ROS78, ROS79).
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A.1 THE IPSS METHODOLOGY

IPSS provides a methodology which, although specific to computer

systems, is general in mature, and quite flexible. It affords the

user a viewpoint from which hie can construct a simulation model of

any -omputer system at any level of detail desired. This methodology

separates the characterization of a complex information processing

system into separate, inter-connected components. It gives structure

and direction to the user, who has the difficult task of defining

just what it is he wishes to model.

Figure A-I illustrates the role of the IPSS methodology in the

design and simulation of an information processing system. We

observe that IPSS provides the modeler a top-down approach to the

definition of models. At the top of this figure we denote the

loose connection of user system knowledge into a set of data and

concepts that describe the Information System. This definition may

be concise and complete, showing complete knowledge of the system and

processes to be modeled; it may be very vague in all respects; it

may be specific with regard to certain aspects and non-specific with

regard to other aspects of the information system. It is the role of

the IPSS methodology to enable the modeler, who possesses varying

degrees of information about the information system, to construct

a model at app~ropriate levels of detail to satisfy his modeling

needs.

The TPSS methodological view is to characterize any information
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processing system as a collection of four discrete but interfacing

components. As illustrated in Figure A-1 these components are:

1) services and inter-service procedures, 2) hardware resources

and configurations, 3) data base resources and configuration, and

4) user workload. These four component definitions are sufficient

to characterize any information processing system; in particular,

computer-based information systems or manual systems can be

described.

Services and Inter-Service Procedures

The identification and definition of services and inter-service

procedures is an important IPSS contribution, and separates its

methodology (and subsequent modeling activities) from other systems

such as DIMUI and CASE. A service procedure defines a task -

manual or automatic - associating all related actions and times to

complete the task. In a computer-based system, this component

corresponds to the definition of all system software facilities,

to include user application programs, the operating system, and

the data management system. Service definitions, of course, are

constrained to the level of detail required by the modeler or to

the level of knowledge of the modeler. This is true of all four

component definitions, and forces the modeler to realize the level

of detail appropriate, and to obtain additional information, if

required, to properly define each component. Note that no computer

programming is being performed at this time; we are structuring

the model to be defined and isolating user information into the
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appropriate sets of component knowledge. In any computer programming

activity, too much emphasis cannot be placed on structuring the

prototype, for correct and appropriate structure can be followed

by easy implementation which, by design, should reflect the needs

of the modeler.

Hardware Resources and Configuration

The hardware resources and configuration component directly

reflects the hardware system to be modeled. This component defines

the CPU, primary storage, tapes, discs, drums, printers, terminals,

channel controllers, etc., and all hardware interconnections. Again,

the level of detail required is that appropriate to the goals of

the modeling activity.

Database Resources and Configuration

The database resources and configuration component defines the

logical database of the system to be modeled, to include schemas,

file characteristics, database access capabilities, and user data

access and data manipulation facilities. This component can reflect

a current system with normal non-integrated file management or

a future system with fully integrated data management capabilities.

User Workload

Last, but certainly of great importance, is the user workload

component. It is here that one characterizes the workload to be

placed on the simulated system, to include workload description,

timing of inputs, files referenced, etc. This completes the

structuring of the user's knowledge of the information system and
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can be defined functionally or statistically.

A global view of the resultant component is as follows:

work (input) to the information processing systems emanates from

the user workload and requires certain services. These services

may require other services (inter-service procedures) to perform

the work required. Whenever database accesses are required, the

database resources and configuration component defines and

simulates logical data flow while the hardware resources and

configuration component simulates the resultant physical data

flow. This is the user' s view of the information flow process

at the conceptual level, structured into components by the IPSS

methodology.

