AD=A104 679 AIR FORCE INST OF TECH WRIGHT~PATTERSON AFB OH F/6 972 -
FIDELITY OPTIMIZATION OF MICROPROCESSOR SYSTEM SIMULATIONS.(U) !
MAR 81 E T LANDRUM

UNCLASSIFIED AFIT-CI-81-3T NL




/

/.

>

ADAIO\4679

12 ]

UNCLASS _ _

SECURITY CL ASSIFICATION OF THIS PAGE (m.an Dat

’
7

. REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

. REPDRT NUMB(:R 2 GOVY ACCESSION NO.
{ 8]_3T:

v

RECIPIENT'S CATALOG NUMBER

- b THTLE (wnd Subtitle) h

Fidelity Optimization of Microprocessor
System Simulationss

TYPE OF REPORY & PERIOD COVERED

THESIS/DYSSERYATYON/

6 PERFORMING OG. REPORY NUMBER

7. AUTHOR(S) s 8. CONTRACT OR GRANT NUMBER(3) _

Earnest Taylor/Landrum, Jr: i : , _

. ,,,“ L/ //v e . /," ; % //’ ! [
9 PERFORMING DHGANIZATION NAME AND ADDRESS E—— 100 PROGRAM ELEMENT PROJECT, TASK
AREA &8 WORK UNIT MUMBERS
AFIT STUDENT AT: Auburn University
11, CONTROLLING OFFICE NAME AND ADDRESS /'7 12. REPORT DATE
AFIT/NR /7 | Mareh 1981 |
WPAFB OH 45433 = T3, NUMBER OF PAGES
91

14 MONITORING AGENCY NAME & ADORESS(If differont from Controlling Oflice)

/" SS

/

15. SECURITY CL ASS. (of this repori)

UNCLASS

Iise  DECLASSIFICATION M
SCHEDULE

.48
nopas

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

‘\‘\,, j

i 5

7.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if ditierent from Report)

1

18. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-17

Direct
Au

A
C>k\LCKAA~C L
FREDRIC c meu M

93 JUN 1901 Weht-Patterson arg,

¢

Force lnstltute of léclgdﬁagy (ATC)
OH 45433

19 KEY WORDS (Continue on reverse aide if nocessary and identify by block number)

20. ABSTRACT (Continue on reverse side I neceasary and identify by block numbet)

ATTACHED
81 7 16 025
DD oeM, 63 15 0BSOLETE UNCLASS

‘473 EOQITION OF 1 NO
%

// / -~
k4 te -

SEJRITY v oA

)<4

|<\CA71ON ()F ‘I’ms PA(.E (Whe Date l;..n,.u




AFIT RESEARCH ASSESSMENT 81-3T

The purpose of this questionnaire is to ascertain the value and/or contribution ot resedrch
accomplished by students or faculty of the Air force Institute of Technnlogy (ATC). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AFB OH 45433

RESEARCH TITLE: Fidelity Optimization of Microprocessor System Simulations

auTHR: _ Earnest TayTor Landrum, Jr.

RESEARCH ASSESSMENT QUESTIONS:
1. Did this research contribute to a current Air Force project?

{ ) a. VES { ) b. NO

2. Do you believe this research topic is significant enough that it would have been researched
(or contracted) by your organization or another agency if AFIT had not?

() a. YES () b. NO

3. The benefits of AFIT research can often be expressed by the equivalent value that your
agency achieved/received by virtue of AFIT performing the research. Can you estimate what this
research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

() a. MAN-YEARS () b. $

4, Often it is not possible to attach equivalent dollar values to research, although the
results of the research may, in fact, be important. Whether or not you were able to establish an
equivalent value for this research (3. above), what is your estimate of its significance?

() a. HIGHLY () b. SIGNIFICANT () c. SLIGHTLY () d. OF NO
SIGNIFICANT SIGNIFICANT SIGNIFICANCE

5. AFIT welcomes any further comments you may have on the above questions, or any additional
details concerning the current application, future potential, or other value of this research.
Please use the bottom part of this questionnaire for your statement(s).

NAME T T T UUUGRRDE T COPOSTTION T
ORGANTZATION — ~ 7~ "7 T TTTTTTTUTOCATION T et o i
STATEMENT(s):

e
- -
.
.
-
H
e
N C LGy
v
. -1 .
PR Y
A

N




AFIT/NR
WRIGHT-PATTERSON AFB OH 45433

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE. $300

e — — . P

FOLD DOWN ON OUTSIDE - SEAL WITH TAPE

BUSINESS REPLY MAIL

FIRST CLASS  PERMIT NO. 73236 WASHINGTON D.C.

POSTAGE WILL BE PAID BY ADDRESSEE

AFIT/ DAA
Wright-Patterson AFB OH 45433

FOLD IN

NO POSTAGE
NECESSARY
tF MAILED

iN TNE

UNITED STATES




FIDELITY OPTIMIZATION OF MICROPROCESSOR

SYSTEM STMULATIONS

Earnest Taylor Landrum, Jr.

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of

Master of Science

Auburn, Alabama

March 19, 1981 1




Earnest Taylor Landrum, Jr.

Certificate of Approval:

FIDELITY OPTIMIZATION OF MICRQPROCESSOR

SYSTEM SIMULATIONS

V. P. Nelson, Assistant Professor
Chairman
Electrical Engineering

J. D. Irwin, Professor
Electrical Engincering

J. S. Boland, Professor
Electrical Engineering

Paul F. Parks, Dean
Graduate School




FIDELITY OPTIMIZATION OF MICROPROCESSOR

SYSTEM SIMULATIONS

Earnest Taylor Landrum, Jr.

Permission is herewith granted to Auburn University to make copies of
this thesis at its discretion, upon the request of individuals or
institutions and at their expense.

The author reserves all publica-
tions rights.

