
ADAIO 579 DAVIDA TALOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/S 9/2
ABACK-END DATA MANAGEMENT EXPERIMENT.(U) N

SEP 81 M A WALLACE

UNCLASSIFIED DTNSROCASi/067 N

UNCLASSIFIED
SECUhI'TY CLASSIFICATION OF THIS PAGE ("onm Data Entered) __________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVTr ACCESSION NO.:1 RECIpIENT'S CATALOG NUMBER

7 DTNSRDC-81/067 ______________

Ti T LE (and Subtle) 5. TYPE OF REPORT G PERIOD COVERED

A BACK-END DATA BASE MANAGEMENT EXPERIMENT . Final
/ .-. 6. PERFORMING ORG. REPORT NUMBER

7AUTHOR(s) S. CONTRACT OR GRANT NUMUER(s)

M4 ichael A. -Wallace --

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

DvdW. TyoNalShpResearch ,. AREA & WORK UNIT NUMBERSDavi Tayor Nval hipProgram Element 62760$
and Development Center L, _i'.A TF3309
Bethesda, Maryland 20084 Wr nt~33o~

I I. CONTROLLING OFFICE NAME AND ADDRESn 12. REPORT DATE

Naval Supply Systems Command (SUP0431) 1!/ Septembr 1981
Washington, D.C. 20376 - IS. NUMBER OF PAGES

74
IS. MONITORING AGENCY NAME & ADDRESS(II different f rom, Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS.. DECLASSIFICATION/DOWNGRAOING

SCHEDULE

W6 DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of thle abetract entered in Block 20, If different from, Report)

IS. SUPPLEMENTARY NOTES NTISCSI
Bnrc TA3 C1
Uniannounced 0

19. KEY WORDS (Continue orn revers* side if neceary and Identify by block number)

ADP Security -..

Back-End itISp_
Data Base ManagementJ

20. ABSTRACT (Continue onr, aevee aide it neceseary and Identify by block number')

A method of testing and validating a back-end data base management

system is described. The results of the test are analyzed and recommnenda-

tions for future systems are made. The back-end concept proved viable and

future work is proposed.

DD I jANZ7F3 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
S/N 0102-LF.014-6601

/ . SECURITY CLASSIFICATION OF THIS PAGE (Whmen Deta Kntered)

Sn %Z

* TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES. v

LIST OF ABBREVIATIONS. vi

ABSTRACT. I

ADMINISTRATIVE INFORMATION.

INTRODUCTION. 1

BACKGROUND. 3

PROTOCOL STANDARDS. 6

LINK LEVEL PROTOCOLS 6

COMMUNICATION PROTOCOLS. 8

SECURITY 13

SYSTEM DESCRIPTION 16

GENERAL FLOW. 17

SYSTEM SOFTWARE COMPONENTS. 18

BACK-END SYSTEM LOGIC. 24

CONNECTIVITY AND ROUTING. 24

MESSAGE SYSTEM COMPONENTS 26

IMPLEMENTATION ON THE PDP 11/70 28

TWIN 34

TEST PROGRAMS 35

PERFORMANCE MEASURE METHODOLOGY. 35

MESSAGE TRANSMISSIONIRECEPTION LOGGING. 36

TINE TAGGING STRATEGY 37

TESTING STRATEGY. 38

TEST ENVIRONMENT. 39

PERFORMANCE MEASUREMENT RESULTS. 39

PDP MESSAGE LOGGING 40

iiibam

Page

?DP MESSAGE P UCE . .. 42

PDP SYSTEM HISTOGRAM 42

IBM LINE ACTIVITY RECORDER 46

IBM SYSTEM STATISTICS 46

ANALYSIS OF RESULTS 46

TIMING ANALYSIS 46

CODE EXAMINATION 49

PROBLEM AREAS 51

BACK-END VERSUS STAND-ALONE 52

BENEFITS COMPARISON 52

CONCLUSIONS AND RECOMMENDATIONS 53

TESTING FUNCTIONS 54

BACK-END DBMS FUNCTIONS. 54

SYSTEMS FUNCTIONS AND CHARACTERISTICS 55

USER ENVIRONMENT 56

ADDITIONAL BENEFITS 58

APPLICATION PROGRAM REQUIREMENTS 58

BACK-END SYSTEM DESIGN 58

SUMMARY 59

ACKNOWLEDGMENTS 64
/

REPERENCES 65

LIST OF FIGURES

I - DBMS Host Implementation1

. 2 - Host with Back-End Processor and Data Base 2

* 3 - Data Link Transfer 7

4 - Protocol Peer Levels 9

5 - Digital Network Architecture (DNA) 10

iv

,| -- r~

Page

6 - System Network Architecture (SNA). 11

7 - ANSI/ISO Open Systems Reference Model. 12

8 - Host/Back-End Software Distribution. 18

9 - Packet Format. 25

10 - Test Timing Zones. 36

11 - Sample PDP Message Logging 41

12 - Sample PDP Message Trace 42

13 - Back-End with Program Development Machine. 57

14 - Singly Connected Back-End System Configuration 60

15 - Multiple Host Back-End System Configuration. 61

16 - Single Host Multiple Back-End System Configuration 62

17 - Multiply-Connected Back-End System Configuration 63

LIST OF TABLES

1 - Definition of Tested Verbs 40

2 - Selected PD? Message Logging 41

3 - PDP Message Logging Averages 41

4 - Selected Average Queue Times 43

5 - Average Queue Times. 43

6 - Selected Queue Process Times 44

7 - overall Percentage of Queue Process Time 45

8 - LAR Results. 47

9 -IBM Statistics for Back-End. 48

10 - IBM Statistics for Stand-Alone 48

v

LIST OF ABBREVIATIONS

ADCCP Advanced Data Communication Control Procedure
ANSI American National Standards Institute
ARQ Automatic Repeat Request
ASCII American Standard Code for Information Interchange

BENRC Back-End Network Resource Controller
BET Back-End Task
BNA Burrough's Network Architecture
BSC Binary Synchronous Communication
BTL Bell Telephone Laboratories

CCITT International Telephone and Telegraph Consultation Committee

CPU Central Process Unit
CRC Cyclic Redundancy Check

DAP Data Access Protocol
DBA Data Base Administrator
DBCS Data Base Control System
DBMS Data Base Management System
DBO Data Base Operator
DDCMP Digital Data Communication Message Protocol
DDL Data Description Language
DEC Digital Equipment Corporation
DLC Data Link Control
DMA Direct Memory Access
DMCC Device/Media Control Language
DML Data Manipulation Language

DNA Digital Network Architecture
DQ High Speed Communications Line Interface (I mega band)
DU Low Speed Communications Line Interface (9600 band)

FEP Front-End Processor

HDLC High Level Data Link Control
HINT Host Interface Module
HNRC Host Network Resource Controller

IPF Incorrect Page Fixer
ISO International Standards Organization

LAR Line Activity Recorder

Ms S
MS Message System
MSO Message System Operator

:-:'1' ':', -" :' = , r' : ",,- -vi

NARDAC Navy Regional Data Automation Center
NAU Network Addressable Unit
NSP Network Services Protocol

PDM Program Development Machine

PP Protocol Processor

QIO Queue Input/Output

SDLC Synchronous Data Link Control
SGA Sharable Global Area
SNA Systems Network Architecture

UICP Uniform Inventory Control Program
USACSC U.S. Army Computer Systems Command

vi

II

vii

II

• ,- -I- I- - '---- ,-i-- 7

ABSTRACT

A method of testing and validating a back-end data base manage-
ment system is described. The results of the test are analyzed and
recommendations for future systems are made. The back-end concept
proved viable and future work is proposed.

ADMINISTRATIVE INFORMATION

The tests described in this report were performed at the David W. Taylor Naval

Ship Research and Development Center (DTNSRDC) in cooperation with the Naval Regiona

Data Automation Command. The work was sponsored by the Naval Supply Systems Command

(SUP0431C) under Program Element 62760N, Task Area TF60531019, Sponsor Order Number

09007, Work Unit 1828-003.

INTRODUCTION

The advent of data base management systems (DHKS) has made available a powerful

tool for both managers and programmers. A DBMS will reduce programming effort, avol

duplication of data, provide a uniform means of accessing data, and improve data

control. The way a large DBMS is usually implemented is shown in Figure 1.

APPLICATION PROGRAM I

APPLICATION PROGRAM J

V. -

Id ATA
I BASE

, DBMS

OPERATING
SYSTEM

Figure I - DBMS Host Implementation

1

II

Si

As the capabilities of a DBMS increase, so do the demands on system resources,

main memory, disk space, and central processor unit (CPU) time. The more general

purpose the DBMS, the more widespread will be its application and the more demanding

of system resources it will become. When the DBMS demands become a significant per-

centage of system resources, some action must be taken. The usual answer has been

to purchase a more powerful machine. Electronic advances in the last several years

have, however, made other solutions feasible. One such solution, the one this paper

addresses, is the back-end processor. This technique, shown in Figure 2, transfers

all data management functions to a separate machine (usually a general purpose mini-

computer) and requires the application program running on the host machine to commu-

nicate with the DBMS over a communication channel such as a telephone line. This

communication process is transparent to the program so that existing programs,

already using the DBMS, do not have to be rewritten.

HOST

~~BACK END DT

PROCESSOR D ATA

Figure 2 - Host with Back-End Processor and Data Base

21
-, --------~- -- . -.- -.- -. !

A test system was developed under contract to demonstrate the feasibility of the

back-end processor approach. This system was installed on the PDP 11/70 (back-end

processor) at DTNSRDC and on the IBM 370 (host) at NARDAC. DTNSRDC, with the opera-

tional assistance of NARDAC,T tested the system for validity and performance. This

test effort, sponsored primarily by NAVSUP, was to determine whether the originally

perceived benefits could be realized and the disadvantages minimized. The perceived

benefits were:

" reduced disk space-

" reduced main memory for application programs

" reduced CPU time for application programs

• increased data security:

• increased host utilization by linking several hosts to one back-end

processor

. independence of the DBMS from the host processor.,

* -extend the useful life cycle of the host by freeing system resources

The known disadvantages are:

" an additional computer to operate and maintain

" a communications link to maintain -

" a development, implementation, and maintenance software effort on two

machines,

The system implementation, testing methodology, analysis of results, and conclusions/

recommendations are discussed in this report.

BACKGROUND

The concept of a back-end data base management system (DBMS) was first widely

publicized in October 1974 in a paper by Bell Telephone Laboratories (BTL) in the

Communications of the ACM. The Department of Defense, U.S. Army Computer Systems

Command (USACSC), and a vendor of DBMS software conducted studies of the concept and

concluded that a back-end DBMS was feasible and desirable. DTNSRDC evaluated these

studies and determined that the back-end DBMS was of potential value in the Naval

Supply Systems Command's (NAVSUP's) Uniform Inventory Control Program (UICP). A

Joint Working Group, composed of representatives of DTNSRDC, the Department of

Defense, Naval Material Command Support Activity, and the USACSC was formed to

3

A-

1W -- -

provide partial funding for the production of a prototype back-end DBMS based on a

commercially available CODASYL DBMS. DTNSRDC funding was provided by NAVSUP.

The general objectives of the Joint Working Group were:

1. To develop a high-speed, low-cost alternative to the conventional DBMS

hardware and software.

2. To develop a higher degree of security and reliability than could be

economically provided by conventional DBMS hardware and software.

3. To speed up what was considered to be the inevitable development of a

commercially viable back-end DBMS. (The BTL system was primarily a research effort.)

The Joint Working Group felt that only a widely used commercial product would have a

sufficiently large user base to support the development and maintenance of highly

efficient and reliable software.

4. To obtain, at the earliest possible time, a back-end DBMS for evaluation

against the needs of the different representatives. Time was particularly critical

to DTNSRDC and its NAVSUP sponsor, because UICP was soon to be converted to new hard-

ware and software, and the possibility of the back-end DBMS as a supplement or

replacement for the UICP DBMS seemed very attractive.