A.2 THE IPSS MODELING FACILITY

Given the user's component knowledge as structured by the

IPSS methodology, this is transformed by the modeler into

model knowledge using the IPSS modeling facility. This portion

of IPSS also provides structure and modularity to the model

definition, but at a realizable level, as opposed to the conceptual

level of component knowledge. The result of this transformation

from component to model knowledge is an IPSS-defined simulation

model that can be executed by the IPSS execution facility.

There are six model components which comprise the resultant

defined model. Given the separation of user knowledge into the

four conceptual components defined previously, it is a straight-

forward task, conceptually, to define the six TPSS model components
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which describe system resource, storage stncture, database

access, data structure, request stream and model director. To

actually implement these modules represents a non-trivial,

sophisticated effort that requires not only a good understanding

of the system to be modeled, but also a complete understanding

of how to effectively simulate all of the concepts and interactions

ot the process to be modeled.

IPSS provides a general simulation language and host environment

to ease this task for the modeler. The Model Director is supplied

for the user, and, in effect, directs the simulation defined by

the other five model components. It handles the time clock, and

the events queues, and all arrivals and departures from the

system during model simulation. CASE and DIMUI effectively

pre-define the entire simulation model (especially the system

resources model component). This results in much less understanding

about the model; it is the IPSS premise that a modeler cannot

effectively use a simulation model that he does not understand.

As a result, IPSS offers a set of language constructs so that

the user can, with relative ease, define all important aspects of

the simulated activity. Using the IPSS statements, and any

additional FORTRAN the user may desire, a FORTRAN model is

output from the IPSS translator which can be executed to

produce statistics. Additional FORTRAN statements are utilized

by the modeler to either add statistics unavailable from IPSS

or to model concepts not realized by the IPSS language constructs.

In most cases, little additional FORTRAN is required as



TPSS provides a rich set of language constructs with associated

statistical capabilities.

The top-down, modular approach provided by the IPSS enables

the user to define, using IPSS/FORTRAN statements, five separate

model components to characterize the system to be modeled. These

are summarized below:

1. System Resources - Contains definitions for all

information system resources (hardware and software) and all

system tasks (application and operating system). This component

forms the basic discrete event digital simulator for the

information systems model under investigation. Included in

the SYSTEM (system resources component) is the IPSS supplied

clockwork mechanism to schedule and control simulated events

and to determine when the simulation is to terminate. The

clockwork logic is based on the next most immediate event

philosophy for controlling discrete event digital simulations.

IPSS statements which ease the modeler's task of defining

all of the system resources pertinent to the simulation desired

include: Access Mechanism, Area, Buffer Pool, Central Processor,

Control Unit, Data Channel, Data Set, Device, Endo Service,

Exo Service, I/0 Processor, Main Storage, Pathi, Procedure, Queue,

Reference, Semaphore, Task, and Volume statements.

2. Stora e Struct-ire - Describes an information system's

phiysical dlata base storage structure and its space management

policies. The STORE (storage structure) component interfaces

with the SYSTEM component in three ways. First, it references



99

SYSTF'.M to obtain Device and Volume facility definitions. Second,

it supplies SYSTIM with l)ata Set faci 1 ity definitions. Third,

it translates secondary storage references specified as a

displacement within a data set's logical address space into

physical addresses within the secondary storage address space.

Prior to a simulation, associations must be specified for the

Data set, Organization Method, Device and Volume facilities.

A STORE Organization Method facility can be associated with a

multiple number of SYSTEM Data Set facilities. The opposite

is true for the Device and Volume facilities. STORE Organization

Method facilities are the templates from which the equated SYSTEM

[)ata Set facilities derive their definitions during a simulation.

The transfer of definitions between components is accomplished via

the execution of the CREATE DATA SET Statement. The space

management descriptions in STORE are used to calculate

secondary storage addresses dynamically during a simulation based on

facility definitions specified in each component and on the changes

of these facilities during the course of the simulation.

IPSS statements provided to help the modeler define the Storage

Structure Component include: Area, Segment, Organization Method,

Extent, Record Type, Device, Procedure, Reference, and Volume.