Signature of Author

Copy sent to:

Name Date

iii




i
¢
L]
$
%
1
¢
t
a

VITA

Earnest Taylor Landrum, Jr., son of Earnest T. and Lois (Dean)
Landrum, was born July 24, 1948, in San Antonio, Texas. He attended
Greenville County, South Carolina, public schools and graduated
from Greenville Senior High School, Greenville, South Carolina, in
1966. In September 1966 he entered the Georgia Institute of Tech-~
nology and received the degree of Bachelor of Science (Physics) in
June 1970. He then entered the United States Air Force as a second
lieutenant. He entered graduate studies at Auburn University in June
1977. He married Kathleen, daughter of Edwin J. and Ethel (Hoeck)

Clisham in June 1977. They have one daughter, Jessica Dean.

iv




THESIS ABSTRACT
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Directed by Victor P. Nelson

““The development of a microprocessor system simulation that would

accurately portray the operation of the system at a very fine level

of detail was studied. This optimization in the area of fidelity was
broken into three tasks. A preprocessor program was written to im-
prove the operator interface to an existing simulation driver program.
An existing microprocessor simulation, designed to run under the simu-
lation driver program, was extensively modified to reflect actual ma-
chine level operations rather than abstract level functions. A simu-
lation of a programmable parallel interface was developed and mated

to the microprocessor simulation. Examples and possibilities for svs-

tem level simulation are discussed and analvzed.,
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I. INTRODUCTION

The work to be described in this thesis focuses on simulation of
microprocessor-based systems, pursuing three related objectives.
First, simulation routines must have an efficient human interface to
allow effective interaction with the user and efficient use of the
simulation capabilities. Secondly, the simulation program of the tar-
get machine should be a highly faithful model of that machine, to
allow use of the simulation results with a minimum of corrections for
simulator-based peculiarities. Finally, the target machine must be
complete enough to accurately portray system operation, including in-
put/output functions.

Thus, there were three logically connected tasks to be done. The
first task was to develop a preprocessor program to increase the util-
ity and ease of operation of an existing simulator program, based on a
hardware description language. The second task was to develop a mi-
croprocessor simulation, avoiding the abstract level in favor of one
more in line with the actual operation of the target machine. The
final task was to develop the capability to simulate a complete system
with input/output functions.

The simulator program used was the Computer Design Language Simu-
lator - USF Version 2, as run on the computer system of Auburn Univer-
sity. This simulator program is based on Computer Design Language

(CDL), a hardware description language developed by Dr. Yoahan Chu of

1
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the University of Maryland (1,2). Using an algebraic structure, CDL
describes device operations at the register transfer level. The main
advantage of the language is this logical struccture. Hardware devices
are called by commonly used names and register transfer operations are
easily understood. The simulator program retains this clear, logical
translation of a hardware system into CDL. However, there are two
disadvantages to using the program. Initial program and data load of
the target machine must be prepared in binary machine code, which can
be awkward. In addition, considerable amount of processing time is
necessary, due to the intensely iterative nature of the simulation
routine.

The preprocessor developed was designed to remedy one of these
drawbacks. The preprocessor allows the use of assembly language to
load the target machine's simulated program space. This human inter-
face frees the user to concentrate on the results of the simulation
rather than on the mechanics of achieving it. It also provides a sim-
ple set of format and semantic checks to be made on the program to be
assembled. The prime requirement was to make simulation easier to
achieve and correct, thus more responsive to the user.

A simulation of a microprocessor was available as a result of an
earlier study (3). However, many of the routines were written only to
provide a correct output, without regard to the mechanism used. The
simulation was extensively modified to more closely duplicate the ac-
tual operation of the target machine. The functions of the basic sup-

port chips were defined more explicitly. Using the improved simula- 1
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tion as a basis, the functions of representative communications chips
were developed. The unique aspect of the resulting product was its
ability to model an integrated system, including input/output and in-
terrupt driven routines.

The body of this paper will further describe these three tasks.
The considerations and constraints used in the development of the pre-
processor are described first. The next section discusses both the

principles used to modify the Intel 8080 simulation for increased fi-

delity and those principles used to build a parallel communications
interface. The experimental results obtained from testing the system
are then presented. The final section contains the conclusions drawn
from the project and some suggested directions for further work in

this area.




IT. PREPROCESSOR DEVELOPMENT

The CDL Simulator Program is designed for hardware simulation at
the register transfer level. At this level, a processor operates by
logically decoding commands and data presented 1n machine language.

CDL is particularly efficient in expressing the decoding and execution
processes. Although this feature offers great flexibility and detail
in design, it becomes a drawback when simulating the execution of trail
programs, due to the necessity of translating these programs into ma-
chine language. The preprocessor's major function is to translate pro-
grams written in the assembly language of the target machine into CDL-
compatible machine code and load them into the assigned memory space.
It operates as an assembler and loader, with appropriate support func-
tions such as symbol table generation. The output of the assembler
routine is presented in two forms for user convenience. The first ver-
sion is a line by line translation of the assembly code. The program
is displayed for analysis and correction of errors. The second version
is the CDL-compatible card image, displaying the machine code as it is
presented to the simulation program. This version is particularly
helpful in tracing the execution of the simulation.

The second design goal was to provide the translation process with
an adequate human interface. Careful design of the output. as dis-
cussed above, was a first step. Although the preprocessor was never

intended to be a complete software development tool, routines were {in-
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b)
cluded to detect and flag the type of errors likely to be ace i
executing trial programs on a simulated machine. These include toth
syntax errors in the structure of the trial program and .oding crrors
within the program itself. These routines are limited to those that
would be most useful.

An additional constraint was imposed on the preprocessor. To
be compatible with the existing CDL simulation program, it has to be
written in FORTRAN. FORTRAN, however, lacks the bit-level instruc-
tions necessary to deal with character data. Following the example
of the basic simulation program, the preprocessor implements several
required functions in IBM 370 assembly language subroutines. While
there is a bonus in increased execution speed, program linkage and
integration posed significant problems during development.

The choice of a target machine was also an important considera-
tion. Since the preprocessor works with assembly language, a target
machine had to be chosen in order to code the assembler. For maximum
utility, the preprocessor would have to work with a significant ma-
chine, one having widespread use and a need to be simulated. It would
also have to be one that had information on its internal operation
widely available. The choice for this work was the Intel 8080 micro-
processor.

