

Using Program Transformations to I)erime I ine-I)ra ing Algorithms

1. Introduction

Many computer graphics devices use "line-drawing algorithms" to approximate the appearance

of straight lines on devices that can only produce dots on a discrete grid. Incremental pen plotters

that move a pen in small stcps are common devices that require such a line-gencration algorithm.

Point-plotting CRT displays use the algorithms to approximate straight lines on interactive graphics

displays. More recently. frame-buffer raster-scan displays use these algorithms to identify the

picture elements (pixels) that should be illuminated to display a line.

Simplicity and speed the the key design criteria for line-draAing algorithms, because the

computations are often implemented in hardware in order to achiexe high line-generation speeds. It

appears that the car. popularit of the binary rate multiplier (RNI) wa s due entirely to simplicity,

for it generates rather poor approximations to straight lines. The digital differential anal)/er (l)i)A)

generates better approximations to the true line. but requires an iterative loop that may average

almost two cycles to generate each point. An algorithm devised by J.. Biesenhani [11 dominates

the I)DA: it generates the optimal line, in a sense of optimal described below: it requires only

integer additions and subtractions: and it generates one output point for each iteration of the inner

loop.

To achieve very high line-generation speeds. we need algorithms that can determine the

location of several points on a line in parallel. None of the current line-drawing techniques is

suitable, as they trace out the line sequentially, one point at a tine. Parallel algorithms have several

applications, chiefly in raster-scanned systems that can write more than one pixel at a time into the

image. The "8x8 frame-buffcr display" 121, which can in one memory cycle write a square region 8

pixels on a side located anywhere on the screen, motivated the inxcstigation of parallel algorithms.

This paper shows how simple program transformations are used to derive all of these

algorithms, starting from obviously correct algorithms based on simple analytic geometry. These

transformations assure us that the more efficient but more complex algorithms are correct, because

they haxe been derixed by correct transformtations from a correct algorithm.

2. Line-drawing preliminaries

The line-drawing problem is to detcrrine a set of pixel coordinates (v. v). %here k and v are

integers. that closely approximates the line from the point (0.0) to the point (di. d). for integer

values of dx and d%. The assumption that one line endpoint is at the origin losts no generality.

because lines with other origins are simply translations oif' the line A ith oritin ((.(0). Ndditionall .

lines are restricted to the first octant: (0 < dy < dk. Again. this assumption hoc, no generalit .

because an arbtrar line can be generated by trmnsposing the caionical line or hx reflecting it about

one of the principal axes.

- - - "" ill -II

2 Using Program Transformations to I)erise I.ine-I)ra%%ing Algorithms

'he objectise of a line-dra~&ing algorithm is to enumerate those pixels that lie closest to the

true linc, the mathenatical line from (0.0) to (dx. d.v). Figurc I illustrites a typical line. showing

with circles the pixels that correspond to spots illuminated by a CRT beam on a raster display or to

the swath of a plotter pen. Notice that integral values (of coordinates locate pixel centers.

x=O x=8

Figure 1. The line from (0. 0) to (8. 5). Small dots represent pixel

centers. The solid line represents the "true" line. Circles show the
pixels that are illuminated to display the optimal line.

[he optimal line \&ill illuminate exactlh one pixel in each vertical column. This assumption

minimies variations in pixel spacing that make lines appear to vary in width or brightness. The

assumption depends on the fact that the line's extent in x exceeds its extent in y.

The line-dra\%ing algorithm must coimpute. for each integer xi. the coordinate)7 of the pixel

that should be illuminated. The coordinate j, of the true line is simply , = (dv/dx)xi.

Illuminating a pixel centered at i, introduces an error e= ,= -(d../dov)xi. measured along

the y axis. The error ep measured perpendicular to the line can be determined using similar

triangles (Figure 2): ep = (dxl /(dx2 +dj2))e,. Thus. for any given line, e is simply a constant

times e1, Consequently, determining ji by n-inimiing the error c, will identify the pixel that is

closest to the line, using either vertical or perpendicular distance measures.