3. Request Stream - Characterizes the information system's

service request stream. It is responsible for the generation of all

exogenous events for a model. Whereas SYSTEM contains facilities

which characterize the processing requirements for each service offered

by an information system, the request stream component (REQUEST)

L._ _ _ _ __ ___
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def ines the arrival of requrest for these services. IPSS convert ;

these times into a composite arrival time stream.

The modeler thus defines exogeneous events, and IPSS eases

this task by offering the Exogenous Event statement and the Procedure

Statement should the modeler desire to define inter-arrival times

func t ionalII'.

4. Data Base Access - Contains the definitions of all the resources:

required by the DBMS. These include the hardware resources of buffers

and user work areas as well as application programs and DBMS software.

All DBMS related entity-type facilities are defined within the compoln ent.

The Data Base Access Component (ACCESS) is similar to the SYSTIY

components in that it contains its own simulation clockwork mechanism

similar in purpose to the one belonging to the REQUEST component.

IPSS statements particular to the Data Base Access Component include:

DM, Service, Realm, Schema, Record Origin, Semaphore, Task, and Queue.

5. Data Base Structure - Provides the modeler with a set of

facilities which allows the definition of logical data structures and

the characterization of relationships among them. This can he applied

to a variety of DBMS architectures and application environments. The

Data Base Structure component (STRUCTURE) permits the modeler to

investigate the effects on system behavior caused by alternate set,

record type, and access path definitions. The definitional facilities

provided allow the modeler to investigate a wide spectrum of logical

I;ata tructure organizations and allocation policies.

Within the )ata Base Structure Component are IPSS statements to

enable the modeler to define the following important database constructs:
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Realm, Schema, Extent, Record Type, and Set.

A.3 THE IPSS FXECUTION FACILITY

The six IPSS model components discussed in the previous section

(MODEL being pre-defined while SYSTEM, STORAGE, REQUEST, ACCESS, and

STRUCTURE are user-defined with the aid of IPSS language constructs)

comprise the input to the IPSS Execution Facility. It should be

under tood, however, that this six-component model definition serves

not only as necessary input to the IPSS Execution Facility. Of at

least equal importance is the fact that the user has now created a

documented, readable, understandable definition of the system to

be modeled. The fact that this model is explicitly defined at

user-determined levels of detail for each model component means that

we have a hard copy description of exactly what the modeler wishes

to simulate. No implicit assumptions (such as are contained in CASE

and DIMUI) exist; hence user verification of the model can be

accomplished much more effectively, and the entire modeling effort

is at the level of detail desired by the modeler.

The IPSS execution facility carries out the simulation as defined

by the six IPSS model components. This execution requires translation

of IPSS statimtnts into FORTRAN, link-editing of all required

object modultus, savingz certain user-requested object/source modules

in the IPSS library, and executing the resultant load module. Were

the user required to define to the computer this multi-step job, a

great deal of ICI. (machine-dependent job control language) would be
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necessary. In fact, both CASE and DIMUI require the user to create

his own multi-step jobs, a non-trivial, machine-dependent task. The

IPSS philosophy is to remove the tedium and complexity of 3CL from

the user; in fact, the user specifies no JCL whatsoever to execute

an [PSS model. Thus IPSS must contain, within its own code, this

JCL. We find this within the IPSS Nucleus, which is written in

Assembler language. Hence we find that the IPSS is not completely

portable, but only the Nucleus must be re-written to enable

execution on another dissimilar machine.