The basic function of the preprocessor is that of a standard two
pass assembler and loader (4). While FORTRAN does not lend 1itself to
the writing of structured programs, an attempt was made to preserve

logical form in the program (Figure 1). The program has a central

FORTRAN driver routine, ASMINT, that performs initialization, selects
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UTILITIES l UTILITIES

Figure 1. Preprocessor Program Structure




7
the required language set, directs the passes of the assembler and
outputs the final code, both as hard copy and CDL compatible machine
code in the program memory space. These major functions are imple-
mented in FORTRAN subroutines, in turn supported as necessary by
IBM 370 assembly language subroutines (Table 1). Assembly language
is used in rovtines performing bit manipulation and in the routines
that are highly iterative. This structure supports the design objec-
tives of the preprocessor. As part of a time-consuming, intensely
iterative program, this segment has to be relatively fast to avoid
lengthening an already long program in execution. To conserve mem-
ory space and improve speed, it has to be relatively small. To im-
prove readability and encourage both use and future improvements, it
has to be relatively straightforward and simple. The overall design
strategy was to produce a limited implementation that stressed util-
ity over optimization. The prominent features of the preprocessor
are listed in Table 2. For a more complete description of the fea-
tures and options of the program, both the user’'s manual and program
listing are included in this work as appendices.

Integration of the preprocessor into the CDL simulation program
posed several problems. There was the language problem described
earlier with the mating of FORTRAN and IBM 370 assembly language. The
preprocessor also had to integrate with the CDL simulator in such a
way as to preserve the human interface and the logical continuity of
the main program. The design solution to this problem was to have the
preprocessor produce card images of the assembled machine code and

load them in accordance with the procedures for loading CDL simulator




level

Title

First

Second

Third

ASMINT

PASONE

PASTWO

IMAGER

Utilities

POPSUB

LODASM

LABLST

PCODE

STRING

OPERAN

VALRED

Language
FORTRAN

FORTRAN
FORTRAN

FORTRAN

FORTRAN

Assemb ly
Assembly
Assembly
Assembly
Assembly

Assembly

Function

Assembler driver routine

Assembler first pass driver
Assembler second pass driver

Build card image format

Character manipulation and assembly
Pseudo-op handling

Operation code table loader

Symbol table manager

Operation code table manager
String decoder

Operand numerical converter

Character numerical converter

Table 1. Preprocessor Routine List




Assembler options
Language
Symbol table listing

Location counter initialization

Data types
Numerical (decimal,hexadecimal, octal, binary)
Character strings

Expressions

Pseudo-ops
Assembler control (origin and end)

Data storage (byte, word, space, equality)

Input Assembly language program

Output
Assembled code listing

Loader compatible card images

Table 2. Prominent Preprocessor Features
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memory space ifrom cards. This approach maintained the continuity of
the CDL simulator and relieved the necessity of creating an alternate
method of introducing data into the assigned program memory space of
the simulator.

Even though a specific target machine was chosen, the prepro-
cessor was designed to permit extension into other languages to make
it more versatile. One of the initial operator specifications is
the language to be used by the assembler. This specification controls
the operation code set selected by the program. The pseudo operation
codes are indexed to allow multiple routines to be written to accom-
modate the different languages. Complete commonality, of course, is
impossible to achieve. The IBM 370 assembly language subroutines for
handling operands and addressing were specifically written to generate
Intel 8080 code. However, the modular structure of the preprocessor
would allow them to be replaced with subroutines suited for the de-

sired language.




- ————— e

IITI. FIDELITY OPTIMIZATION QF A SIMULATION

One of the most important attributes of a hardware simulator is
fidelity, the degree to which the simulation approximates reality.
Optimization of fidelity is the process of balancing the requirements
of broad principles of simulation, alternative methods of representa-
tion available in specific cases, and the priorities in performance
factors of the simulation as a whole. The desired outcome is a faith-
ful simulation that sacrifices as little as possible in attaining fi-
delity. This chapter describes the optimization process as applied
to the specific case of the Intel 38080 microprocessor within the

constraints of the CDL simulator.

Microprocessor Simulation

The operation of the Intel 8080 CPU can be analyzed down to a
fine level. An instruction cycle is the time it takes to fetch and
execute a single instruction. A machine cycle is generated each time
a memory or I1/0 access is made. This machine cycle can be subdivided
into separate states. In these individual states the actual micro-
operations of the CPU take place. Depending on the number and type
of microoperations executed within the machine cycle, there are three,
four, or five states in that cycle. The number of machine cycles re-
quired to complete an instruction depends upon the number of accesses

to memory or 1/0. All of the 8080 instructions can be broken down in

11
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terms of machine cycles and states (5). This analysis forms the ba-
sis for the reality that must be simulated.

There are, however, areas of operation where certain assumptions
must be made to accommodate the hardware description language to the
processor. An outstanding example in this project is the use of flag
registers. The exact hardware logic used within the microprocessor
to initiate certain sequences is embedded in the control circuits de-
signed by the manufacturer. In order to allow the simulated micropro-
cessor to initiate these sequences, nonexistent hardware registers
have to be defined and assigned these functions. The prime example in
the instruction execution portion of the simulation is the register la-
beled MREF. This flag is set whenever an instruction is to be exe-
cuted using a memory reference as an assigned register operand. This
register may not exist in the actual hardware or may not be accessible
by the user. However, the simulator program can read the status of
this flag register and use the results to implement the sequence of
register transfers implemented in reality. The result is increased
fidelity of operation. Further use of this technique is made in the
implementation of control logic and will be discussed more fully in
a later section.

Other general concepts should be considered within an improved
simulation. The size of the simulation must be kept to a minimum
by avoiding duplicate procedures. Transfer of control between similar
operations is used where practical to achieve this goal. In a similar
vein, the concept of execution overlap requires special handling. The

8080 microprocessor uses an overlap of the final processes of certain




13

instructions and the fetch of the next instruction. This overlap
is used to increase the execution speed of the machine. CDL can
directly support concurrent processes only in certain cases. In-
clusion of the required extra routines to achieve the overlap is not
justified by the small return in authenticity. The originally over-
lapped processes are generally included in the last scheduled machine
cycle of the instruction in this simulation. The execution speed in-
crease is thus preserved by performing the processes outside of machine
time and the process is transparent, except at the precise moment of
the overlap. In a few cases the simulation could not perform the re-
quired functions in the required time, even though they were not over-
lapped. 1In such instances, the simulation was designed to come as
close as possible. These instances simply represent the limits of the
ability of the simulation, normally visible only at the subcycle level.