The errors can be minimized it'.i is computed by rounding j':)-i = roundA',). or equivalently,

lrunc()yt+ 1/2) = L),+ 1/21. (Recall that the floor function. LxJ. denotes the greatest integer

less than or equal to x.) With this choice, ev = Ly+ 1/2_1 -Yr, so - 1/2 < el. < 1/2. l.ines with

this error bchax ior are said to he oplial, in the sense that each pixel illuminated is within one-half

unit o f the true line. Optimality thus requires that a single pixel be illuminated in each column and

that the pixel be the one closest to the true line

/ .y.~.Aa....,- .,. . ,

Using Program lransfomiations to IDrive line-Drawing Algorithms

ep
e v

dy

dx

Figure 2. Illustration of the relationship between the vertical
distance e. and the perpendicular distance ep.

3. Derisation of the Brewrnham algorithm

The minimum-error formulation of the optimal line leads directly to a simple algorithm that

enumerates all the points on the optimal line. which can be expressed in a PASCAl -like language:

Al: var yt: exacireal; dx, dy, xi, yi: integer;
for xi 0 to dx do begin

yt= dy/dxl*xi;

yi= trunc(yt+(1/2]):

display(xiyi)
end

Although this procedure is expressed using programming-language constnicts, it requires that precise

real arithmetic is used: "floating-point" approximations arc not permitted. To emphasize this
precise arithmetic, variablcs that use it are declared to have type ex.acireal. Square brackets enclose

expressions whose values do not change during iteration of the loop, these expressions can be
computed only once, before the loop is entered, and saved in temporary variables. We shall also
maintain that multiplications by a power of two do not require multiplication operations, but can be
achieved by addition or arithmetic shifting.

1. Incremenial iran.jqbnnauion. 'he next version of the algorithm is derived from Al by
observing that y, can be calculated incrementally by adding the quantity (dy/dx) on each iteration.

./

4 Using Program Transformations to Derive Line-Drawing Algorithms

A2: var yt: exactreal: dx. dy, xi, yi: integer;

yt "= 0;

for xi := 0 to dx do begin

yi := trunc(yt+[1/2]) (0 assen yt = (dy/dx)xi *)

display(xi,yi);

yt := yt+[dy/dx

end

2. Substitution of variable (simple). A simple transformation substitutes

Ys Yt+1 2 (1)

A3: var ys: exactreal; dx, dy, xi, yi: integer;

ys := 1/2;

for xi := 0 to dx do begin

yi:= trunc(ys); (* assert ys = (dy/dx)xi+1/2 = yt+1/2)

display(xiyi);

ys := ys+[dy/dx]

end

3. Substitution of variable (complex). Algorithm A3 is further transformed by breaking ys into

integer and fractional parts: ysi; which will take on only integer values, and ys-. which will hold

only fractional values. Thus

Ys = Ysi + Ysf (2)

0 < Ysf <1 (3)

This substitution requires that the incremental step (y. := Ys+ f[dy/dxj) be changed to add the

increment to the fractional part ('sf) and then test whether the result exceeds 1, i.e., to see if it is

no longer fractional,

A4: var Ysf- exactreal: dx, dy, xi, ysi: integer;

ysi := 0: ysf := 1/2;

for xi := 0 to dx do begin

(0 assen ysi+ysf=yt+1/2 *)

display(xi,ysi):

if ysf+ldy/dxiJ 2 1 then begin

ysi :- ysi+l;

ysf : ysf+[dy/dx- 11
end else begin

ysf : ysf+[dy/dxl

end

end

/ -

4

Using Program lransformations to I)eri c Line-J)rawing Algorithms 5

4. Substitution of variable (simple). Algorithm A4 can be easily transformed into the Bresenham

algorithm by replacing the use of w. f with that of a variable r:

r = 2dy + 20ysj- I)dx (4)

The objectives of this transformation are (1) to change the comparison in the inner loop to a sign

check (i.e., a comparison %kith 0), and (2) to eliminate division operations b% scaling by 2dx.

Making the appropriate substituuon of r into A4 yields the Bresenham algorithm:

A5: var dx. dy. xi. ysi. r: integer:

ysi := 0: r = 2*dy-dx;

for xi := 0 to dx do begin

(v asr + 1 - w *)f:- ,* , r + 2dx - 2dy)/2dx)

display(xiysi):

if r > 0 then begin
ysi "=ysi+l-,

r "= r-[2*dx-2*dyl

end else begin

r := r+12*dy]

end

end

The Bresenham algorithm is ideal for implementation in hardware or microprocessors with limited

arithmetic power. The algorithm requires neither division nor multiplication, and requires no

"floating-point" approximations because all variables take on only integer values. Moreover, r is

not required to hold large values. Fquations (3) and (4) imply

2dy- 2dx < r < 2dy (5)

If 0 < dy < dx < 2"-1, r is bounded by

-2n+1+2 < r< 2n+-1 (6)

Thus if dx and dy, are n-bit positive integers. r requires at most n+2 bits in a two's complement

representation.