A.4 THE IPSS STATISTICS

IPSS provides a modeler with a number of statistics concerning

the behavior of modeler defined entities and IPSS supplied built-in

information system services. Many output statistics are provided

by IPSS automatically; others can be generated by the modeler's use

of IPSS commands to start/end data collection on queues, facilities,

services, etc. The IPSS-defined (automatic or modeler invoked)

output statistics fall into eight general categories:

1. Operational Statistics,

2. Request Stream Statistics,

3. I/O Activity

4. Queueing Statistics,

5. Utilization Statistics,

6. Wait Statistics,

7. Service Statistics, and

8. Task/Activity Statistics.
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Additionally, the modeler can employ the complete facilites of the

FORTRAN language to develop his own sLatistics. Statistics are

printed autornat ical iv at h o' con(e .;i s ion oi acI modt-I ;if ];at; ion

unless explicitly inhibited.
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APPENDIX B

IAPS SOURCE CODE

This Appendix contains examples of IPSS source code.
Specifically, it contains a complete listing of the IPSS
System Resources component for the IBM 360/30 (and all
variants considered in this project). The System Resources
component gives specifications and characteristics of all
hardware components in the model. Following this are three
examples of IPSS Services, which are used to represent
software and application program I/O and CPU processing.
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APPENDIX C

SIDPERS JOBSTEPS PIA THROUGH PIC

PROCESSING CHARACTERISTICS

This appendix contains the basic system flow charts

for SIDPERS programs PIA, PIB, PIC, and PIG (Figures C-i
through C-4 respectively). For each program, Table C-I
presents a brief file description, record length and blocking
factor specifications, the type of storage media on which
the file resides, and an indicator of file use (input to the
program, output from the program, or both input and output).



COOAAC COAAAC 1bIAAAC EUJAAC-

E I AAAC

XUJAAC* C 1 CAAC

EIAAAC BIAAAC AIAAAC

*X =A,BC,E,F,G,H

Figure C-1. PIA File Identification
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CICAAC

A1BAAC1BAACA

Figure C-2. PiB File Identification



1c, AAC

AICAAC

Figure C-3. PlC File Tdc-ntificatiirn
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A1CAAC R1GAAC

X1GAAC*

X -A,B,C,Er.G,I,JIc,MNQR

Figure C-4. PiG File Identification
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Table C-1. File Characteristics for Programs PlA Through PlG

log ical

Input/ Record Blocking

File Name Media Output Description Length Factor

P1 A

COO\AAC Card/Tape I Optional Input 80 1

BIAAAC Tape I Input Stacker File 100 40

COAAAC rape I Transaction 80 1

A1AAAC Tape 0 Class-sched trans
file 132 10

EIAAAC Tape 0 SIDPERS trans
history 80 10

B 1\AC Tape 0 Output Stacker file 100 40

CIUAC Disk i/O Edit table file 506 2

XU.IAAC Disk 180 1

(X=A,B,C,

E, F, C, H)

P1 B

AIAAAC Tape I Class-sched trans 132 10

BIAAAC Tape I Monthly 100 40

CICAAC Disk I/O Edit table file 506 2

AIBAAC Tape 0 Sorted CS trans 132 10

B IAAAC 'rape O SSF 100 40

SORTWK1- 5 Disk I/O Sortwork File 132 12

PIC

A1BAAC Tape I Sorted CS trans 132 10

CICAAC Disk 1/0 Edit table file 506 2

AICAAC Tape 0 Edited trans 286 8
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Table C-i Continued.

Logical

Input/ Record Blocking
File Name Media Output Description Length Factor

Pic

A1CAAC Tape I Edited trans 286 8

R1GAAC Tape I/0 Recycle trans 286 8

ClCAAC Disk I/O Edit table 506 2

SORTWKJ-6 Disk 1/O

*1GAAC Disk 0 A 280 6

where *=A,B,C,E, B 285 8
F,G,I,J,K,M,N,Q,R C 285 8

E 285 8

F 80 20

G 125 25
1 84 20

J 90 25
K 280 6
M 80 20

N 80 20

Q 84 41
R 286 8
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APPENDIX D

EXAMPLES OF TAPS INPUT TABLES

This Appendix contains a complete listing of the
Application File Table (Figure D-2) and System File Table
(Figure D-3) for the first four jobsteps of SIDPERS. It
also contains a partial listing of the Application
Processing Table (Figure D-4), namely that portion which
represents the first two jobsteps of SIDPERS (PIA and PIB).

