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Abstract

and test several methods to reduce the computatiqnal cost in

In this study we introduce
ated word rccognition systems. Three methods will be

dynamic programining algorithnus for isol
discussed in detail: 1.) Pruning by preset thresholds 2.) Scarch based on the Branch and Bound
technique 3.) Branch and Bound based scarch with additional pruning. Compared to
conventional algorithms, Method 3.) could be scen to yield a speed up of appro.ximzucly a factor
of 5, at no loss of recognition accuracy. The branch and bound method with pruning is also
systems, since pruning is independent of the parametrization

idcally suited for rescarch oricnted
). Additional features of this method, which.

used (climinates the necessity for retuning thresholds

arc of importance to maintaining the flexibility and diagnosticity needed for such a system, will

be discussed.
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1. Introduction

For the devclopment of practical speech recognition systems, computation speed is one of the
predominant design fuctors. Several commercially available systems still employ--in terms of
recognition accuracy--inferior lincar time normalization techniques to account for speaking rate
variations, since the dynamic programming (1DP) -technique is computationally very costly. Even
in a rescarch environment, the turn-around time for larger experimental runs over large speech
data-bases can casily be in the order of days or weeks. Consequently. several methods have been
employed to reduce the redundancies in isolated word recognition systems. Referring to the
commonly used DP’-matching techniques, as used by Sakoe and Chiba, Itakura, Rabiner and

others!?

, it can be scen that the bottleneck of nonlinear time nommalization is given by the
number of points within a matrix--defined by the frames of an unknown utterance x and a
known reference uiterance y~-that arc needed to find an optimum matching path. The
computation needed for cach of these points includes the computation of a distance between the
particular test-frame and reference-frame under consideration and the derivation of a cumulative
score defined by the constraints of the DP-matching algorithm in use. In a computer program
that performs DP-matching, these operations will typically constitute the innermost loop and
therefore be the most repetitious and most expensive in time. Finding less expensive warping

constraints or distance functions, however, will in most cases yield a loss in recognition accuracy.

Two other methods Lave been ued by Sakoe & Chital a..‘.d by Rabiner’. “The firt i the
definition of a window! around the diagonal of the warping matrix that defines the boundarics of
any allowable warping path. This definition is not only useful but also, for some warping
functions, rieedad W profiitit possibic funi-limguistic patns through ic matnix, Roeduction of dic
width of this window thus increases computational speed significantly. It has been shown® that a
window that restricts the warp search path to lead or lag tehind a linearly time-normalized match

by not more than 50 msecs is the optimal choice for an isolated word recognition syster: using an

alpha-digit vocabulary. Such a window constraint was seen to not only provide a computational

| saving of up to 70% but also in some cases to increase recognition accuracy.

lll should be noled that, in thal paper, the window was not mainly inlroduced for cfficiency reasons.
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Further methods have been suggested to increase compatational efficiency. In the following
chapter we will briefly describe a method suggested by Rabiner et al® and then introduce two
alternate methods. In the third chapter ‘we will report the results of extensive testing on all

methods reported here.
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2. Efficient Algorithms for Non-linear Time
Warping

In this chapter we will describe three methods currently in use in our isolated word recognition
system to perform dynamic programming in an cfficient manner. Most methods are based on
the idea that--analogous to the presumed strategy of human perception --selection of the correct
candidate out of a reference vocabulary. can be performed in an anticipatory wz;y, by process of
elimination. In other words, particularly inappropriate candidates can be discarded comparably

early in the matching process, i.c., the match can be avorted.