The process of bringing a simulation into strict compliance with
the actual operating principles is best done in several stages. A pro-
gram had been developed to simulate the Intel 8080 in a multiprocess-
ing environment (3). Therefore, the program was concerned primarily
with the results of program execution and the transfer of control ra-
ther than the strict simulation of a microprocessing system. It is
the basis for the instruction execution routine portion of the im-
proved simulation. Varying degrees of fidelity required varying
approaches. Some routines were completely rewritten. The HLT in-
struction is one example (Figure 2). The original sequence simply

disables the software mechanism used to translate clock pulses into

fncreasing machine cycle numbers. The revised sequence recognizes
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ORIGINAL VERSION

Hlt

/M(1) *T(4)*P (1) *READY*IR(7) '*IR(6)/ IF (OP1(3)*0P2(2)*0P3(6)) THEN
(READY=0, X=0, Y=1) ELSE (DO/SEVAL)

EXPANDED VERSION

Hlt

/M(1)*T(1)*P (1) *READY*IR(7) '*IR(6)/ IF (OP1(3)*0OP2(2)*OP3(6)) THEN
(HLTA=1, X=0, Y=2) ELSE (DO/SEVAL)

/M(2)*T(1)*P (1) *HLTA*READY/ SYNC=1, MEMR=1

/M(2) *T(2)*P (1) *HLTA/ WAIT=1, READY=0

Figure 2. HLT Command Routine
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the halt, broadcasts it as the system status and enters a wait state
before disabling the software driver. The additional actions are ne-
cessary to enable the processor to communicate with other parts of
a complete system.

Some instructions were changed to make more efficient use of the
memory and I/0 routines developed in the control sections. The STAX
and LDAX execution routine was expanded to include the memory cycle

that occurs and makes the instruction continue into a second machine

cycle. Several instructions were thus modified to show single byte
I/0 transfer. Adding a cycle was generally done in a straightforward
manner. The single exception was the immediate instruction handler
(Figure 3). This routine recognizes the immediate instruction type
and fetches the required operand, using an added memory cycle. At
this point, the machine cycle numbers being carried by the simulation
are incorrect, even though the elapsed timing is very close to the
actual. However, the only alternative is to reproduce all of the af-
fected instruction execution routines, changing only the machine cy-
cle numbers, and then add them to the instruction set. The option that
was chosen was to maintain the smaller set of routines and accept the
single exception rather than to pay the simulation execution speed
penalty for redundant code. The simulation that results from the sum
of all these actions is a quite accurate model of the Intel 8080 in-
struction set. The next sectign will discuss the development of the

corresponding control logic.
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ORIGINAL VERSION
Immediate Instruction Handler

/M(1)*T(4)*P (1) *READY*(IR(7) .ERA.IR(6))'*OP3(6)/ ADDBUFFER=PC, SYNC=1,
NWR=1, DBIN=1, WAIT=1, READY=0

/M(1)*T(4)*P (1) *READY*(IR(7) .ERA.IR(6))'*0P3(6)/ PC=ADDBUFFER.COUNT.,
TEMP=DATABUFF, IR(6)=IR(6)', X=4

EXPANDED VERSION

Immediate Instruction Handler

/M(1)*T(4) *P (1) *READY* (IR(7) .ERA.IR(6)) '*OP3(6)/ ALATCH=PC, MRIl=1,
X=0, Y=2

/M(2)*T(2)*P (1) *READY*(IR(7) .ERA.IR(6)) '*0P3(6)/ MR1=0

/M(2)*T(3) *P (1) *READY* (IR(7) .ERA.IR(6)) '*OP3(6)/ PC=ALATCH,
TEMP=DATABUFF, IR(6)=IR(6)', X=4, Y=1

Figure 3. Immediate Instruction Handler Routine




A

17

Control Functions

The most important feature of faithful simulation of a micro-
processor system is control function implementation. While instruc-
tion set implementation is easily structured to conform to the ac-
tual CPU microoperation sequences, the control sequences are the key
to system level simulation. The control sequences must operate on
two levels. The first level is basic system control of the CPU and
associated support modules. Functions at this level include genera-
tion of CPU status information and basic memory access. The second
level of control functions are those necessary to drive unique system
modules. A specific example of this level is a communications mod-

ule used to communicate with a system peripheral.

CPU_Support Group

The first level of control appiies to the Intel 8080 CPU sup~
port group of modules (Figure 4). This group includes the 8080 8-bit
Microprocessor, the 8224 Clock Generator and Driver, and the 8228 Sys-
tem Controller and Bus Driver (6). The CPU itself has few control
functions that are solely internal. One example is the clock cycle
incrementor function which translates the incoming clock pulses into
correct machine cycle and state signals. In the simulation this
mechanism also implements the asynchronous interrupt function. The
other control signals involve associated modules. The 8224 module
is actually not separately simulated. Its clock functions are impli-
cit in the two phase clock defined in the hardware section. Its

only other function, converting the CPU synchronization signal to a
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status strohe signal, is simulated separately. The bulk of the con-
trol signals are concentrat.d i: the 8228. 1Its major function 1is
the broadcast and application of the system status. Triggered by
the status strobe, the simulation of the 8228 latches the status
word from the data bus and combines elements of that status word and
signals from the CPU in a gating array to generate memory and I/0
access signals.

