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1,0 INTRODUCTION

1.1  BACKGROUND

In analyzing and characterizing experimental or numerical electro-
magnetic response data, one generally desires to extract parameters that
can be reiated to physical characteristics of the system being studied.
One set of physically related parameters is the complex natural reson-
ances of the system and their related coefficients. Indeed these reson-
ances have been recognized as important for some time, Recently the con-
cept of electromagnetic resonances has been applied to problems of p.r~-
ticular interest to the Navy.

In 1971 Baum [l] developed the formalism known as the Singularity
Expansion Method (SEM) which enables one to write any electromagnetic
regsponse of a system as an expansion of the complex resonances or poles
and residues of that system. Baum developed this formalism for the
electromagnetic pulse (EMP) community so that the external current dis-
tribution on alrcraft and ground support systems could be characterized
concisely. [t was not until the singularity expansion method came into
being that it was possible to determine the modal resonances and the
excitation coefficients of each mode for a structure with an arbitrary

incident excitation.

In 1974 Mains and Moffatt [2] introduced the concept of using the
complex natural resonances of a body as a basis for target recognition,
They made use of the fact that a few natural resonances of a body are
adequate to distinguish the body within a finite collection of bodies.
They also made use of the knowledge that the natural resonances of a
body, as manifested in a scattered waveform, are aspect independent. The
identification procedure which was used was to first obtain a set of
multi-frequency radar scattering data from an unknown target. A pre-
diction-correlator tyve of processing was then applied to select the

real target from a catalog of candidate targets and their resonances.
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In both Baum's and Mains and Moffatt's early work the resonances
were obtained from a set of equations which characterized the electro-
magnetic response of the body, much as a circuit theorist finds his
resonances by solving a differential equation. Many shapes have been
numerically analyzed to date to obtain their characteristic resonances.
However for complex shapes and configurations, it is of great interest to
be able to obtain the resonances from experimental data. In particular
obtaining the resonance parameters from transient response data from EMP

simulators and transient radar ranges is of keen interest to the military
community.

Spectral electromagnetic response data usually lends itself to the._
vigual identification of these natufal frequencies. The damping constants
cannot be obtained as easily, however, and often are calculated from es-
timates of the quality factor (Q). Similarly, temporal response data
generally allows one to visually determine the dominant natural frequency
in a response. If enough data are present, the damping constant of this
dominant frequency can also be determined. However, temporal data are
usually Fourier transformed to the frequency domain so that the higher
order modes can be identified visually. Visual identification of the
natural resonances of a system 1s not ideal by any means, particularly if
the system has many low Q modes. Hence a numerical resonance extraction
procedure is very much in demand.

About seven years ago Prony's algorithm [3] was applied for the first
time to the problem of numerically extracting the natural resonances from
transient electromagnetics response data. The first application of Prony's
method was to the numerically generated transient current on a thin dipole.
The results, which were reported at the 1974 USNC/URSI meeting [4] by
Mittra and Van Blaricum gave a set of resonances (poles) which compared
verv closely with the first ten even modes previously calculated by
Tesche [5]. As a result of this initial demenstration, several researcn-
ers began studying Prony's method to determine its utility for analyzing

several kinds of transient data and to look for solutions to some of the
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problems inherent in the process. In addition, Brittingham, Miller and

Willows [6] demonstrated that a procedure parallel to the time domain

Prony's method could be applied to frequency domain data.

Some of the initial questions which were asked about Prony's method,
ar ' which are in part still begin studied, were:

Lo 1. Will Prony's method work if multiple poles are present?

&

o 2. How does one determine a priori the order of the system?

ﬁ- That is, how many poles are contained in the response data?