2.1 Preset Thresholds

In this way, Rabiner ct al. have ohtained significant reductions in computation cost. Two
thresholds are predefined, denoied Tmin and Tslope. The computation of the warp is performed
by computing the d.ismnccs and the Itakura warping function? between a given frame i in the test
token and a column (specified by the search space) of reference frames (see Fig.2-1). For cach of
these grid points a cumulative dissimilarity score of the best path leading to this point is obtained
in this fashion. The minimum score out of these cumulative scores--"localmin--is determined

and compared to the threshold Tj.2

If localmin>T]j the warp is aborted and recognition proceeds to the next candidate; Tj is given

by ‘
Tj = (Tmin + 1 Tslope)M

where N is the number of frames in the test utterances. Referring to Fig.2-2, it can be seen that
Tslope can be viewed as N times the average distance that can be added to the cumulative score
along the search path without causing the pruning mechanism to abort the match, The factor N
provides a further adjustment depending on utterance ength. Both Tmin and ‘Tslope have to be
set in such a fashion that they minimize computation (for efticiency) but are gencrous enough to

not degrade recognition performance (e.g., by aborting "a good match").

2Nolc that the techniques described here would have 1o be altered iff different warping algorithms were used. The
Itakura algorithm appears particularly practical for these methods.




Restriction of the Search Space via an Adjustment Window

The dotted area indicates computational saving through the use
of the window constraint. Tolerance t is used as a measure
of the width as well a= the saving achieved.

Figure 2-1: Warping Plane Indicating the Scarch Space of the Itakura Algorithm
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Tj = Tmin*N,
/ Tslope*N*i
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Figure 2-2: Pruning Using the Preset Thresholds Tmin and Tslope

2.2 Branch and Bound

In a rescarch oriented speech recognition system it is for experimentation sometimes desirable
to cnsurc that recognition results are not affected by pruning mechanisms, i.c., that they are
guaranteed to reflect the differences in the overall dissimilarity scores derived from all matches,
only. Nevertheless, one would want to avoid unnecessary computation. This is provided by a
method that is based on the "branch and bound” search technique. This technique requires that

the various matches of a recognition be performed in parallel.

What we mean by this "parallel warping” technique is illustrated in Fig.2-3. Instcad of

performing all matches scquentially. cach frame 7 in the test-token is matched with the
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Figure 2-3: Panllcl Warping Plancs

corresponding frames of the K reference tokens of a K-word vocabulary. Fig.2-3 illustrates this
technique by adding a dimension (k) to the warping process (usually depicted as a warping
planc). In this fashion K warping plancs are considered at a time. Information about the
goudness of the matches with all the tokens in the reference vocabulary is available at all
intermediate stages ip during the warp. Several methods to prune comparatively bad malc‘hcs

suggest themselves. For the "branch and bound”-based technique, however, we do not prune




away a bad match. Rather, only the so far least expensive mztch (the one with the so far lowest
"localmin-value) is expanded. 'This means that, instcad of warping a particular test-frame ip
against the various frames of the K reference tokens, the so far best match out of the K matches
is warped (thus proceeding ia /) regardless of the momentary position in i of its search path.
This method is illustrated by Fig.2-4, which depicts the projection of the search paths onto the ik-
planc for the parallel warp and the "branch and bound"--based para.llcl warp. Clearly, in the
branch and bound mcthod bad matches--i.c. matches between strongly differing speech signals--
will accumulate high distances and therefore be left behind. As soon as the best match reaches
the end of the test utterance, the recognition process is completed. Thus, implicit pruning is
performed on all other .matches. This method has the advantage of guaranteeing that the lowest
dissimilarity score will be found and thus it provides identical recognition results as if no pruning
were performcd. As an additional advantage for research oriented systein, it should be noted that
users can spécify a valuc n to obtain tﬁc n best matches in the recognition, while the least amount
of computation is being performed necessary to obtain the n best matches. However, if nd>1, of

course, the computational saving will be minimal,

2.3 Branch and Bound with Pruning

In many cases, such as practical recognition systems as well as during large produciion runs of
rescarch oriented recognition systems, it often does not matter to preserve the exact individual
recognition outcomes, as long as the overall number of errors is not increased when pruning is
pc.rfomlcd. If this s the case, the branch and bound method, described above, can be further
extended to further reduce computation time. Thus, every time a path is expanded by means of
continuing its warp, the number of frames that its scarch path is then' leading before or lagging
behind any other path is determined. I this number exceeds the thrashold Leadt, this other pah
is pruned off. Leadtis given by

Leadt = P/100 N + 1

where P is a user-defined percentage and N the number of frames in the test utterance.

