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EXECUTIVE SUMMARY

The Metrek Division of the MITRE Corporation, under contract to
the United States Army Medical Bioengineering Research and Develop-
ment Laboratory, is reviewing =2nd recommending short~term tests for
evaluating and predicting the functional and/or morphological impair-
b, ment produced by toxlc substances using animal test systems., This
document presents information on the available tests for the renal
system and recommends those tests which are suitable for use in a
51{ screening program.

Nephrotoxicity may be manifested as glomerular damage, in-~

terstitial nephritis, tubular damage, disturbances in renal blood

o

flow or any combination of these. Measurements of renal damage
X have been grouped into five categories based primarily on struc-

tural, functional or biochemical changes. These categories include:
(1) morphological damage indicators, (2) glomerular function tests,
(3) tubular function tests, (4) measurements of renal hemodynamics,
and (5) enzymatic damage indicators, A variety of tests have been
developed to detect renal damage, and many of these are well devel-

? oped and have a demonstrated ability to indicate damage produced by

! nephrotoxins. Such tests are of particular interest in developing a

g screening program for nephrotoxicity, and are discussed in detail in

|

this report,
Renal morphological abnormalities following exposure to toxic

substances have been documented in humans and experimental animals.
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The techniques used to measure damage range from gross observation to
electron microscopy. Of the techniques employed, gross observation
appears to be the least reliable since it is difficult to determine
the significance of alterations in color, size or kidney weight un-
less combined with studies of renal function, Structural abnormal-
ities in tissue and at the cellular and subcellular level can be
determined by use of light- and electron microscopy. Light micro-
scopy also lacks sensitivity in detecting damage, although it is

an important technique in counfirming damage in a screening program.
Electron microscopy is a sensitive technique for detecting early
damage and is useful in providing a thorough description of nephro-
toxic damage to a system; however, it is more involved than light
microscopy and is beyond the scope of most routine screening. It
may have limitéd application in those studies where other tests
provide inconclusive results,

Injury to the glomeruli may result from exposure to nephro-
toxins. Several tests are available which may indicate glomerular
dysfunction. These tests require only a blood or urine sample and
are relatively simple to perform. Included among these tests are
measurements of blood urea nitrogen (BUN), serum creatinine and
protein in the urine. A variety of sensitive methods for measuring

glomerular filtration rate (GFR) are also available when quantita-

tive assessment of the degree of glomerular dysfunction is desired.
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Measurement of serum creatinine is considered a more sensitive

indicator of glomerular dysfunction than is BUN; however, neither
test is suitable for the detection of early damage. Measurement of
protein in the urine appears to be a sensitive indicator of early
damage. The measurement of GFR using standard plasma clearance
procedures is cumbersome and is not weli suited for rapid screening.
However, the plasma clearance procedures are the best developed
methods for GFR determination and may be used in the later stages of
a screening program. Plasma disappearance methods for determining
GFR require further study but seem promising for screening.

The renal tubules are the main site of chemically induced
nephroses. The main tests of tubular function are those which mea-
sure the reabsorptive and secretory functions and the ability of the
kidney to concentrate the urine. In addition, general tubular damage
can be detected by microscopic examination of the formed elements in
the urine.

The reabsorptive function of the tubules can be assessed by mea-
suring the levels of substances which are normally absent, or present
in very low levels in the urine due to tubular reabsorption. The
measurement of glucose in the urine, even though it is not a sensi-
tive index of renal damage, is the more common test used in this
regard.

Tests which measure the secretory function of the tubules in-

clude the measurement of urinary acidification, the measurement of
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the transport maximum for p-aminohippurate and the in vitro evalu-
ation of the renal transport of p-aminohippurate (PAH), N-methyl-
nicotinamide (NMN) and tetraethylammonium ifon (TEA). The urinary
acidification test appears to be useful only for detecting severe
damage. The measurement of transport maximum for PAH is useful for
estimating the amount of active tubular mass. The in vitro tech-
niques are useful indices of decreased tubular transport and have
been shown to be sensitive indicators of tubular dysfunction. A
measure of the ability of the kidney to concentrate the urine has
also been shown to be a sensitive indicator of tubular dysfunction.
The microscopic evaluation of urinary sediment is a valuable test ouf
the anatomical integrity of the tubules.

Several procedures are avaiiable for measuring renal blood
flow and intrarenal distribution of blood flow. The effective renal
plasma flow can be determined by standard clearance procedures or by
plasma disappearance methods., Regional blood flow and intrarenal
distribution of blood flow may be determined through washout tech-
niques using radioactive substances or through the extraction and
entrapment of radioactive microspheres by the glomerular capillaries.
Both the washout techniques and the microsphere technique provide
valuable information concerning alterations in intrarenal hemody-
namics,

Urinary enzyme determinations have been used as sensitive indi-

cators of some forms of tubular damage. Experimental evidence has
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shown that when tubular cells degenerate, the enzymes contained in
the cells pass into the urine. Thus, changes in the urinary enzyme

excretion rates may reflect alterations in tubular cells. A few uri-

nary enzymes have been used in the screening of chemical substances

P for nephrotoxicity.

-

! The renal system performs many functions related to glomerular
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filtration, tubular reabsorption and secretion and blood flow. Since

the various renal functions are localized Iin specific sections of the
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renal system and the renal tests are generally applicable to only one

type of renal function, a screening program should include a variety
. of tests capable of monitoring all of the various renal functions.

A tiered screening program is recommended because the testing tech-

f niques can be subdivided into various levels of sophistication. For
v the renal system, the tests are subdivided into two separate levels.
. Level I of the tiered program should consist of those tests

which are simple, inexpensive, quick and sufficiently sensitive

to provide a good indication of renal damage. Level I tests would

——

include the measurements of glucose and protein. Additional urine

[ tests would include specific gravity or osmolality, microscopic

. examination of urinary sediment and enzyme determinations,
Level II tests are more sensitive than Level I tests and should

be better able to describe the extent and mechanisms of damage.

A

These tests are also more time-consuming, more difficult to perform

and more expensive. The tests included in this level include inulin
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clearance, PAH clearance, PAH transport maximum, urinary acidifi-

cation, in vitro cortical slices, 85kr washout, autoradiography,
gross examination, and light- and electron microscopy. The assay of
urinary enzyme activities is a sensitive technique for detecting some

types of early renal tubular damage, and a few urinary enzymes would

be useful in screening chemical substances for nephrotoxicity.
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1.0 INTRODUCTION

The Metrek Division of The MITRE Corporation, under contract to
the United States Army Medical Bioengineering Research and Develop-
ment Laboratory, is reviewing and recommending short-term tests for
evaluating and predicting the functional and/or morphological impair-
ment produced by toxic substances using animal test systems. Effects
in four organ systems--pulmonary, hepatic, renal, and cardiovas-—
cular--are being considered. This document presents informationm on
the available tests for the renal system and recommends those tests
which are suitable for use in a screening program.

Renal dysfunction can be produced by toxic agents, not only
because of cytotoxic effects but also as a result of hemodynamic
alterations. Nephrotoxicity may manifest itself as glomerular
dysfunction, tubular dysfunction, disturbances in renal blood flow or
any combination of these., A variety of tests have been developed to
detect renal damage and many of these are well developed and have a
demonstrated ability to indicate damage produced by nephrotoxins.
Such tests are of particular interest in developing a screening pro-
gram for nephrotoxicity and are discussed in detail in this report.

Measurements of renal damage have been grouped into the follow-
ing five categories:

e Morphological Damage Indicators

e Glomerular Function Tests

e Tubular Function Tests

15




® Measurements of Renal Hemodynamics

e Enzymatic Indicators of Damage
This categorization is based primarily on the structural, functional,
or biochemical changes that can be measured by the tests included
within each category. Certain tests, particularly some of the
simpler ones, may indicate damage to more than one component of the
renal system (e.g., to glomerular and/or tubular function) and may
best be described as tests of gemeral renal function. In such cases,
the test has been categorized according to the most probable type of
damage reflected by an abnormal measurement, Morphological damage
indicators (Section 2.0) include alterations in those structural
characteristics that can be determined through gross observation or
through the use of light- or electron microscopy. Tests of glomeru-
lar function (Séction 3.0) include measurements which reflect abnor-
malities in glomerular filtration as well as in actual measurement
of glomerular filtration rate. Assessment of tubular function (Sec~
tion 4.0) involves evaluation of urinary concentrating and diluting
ability and various in vivo and in vitro tests for tubular reabsorp-
tion and secretion. Examination of the urinary sediment for formed
elements indicative of tubular injury has also been included in the
Tubular Function category. Measurements of renal hemodynamics
(Section 5.0) include measurements of effective renal plasma flow

and intrarenal distribution of blood flow. Finally, Section 6.0

16
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describes the measurement of urinary enzyme levels in detecting
tubular damage.

Each test considered in this report is described in sufficient
detail to give the reader an appreciation of its complexity and a
familiarity with any special requirements for equipment, instrumenta-
tion or training., The significance of an abnormal test measurement
is discussed in light of any confounding variables which may lead to
false positive or negative values or otherwise affect the interpreta-
tion of test results. An attempt has been made to assess the extent
to which each test is employed in investigations of renal dysfunction
through qualitative estimates of the relative frequency with which
the test is reported in the literature. For most tests, specific
instances in which the test has been utilized to detect chemical
nephrotoxicity in laboratory animals are presented,

The tests contained within each category vary widely in their
sensitivity, accuracy, ease of performance and degree of sophistica-
tion., Each category therefore, contains tests suitable for various
levels of a tiered testing program as well as tests which, for any
number of reasons, may not be appropriate for inclusion in such a
program. The suitability of each test for inclusion and probable
placement in a testing scheme is mentioned in the discussion of that
test; however, comparisons of tests within and among the various

categories has been reserved for the final section of the report.
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In Section 7.0, entitled Conclusions and Recommendations, cri-
teria are defined for assessing the suitability of tests for inclu-
sion in a nephrotoxicity screening program. Those tests considered
in the report which satisfy these criteria are selected and classi-
fied according to a second set of criteria as belonging in Levels I
or II of a tiered testing program. The tiered testing scheme that is
presented is based upon a critical, comparative analysis of all of
the renal tests currently used in small laboratory animals. This
testing scheme, in the opinion of the authors, provides the most
definitive information concerning the existence, nature and extent of
chemically induced nephrotoxicity. Alternate or optional tests will
be identified where appropriate.

Selected information cuncerning each test has been summarized in
tabular form and is presented in appendices A through E. This infor-
mation includes:

e the specific parameter measured,

e the species in which the test has been performed, and

e the substances that have been tested for toxicity or used to
elicit a toxic response.

The "comments" column of each table contains information dis-
tilled from the body of the text pertinent to the suitability of the
test for inclusion in a screening program,

In compiling a list of the animal species used for a particular

test, only those in which the test has actually been performed are

18
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mentioned. ihis information is presented in Table 1l-1. This list
does not imply that the test can only be performed in these species,
but rather that use of the particular test has only been documented
in certain animal models,

The information in this report has been assembled from published
and unpublished literature, and communications with individuals ac-—-
tive in the development or application of techniques for determining
renal damage. Current activities of individuals and organi=zations
involved in nephrotoxicity testing in animals have been compiled

solely from personal communications and are presented in a companion

directory to this report.
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2.0 MORPHOLOGICAL DAMAGE INDICATORS

Renal morphological abnormalities following exposure to toxic
substances (i.e., drugs, trace metals, organic solvents, pesticides)
have been documented in humans and experimental animals by numerous
investigators (Andrews, 1975; Dalhamn and Friberg, 1957; Fowler,
1972, 1974a, 1974b; Gritzka and Trump, 1968; Striker et al., 1968;
A Ware et al., 1973). The techniques used by these as well as other
investigators range from gross observation of the intact organ
3 (weight, size, color) to electron microscopy (ultrastructure). It
should be noted that any technique used to determine morphological
damage is complicated by the fact that the assessment is made by
personal visual evaluation. Therefore, any morphological study must
be preceded by a careful evaluation of the normal range of variation.
Variation occufs among s—~ecies and within species. The major factors
that cause variation within specles are age, sex and diet (Finn,
1977). The use of controls is the most satisfactory way to eliminate
misinterpretation of normal variation in morphology. Although not a
substitute for the use of controls in morphological screening tests,
a number of histological studies of normal kidneys from small labora-
~ tory animals, particularly rats, have been conducted and are useful
r,i as background information (Rodin and Crowson, 1962a; Maunsbach, 1966;
. : Rouiller and Muller, 1969).

51 The selection of the test species and strain is also critical

to the use of a morphological test to indicate renal damage. The

21
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importance of this aspect is made clear in a study conducted by Mazze

et al. (1971). These investigators were attempting to find an animal
model that could be used to demonstrate renal insufficiency due to
metabolism of methoxyflurane, Adult male Fischer 344, Buffalo,
Wistar, Sprague-Dawley, and Long-Evans rats were used. This study
showed the Fischer 344 and Buffalo rats catabolized methoxyflurane

to a greater extent than the other three strains. However, despite
similar serum inorganic fluoride levels in the two strains, only the
Fischer 344 developed renal histologic abnormalities.

2.1 Gross Observation and Light Microscopy

0f the techniques that could be employed, gross observation
appears to be the least re:iable., A number of studies refer to
alterations in color, size or kidney weight following administration
of a presumed nephrotoxin; however, there is difficulty in determin-
ing the significance of the change unless combined with studies of
renal function. For example, in a study (Sharratt and Frazer, 1963)
in which rats were administered uranyl nitrate (2 percent solution),
the kidneys showed surface pitting and weight increases. At lower
dose levels, however, little or no change is detected macroscopi-
cally, even though abnormal renal function could be correlated with
administration of the nephrotoxin.

Normal rat kidneys may exhibit histologic features which might,
in some instances, be mistaken for changes induced by nephrotoxic

agents. These include hyaline casts and pyknotic nuclei in the loops
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of Henle; epithelial detachment in the terminal segments of proximal

convoluted tubules; focal cytoplasmic eosinophilia in tubular epithe-
i : lium; disruption of cells along the track of knife nicks; and epithe-
lial vacuolation in subcapsular tubules (Rodin and Crowson, 1962a).
Tubule cell injury is the most common lesion associated with
. ' nephrotoxins (Fowler, 1972; Gritzka and Trump, 1968; Rodin and
> Crowson, 1962a, 1962b; Taylor, 1965; Ware et al., 1973, 1975). A
i decrease in mitochondrial respiration or uncoupling of oxidative
% phosphorylation may contribute to tubular injury (Goyer, 1968),
P’ﬂ Fowler et al. (1975b), Kosek et al. (1974), and Mazze et al. (1973),
E have shown that some nephrotoxicants such as cadmium, gentamicin, and
methoxyflurane produce dose-dependent damage in rats that can be
observed using light microscopy;

¥ 2.2 Electron Microscopy

Both transmission (TEM) and scanning (SEM) electron microscopy

- rwTT

have been used as techniques to describe renal damage at the cellular

and subcellar level following administration of various toxicants.
The level of resolution that can be accomplished with these instru-
\ ments offers the investigator an increased ability to detect struc-

tural abnormalities, many of which could not be detected or ade-

' of lysosomes; lipid droplets and enlarged apical vacuoles; the
4 absence of basal infoldings and brush border associated with the

proximal convoluted tubules; detachment of the endothelial cells from

ET i quately described using light microscopy. These include accumulation
|
;
i
I
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their basement membranes, and spherical microparticles embedded
within the basement membrane; loss of ribosomes from surface mem-
branes, and large smooth endoplasmic reticulum aggregates in the pars
recta segment of the proximal tubules; thickening of the vessel walls
in the renal arteries; and narrowing of the lumina by fibrocytic cell
types. The obvious advantage is that the investigator is able to
provide a far more extensive description of renal damage that may
contribute to a better understanding of the mechanism(s) resulting in
acute or chronic renal failure. Furthermore, some early structural
changes related to damage can be detected using electron microscopy
but not light microscopy. Even though it is more involved than light
microscopy, a test for renal damage employing electron microscopy can
be conducted within a short time period (from a matter of days to a
few weeks), and since only small tissue samples are required, biop-
sies may be performed if large laboratory animals are used. Biopsies
also offer the advantage of conducting additional tests since the
animal would not be killed.

The major technical disadvantage is the same as that associated
with light microscopy; namely, the evaluation is descriptive (quali-
tative) and the significance of the changes observed is subject to
question. Indeed, some changes may have no functional significance.
Also, in electron microscopy, only very small amounts of tissue are
examined; thus information may not be obtained concerning the exten-

siveness of the changes.




In addition to the problems associated with the interpretation
of results, unless a laboratory already has the equipment required
to perform TEM or SEM studies, the initial investment can be large,
depending upon the sophistication of the microscope purchased. All
of the support equipment is also expensive, and highly trained lab-
oratory technicians are required.

2.3 Summary

Based on the literature reviewed, it would appear that gross
observation and light microscopic studies are not as sensitive as
functional studies in detecting damage; nonetheless, they are an
essential part of any pathologic examination procedure and would be
appropriate in the later stages of a screening program. Electron
microscopy 1is a sensitive technique for detecting early structural
changes associated with nephrotoxicity and is important in thoroughly
describing cellular damage, especially when the mechanisms of damage
are being investigated. It is an involved procedure and is beyond
the scope of a routine screening program; however, it may have lim-~
ited application in the later stages of a program where the findings
from other tests are inconclusive.

Morphological indicators of renal damage are summarized in Ap-

pendix A,
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3.0 GLOMERULAR FUNCTION TESTS

Injury to the glomeruli may occur as a result of exposure to
nephrotoxins, such as gentamicin and hydrocarbon solvents (Cohen et
al., 1975; Finn, 1977). A screening program for renal damage should
therefore include one or more tests for ascertaining impairment of
glomerular function so that nephrotoxins, which primarily affect the
glomeruli, do not go undetected. Several tests are available which
may indicate glomerular dysfunction and are relatively simple to per-
form, requiring only a blood or urine sample. Included among these
tests are measurement of blood urea nitrogen, serum creatinine and
protein in the urine. While none of these tests are both specific
for glomerular dysfunction and sensitive to early glomerular damage,
all are quite useful as rapid screening procedures for nephrotoxicity
and suggest gldmerulat involvement.

A variety of sensitive methods for measuring glomerular fil-
tration rate are also available when quantitative assessment of the
degree of glomerular dysfunction is desired. These procedures are
more complicated to perform than the rapid screening tests men-
tioned above, and would therefore be suitable for later stages of a
tiered screening program.