Interpretation of r. The value of r is rriated to the vertical error, e,, the distance from the pixel

center to the true line. The errors will be identical for all algorithms, because the same sequence of

points is generated. When display is called. e v = Ysi-Yt. Using (I) to substitute for Yt" and then

(2) to substitute for),s, we have

e, = ysi-(ys-I/2) =ysi-ysi+Ysf--12)

ev = 1/2-ys/

Applying transformation (4) yields

i . . .- / ..-. . .-

6 Using Program Transformations to I)erive Line-Drawing Algorithms

ev = -(r+dx-2dy)/(2dx) or

r/(2dx) = -ev+(dyldx-1/2)

The value r is thus linearly related to e, but is offset by 1/2 due to the loop's initial conditions,

and is moreover scaled by 2dx to require only integral values of r.

Summary. AI of the algorithms developed in this section compute the same sequence of points

(xi, y) that approximate the true line. Mathematical and program transformations are used to

derive efficient implementations.

4. The digital differential analyzer (I)DA)

The digital differential analyzer numerically integrates the line equation, obtaining x = fdx

and y = fdy. The conventional D)lA treats both coordinates symmetrically. The numerical

integration requires choosing the number of integration steps, as shown in the following algorithm:

A6: var xy: exactreal; dx, dy, nsteps: integer;

x := 0; y := 0;

nsteps "= some number > dx and > dy;

for i "= 0 to nsteps do begin

display(trunc(x + 11/2]),trunc(y + [1/21));

x := x+[dx/nsteps];

y := y+[dy/nsteps]

end

This algorithm generates exact values for x and y in the loop because "exact" real arithmetic is

used. This algorithm may not produce the optimal line, in the sense defined in Section 2, because

of the separate rounding in x and y. A trivial example arises if Pisteps = 1: only the pixels at the

two endpoints of the line will be displayed. A more interesting example arises when dx = 10, dy

= 8, and nsteps is chosen to be 40: the point (2, 1) is displayed, even though its vertical error is

-0.6.

An important problem with the D)A is the choice of nsteps. A common approach is to choose

nsteps to be a power of two so that the divisions may be performed simply by shifting dx and dy:

thus. nsteps = 2n, where 2" > dx. Unfortunately, this causes x to be incremented by a quantity

less than unity. so that more than one pixel in a column may be illuminated. Although the second

pixel in a column can be omitted by a suitable test in the loop, it is harder to guarantee that the

pixel that is displayed is the one closest to the line.

Another approach is the "unit increment" 1)l)A, in which we choose nsteps = dx so that x will

always be incremented by unity, and algorithm A6 becomes identical to A2. which generates the

Using Program Transformations to Derive l.ine-l)rawing Algorithms 7

optimal line. By this route, the DI)A transforms into the Bresenham algorithm.

It is important to note that a common approx.mation to the unit increment I)I)A. often used in

hardware implementations, does not generate optimal lines. The approximation is obtained from A4

by substituting Ysd for (2")yf in order to introduce an integer variable .sd that has "sufficient"

precision to represent the fractional part of the y coordinate.

A7: var dx. dy, xi, ysi. ysd: integer;

ysi := 0: ysd := 2'-'.

for xi 0 to dx do begin

display(xi,ysi):

if ysd+[2n*(dy/dx)-E] > 2n then begin

ysi "= ysi+1;

ysd •= ysd+2f*(dy/dx)- -2 nl]
end else begin

ysd ': vsd+[2n*(dy/dx)-e]

end

end

The above algorithm is precise only if c=O. In practice. 2'(dy/dx)-c is chosen to be integral, and

c is the error: - 1/2 < e < 1/2. The value of n is chosen to be sufficiently large that errors

introduced by the approximation are acceptably small. If n is chosen to be the smallest integer such

that 2n > dx. the line is guaranteed to begin and end at the proper coordinates, but not to be

optimal. To illustrate the non-optimality. consider dx = 120, dy = 1, n = 7. At xi = 62, the

algorithm will call display(62, 0). However, the point (62, 1) is closer to the true line. There is a

value of n, 2" >> dx, for which the generated line will be optimal. However, this value may be quite

high.