Thus using the illustration in IFig.2-4, if we were expunding path 1 to i, and if i j-i,)lcadt,
match 2 would be aborted. 1n addition to drastically décrcasing the computational cffort, this

pruning mecthod is entircly independent of the numerical values of the distances, scores, and
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Figure 2-4: Expanding Scarch Paths in Parallel Warping Algorithms

spectral cocfficients. 1t is therefore ideally suited for systems in a developmental stage. Using
other pruning mcthods, frequent changes in the representation of the speech signal would cause
the necessity for repeated retuning of thresholds to optimally trade off recognition accuracy and

computational saving.
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3. Testing

As a mcasure of the computation needed using the algorithms described above, we use the
total number of grid points (of the warp scarch space) that were computed for cach speaker and
the run time. As testing conditions, the algorithms were run on 5 data scts, 36 utterances cach
(the alpha-digi. . scabulary) for 8 speakers (4 male, 4 female). As reference data-set for cacn
speaker, a 36-utterar.ce reference set was generated from 5 additional readings of the vocabulary
2 A detailed description of the recognition system can be found slsewhere®. It should be
pointed out, however, that entirely automatic endpoint detection was used; no manual tuning
was performed. Some of the recognition errors reported in these results are due to errors in the.

endpoint detection.
The results of these experimental runs are shown in figures 3-1 through 3-6.

The compumioria] cost of the various algorithms tested is presented in figures 3-1 and 3-2.
The criterion for these graphs was to minimize cost under the constraint of maintaining the same
or reducing error rate as comparced to a conventional Igorithm.  The results are presented in
Fig.3-1 in terms of the number of grid points needed to compute the 180 recognition of the test
data basc and in 3-2 in tenns of the average run time per recognition in msee. The first measure
was choscn to provide a machine independent estimate of the savings obtained. As can be scen
from Fig.3-2 in comparison to Fig.3-1, this docs not directly translatc into run time
improvcrﬁcn[& as we reduce the number of grid points. This is so, since in those cases, the
number of grid points ceases to be the predominant factor contributing to computational cost
and the overhead outside the innermost warping loop has to be considered. 1n both graphs,
algorithm 1 -labeled no pruning, no window- performs an exhaustive scarch of the itakura warpz,
algorithm 2 (no pruning, t=35 window) is algorithim 1 with the additional adjustment window
constraint, that was previously rcpor[cd4 to yield better performance in accuracy and cfficicney.
Finally, the results for the algorithms 3, 4, 5. are shown, i.c., for the branch and bound with no
pruning (i.c., P=100), the mecthod of preset thresholds and the branch and bound method with
pruning (P=15), as described carlicr. Using the fastest algorithm, our particular implementation

of the recognition system (runuing on a VAX-780) operates in less than 2.5 times real time.
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Comparing Fig.3-1 with Fig.3-2, we also see that the run time improvements as given by the
branch and bound mcthod with pruning ar¢ not as substantial as indicated by the saving of grid
points in Fig.3-1. This behavior is due to the larger overhead needed to perform the branch and
bound scarch (comparing local minima among the references).  This indicates that for
vocabularics.substantially larger than 40 words an alternate search strategy might result in faster

opcration,

In figure 3-3 the recognition results for the branch and bound based pruncd algorithm are
shown for various values of the pruning factor P. Results are plotted scparately for the eight
speakers in our data basc and are given in terms of crror rate (pereent confused). Notice that
P=100 means that no pruning is perforined and the algorithm operates based on the branch and

bound technique only. From figure 3-3 it can be scen that pruning does not necessarily have to

be associated with an increase in error rate. In fact for P=15 or 20, improvements of up to 3% or

4% can be observed for some spcakers. This is true, since in many cases two initially badly
matching utterances such as a "B" and a "C", will be prevented from leading to confusion due to
the pruning operation. Notice also -independently of the pruning and in agrecment with earlier

results* and other studics- the relatively high speaker dependency of the recognition results.