The control function simulations are designed to operate similar
to nested subroutines. The normal memory routines activate selected
status word registers and the synchronization pulse. The synchroniza-
tion pulse triggers the status strobe, which loads the 8228 status
latch via the data bus. The gating array activates the primary se-
quences for memory access, listed in the simulation as utility rou-
tines, and deactivates the ready signal, stopping the software driven
cycle clock. After the services are performed, the ready signal is
reactivated to allow the clock cycle incrementor to continue. This
action simulates the access speed requirements. In this particular
application, the memory is assumed to be sufficiently fast that the
wait state need not be entered during the access. The machine cycle
and state numbers remain correct. However, since CDL requires that all
actions be driven by the system clock, the two clock cycles needed to

complete the access are counted. This fact affects any timing analy-

sis interpretation.
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1/0 Support

The module simulated for the second layer of the system 138 the
Intel 8255 Programmable Peripheral Interface (7). This device uses
a system software generated control word to program the functional
characteristics of three eight bit ports to achieve a great number of
input and output configurations. The 8255 was chosen for its versa-
tility in controlling parallel communication. The programmable con-
figuration feature makes it a very flexible device. However, the CDL
simulator driver cannot support an ambiguously defined architecture.
The hardware definition section accepts only a single description of
each part of the system. Once the system design has been translated
by the simulation driver, that design remains fixed throughout the
simulation run, restricting the utility of the software driven func-
tional control. Complete flexibility could be obtained only by in-
cluding software instructions for every possible configuration, down
to a single bit level. These instructions would have to be evaluated
on each iteration of the simulator to cor ;truct the correct interface.
The software overhead penalty of processing all the instructions for
the other unused configurations was considered excessive. Therefore
a single representative configuration was chosen for simulation.

The chosen configuration contains one strobed bi~directional bus
and one input port, both with appropriate handshaking control lines
(Figure 5). Full interrupt and strobing capabilities are included in
the simulated logic. While software control of the configuration is

not possible, the set/reset function of the control lines is imple-

mented to allow control of the handshaking signals. Appropriate chip
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select and port select decoding logic is also simulated. Two rou-
tines are added for simplicity in the simulation. The first is an
initialization routine which establishes the starting states of the
handshaking lines. This routine shortens the simulated program by
removing some housekeeping sequences. The second routine corresponds
to a switch setting that simulates input to the 8255 by transferring
memory data to the input port. This routine was necessary since there
is no way to input exterual data to a CDL simulated machine during a
simulation run. Switch statements, which are internal to the program,
can only simulate true external inputs. Any process must be self-
contained, as is this one.

Although parallel communication is a fairly straightforward re-
gister transfer operation, simulation of serial communication in CDL
is a more complex task. The actual hardware simulation is relatively
simple. Necessary components would include a holding register for the
byte being transferred, a pointer to the next bit to be handled, and
logic to implement the necessary line protocol. The complexity arises
in timing the transfer of the information. As noted before, the CDL
simulator does not handle concurrent tasking well. A central clock is
defined which provides all timing information. As in the CPU simula-
tion, a software counter mechanism would be necessary to define the
internal timing for the serial transfer. The hardware and software
constructs necessary for the serial interface would lengthen the sim-
ulation substantially. The simulation driver has a limit on the amount
of hardware that it can incorporate into the translated architecture.

There i1s no limit imposed on the software, but due to the sequential,
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iterative nature of the driver, a penalty in execution speed is paid
for each statement. These limitations did pot favor an additional
interface.

A second reason for not implementing the serial interface was
evident from the nature of its operation. For low speed applications,
at 300 bits per second, the software timing counter would need a
maximum count of 6,600 central clock cycles to process a single bit.
High speed applications, typically 2400 bits per second, would still
require around 830 cycles per bit. Based on simulation runs made in
this project, such a simulation would require in excess of ten minutes
of CPU time for that single bit transfer at 2400 bits per second, due
to the granularity of the time base. The time could be reduced by
simulating the serial interface separately from the rest of the sys-
tem. Accomplishing this simulation would require that the hardware
design described earlier and the appropriate logic functions for that
design be substituted for the sections relating to the 8255 module.
This would allow serial communication simulation, but not parallel
communication simulation. If the two were to be simulated together,
one way to make the effort feasible in terms of required CPU time
would be to employ a separate clock with an artificially compressed

time base in the serial communication simulation and manually correct

the timing later. For this particular project, serial communication

simulation di1d not appear to be a subject to pursue.




IV. EXPERIMENTAL RESULTS

The first proof required of any computer program is whether or
not it indeed’does perform its intended functions. Demonstrating
this fact for the preprocessor developed for this thesis actually in-
volves two factors. The preprocessor must perform the functions of
an assembler and initiate the simulation. While doing this, it must
also demonstrate the fidelity for which it was optimized.

The initial pages of output from a run of the program are pre-
sented in Figures 6, 7, and 8. The symbol table and the assembled
listing of the program to be simulated are presented in Figure 6. The
loadable version of the program, with associated location counter val-
ues, is shown below the listing. This simple program utilizes an in-
terrupt driven routine, triggered by the 8255 chip, to retrieve and
store an externally-input character. The main routine uses the con-
trol word function and the output function of the 8255, as well as pro-
viding a main processing stream to be interrupted.

Figures 7 and 8 are the initial sections of the output from the
simulation, triggered by the preprocessor after it has loaded the as-
sembled program into the simulated memory. The individual entries give
the hexadecimal values of selected registers during each clock cycle.
The changes in these registers, established in the hardware definition
section of the simulator program, trace the execution of the program.

The output presented illustrates the type of information collected.
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Due to the extremely large amount of data that is produced, only
these samples are shown.

As stated earlier, a measure of the fidelity of a simulation can
be made using a timing analysis. Inspection of the microoperation
sequences can show that the individual operations correspond to the
target machine, but only a timing analysis can demonstrate the inte-
gration of the system as a whole. A timing analysis also serves to
highlight any timing irregularities inserted by the mechanics of the
simulation. An example of this type of analysis, using the simulation
developed for this project, is presented in Figure 9. The figure

} lists the assembly language program run by the simulation and presents
i an accounting and comparison of the timing factors.

The analysis illustrates two of the irregularities of the simula-
tion that were discussed earlier in the paper. The first is the extra
clock cycle added to all immediate operations, such as MVI (MoVe Imme-
diate). The alternative to this added cycle was to create a separate
routine for each immediate operation, an alternative judged to be far
less acceptable. The second factor shown is the presence of two clock
cycles added to each memory and I/0 access. As explained earlier, this
factor is introduced by the software timing mechanism. Even though
the mechanism is not updating the machine cycle and state numbers dur-
ing an access, the master clock must continue to run to provide exe-
cution timing. The cycle and state numbers remain correct, but the

clock cycle timing must include a correction factor to account for the

extra cycles. The analysis must also account for program dependent 4

conditions. The interrupt generated in the execution of this program
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|
Operation Cycle Time Factor Total
PUSH PSW 10 6 16
MVI 7 4+1 12
ouT ' 10 6 16
MVL 7 4+1 16
OuT 10 6 16
IN 10 6 16
STA 13 8 21
POP PSW 10 6 16
ET 4 2 6
RET 10 6 16
EI 4 2 6
MVI 7 4+1 12
OouT 10 6 16
LDA 13 8 21
ouUT 10 6 16
HLT 7 2 9
224

Operation times 224

Interrupt time 14

Startup time 1

239 clock cycles

Figure 9. Timing Analysis
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is handled by the 8228 module as a RESTART 7 instruction, producing
14 clock cycles that have no apparent source in the program code. As
shown in the figure, all of these times may be added together to pro-

duce a time estimate, measured in clock cycles. This estimate agrees

exactly with the timing of the simulation run of the program.