The hardware implementation of the unit-increment D)lA is simpler than algorithm A7

implies (Figure 3). On each iteration, which corresponds to a clock cycle in the circuit, a new value

for ysd is computed by adding 2'(dyf/dx)- e. ysi will be incremented if the sum equals or exceeds

2", and xi will always increment. The same idea can be used to build a fixed-point software

implementation.

- 4'.,d
/ III• I

S Using Program Transformations to lDerive L ine-IDrawing Algorithms

counerI : count always

- n lbits

Counters com unterx n nadrsm s n

inrmntd nd i nreetd ftehigh-order bit of +thetade
adder ses t o i c em n 1. t -

5. An nstep agorith

Bifo re exloin armstat emploietparism, wfte shal-ilusrten th ransomto
tecniuedveoeunte copei setins y deivng ane alortms thatd tae ho= ona stpso

n ~ ~ ~ 2'd x un- in On Scanagitmwleeatcce, ever is oeith the lne.w star wit anoviu

varian oful Al:1

NI: var yl: exactreal: dx, dy, xi, yi, n: integer:

for xi :=0 do dx by n do begin
Vt dy/dxlxi:

yi :=trunc(yt+ 1/2);
display(xi~yi)

end

Computing y, incrementally, and substituting),s y,+-1/2, we have:
N3: var ys: exacireal: dx, dy, xi, yi, n: integer;

ys :=1/2;,
for xi :=0 to dx by ,i do begin

yi :=trunc(ys);,
display(xi.yi);,
ys ys+ln(dy/dx)]

end

Using Program Transformations to Derive Iine-i)rawing Algorithms 9

When)s is broken into integer part Ys, and fractional part Ysf, n(Jy/dx) may also have an integer

and fractional part. Define the integer part s s(, that 0 < n(dy/dx)-s < 1: the "fractional" part is
then rdy/dx)-s, which although called fractional. may actually equal 1. A %alue of s that meets

these constraints is s = Ln(dj/dx)J. [he algorithm becomes:

N4: var ysf: exacireal: dx. dy, xi, ysi, n, s: integer;

(' assume s has been computed *)

ysi := 0- ysf := 1/2;
for xi := 0 to dx by n do begin

display(xi,ysi);
if ysf+ln*(dy/dx)-s 2 1 then begin

ysi ysi+[s+1:

ysf := ysf+[n*(dy/dx)-s-1]

end else begin

ysi := ysi+s;

ysf ysf+in*(dy/dx)-s]

end

end

The next step is to apply the transformation that makes a "Bresenham-like" algorithm: r 2ndy +

2(Ysf- I - s)dx.

N5: var ysf: exactreal: dx, dy, xi, ysi, n, s, t: integer;

(assume s and t = 2ndy - 2sdx have been computed)

r := t-dx; (* ysf = 1/2 implies r = 2ndy+2(1/2-1-s)dx)

ysi := 0;

for xi := 0 to dx by n do begin "N5loop"

display(xiysi);

if r > 0 then begin

ysi : ysi+[s+1];

r := r-12*dx-tl

end else begin

ysi '= ysi+s;

r :- r+t

end

end "N5loop"

Note that this algorithm is identical to A5 if n= 1. sz0. The attentive reader will question what

happens if dy=dx. n= 1. Note that s is not defined to be Lnidt'/dx)J. So by setting s=0 in this

10 Using I 'rograin I rfns1*~ ions to) I)ciixkc I Inc-I)rvAsjfl(Algorithms

case. the assumption 0) < ri(JdJ) - s < I is not % okited. I he other possihilits for dy= dx, s=1
gencrates the samne points. alt-hough the ilgorithm is, thcn not identical to A5.

A minor diffictlt A ith N5 is the need to compute % ind -- 2m] ' -- 2.0x. Although this could

he done A ith Iniutipis and di\ ide opcrrations, a small ni rcmental alcorithm can he used to compute

s, developed using the samne principlc,, ,ho~n in Al-A5:

var rn.: exacircal: s, i, n: integer:

s := 01 t-11m 0:

for i :v 0 to i-I do begin

if rm Id" /dxl >! I then begin

S =~ s±1I-

flu v rni [d-Id/dx - I

end else rm = I in 4- Idy /dxj

end

Ihis program Iiisfrc h\ sittn ry v- (r - I Ok' it J and inc luding ob\ otis calculations

for t into the (tblho rug pr jlogue to lvorithm N 5:

N~p: var dx. dv, s. t, rp. , I): integer-,

begin Npoou

s :~0: t 0:

rp cb-dx:

for i= 0 to it I do begin

* a.a-ert itd/d\ -11P.0 e' d)dx *

if rp > 0 then begin

s :~Si-:

t t--dx-,

rp : rp-Idx - dy

end else rpT: rp- dy

end:

t =t~t:

end "N~prologue"

It is important to rernenihei ta t i tp ,Ic iIrtin _enortcs he saine optimal points as the

Bresenham algorithm.