For the reader's convenience, in Figure D-l, we give an
explanation of the headings for the Application and System
File Tables.



140

Application File Table

FILE - a user given unique identifier for each application file

LRECL - Logical record length of application file

BLKSZ - Blocksize

#RECS - Number of logical records to be processed

System File Table

FILE - Same as above, to be used as a cross reference between
the two file tables

VOLUME - Physical unit type (D for disk, T for tape, C for console)
and unit number

LRECL - Logical record length from system's point of view

BLKSZ - Physical blocksize

#RECS - Number of records on file

%PE - Percentage of records on primary extent

#SE - Number of secondary extents

K/U - Placement known (K) or unknown (U)

TYPE - Primary extent (P), index extent (I), overflow (0),
or VTOC (V), for disk files only

PLACEMENT - Actual placement of disk file, if known, given in
low cylinder - low track address to high cylinder -

high track address

Figure D-1. Explanation of Headings in Figures D-2 and D-3

i ........ W f
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S/0 P'CF '5 1NC TA93 L F Dq APPL JCAT jON I

* S I D P r k

* JUI"7]LP - PIA&ACA

$

$ INPUT CNLY

$ I CiPa/TAPE FILE

* - COOAAC

$

* I TAPE FILE

$ - C044AC

T DISK FILES

$ - AUJAAC. UJJAAC. CUJAAC. FIJAAC. FJJAAC. GUJAAC. HuJAA(

$ INPLT & OtTPL,

$ I TAPE FILf

$ - I3AAAC

$

* t DISK FILE

* - CICAAC

* OUTPUT ONLY

$ 2 TAPE FILES

$ - AIAAAC. EIAAAC

$

$

EAEC BEGIN rI AAACA

S

$ INPUT PROCESSING

I C0OAAC - CAND/TAPE OP:TIONAL CARD INPUT

01 x S 10o.

1 COAAAC - INPUT TRANSACTIONS

02 Y S 103.

*I AUJAAC

$ 03 A S T00.

*I BUJAAC

Figure I)-4. Application Processing Table for SID)PERTS (.obst, p,
PIA and PIB)
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04 a S 1 30.

*1 CUJAAC

0 05 C S 100.

$ 1 EuJAAC

, 06 E 5 100.

1 ! FUJAAC

* C7 F S tO0.

• 1 GUJAAC

08 5 100.

• JHUJAAC

0.O9 H 5 100.

[ CICAAC - EPIT TABLE FILE

10 T I .44 (FOuR READS OF FILE ON.Y - .44 TIMES 987 = 4)a
BIAAAC - STACKEP FILE

1I 7 1 100.
*

p CPU PROCESSING

K COMPARE SELECT

O MESSAGE TO CONSCLE

41 N S 23.

• OUTPUT PROCESSING

a CICAAC - EDIJT TABL E FILE -2 KPITES

10 U I .22

o AIAAAC - CLASS SCHED TRANS FILE

12 X S 44.4

O EIAAAC - SInPERS TRANSACTION HISTORY

13 X 5 47.4

0 AIAAAC - CLASS SCHED TRANS FILE

Figure D-4 Continued.

. . . .. .. 
-I l



O 1 1 A AA( - 5 1 fll P~S Tk A N$AC I I O4 NI 5T VY

13 Y S 56.5,

L 1RZAAAC - STACKVR FiLf

42 Z 1, 1 .(

c AlAAA( - (A ASt SOtILL 71,'AN?, F li-

12 7 5 2.49

0 ElAAAC - SIiPE-liS 1bkANSACTInN tlIST~lel'

13 7 5 2.61

O nPP l~QP DEL AY (PESPOPNS1 rO CONSOI-. OW~ TAPE M11UNT)