5. To obtain, at a very low cost, what might prove to be a state-of-the-art

CODASYL DBMS. Of course, there was no assurance that the concept would be workable,

given the constraint of basing the development of a commercially available DBMS.

Clearly, the back-end would be most efficient and effective if special operating

system software, and possibly special hardware, were used, but this would have

greatly increased the cost and time of development.

6. To develop a DBMS that could reside on a variety of minicomputers and inter-

face with multiple heterogeneous hosts. The prototype development was directed

toward a single minicomputer and either a CDC 6600 or IBM 360/370 host, but the

long-range objective was to provide a high degree of flexibility in system hardware.

The following specific objectives were included in the back-end DBMS contract:

i. Minimum Interface Requirements

a. All software modules will be written in a high level language

such as FORTRAN or similar language to provide maximum transferability.

b. The delivered back-end DBMS will initially be capable of

executing on both a 16-bit minicomputer (e.g., PDP 11/70) and a

32-bit mini (e.g., Interdate 832).

4

X
.... ~;. - -V- - - -- . - - -

c. As a minimum, interfaces to the IBM 360/370 and CDC 6600 will

be provided as a part of the deliverable software.

d. Clean, well defined interface specifications will be provided

that will enable the user to develop additional host interfaces.

e. The back-end system must be able to interface with a variety

of cummunication lines and line spreads ranging from 300 bps to 50K bps.

f. The selected back-end hardware must be able to interface

with a variety of disk systems including 2314, 3330, or CDC 841

and equivalent devices.

g. Interface with the host must allow for a variety of

programming languages.

2. Software Requirements

a. The data base management system must adhere to CODASYL

specifications.

b. The DBMS implementation must support rapid Boolean opera-

tions on indices, such as pointer arrays, and must provide for

subschemas.

c. The system must p'ovide for dynamic space allocation and

reutilization (physical restructuring) without taking the system

down.

d. The system must provide well defined and effective back up

and restart capability, as well as audit trails, without taking the

system down.

e. The system will provide for logical data base keys.

f. It must allow for concurrent access and update with locks

on a record occurrence basis.

g. It must provide for security on a record type level; i.e.,

access is restricted to individual record types.

*3. General Performance Requirements

a. The back-end system must provide performance comparable

to that obtainable by running the DBMS on the host.

b. Performance monitoring capabilities must be provided to

the Data Base Administrator (DBA).

5

AC 16 IJ

c. The DBA must be provided with the ability to tune the performance of

the system by changing such parameters as page size, page density, locality of

reference, or the number of active users versus the number of active commands.

d. The DBA will have available multiple strategies for data base design so

that the system can be biased to favor update, retrieval, addition, or deletion.

e. The DBA must be provided with adequate integrity checking features to

guard against security breach attempts, system failures, etc. The DBA must have

the ability to communicate directly with the back-end through a system console.

PROTOCOL STANDARDS

The decision on which link level protocol to use for the back-end was made by

default; binary synchronous communication (BSC) was chosen because it already ran

on the IBM host system. Future implementations will, however, be able to choose

from any of the link level and high level standard protocols discussed in this

section.

A protocol is a set of communication procedures and conventions that ensure the

orderly exchange of data. A protocol may be defined either by publishing the rules,

such as is done by the standards organizations ANSI, ISO, and CCITT, or by implemen-

tation, as was done by the IBM and Digital Equipment Corp. (DEC). Protocols are

divided here into link level protocols and communication (higher level) protocols.

The protocols govern the computer-to-computer synchronous trnasmission of data over

communications channels.

LINK LEVEL PROTOCOLS

The link level protocol is the lowest level of software and is responsible for

providing an "essentially" error-free line. The link level must control the data

link, shown in Figure 3. The basic functions are error detection and correction,

startup, sequencing, transparency, and synchronization (bit, byte, and message).

Only three data link control protocols are recognized as "standards"; they are:

. BSC (Binary Synchronous Communication)

. DDCMP (Digital Data Communication Message Protocol)

. ADCCP (Advanced Data Communication Control Procedure)

6

* *
I .r ' , .,5' ', "" l ", ,, - ? . . : ." . .,' .-:

SERIALIZE SERIAL-BY-BIT TRANSMISSION DESERIALIZE
SERIAL-BY-O T SERIALBY-

D COMMUNICATIONSPROCESS T MODEM CHANNEL MODEM T PROCESS
E EQUIPMENT E

V DATA LINK

Figure 3 - Data Link Transfer

BSC

BSC was developed by IBM (about 1968) and became, with minor improvements, ISO's

Basic Mode Control Procedure (about 1972). BSC is a half-duplex character oriented

protocol designed for point-to-point and multipoint operation in a batch environment.

All control information is ASCII. BSC is a stop-and-wait automatic repeat request

(ARQ) system and may have only one outstanding message (each message must be

acknowledged).

BSC was designed primarily for use with unattended batch terminals handling

lengthy transmissions and it has performed well in that role. In the interactive

environment BSC has been replaced by the byte and bit oriented protocols.

DDCMP

DDCMP, developed by Digital Equipment Corporation, is a byte oriented protocol.

The text length is defined by a character count instead of by a delimiting

7

| "1

T~.

character(s) (BSC) or flag (ADCCP). DDCMP operates in full-duplex and half-duplex

modes and in point-to-point and multipoint configurations over serial or parallel

links using synchronous or a synchronous communication. It uses go-back-N ARQ and

may have up to 255 unacknowledged messages. DDCMP is easily implemented since the

data field does not have to be scanned (as required by BSC and ADCCP) but is simply

counted. DDCMP requires no special hardware for implementation.

ADCCP

ADCCP defines a method of data link control in terms of the various combinations

of allowed commands from a primary of combined station and permissible responses from

a secondary or combined station. In ADCCP all transmissions are in frames and each

frame is founded by a unique flag sequence (01111110). The uniqueness of this flag

is ensured by a process known as bit stuffing (inserting a zero bit after five con-

secutive one bits) and requires special hardware to implement. ADCCP also uses

go-back-N ARQ. Synchronous Data Link Control (SDLC), developed by IBM about 1974,

was modified slightly to become ANSI's ADCCP and ISO's high level data link control

(HDLC).

All three protocols provide for error detection by use of cyclic redundancy

check (CRC), polynomials and error correction by retransmission. BSC is an old,

complex, and not highly efficient half-duplex protocol. It is still in use due to

its early and widespread acceptance. DDCMP is a simple, powerful, and efficient

protocol (10 bytes of overhead per message) that is easy to implement and requires

no special hardware. ADCCP is a complex, powerful, and very efficient protocol

(overhead is 4 bytes, flags, and bit stuffing per message) that requires special

hardware because of the bit stuffing. A subset of ADCCP will be implemented by many

computer manufacturers and used as the basis of their network architecture, such as

IBM's Systems Netork Architecture (SNA) and Burroughs' Network Architecture (BNA).

COMMUNICATION PROTOCOLS

Communication protocols allow user applications in various parts of a distri-

buted network to communicate conveniently. These protocols are usually divided into

peer layer levels as shown in Figure 4. The number of levels and the function of

each is determined by their degree of distribution and their management of resources.

8

USER APPLICATION LEVEL

END-TO-END LEVEL

TRANSPORT LEVEL

LINK CONTROL LEVEL

PHYSIC AL
, CON TROL LEVEL

Figure 4 - Protocol Peer Levels

Three examples of network architectures will be described to show the functionality

and similarity of communication protocols. These sample systems are:

* DNA (Digital Network Architecture) - Digital Equipment Corporation

* SNA (Systems Network Arthitecture) - IBM

* ANSI/ISO Reference Model of Open Systems Architecture

DNA

DNA is composed of a set of network protocols; DDCMP, network services protocol

(NSP), and data access protocol (DAP). These protocols have the following

characteristics:

• DDCMP - handles link control and error detection/correction

* NSP - provides process-to-process communication, routes messages between

systems, routes messages within systems, creates dynamic logical links, and is the

network management protocol.

• DAP - provides network data compatibility, remote file operations, and

remote device operations.

Figure 5 shows two systems linked using DNA. The NSP portion of DNA is functionally

equivalent to the Message and Packet subsystems of the Message System.

9

I.!
-1

+I s. --"-

SYSTEM HANDLERS

SNP

II

- NSP -USER

DAP

SNAP

data~ ~~igr flo -otrl Digi5N tal Newrksal ArcitectNu)ries (DNA)ye i

l, 10

,.+, p "I +++ "" "" =Z . " . .. -i ,11 + - : ,.'ia+Pm77

reflected in a protocol implementing the functions of that layer. The data link

control layer handles link control and error detection/correction. The path control

layer handles message routing. The transmission control layer coordinates a session,

or channel, and manages the flow of data on that session. The data flow control

layer controls the flow and integrity of data to/from the user. The NAU is the user

interface and includes the function managers. This hierarchical network is shown in

Figure 6.

COMMUNICATION SYSTEM
END USER END USER

FUNCTION FUNCTION
MANAGEMENT MANAGEMENT

TRANSMISSION
DATA FLOW SUBSYSTEM DATA FLOW
CONTROL CONTROL

SESSION NETWORK SESSION NETWORK
CONTROL CONTROL CONTROL CONTROL

CONNECTION CONNECTION POINT
POINT MANAGER C MANAGER

PATH CONTROL PATH CONTROL

DATA LINK DATA LINK
CONTROL CONTROL

[i. DATA LINK

, DATA FLOW

Figure 6 - System Network Architecture (SNA)

11

ISO

The ANSI/ISO Reference Model of Open Systems Architecture is a hierarchy of

seven peer level protocols as shown in Figure 7. The physical layer, link layer,

network layer, and transport layer are responsible for moving data from one place to

another and are known as the "providers of transport service." The session layer,

presentation layer, and application layer are responsible for generating and pro-

cessing the data and are known as "users of transport service." The main reason the

architecture has so many levels is to divide the implementation into clearly defined

areas.

LEVEL LEVEL
NUMBER NUMBER

PROCESS CONTROL 77
USE RS OF

PRESENTATION CONTROL 6 6 TRANSPORT

SESSION CONTROL 5 5 SERVICE

TRANSPORT END-TO-END CONTROL 4 4
31 [PROVIDERS

NETWORK CONTROL 3 3 3 3 POFIER

_ TRANSPORT
LINKCONROL 22SERVICE

PHYSICAL CONTROL 1 1 1 1

END L,, END
SYSTEM SYSTEM

NETWORK
SWITCHING

NODE

Figure 7 - ANSI/ISO Open Systems Reference Model

12

*1I

Y 1 : ' - " ,. . ..

The new protocol standards provide an efficient method of transmitting data and

have well-defined levels of software implementation. The link level protocol(s) will

be dependent on what the host(s) will support. The high level protocol specifica-

tions, which are host-dependent, will affect the design of future Message Systems.

SECURITY

The physical separation of the data files and the DBMS system from the host

system will greatly enhance the security of the data in the data base. The level of

security provided by a back-end system, however, can vary greatly depending on which

machine the various software components execute on. This section will define the

alternatives which will be drawn upon in the concluding section.

Security is the enforcement of controls on access to data. This means that

certain specified people may have specified access privileges to certain data

elements. Historically the controls have been enforced by two components: the host

machine operating system and the DBMS. The operating system and DBMS performed:

User Validation - ensuring that the user is who he says he is (operating

system).

* File Security - limiting the access (read/write/execute) a user may have to

file (operating system).

. Record Security - allowing access (read/write) to the records specified in

the subschema (DBMS).

. Authorization Validation - determining whether a user has the right to use

a particular entity, such as a system command (operating system) or a subschema

(DBMS).

In a general purpose host machine the operating system must provide a number of

services to a variety of users with differing requirements, including a minimum of

security for every user and the capability of additional protection if the user

desires it. Minimum security means that files remain intact or can be restored and

programs can be executed without interference. The DBMS security is built upon and

uses the capabilities provided by the host operating system. The security provided
by the DBMS can be no stronger than that provided by the operating system. Addi-

*. tional security will require changes to the operating system which could be difficult

if not impossible because they would affect all other users.