3.1 Rapid Nephrotoxicity Screening Tests Indicative of Glomerular
Dysfunction

3.1.1 Measurement of Blood Urea Nitrogen

Urea, the primary end product of nitrogen metabolism in mammals,
is excreted primarily as a result of glomerular filtration. When
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filtration is impaired, plasma levels of urea rise in approximate

proportion to the degree of impairment (Kassirer, 197la). The blood

urea concentration is usually expressed in terms of blood urea
nitrogen (BUN). The relationship between glomerular filtration rate
(GFR) and BUN is presented in Figure 3-1 along with the relationship
between GFR and serum creatinine, another parameter used to assess
glomerular function (See Section 3.1.2), While the values upon which
this figure is based are for humans, a precise relationship between
these parameters exists for any given species, and the BUN level
provides an approximate index of the GFR as long as non-renal
variables that alter BUN concentration remain stable (see below)
(Berndt, 1976a; Crowe and Hatch, 1977). Since the concentrations of
urea in the water of plasma and red cells are equivalent, BUN may be
measured using either whole blood or plasma (Relman and Levinsky,
1971). Methods for measuring BUN require small quantities of blood
(<0.2 ml) and are relatively simple. Manual determination is most
frequently reported using the method of Gentzkow (1942), which
involves conversion of urea to ammonia with urease and measurement of
the ammonia by Nesslerization. Methods employing urease are not well
suited for automated analysis since an incubation time of about 20
minutes is required for the conversion of urea to ammonia (Marsh et
al., 1965). Autoanalytical techniques involving a direct reaction
between diacetyl monoxime and urea are, however, available (Marsh et

al., 1965) and have been used to determine BUN in dogs (Keogh et al.,

1977) and rats (Cohen et al,, 1975).
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Since the range of normal values for BUN is rather broad,* BUN
is usually considered an unsatisfactory indicator of early renal
damage involving limited impairment of glomerular function; values
of BUN may remain within the normal range until glomerular function
is substantially reduced (Wilson, 1975). Furthermore, an increase in
BUN does not necessarily reflect decreased glomerular function, since
tubular necrosis may result in a reduced clearance of urea (Carpenedo
et al., 1974; Klein et al., 1972), and plasma urea concentrations are
additionally affected by the rate of urine flow and nitrogen balance
(Crowe and Hatch, 1977). In states of dehydration, BUN will rise
while GFR remains normal. BUN will also rise in cases of accelerated
protein degradation due to trauma, fever or infection; ingestion of
large quantities of protein; and breakdown of blood in the gastro-
intestinal tract (Relman and Levinsky, 1971; Kassirer, 197la; Crowe
and Hatch, 1977).

Despite these disadvantages, the BUN is routinely used along
with other tests in research laboratories to assess the effects of
nephrotoxins in small animals (See Appendix B, Table B-1). If base-
line values are obtained prior to exposure to the toxicant (using
control animals or the animals to be tested), small increases in BUN
may be more readily observed (Relman and Levinsky, 1971). In addi-

tion, the state of the animal with respect to diet, water intake,

*Values ranging from 10 to > 20 mg.% have been reported in various
strains of rats (Oken, et al., 1966; Flamenbaum et al., 1971; Thiel
et al., 1967; Klein et al., 1973); values ranging from 10 to 14 mg.%
have been reported in dogs (Singhvi et al,, 1978).
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gastrointestinal bleeding and other factors which influence results
of BUN determinations, can be controlled to a large extent. As a
general screen for nephrotoxicity, BUN determinations are useful in
detecting mild to severe dysfunction in experimental animals.

3.1.2 Measurement of Serum Creatinine

»fﬂf Creatinine is an end product of creatine metabolism in muscle,
and its production and release from muscle is relatively constant
(Kassirer, 1971la). After release, creatinine enters the plasma and
is excreted by the kidneys exclusively via glomerular filtration in
dogs, cats, and rabbits, and primarily via glomerular filtration

(with additional tubular secretion) in rats and guinea pigs (Pitts,

"

1974). As is the case for urea, levels of serum creatinine vary
inversely with GFR (see Figure 3-1). Unlike urea however, serum
creatinine levels are influenced less by factors other than GFR, so
that significant changes in the serum creatinine level are more
indicative of alterations in glomerular function (Wilson, 1975),
Creatinine levels are easily measured in small quantities of
plasma (0.2 ml.}, and serum creatinine determinations have been
f performed successfully in experimental studies using rats and dogs
(Martinez and Doolan, 1960; Cohen et al., 1975; Kaufman et al.,

1977).*

*Normal values in rats have been reported as ranging from 0.4 to
1.2 mg.% (Cohen, et al,, 1975; Carpenedo et al., 1974; Klein et al.,
1973). Normal values in dogs have been reported as ranging from
0.9 to 1.3 mg.% (Kaufman et al., 1977).

31




Measurement of serum creatinine by the standard alkaline picrate

method is a relatively simple colorimetric procedure (Martinez and
Doolan, 1960); however, non-specific chromogens present in plasma
react with the picrate reagent and render determinations obtained by
this method somewhat inaccurate (Berndt, 1976a; Martinez and Doolan,
1960). Interference by non-creatinine chromogens and daily fluc-
tuations in levels of serum creatinine (up to 10%Z [Crowe and Hatch,
1977]) may limit the utility of serum creatinine measurements; how-
ever, the proper use of baseline values and controls can alleviate
some of the problems.

As a general screen for nephrotoxicity, serum creatinine de-
terminations are useful in detecting mild to severe glomerular dys-
function in experimental animals. Serum creatinine is considered
more sensitive in detecting renal dysfunction than is BUN; however,
either determination would be useful in a short-term screening pro-
gram (Wilson, 1975; Crowe and Hatch, 1977; Rickers et al., 1978).

3.1.3 Measurement of Protein in the Urine

The glomerulus is normally an effective barrier to the passage
of most proteins from the plasma into the glomerular filtrate. Under
normal conditions, proteins the size of serum albumin (M.W. approxi-
mately 70,000) and larger are retained, while smaller proteins (M.W.
< 30,000) are filtered (Relman and Levinsky, 1971). Plasma proteins
which pass through the glomerulus and into the filtrate are actively

reabsorbed by the proximal tubules (Smith, 1960). Thus, protein is
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normally present in only trace quantities in the urine of most mam—-

mals.

Proteinuria may be induced by nephrotoxic agents, which damage
the glomeruli, permitting passage through the glomerular membrane of
proteins that are normally retained; however, injury to the tubules,
which results in decreased reabsorption of filtered proteins or
leakage of protein from damaged cells, may also give rise to elevated
concentrations of protein in the urine (Smith, 1960; Relman and
Levinsky, 1971). Disorders of tubular transport in the absence of
glomerular injury will generally result in increased quantities of
low molecular weight proteins in the urine without significant albu-
minuria (Relman and Levinsky, 1971; Axelsson and Piscator, 1966).

In human clinical studies (Peterson et al., 1969; Hall, 1973),
a low molecular weight betajg—globulin (betaj-microglobulin) was
excreted in large amounts in patients with tubular dysfunction and
only slight increases were observed in urinary albumin. In patients
with glomerular disorders, normal to slight increases were observed
in betaj-microglobulin and large increases were observed in albumin
excretion. No nephrotoxicity studies were found in the literature
where specifically betaj~microglobulin urinary clearance was exam-
ined in laboratory animals. Nonetheless, measurement of protein and
albumin in the urine has been utilized to detect glomerular (as well
as tubular) dysfunction following administration of a variety of

nephrotoxins to small laboratory animals (see Appendix B, Table B-1).
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The rat is the most frequently used species for such studies. Normal
rats exhibit a slight proteinuria (Ellis et al., 1973b; Harman, 1971;
Berndt, l976a).* It is therefore necessary to obtain accurate con-
trol measurements, preferably in the individual experimental animals
themselves, prior to administration of the nephrotoxin (Berndt,
1976a). Collection of a urine sample is usually accomplished through
use of a standard metabolism cage and protein excretion is normally
reported as mg./rat/24 hours or mg./100 ml. urine when quantitative
analytical procedures are employed.

Several simple, semiquantitative procedures for measuring pro-
tein in the urine are available. One method depends upon the pre-
cipitation of protein by heat and acetic acid or by sulfosalicylic
acid and comparison of the resulting turbidity with that of standards
of known proteih concentration. Precipitation methods are sensitive
to concentrations of about 5 to 10 mg. protein/100 ml. (Relman and
Levinsky, 1971; Wilson, 1975). The screening test for proteinuria
most frequently used is the "dipstick"” method, which involves altera-
tion of an indicator dye by protein. The dye in common use is tetra-
bromphenol blue; however, the reaction is fairly specific for albumin
and does not register the presence of other proteins (e.g. globulins)
in the urine. The method is slightly less sensitive than the precip-

itation method, requiring albumin concentrations of 15-20 mg./100 ml.

*Values of 16.5 + 1.9 and 9.2 + 1.9 mg./24 hours have been reported
for normal male and female rats, respectively (Harman, 1971).
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(Relman and Levinsky, 1971)., When greater accuracy is desired, total

protein may be determined by the biuret reaction (Gornall et al.,
1949). Very low concentrations of albumin can be accurately measured
by radioimmunoassay techniques (Relman and Levinsky, 1971). An auto-
mated method for albumin determination using bromocresol green is
also available (Beng and Lim, 1973).

Measurement of protein in the urine appears to be a sensitive
indicator of glomerular damage in the rat. For example, a markedly
increased urine albumin level was observed in rats following admin-
istration of nephrotoxic serum (Sharratt and Frazer, 1963). Micros-
copic examination revealed only mild glomerular damage. In another
study, a severe proteinuria was observed in rats that were fed a diet
containing N,N'-diacetylbenzidine for two weeks. The major component
of the excreted protein was albumin. Once again, microscopic examina-
tion revealed lesions in approximately 307 of the glomeruli (Harman,
1971). It should be noted that in the latter study, glomerular le-
sions and accompanying proteinuria developed more slowly in male rats
than in female rats; however, this seems to be an isolated occurrence
and has not been observed in other studies (Oken, 1980). The pro-
teinuria was eventually heavy in both male and female rats (Harman,
1971).

While occurrence of protein in the urine in excess of control

values may indicate nephrotoxicity, proteinuria may also occur as a
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result of damage to other organs, thus complicating the interpreta-
tion of results., For example, 24 hours following administration
of paraquat to rats, excretion of protein increased almost fourfold
over that of controls. Histologic examination, however, revealed
only mild degeneration of the proximal tubules., Furthermore (and
contrary to expectations in cases of tubular damage only), a high
albumin to total protein ratio was observed (Lock and Ishmael, 1979).
The severe proteinuria and increased excretion of albumin in this
case does not reflect coexistent glomerular damage, but rather pul-
monary injury. Albumin is released to the plasma from damaged lung
tissue and, although the percentage of albumin filtered at the glca-
erulus (0.005%) remains constant, the quantity filtered is markedly
increased.

In conclusion, measurement of protein in the urine appears to
be a useful screening test for general nephrotoxicity. Additionally,
the test may differentiate between tubular and glomular damage if
albumin levels as well as total protein levels are determined, and if
damage to other organs can be ruled out.

3.2 Measurement of Glomerular Filtration Rate

3.2.1 Plasma Clearance Methods

The glomerular filtration rate (GFR) is equivalent to the plasma
clearance of a substance S provided that the substance: (1) is
freely filterable at the glomerulus; (2) is neither secreted into, re-

absorbed from nor synthesized by the tubules; (3) is not metabolized;
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(4) is nontoxic and exhibits no pharmacologic effects; and (5) does
not bind to plasma proteins.

Under these conditions, GFR may be measured using the standard
clearance formula
[S14V
(51,

GFR = Cg =

where Cg is the volume of plasma cleared of substance S per minute;
[S]u is the concentration of S in the urine; V is the volume of
urine exiting the ureter per minute and [S]p is the concentration
of S in the plasma. A multiple series of determinations is performed
and the values of GFR are averaged. Although a wide variety of sub-
stances have been utilized for measurement of GFR, only those which
are commonly used and which give the most accurate results will be
considered. These are discussed in Sections 3.2.1.1 through 3.2.1.3.

Measurement of GFR by clearance procedures requires maintenance
of constant plasma levels of S and collection of accurately-timed
blood and urine samples. Anesthesia is usually necessary, since col-
lection of accurately-timed urine samples requires bladder catheter-
ization, and maintenance of constant plasma levels of S may require
constant intravenous infusion.

Clearance methods for determining GFR have been performed in
standard laboratory animals, primarily in rats and dogs. Values
ranging from 0.2 to 0.9 ml./min./100 g. have been reported in various

strains of rat. (Gonick, et al,, 1975; Barenberg et al., 1968;
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Sharratt and Frazer, 1963; Flamenbaum et al., 1971; DiBona et al.,

1971; Brennan et al., 1977). Values ranging from 2.9 to 4.0 ml./
min./kg. have been reported in dogs (Singhvi et al., 1978; Pihl,
1974; Pihl and Nosslin, 1974). Intravenous infusion in rats is
accomplished by femoral cut down; in dogs, catheterization of leg
veins is used. Blood samples in rats are taken from the cut tail
g vein or from the retro-orbital plexus of the eye, sampling from the
“d inner canthus with a capillary tube. Since vasoconstriction may
cause stasis and lead to unreliable plasma values, the latter tech-
nique is preferred. In dogs, blood samples are taken from veins
other than those receiving the infusion.

Changes in GFR, as measured by plasma clearance procedures, have

*

been widely utilized as indicators of nephrotoxicity in laboratory
animals (Appendix B, Table B-2). Most studies reported in the liter-
ature describe extensive damage following acute exposure to a toxi-
cant. In these cases the depression in GFR has been severe (i.e.,
50% or less of the control value). Further studies are needed to
ascertaln whether or not slight changes in GFR produced by a nephro-
toxin can be detected using these methods.

' 3.2.1.1 Inulin Clearance. Inulin, a polyfructose of approxi-

~ T mately 5,000 molecular weight, satisfies all of the criteria listed

N above. Inulin clearance provides an accurate measure of GFR in all
mammals (Smith, 1960) and is commonly performed in rats and dogs.

Since inulin is hydrolyzed to fructose in the gastrointestinal tract

¢ e = -
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and is poorly absorbed from subcutaneous tissue or muscle, it must be
administered intravenously (Pitts, 1974). Maintenance of a constant
plasma level requires infusion at a rate equivalent to the rate at
which it is excreted. The chemical estimation of inulin is time-
consuming and demanding (Relman and Levinsky, 1971; Pitts, 1974),
although automated methods are available (Relman and Levinsky, 1971).
Use of radioactive inulin, however, greatly simplifies the analytical
procedure. Inulin containing ¢ or 34 or allyl inulin (substitution
of allyl ether groups for some of the OH groups) iodinated at the
double bonds with 1251, can be infused along with unlabeled carrier
(Concannon et al., 1964; McCormack et al., 1978).

3.2.1.2 Creatinine Clearance. Creatinine satisfies the cri-

teria for GFR determination via plasma clearance in dogs, cats and
rabbits; however, creatinine is secreted by the tubules to a sig-
nificant extent in rats and guinea pigs, and thus gives a high value
for GFR as compared to inulin (Pitts, 1974). In dogs, creatinine
clearance agrees to within + 5% with inulin clearance (Pitts, 1974).
While constant infusion is frequently employed, creatinine, unlike
inulin, may be given subcutaneously (Smith, 1960). For accurate re-
sults, creatinine must be supplied in amounts sufficient to raise the
plasma concentration to 15 mg./100 ml. or more. Although creatinine
is normally present in the plasma at a concentration of approximately
1 mg./100 ml., clearance of endogenous creatinine is not usually con-

sidered a valid measure of GFR because of the non-specificity of the
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standard alkaline picrate method of analysis. Noncreatinine chromo-
gens, which react with the picrate reagent, are present in plasma but
not in urine. Thus, the concentration of creatinine in plasma is
falsely high, rendering the clearance of creatinine, as calculated
by the standard clearance formula, lower than the actual GFR (Pitts,
1974; Sullivan, 1974). Utilizing a method for measuring “true” cre-
atinine in plasma (Section 3.1,2), in combination with the standard
picrate method for urinary creatinine analysis, may increase the
utility of endogenous creatinine clearance for screening in dogs
(Martinez and Doolan, 1960). Determining GFR in dogs by endogenous
creatinine clearance has been reported in the literature using stan-
dard auto-analytical procedures (Keogh et al., 1977).

3.2.1.3 1251-jothalamate and 13li-diatrizoate Clearance.

1251-1othalamate (I0T) clearance agrees well with inulin clearance
and is commonly used to measure GFR in laboratory dogs and rats
(Bryan et al., 1972; Oester et al., 1969). IOT may be administered
by intravenous infusion; however, subcutaneous injection 1is also
possible since the slow rate of release provides a blood level con-
stant enough for accurate measurement of GFR (Wilsoh, 1975). 131y
diatrizoate (DTZ) clearance has also been performed in dogs (Ram et
al., 1969) and approximates inulin clearance., Estimation of GFR via
DTZ clearaace is not, however, reported frequently in the literature.
Aside from dispensing with the need for intravenous infusion,

use of these compounds allows a simple and rapid analysis of plasma
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and urine samples. However, caution should be exercised when DTZ and
other iodinated substances are used in measuring GFR, because their
clearance is species-dependent. For example, Mudge and coworkers
(1971) compared the renal transport of DTZ in the rabbit, dog and
rat, and found that the dog clears DTZ solely by glomerular filtra-
tion, but the rabbit actively secreted DTZ and the data on the rat
were equivocal. For this reason, species differences should be
established before studies using these substances are undertaken.

3.2.2 Plasma Disappearance Methods

The need for accurate urine collection renders conventional
plasma clearance techniques for determining GFR (as discussed in
Section 3.2.1) relatively cumbersome in small laboratory animals such
as rats. Moreover, since the bladder or ureter must be catheterized,
chronic experiments are frequently complicated by superimposed cys-
titis and pyelonephritis. In addition, when intravenous infusion is
required, repeated clearances are difficult to perform, especially in
the rat, due to the need for venous cutdowns (Blaufox et al., 1967a).
These problems may be circumvented by the use of plasma disappearance
methods, which do not require urine collection. While there is lit-
tle doubt that the standard clearance technique is superior to any
other technique for determining GFR in terms of accuracy and reli-
ability, plasma disappearance methods have also proven to be quite
accurate and reliable (Truniger et al., 1968; Silkalns et al., 1973;

Pihl, 1974; Powers, et al., 1977). In these methods, a substance(s),
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which is removed from the body principally by glomerular filtration,
is administered in a single intravenous dose. This is accomplished
easily in the rat through the tail vein or the dorsal vein of the
penis. A leg vein is suitable in dogs. A series of timed blood
samples 1is taken and the concentration of S remaining per unit vol-
ume of plasma is determined and plotted vs. time on semilog paper.
Radioactively-labeled substances such as 1251_10T and 131l1-pTZ
are commonly employed for these determinations so that concentration
is expressed in CPM/ml. (Figure 3-2).