Using Program Transformat ions to l)crie I ne-l)rawing Algorithms 11

6. Parallel algorithms

This section develops line-drawing algorithms that are capahle of generating several points on a

line in parallel. These algorithms are oseful if a frame buffer can update scecral pixels in one cycle,

or if lines must be approximated with special "characters" 13. 41. The transformations illustrated in

the preceding sctions are extremcly useful in designing these algorithms. They allow the algorithm

to be stated in conceptuallh simple terms and then transformed into one that can be efficiently

implemented with integer arithmetic.

6.1. The (n,n) algorithm

The n-step algorithm developed in Section 5 is the basis for a parallel algorithm: operate n

copies of the procedure, each generating points spaced n units apart: hence the name (n.n). Fach

copy of the algorithm is phased slightly differently: the copy with phasc=O generates points at x=O,

n, 2n. . . . the copy with phase= I generates points at x= 1, n+ 1, 2n+1... . and so on. This

technique is simply expressed as (c.f. Al):

PI: var phase: integer;

for phase := 0 to n-I do parbegin

var xi.yi: integer: yt: exactreal: (* Ihese vanablcs are duplicated for each phase)

for xi = 0+phase to dx by n do begin

yt := [dy/dxj*xi;

yi "= trunc(yt+[I/21);

display(xi,yi)

end

parend

The bracketing parbegin and parend mean that there are n parallel copies of the inner loop, each

operating with a different value of phase and with separate copies of the local variables xi ,4 and

yr. We now proceed with transformations demonstrated in Sections 3-6. The inner loop is

transformed into one almost identical to the inner loop of N5: only the iteration of xi is different.

The initial computation for),s in P2 requires a multiply/divide which is transformed into a loop

executed phase times to compute initial values for ',si and r. This loop is combined with the

prologue (N5p) to compute values for s and i. The final result is P2:

,/

Using Program Transfoirmations to)crive I e-I)rawing Algorithms 13

6.. The (l,n) algorithm

The second algorithm capable of exploiting paralleihsm uses he n-step Aorithm to find points

on the line at n-unit intervals and fills points in between with a "stroke." 'lhe n pixels in each

stroke can be written in parallel. This technique is useful when line, must be approximated with
"characters" because a raster displa) or printer is controlled b) a character genciator,: the characters

arc simply short strokes.

The algorithm is easily derived from N5. In the inner loop, the test on r determines whether

the line rises by s+] or s units for a move of n units in x. If the line rises by .s+ I units, a stroke

that rises s+1 units in n is drawn from the current (x. Y) point. The stroke is determined by an

index i that gives its rise in Y. i=O. I. n. The strokes ma., he precomputed using the

Bresenham algorithm, as shown in Figure 4 for ,i=8. Note that each stroke has only n points

(x=O, 1. ... n- I). but that the rise is that of the (n+ I)st point (x=n). This convention is adopted

because algorithm N5 computes the rise to the origin of the next stroke rather than the rise to the

end of the current stroke.

...

..............

0o.
OD)..

FiurM . Th nin difrn Itoe f- - (D . Th0 xoum

..... M.
Figure 4. The nine different strokes for n=S. The left column
shows rises of ((bottom). 1, 2, 3. and 4 (top). [he right column
shows rises of 5 (bottom), 6, 7, and 8 (top). I he origin of a stroke
is marked with a + and the origin of the next stroke with an x.

14 Using Program lransformations to I)erive ILine-i)rawing Algorithms

In order to draw lines of arbitrary length, the last stroke on the line may be only a partial

stroke. The standard stroke is simply truncated: only the first fe" points on it are actually

displayed. '[his is illustrated by the procedure DisplaYSiroke. which accesses an array Stroke(ixj to

find the v coordinate of a pixel gien the stroke rise i and the x coordinate relative to the beginning

of the stroke.

procedure DisplayStroke(originX, originY, rise. maxX: integer);

var x: integer:

for x := 0 to maxX do parbegin

display(originX + x, originY + Strokerise,xJ)
parend;

Note that the individual pixels of the stroke are written in parallel.