13

- " ----

When the DBMS and its utilities are placed on a back-end processor, the condi-

tions change dramatically. The back-end has a very different environment than does

the host. One can imagine a wall before the back-end, as impenetrable as one wishes

to make it. We are able to impose this wall before the back-end for the following

reasons:

" users and their files (if any) are strictly separated

" the back-end does not execute user programs

" the back-end operating system is small and specific and may severely limit

the capabilities provided to a user

* the number and types of ways into the system are strictly controlled

" there is no direct access to files; a file may be accessed only via a

"system" program (e.g., DBMS)

The concentration of security measures at one site simplifies the problem and

requires, at most, minimal changes to the host system.

User validation is the only security function that depends on data received

from the other side of the wall. This function is directly related to the problem

of transmitting/receiving data to/from a user in a secure manner. The solution to

both of these problems is to require that all transmissions be encrypted. If a

scheme such as the public-key crypotosystem of Diffie and Hellman is used, then a

"digital signature" technique of assuring a user's identity is available. This

system provides a very high degree of security and is easily implemented. Thus the

secure transmission of data from/to a user can be assured and the identity of that

user can be guaranteed.

If only the data is to be secured, then the data manipulation language (DML)

compiler could run on the host machine (this situation will be called level 0), and

the steps taken by a user (DML compile, COBOL compile, link, load, execute) using a

DBMS on the host would be the same as those for using a DBMS on a back-end. This

arrangement is very convenient, but it assumes that the subscheme that contains in-

formation about the data base structure is not to be protected in the same way as the

data base itself. In such a case, the back-end processor need have only two entries:

a system console from which the DBA enters the schema, subschema, and DML and runs

the DBMS utilities; and a transmission line controlled by the Message System for

*A complete listing of references is given on page 65.

14,~I
Si ~-S--w ~ --- --- *----

-~ -

accessing the data. This is the simplest case and provides for data security. There

are three problems with this approach: the subschema is on both the host and back-

end machines, the DML compiler is on the host, and the host has DML source, COBOL

source, and binary files.

If, however, knowledge of the structure of the data base is to be protected,

the back-end functions must be increased. Three levels of protection may be desired.

The first (level one) requires only DML compilation on the back-end and allows COBOL

source files, which contain imbedded structural information, on the host. Source

files are sent to the back-end, precompiled, and returned to the host with the DML

calls and data division filled in. The second (level two) requires the DML compiler

and a cross COBOL compiler on the back-end. This allows only binary files on the

host. In this case execution is still on the host. The third (level three) permits

no structural information on the host. The user program runs on the back-end and

only results need be shipped to the host. This approach is not actually a back-end

DBMS but a stand-alone DBMS machine. Present implementation is at the first level.

All three levels make security on the back-end more difficult to implement. They

all require access to files on the back-end, which is a relatively minor problem;

level three allows user programs to execute which is a major, but not insurmountable,

problem since the program I/0 functions can be limited. However, in all three cases,

there is only one copy of the subschema and it is on the back-end machine. This is

perhaps the major advantage of these three levels over level zero.

Level one requires a source transmission to/from the back-end for every compi-

lation, but transmission could be greatly reduced if the back-end included an editor

and syntax checker. This level would also require a terminal processing capability

if the source updating were to be done interactively. With an editor on the back-end

no DML source files need be on the host. This level would transmit to the host only

syntactically correct COBOL programs and would be host independent (work for any

standard COBOL program).

Level two transmits DML source files to the back-end and binary (link edited)

files to the host. The host contains no source files, and compilation and link edit

runs are reduced. The back-end, however, has a cross compiler and link editor for

each different manufacturer's machine. This approach can be used for all programs,

not just DBMS programs, and significantly reduces resource usage on the host.

15

_S ES-V

Level three does not require a host; everything is done in the back-end. The

back-end compiler produces code for the back-end processor and requires all code

necessary to run, including system libraries, on the back-end. There are files but

no programs and no message system on the host. The programmer, however, must debug

his program on the back-end.

It is clear that increasing levels require increasing resources on the back-end

processor. Off-loading too much to the back-end could make the back-end into a large

machine providing many of the services of the original host machine. The decision of

how much to off-load is dependent on many factors, the most important of which are:

• development effort needed

" hardware and communications costs

Level one, with editor and syntax checker, appears to offer the best overall solu-

tion. It is minimum level at which all data and structure are together and is the

highest level of security that is host independent. It will reduce, on the host,

file space (DML source, DML compiler, and subschema), compilation time (all COBOL

programs will compile), and text editing time. It does not preclude going to level

two if it is desirable for some host machine, but takes advantage of optimized

compilers and debug facilities on the different hosts.

A system may be started by implementing a level zero configuration and progress

in sophistication, but more back-end resources may be required than are available.

This problem can be solved by splitting the back-end functions onto two machines

with shared disk, which allows specialization of the two machines: DBMS on one and

text editing and compilation on the other. This solution is made practical by the

drop in the cost of the CPU and memory and the high cost of peripherals.

SYSTEM DESCRIPTION

The back-end system was initially implemented on an IBM 360 and a PDP 11/70

back-end as a test system for the complete software system described in this section.
The host software was also implemented on a CDC 6400 to demonstrate the portability

of the system.

The back-end system required the host and back-end processor sites to have the

following minimum hardware and software.

16

1

-

Kost Site:

" IBM 370 CPU

" 270X or 370X transmission control unit

" SVS operating system

" Tape drive to install software

• BELL or equivalent modem

Back-End Site:

" PDP 11/70 CPU

" 160K words of memory

" DQI1 Synchronous Communications Interface

" TUI6, TEl6 or TUIO tape drive

" IAS release 2.0 operating system

" BELL or equivalent modem

The software configuration, shown in Figure 8, consisted of a Host Interface

(HINT) module, a Host Network Resource Controller (HNRC) task, and a host Message

System (MS), and a Message System (MS), a Back-End Network Resource Controller

(BENRC), a TWIN and a Data Base Management System on the back-end processor.

' IGENERAL FLOW

In the back-end environment the application program cannot call the DBMS

directly. Instead the program calls an interface routine (HINT) with the appropriate

code (DML verb) and data. The HINT passes this information through the Message

System on the host, over the communications channel, and through the Message System

on the back-end to the TWIN. The TWIN reformats the code and data and calls the

DBMS. The results of this call are passed back to the application program via the

TWIN, Message System pair, and HINT. The Message Systems on the host and back-end

are functionally mirror images of each other.

Each application program has its own HINT (linked with it) and is assigned a

separate TWIN. There may be, therefore, as many active TWINs as running application

programs. Multiple application programs/TWIN's impose two additional requirements;

multiple start-up/clean-up capability and multi-threading of one or more communica-

tion lines so that an application program and its associated TWIN can exchange

messages. The start-up/clean-up is performed separately by the HNRC and BENRC.

There is one copy of the HNRC on the host and one copy of the BENRC on the back-end.

17

.... - - - -... - -...-- , ,

HOST

APPLICATION
PROGRAM

HINT
OPERATING

SYSTEM
HNRC

MESSAGE
SYSTEM________________________________

BACK END

MESSAGE
SYSTEM

BEPJRC

TWINS OPERATING
SYSTEM

DBMS

DATA
BASE

Figure 8 -Host/Back-End Software Distribution

SYSTEM SOFTWARE COMPONENTS

Host Interface (HINT)

A HINT module is link-edited into each application program and serves as the

interface to the message system.

18

Before a task (application program) can communicate with the back-end processor,

it must have a unique identifier (ID). The first call to HINT from the application

program is a request to sign onto the data base. Hint requests a unique ID from HNRC

and then requests the allocation of a TWIN task on the back-end processor. After

obtaining the unique ID of the TWIN from the BENRC, HINT issues a connect to the

TWIN to establish a communications link between the HINT and the TWIN. The HNRC and

BENRC now drop out and the HINT intercepts all data base requests and forwards them

to the TWIN for processing.

When the data base is closed, the HINT issues a DISCONNECT request to the

message system to release the TWIN.

Host Network Resource Controller (HNRC)

The HNRC is responsible for connecting and disconnecting an application program

(via HINT) and a TWIN. The HNRC functions are:

" to assign a unique ID to a HINT at connect time

" to communicate with the BENRC to establish a TWIN on the PDP

" to notify the HINT of the corresponding TWIN ID

• to receive FINISH requests from HINT

" to manage a table of active run units

" to sense abnormal termination of application programs and inform the

Message System

. to provide operator communications

The HNRC contains a separately assembled table to establish correspondence between

subschema names and BENRC ID's. New subschemas require that an entry be assembled

in this table.

Message System (MS)

The MS provides a message-based communications facility between any two pro-

cessors in a network connected by various copies of the MS. The functions of the MS

are:

1. To provide synchronization between tasks as well as between processors

2. To provide a message exchange system between tasks through which both data

and control information can pass

19

"I
* 4 -t-

3. To handle buffer management in both the host and back-end processor

4. To isolate the application program interface and the DBMS tasks from any

knowledge of the physical location of the others, i.e., whether the host and back-end

are connected locally or remotely

5. To provide a well-defined interface (the CALL statement) to both the inter-

face and the DBMS task

The MS is modular and hierarchical to permit easy adaptation to most operating

and teleprocessing system environments.

A task may be connected to several other tasks concurrently. Each connection

is made through a different "port" (p) of the task (t) running on a machine (m)

within a cluster (c) of machines. A cluster is a logical grouping of machines and

could, for example, conveniently identify a particular site. The complete ID of a

particular port of a running task is of the form c.m.t.p. Before a message can be

sent to another task, the ID (c.m.t.p.) of that task must be known. A "well known

port" is the ID of a task that is fixed and known to all other tasks. The network

resource controllers (HNRC and BENRC) are such tasks and can communicate with each

other to assign ID's to the application programs and TWIN's so that they may

communicate. A "well known port" must not remain connected to any task since it must

be available to all tasks in the network.

The MS supports four basic °/0 functions that permit bi-directional communica-

tion between the DBMS and the remote user on the host. These functions and their

descriptions are:

1. Connect Function - establishes a logical connection between a dedicated

TWIN and a remote task on the host system. An optional feature is to exchange

command and/or data messages when the connection has been established.

2. Disconnect Function - terminates a logical connection between two tasks.

The task in question must previously have been successfully connected.

3. Send Function - transmits an (optional) command message and/or an (optional)

text message to another task. The receiving task must have been previously

connected. Messages are limited to 0-65535 bytes.

4. Receive Function - accepts a message from another task. The message may

consist of an optional command message and an optional text message. The two tasks

IL
....* - . "" -

must have been previously connected. The command message must be in the range from

0 to 128 bytes. A text message must be within the range from 0 to 65535 bytes. If

either of the buffers is too small to contain the transmitted message, an appropri-

ate error message is returned to the sender.

Back-End Network Resource Control (BENRC)

The BENRC is constantly ready to receive messages from remote NRC's and performs

the following functions:

. Receives a host NRC request to assign a TWIN task for back-end data base

access.

. Assigns a TWIN task and updates a common data area for that TWIN, giving

it the Task-ID of the host application.

. Activates the TWIN task.

. Sends a message to the host NRC informing it of the ID of the TWIN task.

TWIN Task

TWIN tasks are allocated by the BENRC at run time. Each application task on a

host communicates with its own TWIN on a one-to-one basis. The application task

issues DML commands, which are packaged into a message by the host interface,

transmitted by the message system, and converted to a DBMS call by the TWIN:

. Characters are converted from EBCDIC to ASCII by the TWIN

. The DML command is executed by the DBMS.

. Characters are converted from ASCII to EBCDIC by the TWIN.

. Results are packaged into a message by the TWIN and transmitted by the

message system to the application interface which places them appropriately in the

application program.

Data Base Management System
The data base management system used in the back-end system adheres to the

recommendations of the Data Base Task Group (DBTG) of the Conference on Data Systems

Languages (CODASYL).