GFR is most simply calculated using the following formula:

GFR = V@3

where V = the volume of distribution and P = the rate of decline of
plasma concentration. V is obtained by dividing the CPM administered
by the CPM/ml. at zero time, which in turn is determined by extrapola-
ting the "slow phase” of the plasma disappearance curve to zero

(Figure 3-2) as given by the following formula:

loge2 0.693
el/2 el/2

where t1/2 g the half-life of the disappearance curve.

More complicated mathematical analyses which reportedly increase
the accuracy of the calculations have been employed (Stokes and
Ter-Pogossian, 1964; Farmer et al., 1967; Powers et al., 1977); how-

ever, determinations of GFR which agree well with those obtained via
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inulin clearance, or clearance of S by standard procedures, have been
reported using this simple approach (Ram et al., 1969; Bryan et al.,
1972).

Plasma disappearance methods seem promising for szreening since
they provide a simple, rapid, accurate and easily repeated measure of
GFR in small animals. In some instances, these procedures have been
performed in the absence of anesthesia (rats [Bryan et al., 1972] and
dogs [Powers et al., 1977]).

3.3 Summary

Tests which may indicate glomerular dysfunction include measure-
ment of blood urea nitrogen, serum creatinine and protein in the
urine. In addition, several methods for quantitative determination
of the glomerular filtration rate are available.

Measurement of BUN, serum creatinine and protein in the urine
can be performed on standard laboratory animals such as rats and
dogs, require small volumes of blood or urine and involve simple
analytical techniques. Since blood urea levels are affected by a
variety of factors such as rate of urine flow and nitrogen balance
and may increase in cases of tubular necrosis, the serum creatinine
level is generally considered a better indicator of glomerular dys-
function than is the BUN. Neither test is suitable for detecting
early damage since a small increase in either parameter may result
in a value still within the normal range. Both tests are, however,

valuable for rapid nephrotoxicity screening.
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Proteinuria may occur as a result of either glomerular or tubu-

2 Al e . bl

lar injury, or may accompany damage to other organs such as the lung.

Massive proteinuria (especially excretion of excessive quantities of

albumin) is usually considered to be indicative of glomerular damage
when damage to other organs can be ruled out.

Since severe proteinuria has been observed in rats in cases of
mild glomerular injury (as judged by histological examination), mea-
surement of protein in the urine appears to be a sensitive indicator
of early damage in this species. The sensitivity of this test does,
however, vary with the sex, being greater in females for certain
nephrotoxins.

The glomerular filtration rate may be measured by standard
plasma clearance procedures employing inulin, creatinine and 1251
iotholamate (IOT) or 1311_4g1atrizoate (DTZ). All clearance proce-
dures require collection of timed urine samples (as well as timed
blood samples) and thus bladder catheterization. Inulin clearance
additionally requires constant intravenous infusion. These methods
are cumbersome and are therefore suitable only for later stages of
a tiered screening program when accurate determination of GFR may be
desired.

Plasma disappearance methods for determining GFR using
1251-10T or 1311-p12 seem promising for screening since they only

involve a single intravenous injection and collection of timed blood
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samples. GFR, as measured by disappearance methods, agrees well with
values obtained by plasma clearance methods.

- While acute depression of GFR can be easily measured using
either clearance or disappearance methods, further studies are needed

to ascertain whether or not small changes in GFR accompanying mild

glomerular injury can be detected.

Glomerular function tests are summarized in Appendix B.

e e e,
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4.0 TUBULAR FUNCTION TESTS

The renal tubules are the main site of chemically-induced ne-
phrgsis (Balazs et al., 1963). Because of this, tests which measure
tubular function are of great importince in a short-term screening
program for nephrotoxicity. Unlike the glomerulus which has one
function, the tubules carry out many functions, It is therefore
necessary to have several tests to measure these various tubular
functions since no single test would be adequate.

The main tests of tubular function are those which measure the
reabsorptive and secretory functions and the ability of the kidney
to concentrate the urine. In addition, general tubular damage can
be detected by microscopic examination of the formed elements in the
urine. The following sections discuss the tubular function tests,
which may be useful in a small animal nephrotoxicity screening
program.

4.1 Reabsorptive Tests

The plasma contains many substances of low molecular weight
which are readily filtered at the glomerulus, but are normally absent
or present at very low levels in the urine. These substances are
reabsorbed by the tubules before they can be excreted in the urine.
Some of the substances that are reabsorbed at the tubules include
the following: carbohydrates, amino acids, acetoacetic acid, lactic
acid, uric acid, beta-hydroxybutyric acid, vitamins; and important

ions such as phosphate, sulphate, bicarbonate, sodium, potassium and
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chloride (Pitts, 1974). Most of the reabsorption occurs within the
proximal tubule segment. These substances are reabsorbed by active
transport mechanisms against a concentration gradient, and in some
cases, a gradient of electrical potential. The transport mechanisms
are thought to involve specific enzyme systems. Nevertheless, the
reabsorptive processes are limited to maximal rates for each
substance absorbed.

Glucose is one of the substances actively transported in the
tubules. Decreases in the transport rates of glucose may be indi-
cative of damage to the active transport system for this substance.
The following sections discuss the techniques used to measure im-
pairment of glucose reabsorption. These sections also describe the
usefulness of these techniques in detecting damage in the tubules of
the kidneys.

4.,1.1 Measurement of Glucose in the Urine. Glucose is almost

completely reabsorbed by the proximal tubules (Berndt, 1976a) and
normally does not appear in the urine except in trace amounts., Its
presence in the urine above trace quantities is suggestive of tubular
dysfunction (Balazs et al., 1963; Crowe and Hatch, 1977; Diezi and
Biollaz, 1979; Kassirer, 1971b); however, glucosuria cannot be
considered a specific index of tubular damage, since a disturbance

in carbohydrate metabolism (e.g., diabetes), as well as other ab-

normalities, can also result in the appearance of glucose in the

urine (Guyton, 1976). These other causes must be considered when




glucosuria is encountered before assuming that tubular dysfunction
exists. It is common practice, for example, to compare the plasma
glucose level with the urinary glucose level to show that the gluco-
suria is independent of hyperglycemia (Wilson, 1975).

The resorptive capacity of the tubules for glucose is greatly
diminished following nephrotoxic insult., As a consequence, glucose
is excreted into the urine in moderate to large amounts (Berndt,
1976a). For example, glucose has been detected in the urine of
rabbits following administration of uranyl nitrate (Nomiyama et al.,
1974) and of rats treated with uranyl nitrate and mercuric chloride
(Balazs et al., 1963). In the dose~response study with rabbits,
Nomiyama et al. (1974) administered a single intravenous injection
of uranyl nitrate at a dose of either 0, 0.1, 0.2, 0.5 or 1.0 mg
uranium/kg body weight. The rabbits were then evaluated for renal
damage 24 and 48 hours after injection. Urinary glucose levels were
found to be significantly increased in rabbits receiving doses of 0.2
mg/kg and greater. This test was not as sensitive an indicator as
the urinary enzyme assay used in this study, and other investigators
have reported that glucosuria does not occur in the early stages of
damage in the proximal convoluted tubules (Balazs et al., 1963).

However, the test for glucose is relatively simple and can give a

rough indication of renal damage.
Glucose in the urine can be determined both quantitatively and

semiquantitatively; however, a quantitative measurement is not
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considered essential in assessing renal disease (Wilson, 1975). Glu-

cose can be analysed in the urine semiquantitatively by "dipstick”
methods. In this procedure, the test strip is dipped into the urine
and alterations of the indicator dye are compared with a standard
color chart (Balazs et al., 1963; Plaa and Larson, 1965)., Other
analytical techniques to estimate the glucose concentration in blood
and urine are available; the most common is the glucose oxidase test.
A major problem with this test is the false negative reaction that
can occur in the presence of large amounts of ascorbic acid (Wilson,
1975).

It does not appear that the measurement of glucose in urine
is as sensitive an Index of renal damage as other available tests
(Diezi and Biollaz, 1979; Nomiyama et al., 1974). However, this test
is suitable as a screening test at Level I of a tiered tes:ing system
for nephrotoxicity in small animals.

4.1.2 Measurement of the Transport Maximum for Glucose

As plasma concentrations of glucose are increased, a point is
reached where tubular reabsorption attains a constant, maximal rate
(glucose transport maximum, Tmg). Once saturation is attained, all
glucose in excess of Tmg is excreted in the urine. The transport
maximum for glucose is determined by loading the tubular cells with
more substance than can be reabsorbed. To determine Tmg, an intra-
venous dose of glucose is given to raise the plasma level and then a

high plasma level is maintained with a constant infusion of glucose.
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The bladder of the animals is drained, using a catheter, and then

urine samples are collected for specified collection periods, using
an indwelling catheter (Vander, 1963). Throughout the collection
period, blood samples are taken., At least two different plasma
concentrations must be utilized in the beginning of the study to

be assured that tubular saturation is indeed present, even though
glucosuria would tend to indicate saturation. The concentration of
glucose in the blood and urine samples is then determined using the
analytical methods described in Section 4.1.1. The Tmg is cal-

culated as follows:
Tmg = ([G]p x GFR) - ([G], x O

Where [G]p = the concentration of glucose in the plasma; [G]u = the
concentration of glucose in the urine; GFR = the glomerular filtra-
tion rate and V = the volume of urine excreted per unit time.

To determine Tmg, the glomerular filtration rate (GFR) must
first be determined (See Section 3.2). Tmg; has only been used to a
limited extent to study the renal effects of toxic substances (Miller
et al., 1950; Nomiyama and Foulkes, 1968; Vander, 1963). Nomiyama
and Foulkes (1968) noted inhibition in the tubular capacity to reab-
sorb glucose following uranyl acetate poisoning in rabbits. Vander
(1963), in studying the effects of the salts of zinec, cadmium and
mercury on renal transport systems, found inhibition of glucose reab-

sorption and a decrease in the glucose transport maxima for animals
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exposed to either zinc or mercury. He found no changes in Tmg for
animals treated at a concentration of 200 p/kg. cadmium.

Many abnormalties (e.g., diabetes, hyperthyroidism, liver dis-
ease) can lead to glucose in the urine and thus distort the values
calculated for Tmg (Krupp and Chatton, 1979). Even when such
abnormalties can be ruled out, measurement of Tmg does not appear
to provide enough information over and above that obtained through
simple measurement of glucose in urine to justify the greater com-
plexity of this test. Therefore, the measurement of Tmg would
appear to hesve only limited application in a screening program.

4.2 Secretory Tests

Several substances are secreted into the proximal, distal and
collecting tubules of the kidneys. These include hydrogen ious,
potassium ions, urate ions and some synthetic organic acids and bases
such as p-aminohippurate (PAH) and N-methyl-nicotinamide (NMN) Hy~
drogen ions may be secreted in combination with the reabsorption of
buffers such as bicarbonate, phosphate and ammonium ions. Tubular
acidosis indicates damage to the proton secretory mechanisms of the
tubules,

PAH and NMN are used to determine the tubular capacity for
secretion. For example, the quantity of PAH secreted in the proxi-
mal tubules is proportional to the tubular mass with active trans-
port mechanisms for this substance. When the active transport

mechanisms are damaged there {s a decrease in the rate of secretion.
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Nonetheless, the secretive processes are limited to maximal rates for
each substance. This probably occurs because one step of the secre-
tory process becomes saturated during elevated concentrations of
either organic acids or bases.

The maximal tubular secretion rates for these substances can
be determined experimentally. Decreases in the secretion rates can
provide an indication of decreased capacity due to damage in the
tubules. The following sections describe the techniques used to
measure impairment of hydrogen ion, organic acid and organic base
secretion. These sections also describe the usefulness of these
techniques in detecting damage in the tubules of the kidneys.

4,2.1 Measurement of Urinary Acidification

Hydrogen ions, which are evolved during metabolic processes,

are excreted into the proximal, distal and collecting tubules. The
secretion of these ions into the proximal tubule results in the reab-
sorption of bicarbonate, a process essential for maintaining hydrogen
ion equilibrium. When hydrogen ion secretion into the proximal
tubules is affected, bicarbonate reabsorption is less efficient and
bicarbonaturia occurs (Breanner and Rector, 1976; Diezi and Biollaz,
1979). When the damage 1s to the distal tubules, hydrogen ion
transport is affected, resulting in an inability to acidify the urine
to minimal levels. The result of either of these dysfunctions is a
condition known as renal tubular acidosis (Diezi and Biollaz, 1979;

Kassirer, 1971b; Morris, 1969; Rodriguez-Soriano and Edelmann, 1969)}.
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The kidney regulates acid-base balance by regulating the concen-
tration of plasma bicarbonate (Morris, 1969), The pH of the urine is
a measure of the ability of the kidney to respond to disturbances in
the acid-base balance. The most common test of acidification in
animals measures the minimal urinary pH after stimulation of proton
secretion by loading with various compounds (e.g., phosphate,
ammonium chloride). Normally this procedure results in a urinary pH
in rats of between 5 and 5.6 (Diezi and Biollaz, 1979).

Several investigators have studied the effects of nephrotoxins
on the urinary acidification process in rats (Edwards et al., 1971;
Gouge and Andriole, 1971; Rector, 1973). 1In the study by Gouge and
Andriole (1971), amphatericin B (a known nephrotoxin) was adminis-—
tered to rats for 21 days. An ammonium chloride solution was then
administered for three days to stimulate proton secretion. Urine was
collected on the third day and the pH was determined using a pH
meter. The ability of the kidney to acidify the urine was found to be
greatly diminished. Control animals were able to produce a minimal
urinary pH of 4,86, while the minimal pH for treated animals was
6.0€. The authors concluded that the defect in acidification pointed
to distal tubular degeneration. The proximal tubules were considered
normal since there was no observed glycosuria or proteinuria.

The test for urinary acidification has been used as a screening
test to detect renal tubular acidosis in humans; however, since it is

not a sensitive index of kidney dysfunction, it is not considered
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adequate alone and must be used with complementary tests (Rodriques-
Soriano and Edelmann, 1969). It appears that this test is useful for
detecting severe renal damage (i.e., renal tubular acidosis); how-
ever, no conclusions regarding the utility of this test for detection
of early renal dysfunction were found in the literature.

4.2,2 Measurement of Transport Maximum for PAH

The transport maximum of p—aminohippurate (TMpay) is occasion-
ally used to estimate the amount of active renal tubular mass in the
kidneys and can be used as an indication of functional damage in the
proximal tubules where PAH is secreted. The transport maximum for

PAH is determined by loading the tubular cells with more substance

than can be secreted. The load is the total amount of PAH in the
plasma that passes through the kidney each minute. For instance,
if the concentration of PAH in the plasma is 20 mg/100 ml and 5 ml
of plasma passes through the kidneys each minute, then the PAH load
is 1 mg/minute. To measure TmPAH’ an intravenous dose of PAH is
given to raise the plasma level to the desired concentration. This
level is maintained with a constant infusion of PAH to replace that
which is excreted.

The bladders of the animals are emptied by use of a catheter or
by light suprapubic pressure, and then the animals are either placed
in metabolism cages for urine collection or the urine is collected

using an indwelling catheter, During the collectiou period, blood

samples are also taken. The PAH plasma level is then increased and
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new urine and blood samples are collected. The concentration of PAH

in the blood and urine are then determined using the analytical meth-

e arahe e

ods described in Section 5.1.1.1. The transport of PAH is calculated

as follows:

Tpag = ([PAH], x V) - ([PAH]p x GFR)

where Tpay is the rate of secretion of PAH in mg./min. at each of
two [PAH]p; [PAH]u = the concentration of PAH in the urine; [PAH]p =
the concentration of PAH in the plasma; GFR = the glomerular filtra-
tion rate; and V = the volume of urine excreted per unit time.

When the Tppy does not increase from one collection period to
the next, even though the plasma level of PAH has increased, the
secretory transport mechanisms for PAH are saturated, and Tmppy has
been attained. To determine Tmppy, the glomerular filtration rate
(GFR) must be determined (See Section 3.2).

Tmpapy has been determined principally in rats (Sharratt and
Frazer, 1963), rabbits (Nomiyama and Foulkes, 1968; Nomiyama et al.,
1973), and dogs (Singhvi et al., 1978; Vander, 1962, 1963). Singhvi
et al. (1978) administered single intravenous doses of 0.5 mg. of
uranyl nitrate/kg. body weight to dogs and found reversible renal
impairment and marked decreases in Tmppy. Similarly, in earlier
studies by Nomiyama and Foulkes (1968), rabbits administered uranyl
acetate by intravenous injection had high levels of inhibition of

tubular function and significant decreases in Tmpay. In studies in
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Vander (1963), cadmium and zinc salts administered to dogs inhibited
PAH transport and reduced the transport maxima for PAH., Sharratt and
Frazer (1963) found that the mean control value in rats for Tmppp
was 0.824 + 0.028 mg./min. During their studies, they found that the
Tmpap values were laborious to determine with nonradioactive ana-
lytical techniques; that they required considerable experience to
obtain reproducible results; and that the values varied from one re-
searcher to another and among different strains of rats. The more
recent techniques (Lock, 1979) use radiolabeled PAH (e.g., P-amino-
[3H] hippurate) which simplifies the analytical procedures for de-
termining PAH in both plasma and urine.

Even though Tmpay is used to estimate the level of tubular
damage, it seems to be insensitive to early stages of damage (Diezi
and Biollaz, 1979; Sharratt and Frazer, 1963). Tmpay is also altered
by various factors, such as extracellular fluid volume expansion and
uneven damage in different nephrons (Brickner and Schultze, 1972),
and it may be altered without evidence of renal histological damage
(Sharratt and Frazer, 1963).

Tmppg 1s cumbersome to determine even with the more recent ra-
dioactive alytical techniques, is insensitive to early renal dam-~
age, and can be influenced by external factors., Consequently, this
test would have limited application in early routine nephrotoxicity

screening. However, Tmpay measurements may be useful in the later
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stages of a tlered screening program for estimates of active renal
tubular mass.