Figure 3-4 dcpicts the corresponding computational cost in terins of the number of grid points
in the search space, i.c., the number of times the innermost loop of the algorithm has to be
exccuted for the 1S0 recognitions of the testing corpus. As could be cxpeeted, the number of grid
poinls that need to be computcd decreases monotonically with decreasing pruning factor. A
pruning factor of 15 or 20 (which yiclds acceptable recognition performance) will achicve a
reduction of grid points by a factar of 2 to 3. Notice also, that while the curves for the different
speakers behave similarly as a function of the pruning factor in a qualitative way, their actual
quantitative valucs do differ strongly across speakers. This speaker dependency in speed (up to a
factor of two) has to be considercd should certain run times be required in a practical recognition

system.

To sumr.arizc thesc obscrvations in a very crude way we have taken the freedom for the
y Y
purpose of illustration to avcrage our results over the cight speakers as shown in figures 3-5 and

3-6. A value of =20 can be seen to yield lowest error rates while a value of P=15 still leads to

e
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equivalent performance. This suggests that enough discriminatory confidence is accumulated
when the path of an inappropriate reference candidate fulls behind the best path by more than 20
pereent of the length of the test token. This result shows that a scarch algorithm with pruning,
i.c., an algorithm that does NO'" perform an exhaustive search for the optimal score often times
impfovcs performance by virtue of imposing additional constraint on the scarch. This
observation is consistent with previous results coneerning the optimal choice ¢f an adjustment

window?,

The cost (in terms of grid points) averaged across speakers obtained by such pruning can be
inferred from figure 3-6. Note, that if one attempts to meet certain performance goals, it is better
to use the data obtained for a speaker with the highest run times, rather than the average across
'sbcakcrs. For the purpose of comparison, however, we have chosen to present the data in this

way.

To obtain optimal performance data for the preset thresholds algorithm, two thresholds were
determined empirically, providing an crror rate cquivalent to an algorithm where ro pruning was

performed, while minimizing for computational cost.
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4. Summary and Conclusion

We have shown that the branch-and-bound-with-pruning-mcthod is the fastest algorithm of

all the methods we have investigated. More importantly it is insensitive to changes in parametric
representation or in vocabulary. This insensitivity to changes proves to be very beneficial in

rescarch systems when almost all aspects of the system are changing continuously, since

optimization and tuning of thresholds is usually time consuming and cumbersome.

More spccifically, the advantages are:

o This method yiclds S times faster operation for our recognition system than
performing a conventional exhaustive search. (Using a lcad threshold of 15% of the
length of the test token (P=15) as pruning factor in addition to a branch and bound .
based search-method (which yields approximately the same error rate as without
pruning) and using a scarch space window of %50 msec?)

o Substantial cost reductions were achicved duc to the insensitivity of the algorithm in
face of system changes such as changes in paranetric representation or vocabulary,
- thus climinating the neced for costly retuning.

o Flexible pruning thresholds (from no pruning at all up to rigid pruning) allow to
manually trade off cfficiency and recognition performance, if so desired.

o If no pruning is performed, the algorithm reduces to the branch and bound scarch
guarantecing optimality, This provides identical results as exhaustive scarch, while
reducing the computational cost by about 60%.

e It is also possible to compute the guaranteed n-best candidates while obtaining more
efficient opceration.

The disadvantage of this technique is its higher requircments for primary memory storage,

since scveral matches arc operated on "in parallel”. For systems with insufTicient local memory,

fast softwarc implementations of such a technique and VI_SI-implementations might therefore be
faced more severcly by the problem of performing fast 170 than by doing the computation

necessary for recognition,
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