21

A41

The data base system comprises a number f components, all of which execute on

the PDP 11/70 back-end processor. No portion of the DBMS or its utilities currently

executes on the IBM host. Included in the DBMS are:

. data description language (DDL) compilers for describing the data and its

inter-relationships,

. data manipulation language (DML) compilers to connect CCBOL and FORTRAN

syntax extensions into data base calls,

• a data base control system (DBCS) for run time control of and access to the

data base,

. a device/media control language (DMCC) to allow the data base administrator

to describe the configuration of the data base, and

. a comprehensive set of utilities for maintenance and control of the data

base.

The following paragraphs describe each of these components in more detail.

Data Description Languages (DDL). Two DDL compilers are provided for describing the

data base. The first, the SCHEMA compiler, provides a means for describing the total

data base. The SCHEMA includes all the data elements and records and describes the

inter-relationships. The SCHEMA compiler stores the description in a data dictionary

for later reference.

The SUBSCHEMA compiler provides a means of limiting access to the data base.

The SUBSCHEMA describes a particular application's view of the data base. This view

is a subset of the SCHEMA description. A SUBSCHEMA description includes data

element, record, and relationship descriptions as well as access rights information.

All user requests to the data base are checked against the SUBSCHEMA for validity.

The SUBSCHEMA compiler places a copy of the SUBSCHEMA definition in the data

dictionary and produces a module to be used by the DBCS in locating/verifying data

base accesses.

Data Manipulation Language (DML). The version of the DBMS used in the back-end

system supports one DML COBOL. The DML is a series of syntax extensions to COBOL

which allow manipulation of the data and the relationships in the data base. The

types of extensions fall into three categories: retrieval, control, and

22

modification. The retrieval extensions provide COBOL verbs for locating and obtain-

information in the data base. Control extensions provide a means for specifying

SUBSCHEMAS, opening/closing the data base, and checking data relationships. Modifi-

cation extentions provide the facility to extend, modify, and erase the data base.

The COBOL DML compiler works on standard COBOL program source files. It pro-

duces two output files: an error listing, and a new COBOL source file with the DML

syntax converted to external call statements. This latter file is then compiled

using a standard COBOL compiler.

Device/Media Control Language (DMCL). The DMCL compiler gives the data base admin-

istrator control over the configuration of the data base system. Using the DMCL,

the data base administrator may declare portions of the data base on-line or

off-line. Thus sensitive portions of the data base may be dismounted and kept

physically secure until needed. The DMCL also allows the specification of

"journaling", the logging of update transactions for recovery purposes. If

journaling is specified, it may be turned off at run time, but it can be used only

if actually specified.

The DMCL tables may also be used as a data base cache. Pages from the data base

are stored in buffers in the DMCL module and are kept in memory as long as possible.

When the buffer pool fills up, pages are written back out to the data base using a

least-recently-used algorithm.

The DMCL compiler accepts one specification file as input and produces a

module to be used by the DBCS. A copy of the DMCL specification is also written

into the data dictionary.

Data Base Control System (DBCS). The DBCS performs the run time processing for the

data base system. It is responsible for locating information within the data base

and transferring the appropriate data to the user. In addition, the DBCS verifies

access rights for each user from the user's SUBSCHEMA module.

23

23

4 - -. -

Utility Programs. The DBMS provides a set of utility programs that allow the data

base administrator to monitor and maintain the data base. The more important utility

programs are:

Initialize - initializes the data base; it can initialize the entire data base

or a specified portion. It can also be used to initialize the data dictionary.

DUMP - copies all or specified portions to a sequential device. It also

provides statistics about the areas copied including a list of record types found,

number of record occurrences, and total space occupied.

RESTORE - restores the data base using a DUMP produced by the preceding utility.

Roll Forward/Roll Back - modify the data base according to the journal tape.

The roll back utility will restore data modified while journaling is enabled. The

roll forward utility will restore a data base to a known state by re-applying changes

made while journaling is enabled.

Incorrect page fixer - allows direct modification of data base pages. It is

useful for recovering corrupted data bases.

Data Dictionary Report - produces a variety of reports from the data

dictionary. Reports include record description, relationship description, SUBSCHEMA

listing, and DMCL listings.

Data base operator - used for starting/stopping data base operation and

specifying which DMCL module to use. Journaling may be turned on/off using DBO.

BACK-END SYSTEM LOGIC

CONNECTIVITY AND ROUTING

The message system is a multithread, multiline connection based system. This

means that one or more tasks in one machine may send messages to one or more tasks

in other machines over one or more physical lines. In the simplest case a task

(application program) is simply connected to a task (TWIN) on another machine via

one physical line. In the general case, however, a task may be connected to any

number of tasks or ports within a task (up to 256 of each).

The connection ID, in the form c.m.t.p. (cluster, machine, task, port), is the

mechanism by which the message system delivers messages to the appropriate receiver.

A connection may be either inter- or intra-computer. The message system routes

24

OWN

outgoing messages, as a series of one or more packets, to the correct physical line

for inter-computer messages and to the incoming queue for intra-computer messages.

The message system transmits messages to remote stations as a series of packets. A

packet is a unit of transmission up to a fixed size. This technique allows the

transmission of long messages, which may exceed the handling capacity of the remote

station, in a series of manageable units. The format of a packet is shown in

Figure 9.

TRANSMISSION PACKET '
7 BYTES 5 BYTES

I I

SEQ M_____ 14 w
HEADER ICONTR INFORMATION '1 LU t : I

zz x WX C.) LI IE RTOO
Ca~~ CA_ LINE PROTOCOL

n CIMITIP CIMITIP
MESSAGE PROTOCOL

> CONTROL TO_ID FROM ID 00 0 MESSAGE INFORMATION

MESSAGE PROTOCOL MESSAGE
12 BYTES INFORMATION(-

128 BYTES
MAX IMUM

Figure 9 - Packet Format

Routing is controlled by use of the concept of the logical line. A logical

line is a design convenience and has no physical counterpart. It is a nodal point

25

where host (machine running this copy of the message system) information meant for

one-to-many remote stations converges and then diverges to one-to-many physical

lines. Logical lines are governed by the following rules:

I. At any given time, a remote station can be serviced by only one logical

line.

2. A remote station may be rerouted to an alternate logical line, but still can

be serviced by only one logical line.

3. A logical line can service one-to-many remote stations.

4. A logical line can be serviced by one-to-many physical lines.

Rules 1, 2, and 4 state that, although there is only one path to a remote station,

that path may consist of one or more physical lines. Rule 3 states that messages

for more than one remote station may use the same logical line. By this means

messages can be forwarded to remote stations which are not directly connected to

the host.

Routing is implemented by a series of tables interconnected by queues. These

tables are:

Remote Station Table - description of a remote station

Logical Line Table - description of a logical line

Physical Line Table - description of a physical connection between this host

and a remote station. This table also describes the physical line to the scheduler

Host Table - description of the host and its cluster.

Within the message system one logical line is predefined as the intra-machine

communications path (logical line zero). A process that acts as a line driver for

the internal data path transfers outgoing packets to the incoming queues.

MESSAGE SYSTEM COMPONENTS

The message system is composed of five logical components: message subsystem,

operator interface, packet subsystem, line protocol subsystem, and line drivers.

The functions of the subsystems are:

*Message Subsystem

• Processes messages concurrently in a multiprogramming environment.

26

-i
1 ,

" Interface to local operating system

" Divides messages into fixed length packets for sending

" Reassembles received packets into messages for local receivers

• Maintains current status of message (start, receiving, sending,

waiting, done)

* Maintains connection status

Operator Interface

• Accepts and validates network description from operator

" Invokes message subsystem and line driver on operator request

• Sends compressed network description to message system

• Activates system and logical lines on operator request

" Deactivates system and components on operator request

• Requests gathering of statistics

" Reports statistics gathered

Packet Subsystem

. Manages buffers

. Maintairs all queues

. Appends/interprets MS system protocol

* Distributes packets to line protocol processors for sending

. Receives packets from line, queueing them for MS subsystem processing

Line Protocol Sybsystem

. Composes/interprets appropriate line protocol appended to the packet.

. Protocols supported

* BISYNC

o Supervises line mode

• HALF-DUPLEX

. FULL-DUPLEX

*. Line Driver Subsystem

* Line drivers for the specific hardware which drives the line.

• DQ 11 SYNCHRONOUS INTERFACE

27

6L

IMPLEMENTATION ON THE PDP 11/70

Message System

The back-end (BE) message system (MS) is the communications interface that

controls the routing of user commands and/or data messages to its subsystem software

components (either the data base management system (DBMS) or an associated line

driver). The MS implementation being described runs on a Digital Equipment

Corporation (DEC) PDP 11/70 minicomputer, under an IAS operating systems environment.

Communications between the MS and its subsystem software are implemented by the queue

input/output (QIO) IAS directive. When a user task (on the PDP 11/70 issues a QIO

directive, an I/O request for the indicated device is placed in an IAS queue in

priority order for that device. The MS is regarded as a single device and is

addressed as a logical device. When a given text and/or command message enters the

message system, intermediate processing in addition to routing to its designated

TWIN (on input of a DBMS function) or the associated line driver (on output) begins.

Scheduler

It is the scheduler that enables the system to process a message in an event

driven environment (processing procedures are invoked only when necessary). All

processes of the message subsystem, packet subsystem, and line driver are monitored

through the scheduler, all processes return to it, and it is the module that exits

to the operating system on a WAIT (wait on interrupt during idle periods).

The scheduler is driven from a double-ended queue. Each entry in the queue is

a packet allocated (or rather, pre-allocated) from the packet buffer pool. Each

entry is structured with the scheduler control information followed by a stack/

register storage area and finally, the particular table driven procedural processes.

All processes monitored by the scheduler are re-entrant. Rather than thinking

of the scheduler as monitoring "programs" or "procedures", it is better to regard it

as monitoring physical lines, logical lines, data movers, etc., which require ser-

vicing by means of processes. Therefore, the particular table mentioned is one

describing the characteristics and addresses of physical lines, logical lines, data

" I movers, etc. (In general, these are called processes.) The characteristics of the

.2

I

i 28,

.4'
-~t,

physical lines are supplied by the computer operator at systems initialization time,

or by the human operator of the BE via the message system operator (MSO) module at

run time. Logical lines are established and maintained by the remote user on

connection to a TWIN via the connect function.

Once a text message or command packet enters the MS, it is placed in a start

queue, and the corresponding event flag is set. When the scheduler detects the pre-

sence of the message/command packet, evokes the corresponding procedure. The text

packet and/or command then undergoes a series of intermediate processing steps. Each

process performs a specific function, and then removes the packet from one queue,

places it in another, and sets the corresponding event flag. When the scheduler is

reactivated, it detects the presence of a significant event (queue entry flag set)

and evokes the corresponding process.

Nine processes are hard coded into the scheduler's process control logic. Each

process performs a specific function on the message packet en route to the DBMS via

the line driver or from the DBMS to the line driver. The nine queues that correspond

to the hard coded processes are in order of priority:

QUEUE COMMENTS

1. MP.QIO Gets a QIO node from IAS

2. MP.SRT Gets a QIO node moving through the system

3. MP.IC Entry processing queue for incoming commands

4. MP.IN Entry processing queue for incoming text packets

5. MP.OUT Entry processing queue for outgoing text packets

6. MP.DON Entry processing queue for transmitted packets via

QIO exiting the system

7. PLZERO Entry processing queue for internal physical line

initialization

8. MP.GARG Entry processing queue for unrecognized incoming packets

(not fully implemented)

9. MP.CTL Entry processing queue for operator control

Each process exits to the scheduler for additional processing in these process

control queues.

29

'-

Call Node Queues

A pool of nodes is maintained for various queues which monitor a call to the

MS. These queues are distinct from the message queues which are processed by the

MS. They are referred to as CallNode_Queues* which contain nodes that are different

from and smaller than PacketNodes. The important difference is that CallNodes

contain information about the message, whereas Packet Nodes contain the actual

message. Five queues are concerned with the state of messages. Each queue holds all

message calls for a certain state and provides data for the particular process that

advances the message call to the next state. These queues are briefly described as

follows:

1. Operating System Queue - the data structure monitored by the MS and

maintained by the local operating system. All calls to the MS are obtained from

this queue.