- Organic bases such as tetraethylammonium ion (TEA) and N-
methylnicotinamide (NMN) are actively secreted by the tubules, and

their transport maxima may be determined by the same methods used

ng; to determine Tmppy. Such measurements could provide estimates of
Y active renal tubular mass and indicate functional damage. However,
;rf TEA and NMN are primarily used in in vitro studies of tubular trans-
) Jd

port (See Section 4.2.3) and have had only limited application in in
vivo studies, where they were used for clearance determinations and
not for the determinations of transport maxima (Lock, 1979).

4.2.3 1In Vitro Evaluation of the Renal Transport of PAH, NMN
and TEA Using Cortical Slices and Isolated Tubules

'y

The in vitro renal cortical slice technique can be used to

evaluate functional and biochemical phenomena in the renal system
(Berndt, 1976b). Inhibition of PAH accumulation, as well as accumu-
lation of NMN or TEA by renal cortical slices, can serve as sensi-
tive indicators of nephrotoxicity (Berndt, 1976a, 1976b; Chow et al.,
1977; Hirsch, 1973a, 1973b, 1976; Watrous and Plaa, 1972a, 1972b).

\ This in vitro inhibition of organic acid and base accumulation cor-

) responds to decreased tubular transport.

Renal cortical slices may be prepared from excised kidneys after
the administration of a nephrotoxin to the animals. Two methods
are used to prepare renal cortex tissue slices. The first method

involves free-hand slicing of the kidney tissue and has the advantage
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of being a quick preparation procedure. The disadvantage is that )

the slices lack uniform thickness. The second method is slower than |
the free-hand procedure; hcwever, slices can be obtained that have
uniform thickness. The second method involves the use of the Stadie-
Riggs microtome, which mechanically slices tissues from a tissue

cube with a constant pressure cutting blade (Burg and Orloff, 1973).
After the slices are cut, they are incubated for 90 minutes under
100% oxygen in an isotonic medium containing either PAH,

14C—PAH, l4c-NMN or 14C-TEA. Then PAH content of the renal

slices and the medium are analyzed colormetrically, while the 14C-
labeled compound concentrations are determined, using a liquid scin-
tillation counter. The data are expressed as the ratio of the renal
slice concentration (mmoles of substance/g. of tissue) to the medium
concentration (mmoles/ml.) (S/M). If this ratio exceeds one, it is
indicative of an active transport process, and if the value is one or
less, it is indicative of damage to the active processes, or for some
other substances, it may indicate passive transport.

Berndt (1976b) has reported that PAH uptake by renal cortical
slices can serve as the counterpart model for the in vivo tubular
secretory process. Furthermore, Berndt (1976a) and Hirsch (1976)
suggested that the in vitro remal cortical slice technique may be
more sensitive than in vivo methods for determining nephrotoxic
effects on renal transport processes because blood flow effects are

eliminated. Hirsch (1976) also indicated that the in vitro renal
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cortical slice technique 1is routinely used to determine the effect of
substances on renal organic acid and base transport.

Many substances such as uranyl nitrate, potassium dichromate,
mercuric chloride, lead, gentamicin, halogenated hydrocarbons and
ochratoxin A have been tested in different species of animals (e.g.,
mice, rats, rabbits and dogs) using this technique, and the results
indicated the toxicity of these substances by inhibiting accumulation
of PAH, NMN or TEA in the renal cortical slices (Berndt, 1976c¢;
Hirsch, 1972, 1973a, 1973b, 1974; Hirsch et al., 1971; Hook et al.,
1974; Stroo and Hook, 1977a, 1977b; Suzuki et al.,, 1975; Watrous and
Plaa, 1972a, 1972b). Watrous and Plaa (1972a, 1972b) found that the
renal cortical slice technique is a sensitive procedure for deter-
mining the nephrotoxicity of some chlorinated hydrocarbons in mice.
Chow et al. (1977) observed a dose-related depression of PAH and NMN
accumulation in renal cortical slices prepared from triclosan~ or
chlorhexidine-treated rats. Several other investigators (Berndt,
1976¢; Berndt and Hayes, 1977; Stroo and Hook, 1977a) have found
dose-related responses in small laboratory animals with various
nephrotoxins using this in vitro technique.

Berndt (1976a, 1976b) and Hirsch (1976) suggested that the in
vitro renal cortical slice technique is extremely useful in assessing
acute renal toxicity; however, care must be taken to ensure that
renal tissue slices are properly prepared and examined. The renal

cortical slice technique should be useful in a screening program to
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assess nephrotoxicity. The advantages of this technique include the
following: vthe chemical composition of the ambient fluid can be
fairly rigidly controlled; the influence of certain external factors
that may alter tubular excretion in the intact animal can be easily
controlled; the technique permits examination of various metabolic
inhibitors that cannot be tolerated in live animals; and the simpli-
city of the technique enables a greater number of observations than
can be obtained from intact animals. The major disadvantage is that
it requires that the animals be terminated.

The in vitro perfusion of isolated tubule segments may be used
to examine transport in the renal tubules. Perfusion and sample
collection are performed t!rough pipettes attached to each end of the
tubule segment. The perfusion meAium is passed through the perfusing
pipette into the tubular segment and then collected in the collecting
pipette, The rate of perfusion flow in most studies is between 2 and
24 ml/minute (Burg and Orloff, 1973). During perfusion, the segments
are suspended in a bath which is bubbled with the same gas mixture
as the perfusion media. In tubular secretion studies, the substance
secreted is added to the bath media. In absorption studies, the sub-
stance absorbed is added to the perfusion media. Following perfu-
sion, the concentrations are determined in the bath and the perfusion
media (Tune et al., 1969). The most common cortical slice tubules
used are from rabbits because they are easily removed. Dissection

of the tubules is difficult, if not impossible in dogs, rats, mice,
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guinea pigs, hamsters, frogs, toads and Necturi. The only other

animal from which kidney tubules have been removed is the flounder
(Burg and Orloff, 1973). The following segments have been success-
fully perfused: proximal convoluted tubule, proximal straight tubule,
descending limb of Henle's loop, thick ascending limb and the corti-
cal collecting tubule.

Tune et al. (1969) studied PAH transport using the perfusion of
isolated rabbit proximal tubules. They found active PAH secretion in
both the convoluted and the straight portion of the proximal tubules,
and that PAH was actively transported into the tubule cell at the
peritubular membrane and subsequently diffused into the luminal
fluid.

One of the advantages of perfused tubules is that it is possible
to correlate flux measurements and cell composition in single experi-
ments. Intracellular solute concentration, traasport rates and per-
meabilities of the renal tubule can be measured in isolated tubules
by the use of radioisotopes. An additional advantage of the in vitro
perfusion technique is that individual segments of the nephron can be
examined.

The in vitro renal slice technique is very useful in detecting
renal damage and it is a sensitive technique for evaluating ne-~
phrotoxic effects on the renal transport process. It should be a
useful method in a short-term screening program. The perfused renal

tubule technique can be used to examine transepithelial transport of
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substances such as PAH and NMN; although principally a research
technqiue, it is suitable for Level II screening.

4.3 Urinary Concentrating Ability

The ability of the kidney to concentrate urine depends on a
complex mechanism involving tubular transport of various substances,
tubular responsiveness to antidiuretic hormone, and renal medullary
blood flow (Crowe and Hatch, 1977). While a decrease in glomerular
filtration may impair urinary concentrating ability, alterations in
urinary concentration are generally considered primarily to reflect
tubular integrity, and such abnormalities often develop when GFR is
within the normal range (Crowe and Hatch, 1977; Relman and Levinsky,
1971; Wilson, 1975). Loss of ability to concentrate urine occurs
not only when the distal tubules are damaged but in cases of proximal
tubular damage as well., ' Measurements of urinary concentrating abil-
ity are therefore somewhat nonspecific, in that the precise mechanism
of injury frequently remains unknown (Berndt, 1976a; Crowe and Hatch,
1977; Diezi and Blollaz, 1979). A depressed urinary concentrating
ability is, however, characteristic of a wide variety of renal dis-
orders (Berndt, 1976a; Diezi and Biollaz, 1979), including those
resulting from exposure to nephrotoxins, such as chromium (Berndt,
1976a) and uranyl nitrate (Sharratt and Frazer, 1963). Furthermore,
this effect 18 observed early in the development of renal impairment
(Berndt, 1976a; Crowe and Hatch, 1977). Since measurements of con-

centrating ability are additionally simple and convenient to perform,
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they are the most widely used methods for estimating tubular function
(Relman and Levinsky, 1971).

The two methods which are used to determine the concentrating
ability of the kidney are the measurement of urine-specific gravity
and the measurement of urine osmolality. Specific gravity is the
ratio of the weight of a volume of urine to the weight of the same
volume of distilled water. Thus, specific gravity of urine depends
both on the number of solute molecules and their density (Wilson,
1975).

Osmolality is defined as the number of solute particles per unit
of solvent. This test is preferred over specific gravity since it
more closely measures factors which pertain to the physiology of the
concentrating process, and is genérally considered to be the more
accurate of the two measurements (Crowe and Hatch, 1977; Relman and
Levingky, 1971; Wilson, 1975).

Most studies to detect abnormalities in concentrating ability
involve measurement of maximum concentrating ability. These studies
require that fluid be withheld for a specified period of time prior
to urine collection. The specific gravity or osmolality can then be
determined using various techniques.

The specific gravity of a urine sample can be measured using one
of several instruments, depending on the volume of urine available.
A hydrometer can be used when 25 ml. or more of urine are available

(Relman and Levinsky, 1971; Street, 1970). When smaller amounts of
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urine are available, a pycnometer, with an approximate capacity of
0.5 ml., can be utilized (Sharratt and Frazer, 1963). A light re-
fractometer, which can measure urinary concentration directly, can
- be used in place of a pycnometer or a hydrometer. The use of the re-
fractometer is practical for even very small amounts (a single drop)

th; of urine and has been found useful, practical and reliable even in

9 mice (Balazs et al., 1963; Street, 1970).

\
¢
B

Measurements of osmolality are based on the principle of freez-
ing point depression and are obtained directly from an osmometer.

When a freezing-point depression apparatus is available, the measure-

ment of osmolality is easy, rapid (30 seconds per sample) and quit.

precise. In addition, only small volumes of urine are required

\ (50 to 75 pl), rendering the test suitable for studies in small
: animals such as rats (Diezi and Biollaz, 1979). However, osmometers
are more expensive than the instruments utilized for measurement of

specific gravity. Thus, while the results of specific gravity and

g adiis

osmolality tests are not precisely interchangeable, osmolality mea-
surements are not sufficiently superior to specific gravity mea-

surements to warrant widespread substitution, and either test will

provide a useful first approximation of the concentrating ability of
M the kidney.

Fr" Many factors can affect urinary specific gravity. The values

L can be elevated in certain diseases (e.g., fever, diarrhea, vomiting,

4 exudation from burns) and diminished {n others, especially those

~ .
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associated with a high volume of urinary output (e.g., chronic inter-
stitial nephritis, acute renal insufficiency). Even substantially
decreased fluid intake will elevate, and increased intake lower, the
urine-specific gravity (Relman and Levinsky, 1971; Wilson, 1975).

The specific gravity can also be affected by certain drugs, dyes,
refrigeration of the urine sample, proteinuria and glycosuria (Relman
and Levinsky, 1971).

Although many of the factors which affect specific gravity
(e.g., glocosuria, proteinuria) do not appreciably affect osmolality
(Crowe and Hatch, 1977), there are extrarenal factors which must be
considered. For example, systemic hypertension or a low protein diet
can decrease urine osmolality (Foulkes and Hammond, 1975). The osmo-
lality may also be depressed under the influence of various drugs,
such as corticosteroids and diuretics (Wilson, 1975).

Measurements of urinary specific gravity and osmololity have
been performed in many species of laboratory animals and have been
utilized to detect renal damage following administration of nephro-
toxins. The measurements are usually made on urine from animals
deprived of water overnight. The approximate normal range of spe-
cific gravity for all species is 1.015 to 1.050 (Siegmund and Frazer,
1973). 1In the dog, normal specific gravity values should be 1.040
or above. Values between 1.035 and 1.040 indicate the possibility
of renal tubular damage, while values consistently below 1.035 are

indicative of renal damage. Because rats normally have a slight
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proteinuria, normal values and limiting ranges cannot be given;
however, specific gravity may be found according to the following
formula (Street, 1970):

True SG = SG measured - (mg. protein/100 ml. x 0.003).
Diezi and Biollaz (1979) have reported the normal value for maximal
urinary osmolality in female rats to be approximately 2448+57 mOsm/L.
This maximal concentration resulted following 48 hours of water dep-
rivation.

Sharratt and Frazer (1963) included specific gravity measure-
ments in a battery of tests to determine the sensitivity of various
measurements for detecting tubular damage in water-deprived rats
resulting from exposure to known nephrotoxins. These investigators
used a pycnometer, with a capacity of approximately 0.5 ml., to mea-
sure the specific gravity of rat urine following experimental renal
damage. An abnormal specific-gravity measurement (significantly
different from the 1.059 reading of the control group) occurred in
four out of five groups with acute tubular damage and six out of nine
groups with chronic tubular damage. None of the groups with glom-
erular damage were found to have abnormal specific-gravity readings.
Only the measurement of cells in the urine was a more sensitive test
of tubular function in these studies.

Berndt (1975) utilized osmolality measurements to detect tubular
damage resulting from exposure to potassium dichromate. Potassium

dichromate was administered to rats in single doses of 10 mg./kg. or
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20 mg./kg. Control urine samples were collected for two days prior
to nephrotoxin administration. Osmolality was monitored for several
days thereafter. Figure 4-1 shows the result of this study. As can
be seen, the normal ability of the rats to concentrate the urine was
lost after the administration of chromium. A very dilute urine was
produced for the remainder of the experiment.

The urine concentration test can best be characterized as the
simplest, most reliable first approximation technique presently
available to provide a relatively dependable measure of tubular
function (Crowe and Hatch, 1977; Relman and Levinsky, 1971; Sharratt

and Frazer, 1963; Wilson, 1975). It deserves to be utilized in any

small animal screening studv where nephrotoxic effects are to be
determined.

4.4 Diluting Ability

Dilution of the urine is a tubular function which can be
affected independently of the concentrating function. Dilution tests
¢ 7e much less useful, and a far less critical gauge of renal function
than are concentrating tests; and they are affected by factors other
than those relating to the kidney's concentrating ability (Relman and
Levinsky, 1971).

Sharratt and Frazer (1963) performed this test on rats by giving
them 5% of their body weight of tap water by gastric intuba-
tion. The urine was collected at 30-minute intervals for 120 min-

utes, and the volume and specific gravity of each sample determined.
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FIGURE 4-1
CHANGES IN URINARY OSMOLALITY FOLLOWING SUBCUTANEOUS
ADMINISTRATION OF TWO DOSES OF POTASSIUM DICHROMATE
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The volume of urine passed in 120 minutes was expressed as the
percentage of water given. Two out of four groups, treated with
nephrotoxic agents to produce acute tubular damage, showed abnormal
readings when compared with controls in both volume and specific-
gravity measures.

Determination of urinary diluting ability is of limited value in
assessing renal tubular damage. An abnormality in this renal func-
tion occurs relatively late in the course of renal disease and can be
affected by many nonrenal disorders such as congestive heart failure,
adrenal insufficiency, hepatic disease and inappropriate secretion of
antidiuretic hormone (Crowe and Hatch, 1977). This test has not been
used extensively. Sharratt and Frazer (1963) found that the diluting
ability was less sensitive than the concentrating test in detecting
renal damage.

4.5 General Tubular Damage

The microscopic evaluation of urinary sediment is an important
part of any evaluation of kidney damage. Although it provides no
information about renal function, it is a valuable test of anatomical
integrity of the kidneys (Relman and Levinsky, 1971).

The urine sediment consists of epithelial cells, leukocytes,
erythrocytes, casts and crystals. In normal urine, small numbers
of epithetial cells are present. These cells derive not only from
desquamation from the tubular walls, but also from other portions of

the urinary tract. However, in all types of renal disease, including
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damage resulting from experimental nephrotoxic agents, the tubular
epithelium degenerates, resulting in the appearance of increased
numbers of epithelial cells in the urine.

The excretion of large numbers of relatively well-preserved,
free renal epithelial cells, and casts containing such cells, is
usually a sign of an active tubular degenerative process. In acute
tubular necrosis, plaques of renal epithelial cells may appear in the
urine (Relman and Levinsky, 1971).

Although leukocytes and erythrocytes appear in normal urine in
small numbers, it is not clear how or where they enter urine. It is
not conclusive that they derive from the kidney. In renal disease,
however, increased numbers of red and white cells appear in the
urine. Since these cells may be derived from the kidney, as well as
other parts of the urinary tract below the kidney, they must be seen
in casts, which are formed in the tubules, before it can be certain
that they derive from the kidney (Relman and Levinsky 1971).

Casts are typically cylindrical masses of agglutinated material
which are formed in the distal parts of the nephron and are then
washed out into the urine. There are two main processes which appear
to be responsible for the formation of casts--the agglutination of
masses of cells in the tubular lumina and/or the intratubular preci-
pitation or gelling of protein present in tubular fluid. Usually
there are not enough cells in the tubular lumina and not enough

protein in distal parts to form casts. The excretion of increased

71




numbers of casts usually means either increased proteinuria and/or
renal excretion of cells.

The size of casts is determined by the dimensions of the tubule
in which they are formed. The broadest casts are believed to be
formed in the collecting tubules and the ducts of Bellini. The
. ; presence of many broad casts in the urine suggests widespread stasis
of urine and cessation of excretion in large segments of the kidney
4 and is therefore indicative of advanced renal disease (Relman and
g Levinsky, 1971).

P Crystals appear in the urine as a result of several factors.
These include the amount of various compounds in the urine, the pH of
the urine, the volume of urine, and tubular reabsorption functions.
Small numbers of crystals (e.g., uric acid, carbonates, oxalates,
phosphates) normally appear in the urine (Wilson, 1975). Increased
numbers of crystals appearing in the urine could indicate renal dam-
age, especially if other signs of damage are present (e.g., appear-
ance of increased numbers of cells or casts). This analysis requires
that the pH and temperature of the urine be controlled, since crys-
tals may precipitate out as the sample cools (Wilson, 1975).

f Several investigators have discussed and/or used this technique
in small animal studies (Balazs et al., 1963; Diezi and Biollaz,

A 1979; Lock and Ishmael, 1979; Prescott and Ansari, 1969; Sharratt

{ and Frazer, 1963). Prescott and Ansari (1969) studied the effects

of mercuric chloride administration on exfoliation of renal tubular
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cells in rats. At dose levels sufficient to produce tubular necro-

sis, a striking increase in the number of cells appearing in the

urine was observed. The number of cells in the urine appeared to

e e adeee

be dose-related and the observed latency period between the start of
treatment and the rise in tubular cell counts was inversely propor-
tional to the dose.