This procedure can be incorporated into NS to yield the complete line-drawing algorithm Q.
The algorithm is shown without the prologue N5p:

Q: var dx, dy, xi, ysi, s, t. r: integer;

(0 Insert, N5p here to compute s and t = 2ndy-2sdx)

r '= t-dx;
ysi 0:

for xi "= 0 to dx by n do begin

if r > 0 then begin
l)isplayStroke(xi, ysi, s+l, min(n- 1,dx-xi))

ysi ysi+[s+l]:

r := r-[2*dx-t]

end else begin

DisplayStroke(xi, ysi. s, min(n-l.dx-xi))

ysi ysi+s;

r "= r+t

end
end

Algorithm Q has several advantages over P. 'he setup is substantially simpler. as are the

computations performed in parallel. The scheme is very similar to that of a character generator in

which pre-computed patterns are displayed: the strokes play the role of characters. It differs from

many character generators in that a character may have an arbitrary origin on the screen and may

be partially truncated.

"Ibe chief disadvantage of algorithm Q is that it does not generate optimal lines. Although the

stroke origins lie within 1/2 unit of the true line. the other points along the stroke may err by as

--- -V /II I II

Using Program lransforniations to I)erise I.ine-I)rawing Algorithms 15

much as 1 unit. 'llis properts arises because the J coordinate of* o pixel is the sum of two

independent computations, the position of the ,troke origin and the position of the pixel withir the
stroke, each of which may make an error of 1/2. Art example of -i ertical error of 0.913 is shown

in the top line of Figure 6. at x = 18. Another Wa t see the non-opiltnaht . of" Q is to observe

that although only a single stroke is displayed for each distinct rise in t. there are actually several

different strokes with the same rise (Fizure 5). In practice. the error is hardl\ noticeable.

. " ' X

Figure 5. F-our of the 8 different strokes with :m=8 and a rise of 1.

, Before leaving the subject of stroke selection, w~e should mention that it is essential to have the

~algorithm P-2 choose from two strokes, rather than merei\ position the origin of a single stroke. If a

single stroke is used for an entire line, the maximum deviation from the optimal line may be greater

than 1 or the line may have gaps or non-monotonicities, illustrated in Figure 6.

Psen though algorithm Q produces non-optimal lines, it turns out that th~e endpoint of the line

is always exact. Appendix A& contains a proof of this fact. I-\xhaustive simulations of algorithm Q
for all lines of length 1024 or less, have serified that endpoints are als~ays computed correctly.

7. Conclusion

This paper began by shos, ing how simple mathematical and program transformations could be

used to transform an obvious line-dra ing mehod based on analytic geometry into an efficient and

exact ;algorithm that requires only integer arithmetic. These methods help persuade us that the

algorithm is correct without recourse to complex geometric constr-uctions ,,uch as those in [11,. The
techniques are examples of routine program transformatios that sould be a commonplace actiity

in program design and implementation.

/

tha I or th liemyhv aso o-oooiiis lutae nFgr.

16 Using Program Transformations to Derive I inc-Drawing Algorithms

0-
0.

0
0

00
.0

000
0

0 .00
0 COC CC(X

cco o
Figure 6. Lines illustrating gaps and non-monotonicities. The top
line (dx=23, dy=18) is drawn with three strokes with n=8, which
leave a gap. The small dots show the optimal line. 'Ihe bottom
line (dx=23, dy=5) shows a non-monotonicity.

The main reason for applying these techniques is to extend line-drawing algorithms to exploit

parallel activities. Although only two parallel schemes are explored in Section 6, one can imagine

many more. The difficulty of developing such algorithms is subtantially reduced by using the

program transformations.

Acknowledgernents

This paper grew from attempts to write very fast line-drawing microcode for the "8x8 display,"

designed by Ivan Sutherland and the author. Satish Gupta devoted considerable coding effort to

this display and to simulations of the (1,) method. The proof in Appendix A is due to Mike

Spreitzer of Caltech.

References

[11 J.E. Bresenham. "Algorithm for Computer Control of a Digital Plotter," IBM Syst. J..

4(1):25-30, 1%5.

"i " " / .:;