10000. 10000. 1 .0

L ND JOBSIEP P IA.AhCA

E OP

0 JOn;TFP - £'IFAACS

** INPUT nNt Y

* I TAPE FIE

* - AIAAAC

1 DISK FILE

* - CICAAC

*I TAPE FILE (MONTH END ONLY)

* - OIAAAC

* INPUT C OUTPUT

* I TAPE FILE

* - 8IAAAC

* OUTPUT ONI V

~iIr'D-4 Continued.
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* I TAPE FILE

* - AIBAAC

$ PIBAACS ScRTS FILE A1AAAC , PUTS SORTED OUTPUT INTO AIBAAC.

• AT MONTH END IT ALSO SORTS BIAAAC.

EXEC BEGIN PIEAACS

• BEGIN SORT PHASE

I CICAAC - EDIT TADL " F ILE - 3 READS

10 1 I .304

$

I AIAAAC - CLASS SCHED TRANS FILF

12 X S 35.3

P

x COMPARE SORT

0

IS V S 440.

0 MESSAGE TC CONSOLE

41 M S 13.

I AIAAAC - CLASS SCHED TRANS FILE

12 X S 35.3

*

X COMPARE SORT

c

16 Y S 440.

Figure D-4 Continued.
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E OP

AJAAAC - CLAS$ S!i1EL, TRANS II

12 X 29. 7

p
P

x (C4P APF SORT

0

17 v S 370.

E OP

$ END INIT IAL snP;T P14ASf - Nnw Mfkl.d

I

15 x S 440.

1

It x 5 440.

17 x S 370.

p
P

X MEPGE

0 AIBAAC - SORILD CLASS S(HED TRANS FILl(

14 X S 35.3

0

14 X S 35.3

G

14 x S 29.7

C OPERA7OR DELAY (RESPONSE Tn CONSED. Op TAPF MOUNT)

IODO0. iOuOO. 1.0

S

SEN() JOL35_EP PIBAACS

EOP

Figure D-4 Continued.

Air-1
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APPENDIX E

THE MODEL LIBRARY

What follows is a complete list of the currently
existing members of the model library, followed by a brief
discussion of those members which the User would have to
be familiar with in order to run models.
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,GADRU - IPSS Gut Address routine, modified for lAPS methodology

BUFMR - Buffer manager

CIPGM30 - Channel program for IBM 360/30 hardware

CHPCM47 - Channel program for Honeywell Model 47 hardware

I)WM30 - Hardware specifications for IBM 360/30, all variants

HDWM47 - Hardware specifications for Honeywell Model 47, all variants

MWOA2 - Hardware configuration A2 (See Table 5-3)

M SOA3 - Hardware configuration A3

M ',OA4 - 1ardware configuration A4

M47BP2 - Hardware configuration B2

D(1)i; - Reads Application Processing Table and prepare it for
processing

RSUF - Reads System and Application File Tables, and set up
Index Tables

SERVICES - Application program processing

SIDIOPT - SIDPERS Application Processing Table (for the first four
jobsteps of SIDPERS)

S[DSFT - System File Table for SIDPERS

SII)SFTB2 - System File Table for SlDPERS for configuration B2

SIDSFT2T - System File Table for SIDPERS with 2 tape files (other
tape files transferred to disk)

C IDV I'T - Application File Table for SIOPERS

I1) 30A] - Iardware (onfig irat[ion A]

S[D47B1 - Hardware configuration B1

STORAGE - (;enera]ized database description

-_ k
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The following members form the core of the IAPS methodology and

would be in every model; thus they need not concern the User.

$CADRU
BUFMR
RDGP
RSUF
SERVICES
STORAGE

The next group of members define the hardware configuration and

thus require a User choice. The brackets indicate that a choice of

one and only one must be made.