This test 1s simple, routine and easy to perform. The sediment
is examined using ordinary bright-field, light microscopy; however,
this examination should be done by an experienced technologist
(Relman and Levinsky, 1971; Street, 1970; Wilson, 1975). It is
usually sufficient to make a qualitative assessment of the types
and relative numbers of the elements in the urine sediment.

It would appear that a cctermination of the types and numbers
of cells, casts and crystals in the urine provides data useful for
screening purposes. Such studies could readily determine areas of
the tubule which have been injured, since typical cells from the dif-
ferent sections can be readily differentiated.

4.6 Summary

Tests which measure tubular function are an important part of
a screening program for nephrotoxicity since the tubules are the
site of most chemically-induced nephroses. The most common tests
are those which measure the reabsorptive and secretory functions,

In addition, tests of urinary concentrating and diluting ability,

and tests which measure general tubular damage, are also available.
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The reabsorptive function of the tubules can be assessed by mea-

suring the levels of substances which are normally absent, or present
in very low levels in the urine due to tubular reabsorption. Glucose
is one such substance. Following nephrotoxic insult, the mechanisms
for transporting glucose are affected. As a result, the resorptive
capacity of tubules for glucose may be greatly diminished and glucose
is excreted into the urine. Its presence in urine strongly suggests
tubular dysfunction, once other possible causes have been ruled out.

However, since many other factors can be responsible for glucosuria,

this test is not as sensitive or specific as other available tests.

Another test which measures the maximal rate of glucose reab-
sorption (the glucose transport maximum test [TMg]) has also been
used to a limited degree. This test is more complex and does not
appear to provide enough additional information to justify its use
over that of simple urinary glucose measurement.

Tests which measure the secretory function of the tubules in-
clude the measurement of urinary acidification, the measurement of
the transport maximum for PAH and the in vitro evaluation of the
renal transport of PAH, NMN and TEA.

The urinary acidification process is affected following damage
to either the proximal or distal tubules. When hydrogen ion secre-

tion into the proximal tubules is affected, bicarbonate reabsorption

is less efficient and urinary pH increases., When distal tubules are
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damaged, hydrogen ion transport is affected, resulting in an inabil-
ity to acidify the urine. By monitoring urinary pH, the tubular dys-
function can be determined. However, this test appears to be useful
only for detecting severe renal damage.

The transport maximum for PAH is a secretive test which can be
! used to estimate the amount of active tubular mass and can indicate

functional damage in proximal tubules, where PAH is secreted. Since

3 the quantity of PAH secreted into the proximal tubules is propor-
:;: tional to the tubular mass, the rate of secretion 1s decreased when

v the tubules are damaged. This test can measure the decrease in the
o secretory rate.

The in vitro renal cortical slice technique can also be used to
evaluate tubular function. The test measures the inhibition of accu-
mulation of PAH, NMN and TEA by the tissue slices. This inhibition

has been shown to correspond to decreased tubular transport of these

substances. This technique has been reported to be very useful and
sensitive for evaluating nephrotoxic effects on the renal transport
process. It has many advantages over in vivo techniques which
i measure the same functions; however, the animals must be terminated.
: The in vitro perfusion of isolated tubule segments is another
technique which may be used to determine tubular transport. This
is principally a research technique, however, and is not considered

suitable for routine screening.

75




A measure of the ability of the kidney to concentrate the urine
has been shown to be a sensitive indicator of tubular dysfunction.
Loss of the ability to concentrate urine occurs following damage
to either the proximal or distal tubules. The two methods used to
determine the concentrating ability are the measurement of specific
gravity and osmolality. Either method can be used; however, specific
gravity is used more routinely. The test of urine concentrating
ability has been characterized as the simplest, most reliable first
approximation technique presently available to provide a relatively
dependable measure of tubular function.

Determination of urinary diluting ability has also been used to
evaluate tubular damage. This test appears to be of limited value,
since abnormalties in this function occur late in the course of renal
disease and can be affected by many nonrenal disorders.

General tubular damage can be determined by the microscopic
evaluation of urinary sediment. Although this provides no informa-
tion about renal function, it is a valuable test of anatomical integ-
rity, since an increase in the number of urinary cells and casts is
indicative of tubular degeneration. A qualitative assessment of the
types and relative numbers of elements in the urine is simple, rou-
tine and easy to perform. In addition, it is possible to determine
which areas of the tubules have been injured, since cells from dif-
ferent tubules can be differentiated. It would appear that this test
could provide data useful for screening purposes.

Tubular function tests are summarized in Appendix C.
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5.0 MEASUREMENTS OF RENAL HEMODYNAMICS

A basic function of the kidneys is to clean the plasma of
: unwanted substances. The ability to carry out this function depends

to a large extent upon the availability of an adequate blood supply.

. Under normal conditions, approximately 20 to 25% of the car-

diac output flows through the kidneys so that the kidneys are sup-
plied with more blood per gram of tissue weight than any other organ
in the body (Finn, 1977). Alterations in either the absolute amount
of blood flowing through the kidneys or the intrarenal distribution
of blood flow can be expected to have a substantial impact upon renal
function. The effects of toxic agents on the regulatory processes
within the kidney which act to minimize changes in blood flow that

might accompany alterations in arterial blood pressure, circulating

blood volume or peripheral vascular resistance, are largely unknown.
A reduction in outer cortical blood flow, with a redistribution of
blood flow to the inner cortex has, however, been suggested to result
from exposure to nephrotoxing (Finn, 1977). Tubular necrosis may
also accompany a reduction in renal blood flow following exposure to
a nephrotoxic substance, such as the antitumor agent inosine dialde-
hyde (Kaufman et al., 1977).

Several procedures are available for measuring renal blood flow
and intrarenal distribution of blood flow. While none of these
procedures are suitable for inclusion in Level I of a tiered screen-

ing program for nephrotoxicity, many are well developed and routinely
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utilized in research laboratories for the assessment of renal damage
(see Appendix D).

Procedures for measuring renal blood flow are rarely employed
as tﬁe sole indicator of nephrotoxicity, but are usually performed
in conjunction with measurement of glomerular filtration rate or as
part of a battery of renal function tests. The sensitivity of renal
blood-flow measurements for detection of early renal damage, espe-
cially in laboratory animals such as the rat (Churchill et al.,
1977), cannot be ascertained from the available literature; however,
some studies suggest that alterations in glomerular or tubular func-
tion may be observed priox to alterations of renal blood flow. For
example, chronic exposure of dogs to polymixin antibiotics resulted
in depression of glomerular filtration rate and maximum tubular
function, but not of renal plasma flow in those animals exhibiting
moderate damage. Only in animals in which damage was severe was
renal blood flow also depressed (Moyer et al., 1953).

5.1 Measurement of Renal Blood Flow

5.1.1 Plasma Clearance Methods

The quantity of a substance S entering the kidney per unit time
via the renal artery may be defined as
RPF x [S]ap
where RPF is the renal plasma flow and [S]ap is the concentration of
S in the arterial plasma, ap. Similarly, the quantity of a substance
leaving the kidney 1is

RPF x [S]vp + [S]uV
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where [S]vp is the concentration of S in the venous plasma, vp, [S]u
is the concentration of S in the urine and V is the volume of urine
excreted in the given time (Sullivan, 1974).

If S is not synthesized, stored or destroyed, by the renal
parenchyma, then the quantity S entering the kidney is equal to the
quantity of S leaving the kidney. Thus

RPF x [S]lap = RPF x [S]vp + [S]uV.
Solving for RPF we get

[S]uv

REF = TTSlap-[STvp).

The fraction of S removed from the plasma during a single pas—
sage through the kidney is known as the extraction ratio, E, and has
a maximum value of 1. In cases where S is completely filterable at
the glomerulus and all the S remaining in the plasma following glom-—
erular filtration is secreted into the tubules, E will approach 1.
Under these conditions, no S will appear in the venous plasma and
{Slvp will equal 0. Thus

{S]uv _
= [Slap = -

RPF

Several substances are available which have extraction ratios
approaching 1. For these substances, the plasma clearance approxi-
mates the renal plasma flow and RPF may be determined i{n the labora-
tory through standard clearance procedures similar to those used for

determination of GFR (Section 3.2.1). The RPF so determined is

believed to represent the plasma perfusing the functional tubular
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tissue, rather than the total RPF, and is known as the effective
renal plasma flow (ERPF) (Smith, 1960). The true renal plasma flow
may be determined from the ERPF provided that E is known:

RpF = EREF _ G5

E E.

The renal blood flow may then be calculated as follows:

- RPF
1 - hematocrit,

RBF

Clearance procedures for measuring ERBF have many of the same
requirements and disadvantages as those for measuring GFR. Maintain-
ing constant plasma levels of S and collecting accurately-timed urine
samples usually involve constant infusion and bladder catheterization
respectively, and anesthesia is normally required. As was discussed
in Section 3.2.1, bladder catheterization may lead to infection.
Intravenous infusion in rats requires venous cutdowns, rendering
repeated measurements difficult to perform (Blaufox et al., 1967b).
In addition, since processes which damage the kidney (e.g., nephro-
toxins) may markedly alter the extraction ratio, E, accurate deter-
minations of RPF involve simultaneous determination of E in the ex-
perimental animal (Sullivan, 1974). Determining E requires sampling
arterial blood and renal venous blood. In dogs and rats, arterial
blood is usually obtained from the femoral artery, although use of
the carotid artery has been reported in rats (Johnson and Kleinman,
1979). Arterial blood may be obtained from rabbits via the central

artery of the ear (Sadowski et al., 1977). Renal venous blood may




be obtained in all species through catheterization of the renal
vein.

The substances most commonly used in clearance procedures for
determining ERPF are para-aminohippuric acid (PAH) and orthoiodohip-

purate (Hippuran). Iodopyracet (Diodrast) is also used, but less

frequently,

5.1,1.1 PAH Clearance. The clearance of PAH is the classical

procedure for measuring ERPF and is the standard by which all other
procedures are judged. PAH is completely filterable at the glomeru-
lus, and the quantity remaining in the plasma after filtration is
largely removed by tubular secretion when [PAH)ap does not exceed
the tubular transport maximum (Sullivan, 1974). The exact value for
E varies from species to species and within a given species, but is
generally within the range of 0.75 to 0.90 in rats and dogs (Blaufox
et al., 1967; Gyrd-Hansen, 1968; Johnson and Kleinman, 1979),

Values of ERPF in rats, as determined by PAH, have been re-
ported to range between 1.88 and 2.82 ml./min./100g. (Blaufox et al.,
1967b; Brennan et al., 1977). Values in dogs range from 9.05 to
15.77 ml./min./kg. (Powers et al., 1977; Stokes and Ter-Pogossian,
1964). Lower values were obtained in dogs anesthetized with sodium
pentobarbital than in dogs anesthetized with mcthoxyflurane. The
highest values were obtained when tests were performed in unanesthe-

tized animals (Powers et al., 1977).
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The standard analytical technique for measuring PAH is the
diazotization method of Bratton and Marshall (1939), as modified by
Smith et al., (1945). This colorimetric procedure, while still used
to some extent, is generally considered to be tedious and time~
consuming, and has largely been replaced by methods which employ
i4¢ or 34-PAH (Brennan et al., 1977; McCormack et al., 1978).

5.1.1.2 Clearance of Iodohippurate and Iodopyracet. Orthoiodo-

hippurate (OIH) and Todopyracet, like PAH, are completely filterable

at the glomerulus, effectively secreted by the tubules and have val-

ues of E approaching 1 (Smith, 1960). These substances are therefore
suitable for measuring ERPF by clearance techniques and have been

utilized for this purpose for many vears (Tauxe and Hunt, 1966).

OIH may be labelled with either 1311 or 1251 allowing simple,
rapid and accurate analysis of blood and urine samples by scintilla-
tion counting (Tauxe and Hunt, 1966). Substitution of labelled OIH
for PAH was originally intended to simplify the analytical procedures
during evaluation of renal function in clinical studies; however,
this method has also been used in experimental determinations of
ERPF, particularly in dogs (Pritchard et al., 1965; Summers et al.,
1967).

when 1311 labeled IOH is employed, care must be taken to
remove free 1311 from the tracer. O 13l1IH has been found to be

contaminated to variable degrees with free 1311 and, if the latter
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is not removed prior to infusion, values for Cgyg will be lower
than values for Cppy (Cutler and Glatte, 1965; Summers et al.,
1967). This problem may be avoided by using 1251 labelled OIH.
When either 0 1251H or 13l1-free 0 131IH is utilized for determina-
tion of ERPF by clearance procedures the values obtained correlate
well with those obtained from Cppy (Cutler and Glatte, 1965;
Summers et al., 1967).

5.1.2 Plasma Disappearance Methods

ERPF may be determined by measuring the disappearance of a
suitable material from the plasma following a single intravenous
injection. The procedures are essentially identical to the plasma-
disappearance methods used for determining GFR, and are described in
Section 3.2.2.

A substance utilized for determining ERPF by plasma disappear-
ance methods must satisfy the same criteria as one utilized for de-
termining ERPF by plasma clearance methods. That is, the substance
must be completely filterable at the glomerulus, secreted by the
tubules and not synthesized by the renal parenchyma. OIH satisties
these criteria and either 1251 or 1311 labelled OIH is the substance
most commonly used for this test (Gott et al., 1962).

The dog is the most popular animal for renal hemodynamic
studies, and determining ERPF by plasma disappearance methods (as
well as by plasma clearance methods) is most frequently reported

in the literature in this animal (Binnion and Cumming, 1967; Kaufman
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et al., 1977; Pihl, 1974; Powers et al., 1977; Pritchard et al.,

1965; Razzak et al., 1965; Stokes and Ter-Pogossian, 1964; Summers
et al., 1967). While some disagreement exists regarding the accuracy
of ERPF measurements as determined by plasma disappearance methods
(Pihl and Nosslin, 1974), excellent agreement with values obtained
by PAH or OIH clearance procedures has been observed by numerous in-
vestigators (Cutler and Glatte, 1965; Gott et al.,, 1962; Pihl, 1974;
Pritchard et al., 1965; Stokes and Ter-Pogossian, 1964; Summers et
al., 1967; Tauxe and Hunt, 1966).

The advantages of plasma disappearance methods for determining
ERPF are similar to those described in Section 3.2.2 for use of chese
methods in determining GFR. The need for bladder catheterization and
intravenous infusion is eliminated, and the procedure can be per-
formed without anesthesia. However, these methods are somewhat less
suitable for screening than similar methods for measuring GRF since
accurate measurement of ERPF ultimately requires determining E, which
in turn requires renal vein catheterization (Pritchard, 1965).

5.2 Measurement of Regional Blood Flow and Intrarenal Distribution
of Blood Flow

Standard clearance procedures or disappearance methods for
determining renal plasma flow provide information regarding overall
blood flow through the kidney, but are of little value in determining
regional blood Zlow or distribution of blood flow through the various
layers of renal tissue, Several methods are available for measuring

intrarenal hemodynamics; two of these are well developed and commonly
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used for assessing renal function in laboratory animals. The com-—

monly used methods are:

(a) measurement of the washout of Krypton-85 (8°Kkr) and
Xenon-133 (133Xe) from the kidney, and

(b) measurement of the extraction and entrapment of radio-
active microspheres by the glomerular capillaries.

5.2.1 Washout Techniques

In the standard washout method for measuring regional blood
flow, 85kr is dissolved in saline and rapidly injected into the
renal artery through a catheter. The rate at which this radioactive
material is washed out of the kidney is measured by an appropriately
positioned external scintillation detector (Pitts, 1974). Measur.-
ment of blood flow by this method is based upon the assumption that a
highly diffusible substance will.equilibrate between blood and tissue
in a single passage through the capillaries. The rate at which the
substance is removed will therefore vary directly with the rate of
blood flow through the capillaries, and if the tissue/blood partition
coefficient is known, the blood flow per unit volume of tissue can be
determined (Thorburn et al., 1963).

85Kr is an ideal substance for such measurement. Not only is
it inert, lipid-soluble and highly diffusible, but because of its low
solubility in blood relative to air, 957% or more is removed in one
circulation through the lung, so that the amount returning to the

kidney is negligible (Thorburn et al., 1963).
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A typical 85Kr washout curve is presented in Figure 5-1. The
disappearance of radioactivity is a complex function of time and can
be described by a series of exponentials, each associated with blood
flow through localized regions of the kidney. These regions have
been identified by autoradiographic techniques such as: I, the outer
cortex; II. the inner cortex and outer medulla; III. the inner me-
dulla; and IV. the perirenal and hilar fat (Pitts, 1974; Thorburn et
al., 1963). From the partition coefficient for 85Kr, the slope of
each exponential, and the density of the tissue, blood flow per gram
of tissue can be calculated for the four differently perfused masses

of renal tissue by the following equation:

where F = flow in ml/min/g; k = the slope of the exponential

0.693 in min~l; X = the tissue/blood partition coefficient;
t1/2

and p = the specific gravity of the tissue in g./ml. (Thorburn et
al., 1963). Total renal blood flow can be calculated by using the
initial slope of the original washout curve (Ayer et al., 1971).

The partition coefficient X\ is generally considered as 1 in the
equations relating to the three compartments of the renal parenchyma
(exponentials I - III); when dealing with the fourth compartment, a
fat/blood partition coefficient of 9 is utilized (Thorburn et al.,

1963).
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Modified from Pitts, 1974

FIGURE 5-1
85Kr DISAPPEARANCE CURVE
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The intercept of each exponential with the y axis represents the
counts per minute initially present in compartment I - IV. The per~
centage of total initial counts represented by each of these values
is equivalent to the fraction of total renal blood flow supplied to
the respective compartments or the intrarenal distribution of blood
flow.

Xenon 133 (133Xe) has also been used for determining intra-
renal hemodynamics; however, values for regional blood flow obtained
by the washout of this radiocactive gas are not comparable to those
obtained using 85kr. One factor contributing to the observed
differences may be the apparent variation of the 133y, tissue/bloo4
partition coefficient with the hematocrit. Since the renal hema-
tocrit varies from one region of‘the kidney to another, one cannot
use a fixed value for A in the calculation of flow rate (Carriere,
1970).* In addition, resolution of the washout curve into its
component exponentials is noticeably more difficult for 133ye than
for 85kr and therefore subject to greater error (Carriere, 1970).
Since the tissue/blood partition coefficient for 85kr does not vary
with the hematocrit, and since the analysis of the composite washout
curve into its component exponentials is less subject to error for
85kr than for 133Xe, the use of 35Kr may be preferable (Carriere,

1970). Furthermore, if autoradiograms are desired in order to

*The tissue/blood partition coefficient for 133%e is usually
taken as 0.65 (Carriere, 1970).
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interpret an abnormal washout curve, 85kr must be used for the wash-
out curve or injected subsequent to 133%e washout studies since
133%e cannot be utilized for autoradiographic analysis (Ayer et

al., 1971; Carriere, 1970).