2. MSStartQue - the queue that contains message system calls for a receive

or send function. The appropriate event flag is set if this queue is empty when a

send or receive enters the MS. This queue starts a message through the MS.

3. MSWaitQue - the queue which contains message call for a send or receive

that is not currently in progress.

4. MSRCVQue - the queue of MS calls actively receiving an incoming message.

5. MSSendQue - the queue of MS calls actively sending a text message.

Internal Message Routing Processes

Message System Queue Input/Output (MS.QIO) Process. This process takes I/O request

nodes from the IAS operating system and starts them through the MS. The preliminary

processing performed by this process includes QIO function verification, call node

initialization and allocation, and message routing verification (verifies the

existence of a logical connection). The process determines the function type and

places the call node on the appropriate queue (send or receive). It also places a

copy of the call node on the MSStartQue. The MS.QIO process has the highest

priority of all those hard coded into the scheduler.

*The single underline, is a legitimate COBOL character which is used as a

spacing character.

30

ILA Ii

Message System Text Start (MS.SRT) Process. This process dispatches the QIO call

nodes to the appropriate processor. Its main function is to enable the system to

queue send, receive and connect messages. This process has the second highest

priority of those hard coded into the scheduler.

Message System Incoming (MS.IC) Process. This process determines whether a connec-

tion exists between the command TO-ID and FROM-ID. If a connection does not exist,

this process delays the message. If the command is for a send or receive request

and a matching QIO exists for the call node, the process dispatches it to the appro-

priate processor. If a QIO does not exist for the call node, the message is delayed

until the required QIO is available. This pi.cess controls the synchronization

between command sending and receiving tasks and has the third highest priority of

those hard coded into the scheduler.

Message System Incoming Message (MS.IN) Process. This process handles the reassembly

of fragmented text messages from receive packets into the user area provided by the

connected TWIN. It works with text packets only, never with command messages which

are handled by MS.IC (see preceding section).

This process obtains the text to be reassembled via the INTEXTQUE. The

INTEXT_Q1M is a queue of all incoming text packets. When this process is evoked,

it verlfi-s that there is a host task port (a previously established connection)

currently rezeiving a message in the MS_RCVQUE. If there is no receiving message

request, then the packet is unknown and is placed in the INSPOOLQUE (queue of all

unknown packets). If there is a receiving message in the INRCVQUE, then MS.IN

copies the text from the packet to the user's buffer area. Upon completion of a

text transfer, this process frees the packets from the INTEXTQUE and the associated

call node and moves the message to the MS_DONEQUE. This process has the fourth

priority of those hard coded into the scheduler.

Message System Outgoing Message (MS.OUT) Process. This process forms a user message

into a packet(s) and queues the packets for transmission. This process works only

with text packets, never with command packets which are handled via MS.IC (see

previous section).

31

4. -. -

Each logical line (refer to section entitled CONNECTIVITY AND ROUTING) is

limited in the number of packet buffers that may be assigned to it to prevent the

entire buffer resource being used by one line and one large user buffer. When the

number of buffers allowed for a logical line is reached, this process delays further

processing of that user buffer. As packets are transmitted for a delayed line, this

process converts more packets for a given user buffer. This process continues until

all of the text from a given user's buffer has been placed in packets. Then the

message entry is moved to the MSDONEQUE.

Message System Done (MS.DON) Process. This process completes processing of QIOs

which have been queued for transmission (fully processed by MS processes), including

both messages which have been successfully completed and those which have been pro-

cessed to an error state. This process is activated whenever a call node is placed

on the MSDONEQUE. It removes QIO call nodes and performs the final processing of

the messages, the type of processing done being determined by the message function

code. It issues an I/0 DONE when final processing is complete. In addition, it

will queue aborted packets for eventual transmission, where indicated. This process

has the fifth priority of those hard coded into the scheduler.

Physical Line Initialization (PL.INIT) Process. This process reserves logical line

zero in all systems for the tasks residing in a given machine, enabling tasks to

communicate within the same machine. This process is evoked whenever a text message

is placed on an output queue directed to logical line zero. It takes such messages

and transfers them to the incoming queues. The scheduler is, in turn, alerted to

the presence of an incoming message and repeats all active processes to complete

processing of an incoming packet. This process ensures, in most cases, that one pass

through the MS will suffice in transferring messages from one port to another, except

when the receiving task is not resident at that time.

Operator Interface

The functions of the message system operator (MSO) are to:

1. Define the communication network available to the message system.

32

.-- , ---

2. Initiate the process to terminate execution of the message system (MS),

Line Driver (DQ....), and Twin Allocation (NRC) tasks.

3. Request snap shot dumps of selected tables in the message system.

These functions are performed using the following nine commands in MSO:

Define - Define a network element

Link - Define the linkage of network elements

Enable - Request staitup of a physical line

Run - Request execution of a handler (MS or DQ)

Stop - Unload a handler

Dump - Perform a snap dump of a portion of the message system tables

AWKP - Initiate the TWIN Allocation task

DWKP - Disable allocation of additional TWIN tasks

ABRT - Abort all existing TWIN tasks

Back-End Network Resource Controller

The BENRC performs several functions concerned with network resources:

1. It coordinates with the host NRC to allocate resources which are Back-End

Tasks (BET's) or TWIN's (refer to page 34).

2. It controls the BET's in that the BENRC starts them and, in the event of

an operator ABORT directive, stops them.

3. It reports the status of all back-end network resources to the operator

on request.

The BENRC runs as a real-time task under the IAS/RSX-ll operating system and

consequently may be resident for only short bursts of processing. These bursts are

initiated by the message system. When NRC begins processing, it immediately issues

a RCVD$ IAS directive to receive any waiting data. The first word of the received

buffer indicates the function to be performed.

AWKP: Causes NRC to identify the buffer as a well-known PORT.

DWKP: Causes NRC to terminate the buffer well-known PORT.

ABRT: Causes NRC to abort all currently active BET's and to terminate itself

as a well-known task.

DACT: Causes NRC to pass current back-end network status on to the unit.

33

.1

Data waiting for the RCVD$ IAS directive contains a minus one in the first word

and is assumed to be a message from the message system indicating that a CONNECT has

been issued for the NRC from some host NRC. The BENRC then issues a QIO$ directive

to the message system (MS) unit for a receive. The message received must be an

"ALLOCATE BET" request from the host NRC. The BENRC then finds the first available

TWIN and issues a RQST$ IAS directive to run it. The BENRC then constructs a BET

ALLOCATED message for the host NRC and issues a QIO$ IAS directive to the MS unit

to send the message. The BENRC then issues a QIO$ to the MS unit to disconnect from

the host NRC and exits.

TWIN

The BE TWIN performs the actual data base calls for the user program on the

host. The TWIN is started by the BENRC task but is responsible for establishing

communication with the user task in the host. On startup, the TWIN inspects its

entry in the SGA call TWINST. The entry contains both the task identification that

the TWIN is to use when referring to itself and the task ID of the user task on the

host machine. The TWIN uses these values to issue a QIO$ to the message system (MS)

logical unit to attach to the user task. When this is complete, the TWIN issues a

QIO$ to the MS unit for a RECEIVE.

The TWIN waits for the RECEIVE to be satisfied. When the message arrives, the

function code in the first byte is used to access the processing control table entry

for the Data Manipulation Language (DML) command. The processing table directs the

construction of the DML call from the rest of the received message, and the DML call

is executed. A response message is then constructed (still under the auspices of

the processing table). At this point, the TWIN is ready to issue a SEND directive

to the message system. The TWIN issues the QIO$ to the MS unit to send the response

iL has constructed. The TWIN now restarts the processing loop by waiting for the

receive to be completed, etc.

There are oniy two ways to exit from the loop. The first occurs when the

received command is the DML FINISH command. In this case, the response is sent

* without the preceding RECEIVE being issued and the SEND is followed by a DETACH

(DISCONNECT) and exit. The second way out of the loop occurs whenever a message

system directive returns an error code after completion. In this case, DETACH and

EXIT are executed to clear the task.

34

4V

TEST PROGRAMS

Three test programs and two different data bases were used in the tests. These

programs exercised all the functional capabilities of the DBMS but did not test every

possible command. For example, only six of the possible 27 FIND/OBTAIN DML verbs

were used.

The first and primary test program was a customer order program that added new

records to the data base and then processed the linked records in order and displayed

them. This program had enough data to allow multiple areas to be examined in one

run.

The other two programs used an airline reservation data base. One program

added flights and the other connected the flights to cities.

These three programs provided an adequate base to test the back-end software

for all allowable input. No processing of data was done by any of the programs, and

the elapsed time was spent primarily in processing DML verbs.

PERFORMANCE MEASURE METHODOLOGY

The host/back-end software is symmetric: application program, HINT, message

system, and line driver on the host; and line driver, message system, TWIN, and DBMS

on the back-end. Therefore, the back-end was chosen as the primary test site

because it is a stand-alone system and any test modifications would not impact other

users. Also system statistics available on the IBM would give sufficient data if a

problem developed there.

The parameter of critical importance was time. If the back-end could reduce

CPU time on the host and not add too much elapsed time, the concept would be

validated. It was apparent from the start that elapsed time was excessive and that

it was necessary to determine whether the time was uniformly distributed and irre-

ducible or whether enhancements/modifications could make significant improvements.

Of the three software components on the back-end (message system, TWIN, and

DBMS) the TWIN and DBMS were excluded from detailed testing--the TWIN due to its

simplicity and the DBMS because existing test results had shown it to be capable of

between 10 and 60 "CALC's" (calculation of data base address and retrieval) per

second. Thus the message system was the only unknown, and it was therefore subjected

to intensive testing.

35

1.i

St ,~ -..

Several testing tools were already available on both the host and the back-end.

These and a back-end message system histogram were used to identify any bottlenecks

on the back-end side. The difficulty with this approach was that the analyst had to

coordinate four separate lists of test data. Figure 10 shows the various zones

tested.

POP 11/70 BACK END IBM 370 HOST

SYSTEM DRIVER DRIVER SYSTEM t- PROGRAM

MESSAGE LOG LAR

LAR-TIME MESSAGE SENT TO ANSWER RECEIVED.
-TIME MESSAGE RECEIVED UNTIL NEXT MESSAGE.

MESSAGE LOG-TIME DML VERB RECEIVED.

MESSAGE TRACE-TIME EACH MESSAGE SENT/RECEIVED.

HISTOGRAM-TIME SPENT IN EACH QUEUE IN MESSAGE
SYSTEM.

Figure 10 - Test Timing Zones

MESSAGE TRANSMISSION/RECEPTION LOGGING

The IBM Line Activity Recorder (LAR) is a general purpose utility that permits

external monitoring of a communications link. This utility permitted time stamping

of all incoming and outgoing messages in units of microseconds, although this

36

'-1

precision was greater than needed, since the PDP clock has a resolution of only one

sixtieth of a second. The LAR can measure on either side, and thus the total time

of the application program, HINT, and host message system was measured as was that

of the host line driver, communications channel, and all back-end software.

The back-end message system provided two traces: a time stamp (hour, minute,

second) and number of each received DML verb, and a listing of each transmitted and

received message (including idle packets). The time stamp provided the time between

DML verbs and reflected the time spent in all components of both the host and the

back-end.

These transmission logging tools, which already existed, indicated the time used

by several components on one machine or the other but did not isolate any component.

TIME TAGGING STRATEGY

To obtain a reasonable approximation of the throughput and performance figures

of the message systems, a sufficient number of timing samples had to be obtained on

well defined I/0 paths. To accomplish this, the various I/O paths were first defined

and then a common measure of elapsed time (centi-second, clock tick (1/60th of a

second), etc.) was developed. In addition, data structures for statistical data

were maintained.

Performance and throughput measurement statistics were obtained from the

back-end message system and stored in a local histogram. This histogram contained

data extracted from timing samples obtained from the internal message system activity

(input and output of commands/data).

The performance logic enabled us to view isolated elapsed times spent in various

queues in route to DBMS (input) or to the line driver (output). In addition to the

histogram, the following performance variables were maintained:

(TDELTA is the difference between the message origin time and the message

transmission/receive time)

Total Elapsed Time - The total time spent collecting data for a given monitoring

session (expressed in wall clock unit of measure).