STD30A1
M30A2
M30A3
M30A4
STD47BI
M47B2

If one of the first four configurations is chosen, then hardware

specifications will come from HWDM30 and CHPGM30; otherwise,

HDWM47 and CHPGM47 will be used.

The second and final decision made by the User before submitting

a run involves the workload, or loading. At present, there is only

one Application Processing Table, SIDIOPT, which models the first

four jobsteps of SIDPERS, and there is only one Application File

Table, SIDUFT, which specifies the file characteristics of SIDPERS

files from the Cobol programmer's point of view. However, there are

3 choices for System File Table, namely SIDSFT, SIDSFTB2, and

S[IDSFT2"'. Thie first choice, SIDSFT, places all files on disk and

tape units exactly as current Army practice, while the latter two

offer slight variations on file placement to accommodate different

hardware configurations.
I-



fn summary, to run 1oe1.-; the User would have to make two

choices, one on the hardware configuration desired and the other

on the desired loading.
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APPENDIX F

GUIDE TO PREPARING IAPS INPUT

This appendix contains detailed formatting
information for the three input tables required to
use the IAPS methodology. The three tables are the
Application File Table, the System File Table, and
the Application Processing Table. Examples of these
tables for SIDPERS are in Appendix D.



,jj3 ik. at ion _ i e Tabl1_e ,ormat

TheC Appl icat ion f i le table i; a description ot each I ilk t rom thc

apiplica-ion programmer:; point of v iew.

Column Code Li Ia_ t ion

1-2 Any number from A un ique file
01 to 50, no two identifier
identical

3 B I a nk

4-7 Logical record length
(in bytes)

8 Blank

9-14 Block~ize (in bytes)

15 Blank

16-21 Numbcr of logical records
in file

22-72 Modeler comments
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System File Table Format

The system file table is a description of each file from the

hardware point of view.

Column Code Explanat ion

1-2 Any number from The file identifier from the
01 to 50 application file table.

0 Any system file not directly

referenced by a user 's program

3 Blank

4 T, D), or C T - Tape
D - Disk
C - console

5 Blank

6 Device unit number
(01 to 50)

7 Blank

8-11 Logical record length

12 Blank

13-18 Blocksize

19 Blank

20-25 Number of logical

records in file

26 Blank

27-29 Percent of records
in primary extent

30) Blank



1%5

Fs5 c i:j. ; 'ra) t, ,o rniit (cont i 1111d1

Co It min Code It_.ThI t ion

31-32 Number of secondary

extents

blank

$4 K or U K - known plaeinent

U - unknown pl icement

35 Blank

T6 1, P, 0, V or I - index ,xttint

Blank 11 - prime extent

0 - overflow exttlt

V - VfOC

Blh ank - priw ,:.:tt-nt ( frt iv
I- [ le: )

I,, Blank

Low cylinder address The pair ,'A-IA i.'L'-; t1W

(LCA) beginnig addrs ol the f i1c

on disk

41 Blank

42 Low track address (LTA)

43 Blank

44-46 High cylinder address The pair LICA-IFFA gives- the

(HCA) ending addres,o of the ,Xtiit

allocated to the file

47 Blank

48-49 High track address (ITA)

50-72 Modeler comments

4- -. -.
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Application Processing Table Format

The Application Processing Table describes the processing

performed by application systems. This table allows the specification

of 1/0 activities, CPU processing and delays. Table entries are

easily grouped into identifiable packets of real world activities

(job steps and jobs), and allow for user comments.

a) Comment cards may appear anywhere within the application

processing input except between an 1, 0, or D processing

specification card and its associated definition card.

Column Code Explanation

1 *Card is ignored by processor

2-72 User comments

b) Delimiter cards mark the beginning and end of processing and

execution groups.