A nonradioactive washout technique has been used (Churchill et
al., 1977) in which tissue hydrogen concentrations in the cortex are
measured using surgically placed platinum electrodes. In these mea-
surements, the experimental animal inhales hydrogen gas and the half-
time of hydrogen desaturation in the cortical tissue is determined by
graphic analysis of the monoexponential decay curve measured ampero-
metrically from the electrodes. The cortical blood flow rates are
then calculated as described earlier in this section. This technique
has the advantage that the a.atomical department monitored is de-
termined by the placement of the electrodes and therefore does not
require the analysis of complex exponential decay curves as 85kr
washout techniques. The major disadvantage of the technique is that
the electrodes require surgical placement, which may alter the local
blood flow because of tissue injury (Churchill et al., 1977).

Washout techniques for determining intrarenal hemodynamics are
most commonly performed in rats and dogs (Ayer et al., 1971; Church-
111 et al., 1977). Normal values in dogs for blood flow through the
four regions defined by the 85Kr washout curve are presented in

Table 5-1, along with the percent distribution of blood flow in each
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region. These values are reproducible and are consistent with those
determined by other means (Carriere, 1970; also see Section 5.2.2).

The 85Kr washout technique appears promising as a level II
screening test for both chronic and acute studies in dogs since
catheters may be permanently implanted in the renal artery of anes-
thetized animals and, following a recovery period of approximately
one week, blood-flow measurements may be performed repeatedly in the
absence of anesthesia. Thorburn et al. (1963) reported performing
repeated measurements in chronically catheterized dogs for as long
as one year. Studies in rats can be performed only once since they
involve abdominal incision and isolation of the kidney for counting
(Ayer et al., 1971). Thus, rats are suitable for acute exposure
studies in which a control value is obtained immediately prior to
administration of the nephrotoxin and effects are determined in the
same animals within a few hours. For chronic exposure studies,
control values would have to be obtained using a separate group of
animals.

Changes in intrarenal distribution of blood flow or reductions
in regional blood flow as determined by washout techniques appear to
be useful indicators of nephrotoxicity when the nephrotoxin alters
renal hemodynamics. For example, the antitumor agent inosine dialde-
hyde exhibits dose-limiting renal toxicity. Kaufman et al. (1977)
utilized a 133xe washout technique in conjunction with O 1311h

disappearance and renal biopsy to show that the renal impairment in
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dogs was tubular necrosis due to a reduction in renal blood flow by
the drug. While a dose of 20 mg./kg./day inosine dialdehyde for 7
days produced no significant changes in blood flow as determined by
133xe washout, a dose of 40 mg./kg./day for 5 days resulted in a
reduction to 80% of the control value, and a dose of 60 mg./kg./day
resulted in a further reduction to 57% of the control value. In both
cases, renal biopsy findings confirmed structural alterations in the
renal tubules.,

In another study, Ayer et al. (1971) utilized 133%e washout
and 85kr autoradiography to determine alterations in regional renal
hemodynamics in rats resulting from glycerol-induced acute renal
failure,

The parameters investigated @ere: total remal blood flow in
ml./min./g. of total kidney; regional blood flow in ml./min./g. of
compartment tissue; intrarenal distribution of blood flow, and true
regional blood flow in ml./min./g. of total kidney.*

The results of the study are presented in Table 5-2 and serve
to 1llustrate the type of information obtained from washout studies.
The acute effects of the nephrotoxin were manifested as a steady de-
cline in total RBF from 3.43 ml./min./g. to 0.92 ml./min./g. or 27%
of the control value in 24 hours. A marked redistribution of blood

flow also occurred, with the fraction supplied to the outer cortex

*True regional blood flow may be obtained by multiplying total
renal blood flow by percent distribution of blood flow (Ayer et
al., 1971).
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decreasing from 78.8% to 24.4% after 24 hours, and the fractions sup-
plied to the inner cortex/outer medulla and inner medulla/perirenal
and hilar fat increasing from 15.7% to 43.9% and 5.5% to 31.7% re-
spectively in that same period. True regional blood flow decreased
dramatically in the outer cortex to 8% of the control value in 24
hours and, despite the increase in the fraction of blood flow to
component II, true regional blood flow in that component decreased
to 74% of the control value,

85kr autoradiographs of control and experimental animals 24
hours following glycerol administration are presented in Figure 5-2
(Ayer et al., 1971).

Critics of washout techniques point out several theoretical con-
siderations which may affect the accuracy and interpretation of the
results (Katz et al., 1971; Stein et al.,, 1973). These include:

e no direct evidence for an equilibrium distribution of the
indicator gas between tissue and capillary blood

e the assumption that X\ and V, the volume of distribution of
the gas, are constant, and

e the subjective nature of the analysis of the washout curve
into its component exponentials, although this is not a
problem in Hy washout.
However, as was stated before, the values obtained by 85kr washout
appear to agree well with those obtained by other means, and the pro-

cedures are nondestructive in dogs and may be repeated frequently.

5.2.2 Microsphere Techniques

The extraction and entrapment of radioactive microspheres by

the glomerular capillaries may be utilized for the determination of
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A
control

B
24 hr.
after glvcerol

P

85Krypton autoradiopraphs taken 10 seconds and 2 minutes
after injection of the indicator gas. Arrows indicate
(from the surface toward the papilla) the position of
the renal capsule and the boundaries between cortex
and subcortical area, subcortical area and outer
medulla, outer medulla and inner medulla. An outline
of the kidnev is provided indicating the approximate

y surface area to aid in studving the autoradiographs.

! Note the delayed, weak, and patchv tilling of the cortex
and the delaved washout from the cortex 24 hours after
glycerol injection.

, FIGURE 5-2
a 85KRYPTON AUTORADIOGRAPHS

, Modified from Aper et al., 1971
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regional blood flow and intrarenal distribution of blood flow. How-
ever, since the glomeruli are concentrated within the cortex of the
kidney, these parameters can only be measured within the various
sections of cortical tissue using this technique.

In this procedure, a bolus of microspheres is injected into the
left ventricle or root of the aorta of an anesthetized animal. Com-
plete mixing occurs before the microspheres reach the renal artery,
so that the quantity of microspheres entering the renal tissue is a
function of the fraction of blood flow to the tissue., If all the
microspheres are trapped in the glomerular capillaries in a single
circulation through the kidney, the blood flow, F, in ml/min/g of
tissue can be calculated from the following formula:

= 9
F = qw x RBF

where q = the counts per minute in a tissue slice of weight w, Q =
the counts per minute in the entire kidney and RBF = the renal blood
flow as measured by standard techniques (see Section 5.1 [Blantz et
al., 1971; Katz et al., 1971 Slotkoff et al., 1971]). Plastic micro-
spheres of approximately 15p in diameter and labelled with 169Yb,
853r, 46Sc, or 14lce are most commonly used for blood flow determi-
nations, Microspheres of this size are suitable in that they:

e are the smallest beads completely extracted by the
glomerular capillaries in one circulation

e do not damage renal tissue

e do not alter blood flow to the kidney
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2 ¢ do not alter any physiological functions, and

e have rheologic properties similar to those of blood
(Katz et al., 1971).

Microspheres have been utilized for determining cortical hemo-
dynamics in both rats and dogs. Following injection of the labelled
spheres, the experimental animal is sacrificed and the kidneys are
removed and weighed. One half of one kidney is weighted again, cut
into small pieces and counted in a scintillation counter. From

the kidney weights and the CPM in one half kidney, the total CPM per

kidney, Q, is determined. The other half kidney is used to prepare
slices of cortex. These slices are cut with a microtome in succes~ i
sive layers from the superficial to the deeper areas of the cort cal
tissue. Each slice 1is then weighed and counted to obtain values for
q and w (Katz et al., 1971).
Stein et al. (1973) developed a procedure for cutting the renal
cortex into four equidistant sections which were representative of
superficial nephrons (Zone 1), midcortical nephrons (Zones 2 and 3)
and juxtamedullary nephrons (Zone 4). The fractional distribution
of blood flow between the four zones in two different areas of renal
cortex are presented in Figure 5-3, As can be seen from the figure,
definite differences in flow are present in the various cortical
zones, with over two-thirds of the blood flow occurring in the two
outer zones., Stein et al. (1973) indicate that blood flow in zones
1 through 3, as determined by the microsphere technique, is equiva-

lent to outer cortical blood flow (C;), as determined by the washout
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FIGURE 5-3
COMPARISON OF THE FRACTIONAL DISTRIBUTION OF BLOOD
FLOW BETWEEN TWO DIFFERENT AREAS OF THE RENAL CORTEX
AFTER A SINGLE INJECTION OF RADIOACTIVE MICROSPHERES
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technique. Outer cortical blood flow in dogs, as determined by the
microsphere technique, is approximately 4.5 ml./min./g. and agrees
well with the range of 4-5 ml./min./g., as determined by washout
techniques (Slotkoff et al., 1971; Pitts, 1974).
1 ‘ Since entrapment of microspheres in the glomerular capillaries 5
y does not interfere with blood flow or alter physiological functions,
this method of measuring changes in cortical hemodynamics can be i
k- useful for screening nephrotoxins. Control values can be determined
by using microspheres labelled with one of the four previously men-
tioned radioisotopes. Changes in blood flow following administration 3

of the nephrotoxin can be measured subsequently using microspheres

PO

labelled with a different isotope. Slotkoff et al. (197]1) determined
that Cyy and Cppy remained unchanged after four consecutive injec-
tions of microspheres; however, the maximum period of time over which
consecutive measurements may be performed is yet to be determined.
The tests are therefore definitely applicable to acute toxicity
screening and possibly applicable to chronic studies as well.

While microsphere techniques have not been utilized for nephro-

toxicity screening to date, their ability to detect changes in blood

-

flow under a variety of experimental conditions (e.g., acute hemor-
rhage) has been demonstrated (Blantz et al., 1971; Katz et al., 1971;
Slotkoff et al., 1971; Stein et al., 1973). Stein et al. (1973),

for example, found that the renal vasodilator acetvlcholine causes

'f a redistribution of cortical blood flow from outer to inner cortical
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nephrons. The fractional distribution of flow in Zone 1 fell from
45% to 33% and was accompanied by increased flows in Zones 3 (17% to
23%) and 4 (10% to 16%). Absolute flow in all 4 zones was also found

to increase. The same laboratory using microsphere techniques found

that hemorrhagic hypotension caused a marked redistribution of cor-
tical flow to the inner cortical layers, while the vasopressor nor-
epinephrine reduced total blood flow to the same extent, but had no
effect on the zonal distribution of blood flow. Redistribution of
cortical circulation during acute hemorrhage was also reported by
Slotkoff et al, (1971) in a study designed to confirm the utility of

the microsphere technique. In this study the ratio of outer cortical

to inner cortical radioactivity decreased from 3.00 before hemorrhage

to 1.3 after hemorrhage. Tt therefore appears likely that micro-

sphere techniques for measuring regional blood flow and intrarenal
distribution of blood flow, like washout methods, might be useful
in assessing nephrotoxicity in those instances where the nephrotoxin
alters regional hemodynamics.
5.3 Summary

Several procedures are available for measuring renal blood flow
(RBF) and intrarenal distribution of blood flow in laboratory ani-
mals, including rats and dogs. These procedures are not suitable for
Level I of a tiered screening program for nephrotoxicity; however,

the more developed tests might be appropriately included in Levels II
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or III of such a program and are useful in detecting renal damage
from nephrotoxins which alter renal hemodynamics.

The effective renal plasma flow (ERPF) may be determined by
standard clearance procedures employing radiolabelled p-aminohippuric
acid (PAH), orthoiodohippurate (OIH) and iodopyracet (Diodrast); or
by plasma disappearance methods employing radiolabelled OIH or
Diodrast.

Clearance procedures for measufing ERPF, like clearance proce-
dures for measuring glomerular filtration rate (GFR), require collec-
tion of timed urine samples (as well as timed blood samples) and thus
bladder catheterization. Intravenous infusion is necessary for all
three marker substances.

Plasma disappearance methodé for determining ERPF are less cum-
bersome than plasma clearance methods, as they involve only a single
injection of the marker followed by collection of timed blood sam-
ples.

Since nephrotoxins may markedly alter the extraction ratio, E,
accurate determination of RBF by either plasma clearance or plasma
disappearance methods requires simultaneous determination of E which,
in turn, requires renal vein catheterization. Determination of RBF
in laboratory animals is therefore somewhat more complicated than
determination of GFR by a similar procedure.

Regional blood flow and intrarenal distribution of blood flow

may be determined by measuring the washout of Krypton-85 (85kr),
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Zenon-133 (133Xe) or hydrogen from the kidney, or by measuring the

extraction and entrapment of radiocactive microspheres by the glo-
merular capillaries. Washout techniques involve either the rapid
injection of the indicator gas into the renal artery, followed by
monitoring the loss of radioactivity over the kidney by an external
scintillation detector, or the inhalation of a gas (hydrogen) and
the electrode monitoring of cortical tissue desaturation. For the
radioactive gas washout, the resulting curve can be described by a
series of exponentials, each associated with blood flow through
localized regions of the kidneys. Hydrogen washout is described by
a monoexponential decay curve. In the radioactive gas washout curve,
the intercept of each exponential with the y axis represents the CPM
initially present in the corresponding region and can be related to
the fraction of total blood flow in that region. In hydrogen washout
technique, the placement of the electrudes determines the anatomical
department monitored.

Washout techniques have been utilized in both dogs and rats.
Dogs may be chronically catheterized, permitting repeated measure-
ments to be performed over extended periods of time, and are thus
suitable for chronic as well as acute studies, Studies in rats
involve exposing the kidney for counting, and can be performed only
once. Rats are therefore suitable for acute studies or for chronic
studies 1f control values are obtained in a separate group of ani-

mals.
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Cortical blood flow and distribution of blood flow within the

cortex can be measured in rats and dogs using the microsphere tech-
nique. 1In this procedure, a bolus of radioactive microspheres is
injected into the left ventricle or the root of the aorta, and the
distribution of radioactivity within the various layers of cortical
tissue is determined by direct count. Although the microsphere
technique requires sacrifice of the animal, comparison of cortical
hemodynamics before and after exposure to a nephrotoxin is possible
through sequential measurements utilizing microspheres labelled with

different isotopes.

b,
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6.0 ENZYMATIC INDICATORS OF DAMAGE

Enzyme determinations on serum have become an important and
widely accepted tool for the diagnosis of many diseases. Measurement
of urinary enzymes has not received the same amount of attention
until very recently, and the diagnostic value of urinary enzymatic
determinations is still controversial. However, as an indicator
of renal functional impairment, urinary enzyme determinations have
several advantages over the use of serum enzyme determinations.

Increased enzyme activity can be measured in the serum, but it
is not a sensitive index of renal damage since other body systems
can also make an important contribution to the serum level of some
enzymes. Experimental evidence has shown that when tubular cells
degenerate, the enzymes contained in the cells pass into the urine
(Raab, 1969c); following administration of nephrotoxins, urinary
activity of enzymes derived from kidney cells was found to be highly
increased (Raab et al., 1969). Since most urinary enzymes are de-
rived from renal tubular cells (Rabb, 1968), changes in the urinary
excretion rates more closely refiect alterations in tubular cells,
Therefore, elevated urinary enzyme activity is regarded as a sensi-
tive indicator of tubular injury (Mattenheimer, 1968; Ellis et al.,
1973c).

6.1 Urinary Enzyme Activity

Each of the distinct regions of the nephron has a characteristic

group of enzymes. It is believed that changes in the output of
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urinary enzymes reflect changes in the anatomical nature of the

nephron., Because of the large functional reserve capacity of the
kidney, variations in urinary enzyme activity ar. believed to occur
before changes in physiological function (Schoenfeld, 1965). There-
fore, measurement of urinary enzyme activity should provide a sensi-
tive early indicator of renal damage. In addition, it is possible
to indicate which portion of the nephron is damaged since different
parts of the nephron show widely differing levels of enzyme activity
(Ellis et al,, 1973c; Davison and Conning, 1968). Thus assays of
specific enzymes are capable of differentiating different parts of
the nephron; changes in the activity of those specific enzymes can
be indicative of effects to specific sections of the nephron.

Most chemically-induced lesions have been found in the proximal
convoluted tubules (Balazs et al., 1963). Renal tubular cells con-
tain high levels of many enzymes in order to fulfill their numerous
biochemical functions (Raab, 1968; Ellis et al., 1973a, 1973b). Be-
cause the tubular cells are rich in enzymes, urinary enzyme activity
is markedly increased when these cells disintegrate. The excretion
pattern of renal enzymes following toxic damage to tubular cells de-~
pends on such factors as (1) intensity of damage, (2) enzyme distri-
bution in the damaged parts of the nephron, (3) localization of the
enzymes within the damaged cells, (4} structures to which the enzymes
are bound, and (5) the physical properties of the enzyme molecules

(Raab, 1972).
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More than forty different enzyme activities have been detected
in the urine of mammals (Raab, 1972),. These include representatives
of four groups--oxydoreductases, transferases, hydrolases and lyases.
A list of these enzymes has been compiled in Table 6-1. Appendix E
provides an additional listing along with specific references.

Although many enzymes have been detected in the urine of mam-
mals, relatively few have been studied to any extent. The following
sections will be limited to a discussion of those urinary enzymes
that are most frequently measured to indicate renal damage. These
include, in decreasing order of usefulness in detecting damage:
beta-glycosidases, alkaline phosphatase, lactic acid dehydrogenase
(LDH), acid phosphatase, glatamic oxaloacetic transaminase (GOT),
cholinesterase and isocitrace dehydrogenase (ICDH).