V. CONCLUSIONS

The project described in this paper is mainly the proof of a
concept. The ability of the CDL simulator to accept the integration
of a preprocessor and faithfully simulate a microprocessor-based sys-
tem is evaluated by attempting an implementation of those tasks. The
effort was directed at making the implementation succeed rather than
making it highly practical. Yet the practicality of this simulation
is certainly one of its strongest assets.

Certainly, the first candidate for application of this package
is hardware simulation, the most common use of simulator packages.
Simulation permits the comparison of alternate comstructs at any level,
from single devices to system architectures, to provide performance
data without the investment and time penalty of actual hardware con-
struction. Such a process can be used to fine tune a system for a
specific application. The simulation of software is a less obvious
candidate for application, but the same refinement process can be used
to view program execution on a time-phased, register-transfer level.
Such refined software would be useful for the highly compact, intensely
iterative programs normally stored in read-only memory for process con-
trol or communications handling devices. .

To facilitate application of this simulator, there are several
improvements that can be made. These improvements range in difficulty

from major revisions to relatively simple extensions of the existing
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program. Language versatility is one of the simple extensions. The
preprocessor, as currently written, will service only the Intel 8080
assembly language. However, the necessary mechanisms for choice of a
language set are already included in the preprocessor program. The
alternative language would have to be reduced to a table format com-
patible with the preprocessor. Pseudo-operation routines would have
to be written and included in the already stored subroutine. Finally,
alterations would have to be made to the routines for operand inter-
pretation if the conventions of the desired alternative differed sub-
stantially from those of the 8080 assembly language. Due to the in-
creased storage requirements for these alternative user-selected op-
tions, the most effective implementation of these features might be
to compile complete versions of the simulator package for each lang-
uage to be used and have them user-selected as a part of basic program
selection. This method would allow versatility without sacrificing
program compactness.

Another avenue for improving the simulation lies in that of sim-
ulator expansion. The current version of this program proves that
system simulation is feasible. To make the simulator more useful, a
library of module and device simulation routines could be developed.
The hardware modules and microprocessor simulations could be selected
to produce the desired system configuration. Addition of an assembly
language program for the target processor would complete the system
simulation, ready for input in the simulator.

The greatest return in efficiency could be reaped after the great-

est effort in program improvement: restructure. The current program
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is time consuming not only because it is so intensely iterative, but
because it suffers from the time penalties imposed by its base lang-
uage and structure. FORTRAN shares the algebraic format of CDL, but
the deeply nested subroutine calls and complex logic used in the sim-
ulator do not lend themselves to time-efficient computation. The use
of structured programming could help to streamline the sequence of
subprograms being called and avoid some of the machine overhead in-~
volved in those calls, even at the expense of some redundant coding in
different routines. The use of a structured language, such as PASCAL,
could produce even more comprehensive changes. Constructs such as
the CASE statement could replace sections of decoding logic and dras-
tically reduce execution time while improving program flow. The bit
manipulation functions lacking in FORTRAN could possibly be incorpor-
ated through the alternate language, eliminating the necessity for
sizable assembly language subroutines to perform those functions. The
resulting program unification would certainly be a significant achieve-
ment. A restructured program might also be able to handle concurrent
processes with greater ease by eliminating the need to evaluate every
conditional microstatement on every iteration of the program. As
stated before, the effort involved in a restructure is extensive, but
the resulting improvements in utility and computational speed would
be most impressive.

Simulation is an important tool in system design. 1Its merit rests
in its ability to save money and effort by providing results of tests
on system configurations that exist only on paper. The simulation

package developed in this project attempts to combine the {mportant
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user-oriented features, high level of detail, and easily interpret-
able simulation results. There are ample opportunities to use the
system as it exists and system improvements options exist at various
levels of effort. The possibilities of microprocessor-based system

simulation are limited only by the imagination and energy of the user.
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FOREWARD

This manual is based mainly upon information presented in the
original user's manual compiled by Terry Cwik. The manual was re-
written and restructured to include material on the functional des-
cription of the CDL simulator as well as its syntax and to improve
the clarity of the original manual. The user's manual for the CDL
simulator preprocessor was also added.

Syntax in this manual is presented in a standard notation. For-
mats are presented on a line separate from the text. Upper case
items refer to entries which must be made exactly as shown. Lower

case items refer to types of entries only. All delimiters, such as

slashes and parentheses, are considered significant and required.

e,
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Introduction

Computer Design Language (CDL) was originally designed by Dr.
Yachan Chu in 1965. It was designed to represent the architecture and
operation of computer hardware at the register transfer level, using
an algebraic notation. The language is versatile enough to serve two
major purposes. CDL can serve as a standard language for defining the
structure of digital systems, especially in an instructional setting.
The language, used with a simulator program, can also be used in the
simulation of existing digital systems or in the testing and develop-
ment of new systems. This handbook is intended as an aid in using

CDL in this second manner, with an incorporated simulator program.

CDL Structure

The CDL simulator program works in several logical steps. The
first step is accomplished by the translator section. The logical
design of the subject hardware, written in CDL, is read into the host
computer as card images. The translator converts the hardware design,
in the form of declaration statements, into a form suitable for com—
puter manipulation, namely groups of tables and a pseudo program
called the Polish string.

This information is passed to the simulator section, composed of
five routines. The loader routine accepts programs and data to be
loaded into the simulated memory or specified registers in the design.
The simulator routine controls the execution of the test program. The
switch toutine incorporates the options of manual switch settings.