Total Number of Samples - The total number of messages received.

Minimum TDELTA - The lowest TDELTA computed for a given monitoring session.

37

.. _ .-- --..-- - ,;-.

Maximum TDELTA - The largest TDELTA computed for a given monitoring session.

TDELTA Overflow - The total number of times that the specified upper limit was

exceeded.

TDELTA Underflow - The total number of times that a negative result was obtained

from a TDELTA computation.

Scaled TDELTA Range Accumulator (Histogram) - The dynamic range of scaled TDELTA

values for a monitoring session (from 0 to 2.8 seconds).

For the purpose of simplicity, the systems clock was used to provide a source

for time tagging of message system nodes, but conform to existing conventions, all

TDELTA values were expressed in centi-seconds. In addition, all MS call nodes

included space for time stamps, which were posted whenever an incoming or outgoing

message was transferred from one intermediate processing stage to another.

Since there were two transmission paths within the message system, provisions

were made to collect performance data in both directions. To obtain the most reason-

able approximation of the total systems message throughput, all variables had to be

considered, which meant that even the abnormal or invalid message handling paths had

to be included in the overall systems timing analysis.

TESTING STRATEGY

Parameters external to the executing code were varied to determine their effect

on throughput. Parameters considered were load on the host, line speed, and number

of DBMS users. The first two affected minimum response time, and the third the

amount of host resources that could be saved.

Loaded Host versus Unloaded Host

The tests were conducted twice daily to observe the relationship between the

system's state (loaded or unloaded) and performance figures. Approximately half the

test was conducted before seven o'clock in the morning with an unloaded host and the

other half at mid-afternoon with a fully loaded host. All tests were run with a

dedicated back-end machine.

38

4800 versus 9600 Baud Line Speed

The communications line speed was varied to note the effects of line speed on

the throughput rate. The line speed variation was run on both a loaded and unloaded

host. Because of the hardware configuration (one dialup 4800 baud modem and one

dedicated 9600 baud modem), speed variation was very limited.

Single User versus Multiple Users

An attempt was made to collect performance data on both single user and multiple

user jobs. These tests were unsuccessful because of a software problem in the host

system.

Stand-Alone

Two tests were run on the IBM, using the same DBMS without the back-end. These

tests were designed to show the difference in the required resources of the two

modes; stand-alone and back-end.

TEST ENVIRONMENT

Whenever a test was to be run, one person was required to be present at each

site. This was a minor inconvenience and to be expected on a prototype system.

However, a production system should not expect anything of the programmer except

instructions. This is not a minor problem and its correction would greatly simplify

the running procedures.

PERFORMANCE MEASUREMENT RESULTS

Since the test results from the three programs showed a high degree of uniform-

ity, no distinction as to program is made in the reported results. The test results

are shown in one of three forms:

Exact - results as they were printed with no editing (one test run),

- • Extract - results edited to discard all unnecessary and confusing data but

. shown in the sequence printed (one test run),

. Summary - totals and averages of results from specified test areas of

all runs.

39

* 4 - - - -~.. -* . --- - - ------ 3W--

ah

For the specific (exact and extract) results a portion of one test run was chosen

(24 April), the run with the fastest response per DML verb. The same portion is

shown for PDP message logging, PDP message trace, and IBM LAR. The DML verb numbers

used by the programs are defined in Table 1.

TABLE I - DEFINITION OF TESTED VERBS

DML Verb Number Syntax

2 Close all areas

10 Find next Record-Name Record of Set-Name Set

11 Find next R-N Record of A-N Area

19 Find first R-N Record of A-N Area

31 Find Owner Record of Set-Name Set

32 Find Record-Name Record

36 Open Area A-N Usage-Mode is update

41 Open area A-N Usage-Mode is exclusive update

42 Store Record-Name Record

43 Obtain (any find format)

44 Insert R-N Record into S-N Set

48 Bind R-N Record

59 Bind currency for subschema name

Fifteen test runs were made on the host and back-end machines and two on the

host stand-alone.

PDP MESSAGE LOGGING

The time at which a packet containing a DML verb is released to the message

. system and the number of the verb are shown in Figure 11. The tabulation of data

extracted from the message logging for selected runs is shown in Table 2 and

summarized for all runs in Table 3.

40*1

I

07:06:18 TUt41O - FUNCTION - 10 0000000
07:06:20 TWN101 - FUNCTION - 43 0000000
07:06:23 TUN101 -- FUNCTION a 31 0000000
07:06:25 TWN1I01 - FUNCTION a 43.000000t
07:06:29 TWN101 FUNCTION = 10 0502100
07:06:31 TUN101 -- FUNCTION = 10 0502100
07:06:33 TWN101 - FUNCTION a 11 0000000
07:06:35 TUN101 - FUNCTION a 19 0000000
07:06:38 TUNI01 -- FUNCTION - 43 0000000

Figure 11 - Sample PDP Message Logging

TABLE 2 - SELECTED PDP MESSAGE LOGGING

Number of ET MIN MAXDate Run Functions (M.S.) (sec) (sec) SEC/FUN BAUD

4/24 598 27.37 2 5 2.775 4800

5/1 598 30.45 2 8 3.090 4800

5/4 598 29.54 2 6 3.005 9600

5/10 598 30.18 2 5 3.045 9600

5/23 284 14.19 2 5 3.035 4800

6/1 284 14.32 2 4 3.081 4800

TABLE 3 - PDP MESSAGE LOGGING AVERAGES

4700(11) 9600(4)

Mn - 2 2

Max - 8 7

T # functions - 3733 1860

T ET 11,349 5977

T Sec/function - 3.049 5977/1856-3.220

7L

2L

4u

2u

Hin Sec/f 2.775 3.005

Max Sec/f 3.366 3.599

#Runs Ii 4

41

1 .. ,

PDP MESSAGE TRACE

The first part of each packet, including idle packets, sent and received, by

the PDP was recorded. Figure 12 shows the partial packets and all of the idle

packets, and delineates the fields in the packets.

RND 2E 2C Se
RCV 2E SP 29 0t 06 O0
ANt 2E 2C SC
RCV 2F SR 2 01 06 00
D70 of Oft 00 O OA 00 00 02 O 0S 00 01 01 65 00 TO
SWO 2E 2C SC O OA 00 00 02 01 0S 00 01 01 S 600 re
ReV 2r Sr 2n 01 o 00 00 o 0 65 00 02 01 0S 00O A
AND 2E 2D SO
RCV 2E SC 29 00 07 00
&Nl 2F 2?) SD
PCV 2E SC 2F 00 07 00
DF0 00 00 00 01 O 00 00 02 01 0S 00 01 01 6S 00 T0
AND 2E 2D SO 01 OF 00 00 02 01 0S 00 01 01 65 00 P0
PCV 27 SD 2E 01 OC 00 00 01 01 65 00 02 01 OS 00 JR
34n 2E 2r SF
PCV 2F 5" 2F 01 03 00
SW 2F 2E SE
P(V 2E SD 2F 01 03 00
"to o0 o0 o0n 0 OC 00 00 02 01 OS 00 01 f 6S 00 O
SWn 2F 7F SE 01 OC O0 On 02 O 05 00 01 01 65 00 FO
PCV 2E SE 2701 O0 00 00 01 01 65 00 02 01 05 00 13
AWN 27 ?F SF
PCV 2r 5 30 01 09 00
SUB 27 7F SF
PCV 2E SE 30 01 09 00
DE0 00 000 0 01 OD 000 02 01 05 00 O 01 6S 00 PO
SWD 2t 2F Sr 010D0 00O002 01 0s 00 $1 6S 0 To
Rev? P SF %0 of or 00 SO *I01 0 s 0 0 81 0 no$a

Figure 12 - Sample PDP Message Trace

PDP SYSTEM HISTOGRAM

The histograms show the time spent by messages in the twelve message system

queues. The average number of seconds per queue for selected runs is given in Table

4 and the overall averages in Table 5. The percentage of queue elements processed

per time interval for selected test runs is given in Table 6 and the overall

* percentages in Table 7. The averages in Figure 12 and Table 4 are computed by

* dividing the total time all messages spent in a queue by the number of messages.

42

11

TABLE 4 - SELECTED AVERAGE QUEUE TIMES

(Seconds/Queue)

Queue 5/1 5/4 5/10 5/23 6/19600 Baud 9600 Baud 9600 Baud 4800 Baud 4800 Baud Total

ALLQUES .55833 .47849 .54023 .49139 .51044 .52952

MESQUES .46509 .46809 .44457 .46184

COMQUES .64387 .47019 .54932 .44050 .53142

MQSTART .45980 .52551 .44510 .45044 .46894

MQWAIT .52957 .46477 .44000 .44951 .45862

MK REC .47789 .44060 .55819 .48640

MQSEND .47277 .44839 .45388 .46310

MQDONE .47130 .43417 .45847

INDEL .46471 .44878 .43837 .45244

INSPOOL .54648 .54149 .45463 .44511 .49598

INWAIT .48210 .54073 .40000 .49715

INTEXT .47150 .55639 .49772

INCOM .46542 .54365 .50772

Total .51686 .49554 .50384 .44833 .45880 .49071

TABLE 5 - AVERAGE QUEUE TIMES

(Seconds/Queue)

Queue 4800 Baud 9600 Baud Total

ALLQUES .47967 .53186 .50162

MESQUES .45951 .46711 .46364

COMQUES .44278 .54482 .47088

MQSTART .44681 .48961 .46894

MQWAIT .45225 .47212 .46141

MQREC .47412 .47789 .47597

MQSEND .43681 .47277 .45227

MQDONE .41987 .47130 .44405

INDEL .44532 .46471 .45244

INSPOOL .45071 .54334 .49598

INWAIT .40000 .49862 .49715

INTEXT .48391 .49772 .49205
INCOM .43974 .50772 .47879

Total .45650 .50519 .47840

43

- - - - - . '" - -

00

0N -:r_ __

'07

-No 00 N '0

N tn

3U

-jdnL

44

C-,W

TABLE 7 - OVERALL PERCENTAGE OF QUEUE PROCESS TIME

Total No. 0.1 0.5 2.5

Queue of No. of Percentage No. of Percentage -No. of Percentage
Samples Samples Samples Samples

ALLQUES 11095 8831 79.594 937 8.455 1327 11.960

MESQUES 3174 2500 78.764 394 12.413 280 8.821

COMQUES 9860 7419 75.243 1141 11.572 1300 13.184

MQSTART 2924 2285 78.146 286 9.781 353 12.072

MQWAIT 2716 2120 78.055 310 11.413 286 10.530

MQREC 2302 1798 78.105 278 12.076 226 9.817

MQSEND 2068 1588 76.789 248 11.992 232 11.218

MQDONE 1757 1353 77.006 212 12.066 192 10.927

INDEL 2046 1568 76.637 244 11.925 234 11.436

INSPOOL 2044 1591 77.837 134 6.555 319 15.606

INWAIT 1477 1159 78.469 96 6.499 222 15.030

INTEXT 3349 2605 77.784 322 9.614 422 12.600

INCOM 2028 1567 1 77.268 166 1 8.185 295 1 14.546

Total 46840 36384 77.677 4768 10.179 5688 12.143

45

The percentages shown in Tables 6 and 7 are computed by dividing the number of

messages processed in a specified time interval (t<.l, .l<t'2.0, t>2.0) by the number

of messages. Table 7 shows the data clustered about three time values: 0.1, 0.6,

and 2.6 seconds. The samples at 0.1, 0.5, 0.6, and over 2.2 seconds represent all

but 165 samples out of 48,840 (99.648 percent).

IBM LINE ACTIVITY RECORDER

The data extracted from the LAR listings included the time a packet was trans-

mitted/received, the same part of the packet shown in the PDP message trace, and

whether it was an IBM read or write operation. In addition, the information

contained in each packet (except idle packets) is described. The LAP results are

shown in Table 8.