All the urinary enzyme assays discussed in the following sec-
tions are standard tests. Although these tests are not routinely
employed for initial screening in toxicity testing, they can be used
as screening tests or to further define the location of the toxic
reaction. These tests are relatively simple, easy to perform, repro-
ducible and less expensive than most of the methods used to assess
renal dysfunction. The major drawback is collecting serial, uncon-~
taminated urine samples from the small test animal. Preserving the
specimens and dialyzing the samples before the tests are performed

are also necessary.
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TABLE 6-1

URINARY ENZYMES FOUND IN HUMANS AND IN ANIMALS i

ACTIVITY HUMAN  ANIMAL

l. Oxidoreductases

Lactate dehydrogenase, + +
Malate dehydrogenase, +b +b
Isocitrate dehydrogenase, - +
Glucose-6-phosphate dehydrogenase, +
Succinate dehydrogenase, - -
Glutamate dehydrogenase, - +
Diamino-oxidase, +
Dihydroxphenylalanine oxidase +
Catalase, +b
2. Transferases
D-glutamyltransferases, +
Aspartate aminotransferase (GOT), + +
Alanine aminotransferase (GPT), +b +
Ribonuclease, + +
Arginine-ornithine~transamidinase, +b
3. Hydrolases
Triglyceride esterase (lipase), + +
L-gulono-§-lactone hydrolase, +
Cholinesterase, + +
"Alkaline" phosphatase, + +
"Acid" phosphatase, + +
"Acid" deoxyribonuclease, + +
"Neutral” deoxyribonuclease, + +
Sulfatases, + +
Amylase, + +
Muramidase, + +
a-Glucosidase, + +
B-Glucosidase, + +
p-Galactosidase, + +
Trehalase, +
N-Acetyl-d-glucosamidase, +b +b
+ +

B-Glucurondase
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TABLE 6-1 (Concluded)

URINARY ENZYMES FOUND IN HUMANS AND IN ANIMALS

ACTIVITY HUMAN  ANIMAL

3. Hydrolases (Conc.)

Aminopeptidases, ("Leucine aminopeptidase;"
glycine aminopeptidase; cystine amino-

peptidase, Alanine aminopeptidase) + +
Carboxypeptidase, (Carboxypeptidase B) + +
Renin, + +

Proteases: (tryptic activity (fibrinolytic
activity); catheptic activity; peptic

activity; kallidrein, urokinase) + +
4. Lyases
Aldolase, +b
Hyaluronidase + +
8(+ = found, - = not found, blank = no information available).

Under pathological conditions only.

SOURCE: Raab, 1972.

109




|

Assays of urinary enzyme activity require only a dialyzed urine
sample and a standard spectrophotometer and/or colorimeter of the
type routinely available in toxicology laboratories. These assays
do not require extensive training to perform.

6.1.1 Beta-Glycosidases

The assay of beta-glycosidases is a useful tool for detecting
early renal tubular damage in rats (Coonrod and Paterson, 1969a;
Patel et al. 1975; Price and Dance 1967; Robinson et al., 1967a) and
dogs (Ellis et al., 1973a, 1973b, 1973c).

Renal tubular damage induced by administration of uranium
nitrate, mercuric chloride, potassium dichromate or 4-nitrophenyl-
arsonic acid caused a marked increase in the urinary excretion of
beta-glucosidase, beta-glucuroniaase, beta-galactosidase and
N-acetyl-beta-glucosaminidase in rats due to breakdown of the renal
tubular cells (Price et al., 1971; Robinson et al., 1967a). Several
other nephrotoxic agents (e.g., gentamicin, ethyleneimine) also
induce an increased excretion of beta-glycosidases in the urine of
rats and dogs (Ellis et al., 1973b; Patel et al,, 1975).

Coonrod and Paterson (1969a, 1969b) found consistent increases
in urinary beta-glucuronidase activity in rats after extirpation of
the preputial glands when the rats were treated with mercuric
chloride, causing tubular injury. These a _hors suggested that

beta-glucuronidase should not be nsed to assess renal tubular damage
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unless the preputial glands have been extirpated, because there is a
marked release of this enzyme from these glands.

The assay of beta-glucuronidase activity in the urine of rats
free of bladder tumors is a simple, ilnexpensive and reproducible indi-
P cator of renal tubular damage (Coonrod and Paterson, 1969a, 1969b).

! 6.1.2 Alkaline Phosphatase

Using biochemical and histochemical procedures, it has been
shown that a high concentration of alkaline phosphatase is present
in the renal tubules of rats, rabbits and dogs (Gomori, 1939, 1946;
Lunseth, 1960). Several studies performed in animals and humans

(Amador et al., 1965; Asscher and Anson, 1960; Breedis et al., 1943;

e 7

Lunseth, 1960; Raab, 1969d; Raab et al., 1969) indicated that, fol-
lowing the administration o. nephrotoxic agents, renal ischemia or
radiation toxicity, alkaline phosphatase decreased in the renal
tissue and increased considerably in the urine. These increases
in alkaline phosphatase activity in the urine are thought to be in-
dicative of proximal tubular injury (Breedis et al., 1943; Nomiyama
et al., 1973). In addition, increased urinary activity of alkaline
; phosphatase is known to result from a wide variety of urinary tract
diseases (Wilkinson, 1968).

The urinary alkaline phosphatase assay procedure 1is highly

precise and repeatable (Amador et al., 1963a, 1963b), and even small

i

elevations of this enzyme in the urine can be easily detected. How-

ever, urine samples must be dialyzed to remove enzyme inhibitors.
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6.1.3 Lactic Acid Dehydrogenase (LDH)

Determinations of urinary LDH activity can be used for screening
nephrotoxic action of substances in rats, rabbits, dogs and cats
(Raab, 1968; Raab et al., 1969). Such renal diseases as active
glomerulonephritis, acute tubular necrosis, acute renal infarction,
necrotizing vascular disease and pyelonephritis (Wacker and Dorfman,
1962) have been shown to produce elevated urinary LDH activity.

Besides the fluorimetric method, several other procedures have
been suggested by Raab (1968) for determining LDH activity in the
urine, Best results are obtained with the direct photometric de-
termination of the conversion of NAD to NADHp in the presence of
pyruvate. Another method is based on the reduction of a red indo-
phenol dye by the hydrogen acceptor. The colorimetric determination
of LDH activity with dinitrophenylhydrazine can be used, but it is
not very suitable for this purpose (Raab, 1968). In all animal spe-
cies, LDH inhibitors are present in the urine (Wacker and Dorfman,
1962). Dialysis of urine against water or gel filtration should be
performed for the removal of such inhibitors. Some chemotherapeutic
agents that are excreted in the urine, such as nitrofurantoin, inter-
fere with the determination of LDH activity and must be taken into
consideration.

Increased excretion of LDH in the urine can indicate renal tu-

bular damage (Raab, 1968). However, disease states in other organs
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can produce elevated levels as well, thus limiting the applicability
of this test (Gault and Geggle, 1969; Raab, 1968).

. 6.1.4 Acid Phosphatase

Urinary acid phosphatase activity has been measured in rats
following exposure to methyl mercury and mercuric chloride (Stroo and
Hook, 1977b) and in dogs treated with mercuric chloride and ethyleni-
mine (Ellis et al., 1973a, 1973b, 1973c). The determination of acid
phosphatase in the urine is a test of anatomical integrity according
to Schoenfeld (1965)., This is because the renal tubules are rich in
acid phosphatase, and this enzyme is distributed widely throughout
the nephrons. Urinary acid phosphatase may also be related to en-
zymic activity in the serum because the low molecular weight of the
enzyme permits glomerular filtration (Raab, 1968); however, because
its urine concentration is substantial, contamination with small
amounts of blood has little influence on urinary activity (Schoen-
feld, 1965). In addition, prostatic secretion contributes to a
marked extent to acid phosphatase activity in the urine of male
animals. This is the only enzyme that shows higher activity in
glomeruli than in tubular cells. Therefore, increased urinary acid
phosphatase activity does not give a true picture of renal tubular
damage. However, since it is present throughout the nephron, any
nephropathy can cause increased urinary activity of the enzyme. Even
though urinary acid phosphatase lacks sensitivity, it is considered a

suitable measure for general screening purposes (Schoenfeld, 1965).
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6.1.5 Glutamic Oxaloacetic Transaminase (GOT)

Measurement of urinary GOT is a reliable procedure for detecting
tubular injury and is also a useful tool for comparing studies of
tubular nephrotoxicities in animals such as rats, rabbits and cats
(Balazs et al., 1963; Kemp and Laursen, 1960)., In these studies,
nephrotcxicity was induced by total ischemia, sodium chromate, uranyl
nitrate and mercuric chloride. GOT is either not excreted at all or
excreted in very small amounts in the urine of normal animals; but
after administration of nephrotoxicants or induction of renal
ischemia, it is excreted in increased amounts in the urine. The
increased urinary GOT levels indicate renal cellular injury in
animals; higher plasma levels of this enzyme do not lead to higher
urinary levels when the glomerular membrane is intact (Kemp and
Laursen, 1960).

It is common to measure GOT activity in blood samples; however,
the assay of urinary GOT activity is not considered a routine mea-
sure. The test may be used for screening purposes, but other urinary
enzyme determinations are more commonly used as an indicator of tu-
bular damage.

6.1.6 Cholinesterase and Isocitrate Dehydrogenase (ICDH)

Both cholinesterase and ICDH are present at very low levels in
the urine of rats. Raab (1969a) found a high cholinesterase activity
in the urine of rats when tubular cells containing high activities of

cholinesterase were destroyed in nephrotic damage. Increased urinary
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ICDH activity in rats was also reported by Raab (1969c). Vascular
shock, produced by an anaphylactoid agent (Compound 48/80),* elevated
ICDH activity due to hypoxic damage of the renal system. Similarly,
in toxic nephrosis caused by sodium tetrathionate or d-serine, ICDH
levels were increased in the urine of rats because the enzyme present
in degenerating tubular cells is excreted through the urine. These
tests appear to be sensitive Indicators of tubular damage. They are
not tests which are routinely performed to assay kidney abnormali-
ties, but can be used when dysfunctions of other organs are ruled
out.

6.1.7 Multiple Enzyme Determinations

In rabbit studies, Nomiyama et al. (1974) observed that the
determination of several urinary enzymes, alkaline phosphatase, GOT
and glutamic pyruvate transaminase (GPT), was more useful in detect-
ing early renal injury than renal function tests. The most probable
cause of the observed enzymuria was release of enzymes from destroyed
tubular cells. Proximal tubular injury was believed to be indicated
by increased alkaline phosphatase activity, while distal tubular in-
jury resulted in the elevation of urinary LDH activity.

Increased urinary activity of maltase and alkaline phosphatase
was reported in rats following treatment with a known nephrotoxin,

mercuric chloride. It was suggested that this increased activity

*The chemical identity of Compound 48/80 was not reported in the
literature.
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could be used as an index of renal damage; however, the authors point
out that this measure may be no more sensitive than currently uti-
lized methods (e.g., specific-gravity or osmolality, PAH transport),
(Stroo and Hook, 1977a).

Simultaneous measurements of LDH and alkaline phosphatase ac-
tivities can be used for differential diagnosis of renal diseases
and in tracing their evolution, according to Amador et al. (1965).

In their studies, most patients studied who had potentially fatal
renal diseases had elevated urinary LDH activity, while only certain
types of renal disease produced elevated urinary alkaline phosphatase
activity. This combination of measurements should provide similar
information on the site of injury in experimental animals used in
short-term chemical toxicity testing.

Nomiyama et al. (1973) point out the usefulness of using a
battery of urinary enzyme determinations. In rabbit studies, they
suggested that proximal tubular injury might be detected by a sig-
nificant increase in urinary activity of alkaline phosphatase, ac-
companied by an increase in GOT, GPT and LDH, since these tubules
are rich in these enzymes.

6.1.8 Other Enzymes

Several other enyzmes have been mentioned in the literature as
possible indicators of renal damage. Since they are not frequently

measured, only a brief discussion of two of them will be included.
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Using histochemical staining techniques, leucine aminopeptidase

(LAP) was found exclusively in the cortical tubules of rat kidney
(Burstone and Falk, 1956), and several investigators suggest that
the measurement of LAP in urine may be a sensitive indicator of renal
tubular injury (Burstone and Falk, 1956; Mattenheimer, 1968; Raab,
1968; Raab et al,, 1969; Diezi and Biollaz, 1979).

Several authors have discussed the use of urinary lysozyme de-
termination as an indicator of renal damage (Diezi and Biollaz, 1979;
Evan and Dail, 1974; Gault and Geggle, 1969; Patel et al,, 1975).

All agree that an increase in urinary lysozyme activity is associated
with damage to the convoluted proximal tubules; however, Gault and
Geggie (1969) and Patel et al. (1975) consider the assay to be of
value for early detection of impaired tubular function, while Evan
and Dail (1974) conclude that this test is indicative of severe
cellular damage and cannot be considered an early indicator.

6.2 Summary

Damage to renal tubules may cause liberation of enzymes into the
blood and urine. Determination of increased serum levels of these
enzymes cannot be utilized as a sensitive indicator of renal tubular
damage because other body organs can also make significant contri-
butions to the serum levels of enzymes. However, measurement of
urinary enzymes may be used as a sensitive index of renal tubular

damage.
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It should be pointed out that not all enzymes that are released
from the breakdown of tubular cells appear in urine. This is due to
such biochemical factors as stability at urinary pH and susceptibil-~-
1ty to enzyme inhibitors (Raab, 1972). For example, even though
histochemical methods showed a pronounced decrease in succinate
dehydrogenase activity within the kidney cells following toxic kidney
damage, no urinary activity for this enzyme could be detected (Raab
et al., 1969). Furthermore, it should not be concluded that every
elevation of urinary enzymatic activity proves the presence of ne-
phrotoxic effect, since a substance that is secreted by the tubules
may lead to increased activity by facilitating the permeation of
enzymes into the tubular fluids (Raab, 1972). In addition, many
factors, such as diseases in other organs and the presence of sub-
stances which influence diuresis, influence urinary enzyme activity
(Raab, 1972).

In conclusion, the assay of urinary enzyme activities is a more
sengitive technique for detecting some forms of early renal tubular
damage than the commonly used functional tests (Diezi and Biollaz,
1979; Ellis et al., 1973a, 1973b) or histological examinations (Raab,
1972). However, there are sufficient difficulties in using urinary
enzymes in routine screening that their application in the "routine
evaluation of renal toxicity is still uncertain (Diezi and Biollaz,

1979)."
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A few enzymes may have application in a screening program. The

determination of urinary beta-glucosidase may provide a simple, sen-
sitive means of detecting early tubular damage in rats and dogs when
' proper procedures and animal preparation are used. Measurements of
urinary alkaline phosphatase, lactic acid dehydrogenase and acid
l_; phosphatase are less specific and give an indication of the general
s state of the kidney. Assays which appear to be useful for detecting
e early tubular damage include measurement of the urinary activities
of glutamic oxaloacetic transaminase, cholinesterase and isocitrate
dehydrogenase; however, these tests are not frequently used. The

urinary enzymatic assays are relatively easy to perform and provide

.

it T

a noninvasive, nondestructive means of evaluating nephrotoxicity

(E1llis et al., 1973a, 1973b; Nomiyama et al., 1973; Patel et al.,
' 1975; Stroo and Hook, 1977a). These urinary enzyme determinations
| cannot be used to draw conclusions regarding the kind of damage

) present; nonetheless, the site of the damage may be indicated.
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7.0 CONCLUSIONS AND RECOMMENDATIONS

The testing techniques for the assessment of renal toxicity have
been classified in five categories: morphologic, glomerular
filtration, tubular transport, renal hemodynamics and enzymatic
indicators. The tests included in each of the five categories are
shown in Table 7-1 and were categorized based on either structural,
functional or biochemical alterations that can be determined using
the different techniques.

The renal system performs many different functions related to
glomerular filtration, tubular transport and blood flow. In so
doing, it operates as three separate, but closely interacting, -om-
ponents: the glomerular component filters fluid and selective
solutes, the tubular comp. 1t reabsorbs and secretes nutrients and
other substances, and the vascular component delivers blood to the
nephron, A nephrotoxic substance may damage the glomeruli, tubules,
effect blood flow or any combination of these. The various renal
functions are localized in specific components of the renal system.
The renal tests are generally applicable to only one type of renal
function; however, there can be interactions between the three compo-
nents of a damaged renal system. For these reasons, a number of
tests are necessary in a screening program so that information can be
obtained concerning all three components and their possible

interactions.
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TESTS USED

TABLE 7-1

TO EVALUATE RENAL DAMAGE

TEST CATEGORY

SPECIFIC TESTS

Morphologic

Glomerular Filtration

Tubular Function

Renal Hemodynamits

Biochemical Indicators

LR ) o o0 9 0 00 [ ] ¢ o 000 e

Gross Inspection
Light Microscopy
Electron Microscopy

Blood Urea Nitrogen
Serum Creatinine
Urinary Protein
Inulin Clearance
Creatinine Clearance

125I-Iothalamate and 131

Plasma Disappearance of 1251—Iothalamate and
131I~Diatrizoate

Urinary Glucose

Glucose Transport Maximum
Urinary Acidification

PAH Transport Maximum

Renal Cortical Slices

Isolated Perfused Tubule Segments
Urinary Concentrating Ability

- Specific Gravity

- Osmolality

Urinary Diluting Ability
Microscopy of Urinary Sediment

PAH Clearance

Todohippurate Cleavance

Iodopyracet Clearance 131
Plasma Disappearance of either 1251 or I
iLabeled Iodohippurate and Iodopyracet
Kryton-85 Washout

Xenon-133 Washout

Hydrogen Washout

Krypton-85 Autoradiography

Radioactive Microsphere Distribution

Urinary Enzyme Activity

- beta-Glycosidase

- beta-Glucuronidase

-~ MAlkaline Phosphatase (AlP)

- Lactic Acid Dehydrogenase (LDH)

- Acid Phosphatase (AP)

- Glutamic Oxaloacetic Transminase (GOT)
- Cholinesterase (CHE)

-~ Isocitrate Dehydrogenase (ICDH)
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On the basis of available information for each renal test, a
tiered screening program is recommended for detecting renal damage in
small laboratory animals. Evaluation of individual tests within each
category is based on certaln considerations. These considerations
primarily include: validity of the measurement (e.g., sensitivity,
accuracy, reproducibility); risk to life of the animal; costs of
measurement (e.g., the costs of the necessary instrumentation, ani-
mals and labor); the time required to perform the test; and finally,
significance with regard to reflecting renal damage. The selection
criteria utilized to evaluate the renal tests are described in the
following section,

7.1 Criteria Used in Evaluating Renal System Tests

The following criteria have been selected to evaluate each renal
system testing technique for inclusion in a short-term screening
program:

e State of development sufficient to be reproducible in a
screening program

e Sensitivity sufficient to detect early subtle foms of damage
or to provide an indication of the extent of damage to the
system

® Procedures and instrumentation sufficiently uninvclved to
enable technicians with some additional training to perform
the tests, and

e Methods sufficiently brief so that each test can be completed
within a few hours to a few days

Considerations that have also been used to evaluate the tests

include (1) the availability of the animals used and whether the test




is terminal and (2) the costs of the test procedures; and animal,
equipment and maintenance costs.