The output routine controls the identity and frequency of output values
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produced by the simulation. The simulation may be reinitialized for

another test by the reset routine.

Translator Section

The first task in using CDL for simulation is to specify the de-
sign of the selected logical circuit in CDL terms. This specifica-
tion normally occurs in two phases. In the definition phase, the hard-
ware architecture of the system is stated. In the operational phase,

the logical actions of the system are defined at the register trans-

fer level. The definition phase consists mainly of declaration state-
ments, defining the hardware elements as variables, so that they can

be used in expressing the operation phase statements.

Declaration Statements. These statements are used to define ba-

sic hardware units. The following devices are defined in CDL:

REGISTER SWITCH
SUBREGISTER TERMINAL
MEMORY BLOCK
DECODER CLOCK
LIGHT BUS

The first four characters of each device name are significant to the
simulator. The syntax of the declaration statement is

device name, list
The device name begins in column two and the comma trailing the device

name is required. The devices are discussed in more detall below.




REGISTER Declaration. An individual register is defined by a

name and a number in parentheses. This number defines the length and
order of the bit positions. Default value of the numbher is a single

bit. Examples are presented in Figure A-2.

SUBREGISTER Declaration. This declaration identifies a section

of a previously declared register. The declared register, followed

by the subregister name, is equated to a certain string of bits within
that register. Subregister names must be unique to the four signifi-
cant characters, even when referenced to different registers. Examples

are presented in Figure A-1l.

MEMORY Declaration. A memory is referenced by its name and a

previously declared register which will be its address register. The
range of the address and the bit order of the words in the memory are
specified. Thus,

MEMORY, M(R) = M(0-~99, 7-0)

defines a 100 byte memory space named M.

DECODER Declaration. This declaration defines a device which

equates each value of the contents of all or a section of a previously
defined register to a single output. The decoder's name and range of
values is equated to the register or section of a register. Examples

are presented in Figure A-1.

CLOCX Declaration. A clock is defined for the purpose of event

synchronization. It can only be referenced in a label expression, to

be defined later. The clock is defined by its name and a number, one
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less than the number of discrete timing levels: desired. Examples are

presented in Figure A-1.

SWITCH Declaration. An external switch condition can be simulated

by this declaration. It is defined by the switch name and possible
positions, initial position first. A maximum of ten switch positions
is permitted. An example of the definition format would be

é SWITCH, STRT (OFF, ON), TEMP (Tl, T2, T3).

In use a switch may be either set or read. To set a switch, the name

is equated to the desired position, such as STRT = ON. A switch is

read, giving a value of 1 or 0, by citing the switch and a position,

such as STRT (ON).

TERMINAL Declaration. Logical networks or multiple references

for a single device are handled by the TERMINAL declaration. The
terminal is simply defined in terms of previously declared devices.
Its use may be very similar to a DECODER declaration. Examples are

presented in Figure A-1.

LIGHT Declaration. Panel lights may be included by using this

declaration. As in the SWITCH declaration, the light is named and
its states given, initial state first.
LIGHT, RUN (OFF, ON), PWR (ON, OFF)
L is a typical example. The set and read options also follow the form

of the SWITCH.

BUS Declaration. A bus is defined in terms of its width in lines,

as in BUS, DATA (0-7), ADDR (0-15).




BLOCK Declaration. This construct is actually a software mech-

anism, similar to a subroutine. The BLOCK name serves as a title for
a group of microstatements, as defined below. The microstatements are
eénclosed in parentheses, with nesting and such options as IF, THEN,
ELSE allowed. This group of statements is called to be executed by a
DO statement, in the form

DO/block name.

Thus

BLOCK, SWAP (A=B, B=A)

would be called by

DO/SWAP.

Micro Statements

Once the hardware architecture has been defined, the logic func-
tions impressed on these elements are defined using microstatements.
The basic form of a microstatement is

variable = expression
An expression is a group of variables and their associated operators.

The standard operators listed in Table A-1 are available for use
in microstatements. Special operators may be defined by the user in
a separate subprogram. This subprogram is of the form

*0PERATOR, first argument,name,second argument
// operations comprising the function of the
operator, RETURN END ’
Argument names must include bit structure if over one bit. The se-

cond argument is necessary only for binary operators. The blank la-

bel, //, will cause immediate execution of the listed operations when
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the operator is invoked by its name. The subprogram {s terminate'
by the RETURN and END. Table A-l also lists several special operators
built into the simulation program.

Microstatements have several forms. An unconditional microstate-
ment is of the form

variable = expression.

The effect of this construct is to replace the named variable, a stor-
age element, with the result of the expression. The named variable,
either a device or a part of a device, must not be replaced more than
once in any set of microstatements to be performed during a single
cycle.

A conditional microstatement is of the form

IF (expression) THEN (micros*atements).

If the expression contained in the parentheses following the IF is
true, thus equal to 1, then the microstatements following the THEN are
executed; otherwise, they are simply skipped. This form may be exterded
to the form

IF (expression) THEN (microstatements) ELSE (microstatements).
Execution is identical to the first form, except that when the expres-
sion is false, the microstatements following the ELSE are executed.
These forms may be nested by using the precedence rules of parentheses.
This nesting capability can be used to design complex and powerful de-
cision functions.

Microstatements are used to build other types of statements. The

switch statement has the form

/ switch name (position) / microstatements.




[f the named switch is in the indicated position, the microstate-
ments are executed; otherwise, they are not. This construct sim-
ulates the sensing of switch positions.

The most common statement in simulations is the label statement.
It has the form

/ label / microstatements

where a label is the logical AND of an expression and a clock level.
The expression must not include a reference to a clock level. When
the expression and the clock level are both logically true, the mi-
crostatements are executed. This construct simulates the execution of
time-phased logic.

Finally there is the end statement. The word END indicates the
physical end of the statements defining a system design. It termi-
nates the translation process and causes control to pass to the simu-

lator routines.

Simulator Section

Once the hardware and operational definitions have been made, the
simulator is prepared to execute the test program. The execution
is carried out in a loop of processes called the label cycle. During
each cycle, four tasks are performed. First, if any switch action is
designated to occur in the current label cycle, the executable state-
ments that it activates will be performed. Secondly, "all label values
are evaluated and those with true label expressions are noted. Third,
the statements corresponding to the true labels are executed. All

values resulting from these statements are evaluated, collected, and
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then stored. Fourth, it is determined if the simulation should be
terminated at this point. 1If not, the next label cycle is begun. If
it is terminated, a RESET routine may be called to begin another simu-

lation.