IBM SYSTEM STATISTICS

Any program (application or message system) that runs on the IBM produces as

part of its output a minimum set of system usage statistics. The exception (EXCP)

entry is the number of I/O operations. The data for the selected back-end runs are

shown in Table 9 and for the stand-alone runs in Table 10.

ANALYSIS OF RESULTS

The data gathered were sufficient to indicate generally where the critical

bottlenecks in the back-end system were. The results of the time and code analysis

are used to discuss the perceived benefits as stated in the Introduction.

TIMING ANALYSIS

Tables 2 and 3 (message logging) define the basic problem: each DML verb takes

three seconds to process. If the back-end is to be useful, this time must be

dramatically reduced.

The problem will be approached from both ends: host and back-end. Table 9

shows that, for the best case (lowest elapsed time/DML verb) on the host, two ACK

pairs are exchanged before the answer is sent in response to a DML verb. On

receiving a verb MSBYSN (the BSC code) immediately sends an acknowledgment to the

host. Thus the time between sending the verb and receiving the acknowledgment is

46

, , _-

TABLE 8 - LAR RESULTS

24 April 1979

LAR DATA

Time(07) Packet R/W4 ____ Packet Information

07:51.153 2E2755...FO R < ---- PDP ERROR STATUS

07:51.178 2E2728 ... OA (10) 14 ---- > FIND NEXT OF SET VERB
07:51..a11 2E5128 R < ----

07:51.628 2E5529 14 --- >
07:52.025 2E5529 R <--

07:53.042 2E5529 14 --

07:53.507 2E5529. ..FO R <-- ERROR STATUS

07:53.537 2E5629. .. .2B (43) W -- > OBTAIN VERB
07:53.970 2E2957 R < ----

07:53.983 2E562A 14 ---- >

07:54.380 2E2957 R < ----

07:55.395 2E562A W ---- >

07:55.871 2E2957. ...F2 R < ---- DATA RETURNED
07:55.885 2E572A IJ ---- >

07:56.342 2E2958. .. .FO R < ---- ERROR STATUS

07:56.370 2E582A. ... IF (31) 14 ---- > FIND OWNER OF SET VERB

07:56.803 2E2A59 R < ----

07:56.818 2E582B 14 ---- >

07:57.216 2E2A59 R < ----

07:58.235 2E582B 14 ---- >

07:58.699 2E2A59. .. .FO R < ---- ERROR STATUS

07:58.726 2E592B.....2B (43) 14 ---- > OBTAIN VERB
07:59.157 2E2B5A R < ----

07:59.172 2E592C 14 --- >

07:59.568 2E2B5A R <----

08:00.585 2E592C 14 -.--- >

08:01.069 2E2B5AF2 R < ---- DATA RETURNED

08:01.093 2E5A2C 14 ---- >

08:01.551 2E2B5BFO R < ---- ERROR STATUS

08:01.614 2E5B2C. .. .OA (10) 14 ---- > FIND NEXT OF SET VERB
08:02.047 2E2C5C R < ----

08:02.065 2E5B2D 4 -- >

08:02.462 2E2C5C R < ----

08:03.492 2E5B2) 14 --.-- >

08:03.957 2E2C5CFO R < ---- ERROR STATUS_

08:03.981 2E5C2DOA (10) 14 --- FIND NEXT OF SET VERB
08:04.415 2E2D5D R < ----

08:04.438 2E5C2E 14 --.-- >

08:04.834 2E2D5D R < ----

08:05.852 2E5C2E 14 ---- >

08:06.317 2E2D5D.. * FO R < ---- ERROR STATUS

08:06.368 2E5D2E..*.OB (11) 14 ---- > FIND NEXT OF AREA VERB

08:06.800 2E2E5E R < ----

08:07.832 2E5D2F 14 ---- >

08:07.229 2E2E5E R < ----
08:07.257 2E5D2F 14 ---- >

08:08.721 2E2E5EFO R < ---- ERROR STATUS

08:08.779 2E5E2F ...* 13 (19) 4 .---- > FIND FIRST OF AREA VERB

08:09.211 2E2F5F R < ----

08:09.224 2E5E30 14 --

08:09.620 2E2F5F R < ----

08:10.633 2E5E30.. 14 ..--- >

08:11.098 2E2F5F...FO R <---

08:11.135 2E5F30. ..2B (43) 14 >- OBTAIN VERB

47

jI

TABLE 9 - IBM STATISTICS FOR BACK-END

Date Programu ET CPU Core Core EXCP ET (MS) CPU (MS5)
II.M.S.MS H.M.S.MS (MS5) I(MS) H.M.S.MS H.M.S.MS

4/24 DMSUBS 0.27.50.95 0.0.03.45 44K 70K 12619 0.0.39.87 0.0.39.87

4/27 DMSUBS 0.36.39.80 0.0.04.17 44K 70K 2712 .0.51.06.21 0.0.52.21

5/1 DMSUBS 0.31.09.73 0.0.04.40 44K 70K 2656 0.57.17.20 0.0.59.16

5/4 DMSUBS 0.30.11.23 0.0.03.49 44K 70K 2342 0.35.2 6.05 0.0.36.30

*5/10 DMSUBS 0.43.01.63 0.0.03.60 44K 70K 2989 0.52.13.12 0.0.43.68

5/23 FLOAD 0.14.41.20 0.0.01.52 24K 70K 1715 0.36.39.90 0.0.33.30

6/1 FLOAD 0.14.56.18 0.0.01.36 24K 70K 1344 0.21.57.70 0.0.27.89

6/7 #I1 PLANE 0.06.24.11 0.0.00.61 24K 70K 1089 0.35.43.02 0.0.16.14

6/7 #t2 PLANE 0.18.09.12 0.0.00.03 26K 70K 934 0.18.15.82 0.0.14.83

TABLE 10 -IBM STATISTICS FOR STAND-ALONE

Date Program ET CPU Core Excp

I May DMSUBS 0.14.38.35 0.0.4.78 92K 276

3 May DMSUBS 0.15.47.36 0.0.4.30 92K 276

44

the time required to transmit forty characters (1/12 second at 4800 bps), thirty to

the PDP and ten in response, plus the time spent in the IBM line driver, plus the

time on the back-end, plus the time to turn the line around. The time between send-

ing the verb and receiving the acknowledgment is .433 + .0001 seconds from Table 8.

If we ignore the IBM line driver and assume 150 milliseconds line turn around time

(high for a local line), the back-end spends about .19 seconds receiving, identify-

ing, and acknowledging a DML verb. Since the verb has not been released to the

message system, only MSBYSN and the line driver are executing. This problem, which

is not a major one, will be examined in the next section on code analysis.

When a verb is received, the packet is split into a command packet and a text

packet. On their way to and from a TWIN these packets pass through the various

queues. Tables 4 and 5 show that a packet spends an average of almost half a second

in each queue, which suggests that the problem is evenly distributed throughout the

message system. Tables 6 and 7, however, show that the message system is capable of

processing the packets rapidly (77 percent in 0.1 second). The discrepancy between

the ability to process packets and the average time to process packets can be ex-

plained only by an asynchronous process interrupting the message system and thereby

freezing packets for a short time. This freezing of packets would explain the

clustering of queue times around 0.6 and 2.6 seconds. The only processes executing

when the message system is processing packets are the IAS operating system, MSBYSN,

and the line driver.

CODE EXA4INATION

Code examination began with MSBYSN and the line driver. MSBYSN analysis showed

two problem areas: protocol specification and interprocess communication.

The protocol, as specified and implemented, requires that an incoming message

is not to be released to the message system until an ACK is received from the host.

The sequence of actions is:

• DML verb received from host

* ACK sent to host

. ACK received from host

. packet containing DML verb released to the message system

49

This sequence forces a delay of about 0.4 second on the response time for each DML

verb. This delay is a serious problem and requires using a single input buffer in-

stead of a double buffer. Double buffering would release all valid packets immedi-

ately and save the 0.4 second delay time. The protocol will not allow command and

text packets to be transmitted together. Thus for an OBTAIN verb the error code

and the data are transmitted separately, separated by an ACK from the host. This

procedure is both time consuming (almost 0.5 second) and unnecessary. Integrating

the messages or having a full duplex protocol would solvc the problem.

MSBYSN communicates with three other tasks; the line driver, the message system,

and the message trace and logging print routine. Communication to/from the line

driver and the message system is by read/write IAS system directives, since the line

driver and message system are device handler tasks to IAS. Communication to the

trace and logging task is by send data/receive data IAS system directives an inter-

task communication facility. Use of this facility results in considerable overhead

for the simple transfer of data but is required by the size of the tasks. This

method of communication is not serious by itself, but will imp-t another area as

will be seen shortly.

Analysis of the line driver code revealed several problems, although none

critical. The problems are:

" the cyclic redundancy check is computed in software

" character stuffing is done in software

. the line driver handles both the DQ and DU synchronous device

It is clear from the second problem (character stuffing) that functions belonging in

MSBYSN are being performed in the line driver for convenience. This integration

instead of separation of functions makes changes (e.g., to a different device) much

more difficult.

The problems discussed so far do not account for all the time required to pro-

cess a DML verb. Examining the code did, however, show the size of the tasks and

indicated a generally critical problem area: size. Size includes partition size,

task size, and system size.

All the back-end software, except the IAS operating system, executes in one

partition, (A partition is a block of memory reserved at sysgen time). The DMBS,

'.50

tI-

TWIN, BENRC, and message system are all in the DBMS partition. It was because of

partition size that only one TWIN could be resident at a time. This limitation made

it impossible to test multiple jobs on the host.

An IAS handler is limited to a size of 24,576 bytes. The message subsystem

packet subsystem module had to use memory management to control two in-core overlays

because of the general purpose design of the message system and the memory constraint

of the IAS operating system.

The message system places a heavy intra-system data transportation burden on

the IAS operating system. The message system demands for buffers and nodes could be

solved by sysgening a larger system.

It is the author's opinion that the conflict for system resources caused by

these three size problems and their interaction constitutes the most important

back-end DBMS problem. The partition and system sizes are easy to change; the task

size limitation cannot be changed under IAS. Fortunately, changing the partition

and system sizes should resolve the problem, since there could then be no interaction

and the in-core overlays would not be a significant problem in themselves.

PROBLEM AREAS

Of the following several problems identified by the analysis, the first two are

the most serious:

* The protocol specification does not allow the DML verb to be released until

a succeeeding ACK/ACK pair is complete. It also will not allow command packets to

be sent with text packets. Use of one of the new full duplex protocols would solve

these problems.

• The partition size, task limit, and system size interact in a very

detrimental manner. Rebuilding the system would solve the size problem.

The CRC calculation now done in software should be done in hardware which

is about two orders of magnitude faster.

* Character stuffing is done in software and would not have to be done at all

if a new protocol were used.

* There was no clear division of functions. Part of the BSC protocol was done

in the line driver, which handled two different devices. The message and packet

51

---- V- . ._- "

subsystems were integrated into one module. New networking standards and implementa-

tions, however, have made use of the layered approach with well-defined interfaces

and separation of functions. This approach would make testing and modification much

easier.

The question naturally arises of the response time per DML verb if all the

problems were corrected. The answer is speculative. Sending 30 characters of result

using a full duplex protocol at 9600 bps would require 1/16 second. Adding about

1/5 second for the DBMS provides a basis for estimating. On the basis of these

figures the back-end should be able to respond to a DML verb in 1/2 to 3/4 second.

Although these figures are for a single user environment, increasing the number of

users would only incrementally increase the response time because the I/O time

needed to process additional verbs would be small.

BACK-END VERSUS STAND-ALONE

Tables 9 and 10 show quite clearly the differences in the two systems. A single

user back-end system is not as efficient in the use of memory and CPU time as a

stand-alone one. When two simultaneous tasks are performed, the back-end is more

efficient and becomes increasingly so for additional users.

The one area in which the stand-alone system is far superior is in the number

of I/O operations (EXCP's). This is an important area and the time used could be

reduced significantly on a back-end system by using a DBMS language more powerful

than CODASYL. This would force more work to the back-end, but would reduce CPU

time, EXCP's, and memory space on the host.