The species of animals used for screening affects both the cost
and the validity of a particular measurement. The type and the num-
ber of animals used to perform an experiment affects the cost not
only in terms of the actual cost of the animals, but also in terms of
the time and labor required to perform the test. Also, the sensi-
tivity, accuracy and reproducibility of a test will depend on the
species in which the test is performed. However, there are not
sufficient data available to establish very many of these relation-
ships with regard to renal tests. Rats are the most common small
laboratory animal used to evaluate the morphological and functional
integrity of the renal system.

Sometimes anesthetized animals are used to perform a renal test.
This has the benefit of reducing the time and difficulty in handling
the animals, but anesthetic agents can affect renal functions.
Whether or not the renal test is terminal is an important considera-
tion 1f the intention is to perform serial or multiple determinations
in an animal during a single experiment, or if the animal is to be
utilized for more than one experiment.

Once the renal tests were evaluated for suitability in a short-
term screening program and the selection made, the tests selected for
use in the program were further subdivided into either of two levels

of the tiered program, based upon the criteria shown in Table 7-2.
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Those tests routinely used in level I should be the tests that
are simple to perform, inexpensive, quick and sufficiently sensitive
so as to provide a good indication of damage to the renal system.
These tests provide a general screen for nephrotoxicity. The tests
in level II are more sensitive than those in level I, and should be
better able to describe the extent of damage and aid in determining
the mechanisms of damage to the system; however, they are more time-
consuming, more difficult to perform and more expensive than level I
tests. The evaluation of the state of development of tests, the
skill necessary and the ease of performing the tests, is based on
discussions with researchers and a review of their publications and
other literature dealing with renal testing.

7.2 Evaluation of Renal System Tests for Application to a Screening
Program

A numerical assessment of the testing techniques based on the
criteria described in the previous section is shown in Table 7-3.

The numerical assessment was subjectively made following discussion
with researchers using these techniques and following a review of the
current literature.

The advantages and disadvantages of each testing technique
included in the recommended screening program are described below
with a discussion of their potential application to the program.
Alternative techniques are also described which could be used in

place of the recommended tests to measure the same functional
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parameters. Table 7-4 lists the tests in each level that are

recommended for a tiered short-term screening program.

7.2.1 Level I Tests

Blood Urea Nitrogen (BUN)

Urea is the primary end product of nitrogen metabolism in mam-
mals and is excreted primarily as a result of glomerular filtration.
Decreased glomerular filtration as a consequence of damage will
therefore increase the blood urea concentration. The methods used to
measure blood urea levels require only small quantities of blood and
are relatively simple to perform. The range of normal BUN values is
large, so BUN is a poor indicator of early damage {(i.e., damage nust
be severe before BUN is cutside of normal ranges). Furthermore,
blood urea concentrations are affected by a number of factors other
than glomerular damage. BUN %is been used extensively in the past
and it does provide a general screen for glomerular damage even
though a number of factors can affect BUN,

Serum Creatinine

Creatinine is the end product of creatine metabolism in muscle
tissue. It is released and enters the plasma at a relatively con-
stant rate where it is filtered in the glomerulus. Consequently,
serum creatinine levels are inversely proportional to the glomerular
filtration rate. Serum creatinine levels are easily measured in
small quantities of blood. There are some daily fluctuations in

creatinine levels which limit the ability to detect early glomerular
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TABLE 7-4

TESTS RECOMMENDED FOR A TIERED SCREENING
PROGRAM

Level 1

Blood Tests

Cerdd Blood Urea Nitrogen (BUN)

B Serum Creatine
Urine Tests

Glucose
A. : Protein
~':i Specific Gravity or Osmolality
Microscopy of Urinary Sediment
Enzymes

B-glucosidase
B-glucuronidase
Alkaline phosphatase

[ .1

, Morphelogy

Gross Examination and Light Microscopy

Level II

Inulin Clearance or Plasma Disappearance of
1251-Tothalamate and 1311-Diatrizoate

p-AminohippuraEg (PAH{ flearance or Plasma Disappearance
) of either I or 3 I-labeled Iodohippurate and
' Iodopyracet

PAH Transport Maximum
! Urinary Acidification
In Vitro Cortical Slices
A
25Kr Washout and Autoradiography or Differential
Isotope Microspheres

Gross Examination, Light and Electron Microscopy
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damage; however, serum creatinine levels are more stable and are less

effected by factors unrelated to damage when compared to blood urea

nitrogen. For this reason, serum creatinine is considered more

sensitive in detecting impairment of glomerular filtration than BUN.

i Both serum creatinine and BUN determinations are recommended for

' inclusion in level I of the short-term screening program.

Urinary Glucose

Glucose is readily filtered at the glomerulus and is nearly com=-

= pletely reabsorbed by the proximal tubules. Presence of glucose in

the urine is suggestive of damage in the proximal tubules and a

decreased ability to reabsorb glucose; however, glucose can occur in

the urine because of disturbances in carbohydrate metabolism and some

disease states in other organs. Semiquantitative determinations can

be performed in urine by using a simple test strip procedure. Thus,

measurement of urinary glucose is a suitable screening technique for

level I tiered testing. Because of other influencing factors, glu-

cose in the urine is not as sensitive as other procedures in the

proposed screening program; however, it can provide an indication of

tubular damage.

Protein in Urine

Normally the glomerulus acts as a barrier to the passage of

proteins from the plasma into the glomerular filtrate. Nonetheless,

some small proteins cross the glomerular membrane, but these are

reabsorbed by the proximal tubules. Therefore, protein is normally




absent in the urine of most mammals. Proteinuria indicates damage to
the glomeruli; however, injury to the tubules can also cause
proteinuria. High proteinuria or albuminuria is indicative of
glomerular damage. Tubular damage usually results in increases in
low molecular weight proteins without significant albuminuria.
Several simple, semiquantitative methods are available for the
measurement of protein in the urine. Since protein in the urine is a
sensitive indicator of glomerular damage, it is a useful technique
for screening damage to the glomerulus and therefore is included in
level I.

Specific Gravity and Osmolality

The ability of the kidney to concentrate urine depends primarily
on tubular integrity when the glomerular filtration rate is within
normal ranges. A loss of ability to concentrate urine due to tubular
damage 1s nonspecific in that the damage may be either in the proxi-
mal or distal segments of the tubules, or both. The two methods used
to measure concentrating ability are specific gravity and osmolality,
and both are simple to perform and can be done on small volumes of
urine. The most widespread determination method in small animals is
specific gravity and it is probably the more suitable of the two
methods for use in a screening program. The information obtained by
osmometry is just as reliable as specific gravity measurements and
may even be somewhat superior; however, osmometers are not as common r

as the equipment utilized for measuring specific gravity. Osmolality
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is not sufficiently superior to specific gravity to warrant the cost

of purchasing osmometers when the other instrumentation is already
available. Many factors can affect specific gravity and osmolality
and should be considered when either of these two determinations are
made. Either test will provide a useful general screen and is
recommended for use in level I.

Microscopy of Ufinagy Sediment

Urinary sediment consists of epithelial cells, leukocytes,
erythrocytes, casts and crystals, and provides information concerning
anatomical integrity of the kidneys. However, it provides no infor-
mation concerning renal function. Excretion of large numbers uf
epithelial cells and casts containing cells is a sign of the tubular
degenerative processes occurring during damage. This test is simple
and easy to perform, requiring small volumes of urine and a bright-
field, light microscope; however, it requires an experienced tech-
nologist to make proper assessment of the types and relative numbers
of elements in the urinary sediment, since even normal urine contains
some sediment. Because the size of the casts and the types of epi-
thelial cells vary from different tubular sections, examination of
the sediment can provide valuable informatiou concerning the areas
and extent of damage in the tubules.

Urinary Enzymes

When tubular cells degenerate, the enzymes contained in the

cells pass into the urine. Most urinary enzymes are derived from
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tubular cells, so elevated urinary activity is regarded as a
sensitive indicator of tubular damage. Variations in urinary enzyme
activity occur in many cases before functional changes are observed
because of the large reserve of functional capacity in the kidneys.
Therefore, the changes in urinary enzymatic activity can provide a
sensitive indicator of early renal damage. The measurement of the
activities of a number of urinary enzymes is performed using standard
techniques which are relatively simple, easy to perform, reproducible
and inexpensive. The major disadvantage is the difficulty in
collecting serial, uncontaminated urine samples from small test
animals and then dialyzing and preserving the samples before
analysis.

Three enzymes have been recommended for use in level I of a
screening program. These are beta-glucosidase, beta-glucuronidase
and alkaline phosphatase. Other enzymes could also be included based
on the interests of the investigators. These enzymes were chosen
because they are all sensitive indicators of tubular damage and have

been the enzymes of choice in assessing tubular damage by a number of

investigators in the past.

Gross Examiration and Light Microscopy

Gross examination and light microscopic histopathclogy are often
useful for verifying the results from other tests in a screening
program, especially since the kidney has considerable functional

reserve capacity. Early structural changes may be seen that are not
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clearly associated with alterations in functional parameters. The

analysis and interpretation of these observations may, at times, be
difficult and subject to dispute.

7.2.2 Level II Tests

Inulin Clearance

Inulin is a polyfructose with a molecular weight of approxi-
mately 5,000, which is freely filtered at the glomerulus and is
neither secreted nor reabsorbed by the tubules. Therefore, inulin
clearance provides an accurate measure of glomerular filtration rate.
Since inulin is hydrolyzed in the gastrointestinal tract and is
poorly absorbed from subcutaneous tissue or muscle, it must be
administered intravenously. Constant infusion at a rate equal to
excretion is required to maintain a constant plasma level. The
quantitative analysis of inulin in urine and blood samples was
time-consuming and demanding before the introduction of radiolabeled
inulin, which has greatly simplified the analytical procedures.
Inulin clearance is included in level II of the tiered screening pro-
gram because it provides an accurate determination of the glomerular
filtration rate and has been used extensively in various laboratory
animal species. The measurement of glomerular filtration rate could
be done using either creatinine, iothalamate or diatrizoate clearance
methods, or by using plasma disappearance methods wicth a radiolabeled
substance such as 125 I-iothalamate. Clearance procedures employ-

ing the other substances are more simple to perform than inulin
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clearance because they require only a single subcutaneous injection

rather than continuous intravenous infusion; however, they have been
used less than inulin clearance and are less frequently reported in
the literature. Nonetheless, the investigator may wish to determine
GFR using a method other than inulin clearance., The plasma disappear-
ance methods seem promising for use in screening since they are sim-
ple, rapid, accurate and easily repeated. Some additional develop-

ment is required before they can be considered standard techniques.

p—Aminohippurate Clearance

When p-aminohippurate (PAH) is introduced into the blood stream
by constant infusion, it is either filtered at the glomerulus or
secreted into the tubular fluid via active transport mechanisms from
the peritubular capillaries, Most of the PAH in the renal plasma
enters the nephron and ordinarily less than 15% of the PAH
entering the kidney will remain in the renal venous blood. There-
fore, the volume of blood cleared of PAH closely approximates the
rate of plasma flow passing functioning nephrons and, consequently,
PAH clearance is used to measure effective renal plasma flow (ERPF).
PAH clearance has been used extensively in the past to determine ERPF
and is currently the most appropriate method for evaluating changes
in renal plasma flow. Nonetheless, other substances such as iodohip-
purate and iodopyracet are also effectively filtered at the glomeru-

lus and secreted in the tubules, and thus can be used to determine

ERPF.




The plasma disappearance methods using radiolabeled iodohip-

purate and iodopyracet can also be used to determine ERPF and even
though these methods are not as well developed as the clearance
techniques, they show promise for use in screening since they are
simple, rapid, accurate and easily repeated. The investigator may
wish to use the plasma disappearance method for radiolabeled iodohip-
T purate or another radiolabeled substance to determine ERPF in. place
¢ of PAH clearance, especially if a measurement of the Tmppy is not
planned after PAH clearance measurements have been completed.

PAH Transport Maximum

When PAH is increased to high plasma concentrations, a maxi-.um

i rate of PAH transport is achieved (Tmppy). The PAH transport maxi-

mum has traditionally been used as an expression of "active tubular
. ; mass” in the kidneys. When the tubules are damaged, there is a
decrease in the "active tubular mass” and, subsequently, a decrease
in the Tmppy. The measurement of Tmppy is included in level II
of the screening program because it can be determined at the same
time as PAH clearance and is useful in providing an indication of
"active tubular mass.” Tmpay is more difficult to determine than
PAH clearance because it can be altered by such factors as extracel-
lular fluid volume expansion. When there is uneven damage in dif-

i ferent nephrons, the maximum rate of PAH secretion in the undamaged
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nephrons adaptively increases. Consequently, Tmpay seems to be in-
sensitive to early forms of damage. Nevertheless, Tmpay is recom-
mended for inclusion in level II of the screening program because it
can be done at the same time as PAH clearance by simply increasing
the plasma concentrations of PAH and provides additional information.
The use of radiolabeled PAH simplifies the analytical procedures
necessary for determining PAH in blood and urine samples in both the
PAH clearance and transport maximum tests.

Urinary Acidification

The kidney regulates acid-base balance by secreting hydrogen
ions in the tubules and reabsorbing bicarbonate ions. The test to
measure the ability of the kidney to respond to disturbances in the
acid-base balance is made by measuring urinary pH after hydrogen ion
secretion {s stimulated by loading the system with a substance such
as ammonium chloride. The urinary acidification test is included
in level II of the screening program because it provides information
concerning damage in the tubules and is especially useful in detect-
ing damage in various sections of the tubules (e.g., distal tubles)
when it is used with complementary tests.

In Vitro Cortical Slices

Renal cortical slices are prepared from the excised kidveys of
either rats or rabbits after the animals are treated with a nephro-
toxin. The inhibition of the accumulation of an actively transported

substance such as PAH is then determined following incubation of the
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slices in media containing that substance. The renal cortical slice
technique is a very sensitive technique for detecting acute renal
toxicity and therefore is recommended for inclusion in level II of
the screening program. The technique has the following advantages:
the investigator is able to rigidly control the composition of the
ambient fluid; many external systemic factors that influence tubular
excretion are eliminated, and substances can be tested that are not
well tolerated in live animals. The major disadvantage is that the
technique is terminal to the animals used. Furthermore, care must be
taken to insure that the renal tissue slices are properly prepared.

Krypton-85 Washout

The washout techniques are used to measure regional blood flow
in the kidney. A radiocactive inert gas such as krypton-85 is in-
jected into the renal artery, and the rate at which the radioactive
material is washed out of the kidney is measured by external scintil-
lation counting. The measurement of blood flow by this method is
based upon the assumption that the radioactive material will equil-
ibrate between blood and tissue in the kidney in a single passage
through the capillaries. Furthermore, the rate at which the sub-
stance is removed from the kidney will vary directly with the rate of
blood flow through the capillaries and, if the tissue/blood partition
coefficient is known, the blood flow per unit volume of tissue can be

determined. Krypton-85 is used in washout techniques because it is
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lipid soluble and is highl; diffusible. Because of its low solubil-
ity in blood relative to air, most krypton-85 is removed in one cir-
culation through the lung so that the amount returning to the kidney
is negligible. Using the washout technique, blood flow in regional

compartments and the intrarenal distribution of blood flow can be

‘i determined. By autoradiography, the following compartments have
E. been identified: 1I. the outer cortex; II. the inner cortex and outer
{'{ medulla; III. the inner medulla; and IV. the perirenal and hilar fat,

Redistribution and regional reductions in blood flow related to dam-
age can be described, which provide an indication of the hemodynamic
mechanisms involved in damage. For this reason, the krypton-85

washout technique is recommended for level II of the tiered screening

g

program. This technique is most commonly performed in dogs, and the
procedure has been adapted to rats. Major limitations of the tech-
nique are (a) the subjective nature of the analysis of the washout
curve into its component exponentials, which should correlate with
specific areas of the kidney and (b) the assumption that the parti-
tion coefficients remain constant throughout the procedure.

Krypton=-85 Autoradiography

At the same tim> the krypton-85 washout curve is being deter-
mined, autoradiograms can be taken. These are recommended when the
X washout technique is used to aid in the interpretation of any abnor-
mal curves. They are especially useful in identifying the regional
compartments in damaged kidneys and the extent of damage in any one

compartment.
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Microsphere Techniques

The extraction and entrapment of radioactive microspheres by the
glomerular capillaries can be used to determine regional blood flow
and the intrarenal distribution of blood flow. The microsphere tech-
niques provide an alternative to the washout procedure; however, they
have only been used in dogs and have not yet been adapted for use in
rats or other small laboratory animals. The microspheres are suffi-
ciently small (i.e., approximately 15 in diameter) that they do not
damage the renal tissue or alter blood flow to the kidney and they
are completely extracted by the glomerular capillaries in ome circul-
ation. The plastic microspheres are most commonly labeled with
169yp, 85gy, 46sc or l41c~, 1In this technique, the animal is
injected with a bolus of labeled microspheres in the left ventricle
or the root of the aorta, and :omplete mixing occurs before the
microspheres reach the renal artery, so that the quantity of micro-
spheres entraped in the renal tissue is a function of the fraction of
blood flow to that tissue. The animal is then terminated and the
renal cortex is removed and sliced in sections representing the
compartments of the cortex. The sections are then counted using a
scintillation counter. Control values can be determined using micro-
spheres with one label, The animal can then be exposed to a nephro-
toxin and injected with a second bolus of microspheres containing a
different radiolabel. The differences between the distributions of

the two labels can then be used to detect alterations in blood flow
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distribution induced by the toxic agent. Microsphere techniques have
not as yet been used in screening substauces for nephrotoxicity;
however, their ability to detect changes in regional blood flow in
the kidney indicates their potential usefulness in assessing
nephrotoxicity. The major advantage of the microsphere technique is
that it gives a more precise profile of regional flow rates than the
inert-gas washout techniques. A major disadvantage is that the
microsphere techniques are terminal to the animals used.

The use of gross examination and light microscopic histopathology
is recommended at the conclusion of Level II of thg screening program.
Electron microscopy is an expensive and involved tecinique which should
be applied only to those situations where the findings from other

tests are inconclusive.
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