Column Code Explanation

1 Blank

2-6 EXEC Begin an execution group

2-5 EOP End processing group

7-72 User comments



c ) 1rc s I I Lj i Ii L,it in 11 rCI s ode I Cie n;i p t ,ouItput,1 ad

r i I n I aL V i t i L'-W it I P I L ea tIh -o prcs s in yro

CL) I tUV, Co de L .1 -,X ) t1L ion

B Lan Ii

/Zero or more occurellees

Motprocced a] I 'T" aInd'''
(-ards withiin ai proces sing grcoup

Processing option

One occurrenct,

Itlis t proce e all ''0" cards Wi thPin

a processing, group

I) IOut I)IJ t f i I

Zero or more occurrences

MIust fol low " card

lDelav Opt ion

No more than two occuirrenves

XIIst be the firstL and/or the last:

processing sp2C if i CatLiOnl card i n ai
processing group

1- 72 User commeuts

d) An 1/0 definition card must fol low each I or () spiecificati on card.

Column Co 0d L Ex an i tiot

1-2 Blank

3-4 Any integer App iIcat ion 1'i le numberi
from 01 to

99

5) Bl1.itnk
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d) continued.

Column Code Explanation

6 Blank Nonconcurrent activity

Any non-blank Concurrent activity

alphanumeric
character

7 Blank

8 S Sequential access

R Random access

I ISAM file

V VSAM file

9 Blank

10-12 Any integer Percent of records
from 0 to 100 processed

13-72 User Comments

e) At least one P definition card must follow the P specification

card.

Column Code Explanation

1-2 Blank

3 Blank Processing not concurrent with any 1/0

Non-blank Processing concurrent with associated 1/O

4-9 Blank

10-19 Any of the Defines processing activity
codes:

SORT (Each code must start in col 10)

MERGE
COMPUTE
EDIT
UPDATE
SELECT
REPORT
USEREXIT



.) CoIIL ill'k(J)

C o I Imz) cou lamtaiofl

Coded ;1 col 10- 19

)0- )9
oO- 69

tFxac I v ou fl 1 dct ii i t ioni ca rd must L o0] low oa c I1) Ispc i f i c;It io01

ark.

-C'nnn odo -Exp Iaiia L io ii

1-2 B IanikI
\1V lOno a I idI vc EVt inidtcd Mi in mum dcLLIV

decimal nn1mber

Li-I?(Al 3 m ~ i~mhbor.; should have I

t 9 Aiv 11111orProhbb of L 0 a posit ive
hutwvli .0dulii
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APPENDIX G

GRASP ACCOUNTING DATA

The following is a partial listing of the measurement
data provided by the GRASP accounting package. This list
is included in this report to indicate the wide variety and
usefulness of GRASP step accounting data to computer simulation
projects.

I

A

4
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Tab1e C-1. (;RASiP Accounting Dat a

Partition - identifies the partition in which the
job executed

Time-on - time of day the job began

Time-oil - time at which the job ended

Duration - time the job occupied the partition

Non-MPS duration - time the job would have run without
interference

Interference duration - time this job was interfered with by
multiprogramming activity

CPU time - time spent by this job executing CPI

instructions

Operator duration - time spent by this job in wait states
of 3 seconds or longer

I/0 wait time - time spent waiting for data transfer to
complete

Phase loads - total fetches or loads performed by this i

job

Time waiting for LTA - total time waiting for access to the
transient area

rime using LTA - total time the LTA was used 1y thi!; job

Lines spooled - number of print lines produced bv this
job

Cards spooled in - number of input cards spooled for this
job

Cards spooled out - number of cards punched and spooled for
this job

I Start I/0 counts - the number of input or output requests

issued for each symbolic logical unit
used by this job

tA
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Table G-i Continued.

I/0 device usage time - the total "device busy" time accrued
on each I/0 device used by this job

SYSRES usage time - time spent by the job reading or
writing on the SYSRES device

CPU utilization - total time the CPU was active for any
partition/purpose during the execution
of this job

Channel activity - total time each channel was "active"

CPU channel overlap - overlap between CPU and channel
activity

Core used - total size of the program as loaded
into storage