Syntax

As with all computer programs, there are syntax rules which must

be obeyed if the program is to function as specified. There are
general syntax rules for the use in all statements and control cards
to direct the sequencing of the simulator program; the Job Control

cards necessary to run this program will be considered separately.

General Syntax

Variables. A variable must be defined in a declaration statement
before it can be used elsewhere. A variable may consist of one to
four characters. The first character must be alphabetic. Embedded

blanks and special characters other than "+, "-=", "," "x; /7, ",

e "_1

, "$", or are simply ignored and dropped. Longer variable names
may be used, but the translator uses only the first four significant
characters. Thus "START1", "START2", and "STAR" are all treated as
"STAR" by the simulator. The following words are reserved and must
not be used as variable names: IF, THEN, ELSE, DO, CALL, RETURN, and
END.

Constants. Three forms of numerical constants are available for
use. A hexadecimal constant, denoted by a colon preceding its digits,

is accepted up to a maximum of eight digits. A binary constant, de-

noted by a semicolon preceding its digits, is accepted up to a maximum




of 32 digits. A decimal constant, denoted by no delimiter, is ac-
cepted up to a maximum of nine digits. Blanks, special characters
other than those listed above, and characters outside the set permis-
sible for the particular form are ignored and dropped.

Continuations. Declaration statements are continued to subsequent

cards by placing a "1" in column one of the subsequent cards. Label
and Switch statements are continued to subsequent cards by leaving
column one blank. All statements are limited to 250 terms, where a
term is considered to be either a variable, a constant, or a valid
special character.

Comment Cards. Placing a "C" in column one will produce a com-

ment line, ignored by the translator. Placing a "C" in column one of
subsequent cards allows continuativu of the comment.

Card Format. Declaration statements, labeled statements, and
END statements may be punched anywhere in columns two through 72.
Column one is used only for comments and continuations. Free use of
blanks is permitted and is encouraged to promote readability.

Control Cards. Control cards are used to call the functional ele-

ments of the simulation system into action. These cards will be dis-
cussed in the order in which they will normally be encountered.
Translator. The translator is called first to translate the de-
sign information into a form suitable for simulation by the program.
The first column contains the control symbol "$", followed by the
control word TRANSLATE or TRANS. The translator will retain control

until the next card with the control symbol in column one is read.

The design deck must begin with the control card (MAIN, where the se-
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condary control symbol "*'" appears in column one. The design deck
is terminated using an End card, with END in columns one through three.
If special operators are to be defined, they are separated from the
rest of the translation. The special operator defintions are all
started with the *OPERATOR card and closed with the END card.

Simulator. Control is next passed to the simulator by the S$SIMU-
LATE card, with the control symbol in the first column. Asterisk con-
trol cards are used to pass control between the simulator's five rou-
tines: OQutput, Switch, Load, Simulate, and Reset. Unlike the pre-
ceding example, END cards are not necessary to separate sections.

The Output routine specifies the format of the printed output

of the simulation. The format of the control card is as follows:

columns 1-7 *OUTPUT
columns 11-15 CLOCK or LABEL
columns 16-21 (n,m)=

columns 22-72 list

The CLOCK or LABEL designation controls whether data is output on clock
cycles or label cycles, beginning on the nth cycle and repeating
every mth cycle thereafter. The list following specifies the regis-
ters, memory locations, and other devices whose value [s to be out-
put each time. Continuation cards for the list are permissible as
long as column one is left blank. All output values are listed in
hexadecimal format, regardless of input format.

The Switch routine allows the simulation of manual switch set-
tings. A separate card is necessary for each switch action. Tt has

the following format:
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columns 1-7 *SWITCH
columns 11-12 n,
column 13 switch name = switch position

The number n specifies the label cycle before which the switch action
occurs. The switch name and {ts position must have been declared pre-
viously. 1In the output, each switch action will cause an output with
a heading which states that the switch action has occurred.

The Load routine stores test programs and data in memory and re-
gisters. The *LOAD card precedes the data cards. Data cards use ccl-
umns 2 through 72, with free use of blanks permitted. There are no
continuation cards. Each card must be begun in column 2 and be self-
sufficient. A data card may contain a number of lists, separated by
commas. Only declared full registers and full memory locations may be
loaded. The format for the two types of entries are different. Re-
gisters are loaded with the format

"register name = n'",
where n is the value to be loaded. There are three variations of the
format for loading memory locations. Single memory locations can be
loaded in the form
M(m) = n,
where M(m) denotes location m of memory M and n denotes the value to
be loaded. Multiple consecutive locations can be loaQed in the form
M(ml-mx) = nl,n2,...,n0x,
where locations | through x are loaded with values nl through nx. The

ending address may also be implied rather than stated in the form

M(ml-) = nl, n2,...,ny,
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where consecutive memory locations are loaded, beginning with ml and
continuing until y locations are filled. There is a software imposed
limit of 80 load entries.

The Simulate routine initiates the actual simulation subprogram.
The control card specifies the simulation termination parameters. It
has the following format:

columns 1-4 *SIM

columns 11~ n,m
The number n specifies the maximum number of label cycles to be gen-
erated. The number m specifies the maximum number of consecutive la-
bel cycles to be allowed without a change in the active labels. When
m label cycles have passed with no changes, the simulation is auto-
matically terminated.

The Reset routine performs reinitialization of the simulator sub-
program to allow another run of the simulator on the same design. The
control card has the following format:

columns 1-6 *RESET

columns 11- options
The options are one or more of the following terms, separated by com-
mas. CLOCK resets the clock cycle only. CYCLE resets the label

cycle counter and the clock cycle counter. OUTPUT resets the previ-

ously requested output parameters, just as SWITCH resets the previ-

ously requested manual switch operations. In both cases, another
*OUTPUT or *SWITCH card is expected. The next simulation will begin

with another *SIM card.
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A typical simulation with all internal control cards appears in
Figure A-2, depicti