BENEFITS COMPARISON

The Introduction included a list of perceived benefits for the host when a

back-end system is added. These benefits can be described for the current test

back-end system and projected to that system with its problems resolved, as follows:

The amount of disk space used definitely goes down. The space needed for

addition of the message system is more than offset by the removal of the DBMS

software and data base.

52

*11
ilIi l k , , , , ., _. , . ,~

The CPU time and memory required to process concurrent jobs demands that

better performance be realized than when they are run separately. The use of a

powerful DBMS language to reduce I/0 operations would also reduce CPU time and

memory space.

• Data security was analyzed in an earlier section and the back-end was shown

to have muc superior capabilities.

" Removing the DBMS from the host makes them independent.

" The increased host utilization which was expected to occur by linking

several hosts was not explicitly tested. There was no evidence, however, that it

would not be realized.

Although a stand-alone system has, in most cases, a superior response time, a

back-end could, with the previously mentioned modifications and a more powerful DBMS

language, provide a response time that would be more than adequate for most

applications.

CONCLUSIONS AND RECOMMENDATIONS

This section will address the functions a production system should provide and

the design of that system. This test implementation demonstrated the feasibility of

the concept and will strongly influence the design of a production system. A

properly designed and implemented back-end system could play a significant role in

extending the useful life of existing machines and in fully utilizing existing

resources.

Since a Back-End Data Base Management System is intended to be coupled to one

or more existing machines, it is difficult to describe the best system configuration

in terms of either hardware or software. It will be assumed that there are few

system configuration constraints. The recommendations will therefore be oriented

toward an approach involving a powerful back-end system and addressing security and

off loading data management. The system will also have potential for multiple

connectivity, distributed data bases, and distributed processing. Although this

study did not investigate multiple connections, the potential for using them is

k *important and they should be allowed for.

53

- - - - . -

TESTING FUNCTIONS

It is important to be able to test and analyze the system both when it is

delivered and later when changes are to be made. The following test functions should

be available at delivery:

. A LAR-like facility to show packet arrival and transmit times.

. A vertical packet trace, i.e., a means of following a packet through the

system with time stamps at functional boundaries.

* A horizontal packet trace, i.e., a time trace of all packets during

processing by any function (equivalent to the histogram data used in this report).

. The ability to determine the time necessary to pass packets between functions

(e.g., the time to "write" a packet from MSBYSN to the message system).

* The ability to determine the CPU time used by any function.

. A means for recording any task swapping done by the operating system.

. A means for recording the number of times and by whom a task is interrupted,

and the duration of the interruption.

The time stamp should have a resolution of at least 10- 4 seconds. The test functions

should be easy to turn on or off, and the results should be printed in a readable

format.

BACK-END DBMS FUNCTIONS

The back-end should allow for three types of verbs: low level (such as

CODASYL), system library functions, and user defined functions. The low level pro-

vides the general capabilities upon which the other two types are constructed. The

system library allows general functions, such as query or multiple retrievals, to be

used by all application programs. These functions could be incorporated into the

preprocessor as English-like commands for easy use. The user functions are specific

to an application and are added to or deleted from a user library by the Data Base

Administrator. All library functions would execute on the back-end processor.

. The addition of the system and user function libraries is designed to push data

management functions onto the back-end. These functions require many calls to the

data base and, when executed on the back-end, result in a significant reduction in

data transmission, host I/0, and CPU times because the message system is called much

54

! " • l, - -- - -- -;,',

less frequently and fewer characters are transmitted between machines. This

arrangement reduces message processing and increases data management processing on

the back-end, which is exactly the trade-off desired.

Utilities should be provided that enable the addition/deletion of verb process-

ing routines to user and system libraries. The ability to easily modify the

preprocessor to accommodate new verbs should be required.

SYSTEM FUNCTIONS AND CHARACTERISTICS

The host/back-end system should be designed with the following system functions

and characteristics in mind:

. Full duplex DLC protocol.

. Implementation of functions in hardware that lend themselves to such

implementation, such as CRC calculation.

Hierarchical peer level implementation of the message system, i.e.,

hierarchial design on each machine with each level having a corresponding (or peer)

level on the other machine.

. Well documented and easy to use test functions.

. Implementation where possible of functions in dedicated CPU's. This approach

allows for expansion and updating as new technology becomes available. Dedicated

CPU's require little overhead for operating systems or task switching and provide

efficient concurrent processing.

. DBMS utilities to provide for maintenance and control of the data base..

. General purpose message system to handle future expansion and connectivity.

. The message system as an operating system utility and not as another user

program. The message system would be most efficiently implemented if designed from

the start as a privileged task.

A constantly running message system. It should be quiescent when no host

job is communicating with the back-end and should automatically restart on call by

an application program (for output) or the line driver (for input). The protocol

could allow an active line to be inactive for long periods of time.

55

_:,i;z

USER ENVIRONMENT

The back-end system must be transparent to a running application program to

allow conversion of existing programs with a minimum of effort. If the DBMS

utilities run on the host, then the program development cycle looks unchanged to the

user. There are some drawbacks, however:

" Precompilers must be developed for each type of host machine.

" The schema and subschemas must be kept on the host or transferred to the host

for each precompile. If kept on the host, they must be updated whenever they are

modified on the data base, which is obviously more complicated in a multiply-

connected system.

. Security is lessened.

. Only the DBMS is off-loaded from the host, which defeats one of the basic

objectives of the back-end approach.

If the DBMS utilities are not to be run on the host, they could be run on a system

with access to both the host and the data base. The concept of a Program

Development Machine (PDM) was developed for this purpose as a separate processor

that contains:

" a text editor

* FORTRAN and COBOL compilers

" a message system

" a rudimentary file transfer capability

With these capabilities a user can enter the program, precompile, compile and debug--

all on the same PDM. The precompiled FORTRAN/COBOL source can then be transferred

to the host for compilation and production runs. A prototype PDM configuration is

shown in Figure 13.

In addition to its benefits, the PDM approach has four obvious drawbacks:

. increased hardware costs

. increased software costs. The editor and compilers must be purchased and

the file transfer capability, using the message system, developed. If the PDM and

back-end are the same type of machine, the precompilers can be purchased.

* more is required of the user. No matter how easy it is to use, the machine

is different.

56

i!V

!I

- - -~ ----- ,.-...

HOST

TERINAS PD BACK END

Figure 13 - Back-End with Program Development Machine

• increased line use when the precompiled source is transferred to the host.

The benefits, however, are impressive:

. Much of the program development effort is not done on the host.

• There are no DBMS utilities on the host.

. All data base values and structure are centrally located and access is

controlled.

* Disk storage space on the host is reduced.

* Sharing a data base among multiple hosts is made easier.

. The PDM provides a friendly development environment and not a controlled

production system.

57

The host and back-end are independent of each other and are coupled only by

the message system. Adding or changing one machine has no effect on the other

machine.

ADDITIONAL BENEFITS

These additional benefits are received because of the generality of the message

system. Although this particular message system need not be used, the functions it

contains should be provided. The additional benefits are:

. intertask communication on the host. This feature is incorporated in the

design of modern high level languages, such as ADA.

. basis for file transfer between host and PDM or other hosts.

. foundation upon which networks, distributed processing, and distributed

data bases may be developed.

APPLICATION PROGRAM REQUIREMENTS

A stand-alone program should look the same as a back-end program. The DML verb

statements are the same and any additional functions performed on the back-end are

just subroutine calls. The additional functions are, however, off-loaded from the

host and the resultant application program is smaller. This off-loading also

reduces the overhead of the message system on the host.

BACK-END SYSTEM DESIGN

The essential elements of a complete system design are dedicated CPU's and a

method for interconnection. Since the dedicated CPU's will motivate the

interconnection issue, they will be discussed first.

The message system can be functionally divided into six parts: the message

system operators (MSO) interface, the message subsystem, the packet subsystem, the

routing subsystem, and protocol subsystem, and the line drivers. These functions

are then grouped for CPU assignment as follows:

* the MSO and message subsystem execute in the PDM and back-end processors.

. the packet subsystem and routing sybsystem execute in the front-end

processor (FEP).

58

7 M

the protocol subsystem and line driver execute in a protocol processor (PP).

The PP, FEP, PDM, and back-end processors are connected via high speed data links

(e.g., bus interface or DMA device). To minimize communication costs and repetition

of software only an FEP, through a PP, will connect to a host. A single processor

configuration is shown in Figure 14. If a significant reduction in the amount of

data is achieved, then a 9600-bps connection between the host and the PP would be

sufficient. If this cannot be done, a higher speed connection will be needed. For

co-located machines connection costs are not high and lines of at least 50 Kilubytes

per second could be used.

A site may contain multiple hosts all of which are saturated. A single back-

end system could handle this situation as shown in Figure 15. The use of the PDM

requires only the message system to be developed for each host.

It may not be feasible or desirable to have two data bases active on the

same back-end machine. Thus two back-end machines would be needed, but only PDM as

shown in Figure 16. Again, the separation of functions and use of multiple CPU's

make this implementation a straight-forward extension of the one shown in Figure 14.

The system described here can be easily expanded to accommodate the most general

case, multiple hosts and multiple back-ends, as shown in Figure 17. The level of

sophistication that can be built into the back-end system depends only on the

implementor's requirements. The PP's shown in Figure 17, for example, can link

dissimilar back-end systems. Such a system design allows for dynamic growth with a

minimum of effort.

SUMMARY

The test back-end system showed the feasibility of the concept but suffered

4from slow response time. Some significant problems with the system were identified

and remedies were suggested.

Use of the system, the problems encountered, and system analysis led to the

proposal of two basic additions for a follow-on system:

Use of multiple CPU's

* Use of the PDM

I

59

Sr ~- -- '-~-.7

HOST

PP

!" L PDM BACK END

Figure 14 - Singly Connected Back-End System Configuration

60

HOST 1 HOST 2

PP

PP

TERMINALS {O AC N

Figure 15 -Multiple H-ost Back-End System Configuration

61

i07.

HOST

PI)

TERMINALS

Figure 16 -Single Host Multiple
Back-End System Configuration

62

BACK END PDM BACK END POM BACK END

Figure 17 - Multiply-Connected Back-End System Configuration

63

The use of multiple CPU's has four basic benefits:

" Efficient function performance through use of a dedicated CPU.

" Reduced hardware costs if the system is expanded as shown in Figure 15.

" Easy growth of the system including increasing system power or connecting

to other systems.

. Isolated functions and increased security.

The use of the PDM has the following benefits:

" Off-loading much of the program development work from the host.

* Increased security.

" Reduced host disk usage.

" Off-loading all of the DBMS from the host.

" Reduced dependence between the back-end and the host.

The proposed system configuration has the potential to meet the present and future

needs of any site.

The back-end system is a viable means of reducing host resource usage, increas-

ing data security, providing an inter- and intra-computer communication system, and

providing a powerful program development tool to the users at a reasonable cost.

ACKNOWLEDGMENTS

This work was performed under the supervision of Mr. Clarence Godfrey of

DTNSRDC who also provided the coordination among the various agencies involved.

64

REFERENCES

1. Diffie, W. and M. E. Hellman, "New Directions in Cryptography," IEEE

Transactions on Information Theory, Vol. 11-22, pp. 644-654 (Nov 1976).

2. COBOL Journal of Development, Canadian Government (Supply and Services,

Canada) (1978).

65

* o1

1,

INITIAL DISTRIBUTION

Copies

12 NAVSUP
1 SUP 01B (J. Schanzenbach)
1 SUP 09H (J. Roberts)
10 SUP 0431 (G. Bernstein)

12 DTIC

CENTER DISTRIBUTION

Copies Code Name

1 18/1808 G. Gleissner

2 1809.3 D. Harris

1 182 A. Camara

1 1824 J. Carlberg

1 1826 L. M. Culpepper
1 1826 L. K. Meals

20 1828 M. Wallace
1 1828 C. Godfrey

1 184 J. Schot

1 185 T. Corin

1 187 M. Zubkoff

1 189 0. Gray

10 5211.1 Reports Distribution

1 522.1 Library (C)

1 522.2 Library (A)

67