3. What effects do noisy data have on the Prony algorithm?

4. How do we insuie or know the accuracy of the poles returned?

Thus~ questions were all addressed to some extent in Van Blaricum's
<lowertat - [7]. It was found that Prony's method would work for the
€.y ¢ mu.tipie poles without any change in the pole searching algorithm.
Tw thods wer: discovered by which the order of the system could be

aetwr-inei., The-c asethods are the Householder orthogonalization proce-
(e | cure an che Eflgenvalue method. Examples of these methods can be found
P in Vin Blaricum's thesis [7] and appear in the special EMP issue of AP-S
| i8]« A preliminary scudy of the effects of noise on the pole extraction
al,vrithm and the order determination algorithms was presented in [7] and

[8] also. However the problem of noise and Prony's method is a very

S g

complex one which has not been, even at this time, completely answered.
Several alternatives to Prony's method have been suggested and investi-

j gated with the hope of finding a cure for all noise problems. Among

‘ these alternatives are variations on Prony's method [9-10]; the pencil-
of-functions method [11] which is presented in Appendix D; iterative
generalized least squares presented in Appendix A; column Prony's method,

Appendix F; the adaptive method, Appendix C; and Evan's and Fischl's
5 wethod, Appendix G.

: To understand the different procedures for pole extraction and the

difficulties involved it is necessary to discuss the main elements 3f the
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existing procedures. The process of extracting the natural resonances
and their associated residues from a transient signal has four main steps

as shown in Figure 1l.1.

The first step is the determination of the order of the system. At
this step one decides how many poles the system response function has so
that the proper model order can be obtained. It has been found, through
a combination of parameter studies and trial and error, that if the order
of the system is underestimated then the extracted poles will deviate sub-
stantially from the true poles. Similarly if the order of the system is
overdetermined, the algorithm produces extraneous poles. The presence
of the extraneous poles causes the residues of the true poles to be
inaccurate and also results in unnecessary computation time. The presence
of noise in data makes the determination of the system order a very complex
problem. Up to this time many methods have been used to determine the
order but they either break down when noise is present or they are
dependent on trial and error or the intervention of the user, For analysis
of massive amounts of data, as in the case of EMP data, or for radar target
identification a totally automated method is a must. In Section 3 (Volume
I) of this report, a procedure capable of automatically determining the

proper. order without any knowledge of the noise level is presented,

Once the order of the system has been determined the coefficients
of the linear predictor equation or Prony's difference equation must be
solved. The degree of difficulty of this stepldepends on the noise level
in the data and on the proper determination of the order of the system.
In Section 4, certain factors which greatly effect the accuracy of the

coefficients are discussed.
Once the difference equation coefficients are obtaincd, the roots

of anNth order polynomial, N being the system order, must be found,
Many root finding routines exist but Muller's method [13] appears to be
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the optimal method. While this is a key step in the procedure it is

~otally dependent or the accuracy of the coefficients which were obtailned
in the previous step.

The final step i3 the solution of the residues which are associated

with the system poles or singularities. These residues are obtained by

sclving a simple linear matrix equation. In many problems, such as

target identification, the residues are not required and hence this is
certainly not a critical step.

1.2  RECENT WORK IN RESONANCE ESTIMATION

Kulp [14] has recently studied the effect of sampling rate on the

accuracy of Prony's method. The sampling rate, we have found, is one of

two factors that determine the performance of Prony's method with noisy
data. The other factor is statigtical bias in the estimates. If boch

of these problems are treated, Prony's method performs admirably well
with noisy data.-

Cures for tho bias problem and the problem of extraneous resonances

have been propcsed by Henderson[l5]. The technique involves the use of

eigenvalue decompositicn to construct the coefficients of Prony's

difference equation. Although we cannot prove, as yet, that the use of

eigenvalue decomposition allows bilags~free estimation of the coefficients,

we have seen indications that this is the case, In Section Z, Volume I

of this report, indications that lead us to this bias~free remark are
described.

It is these two recent works plus order selection techniques developed
by ETI that set the stage for testing of the automatic resonance extrac-—
tion procedures in Phase II of the current contract,
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1.3 OBJECTLVES AND CONTRIBUTIONS OF THE PRESENT WORK

Three major objectives were set forth at the beginning of the
current contract:
1. To review and summarize the state-of~the-art of procedures
for extracting resonances from transient data which include
Prony's method, adaptations of Prony's method and other

techniques of system identification and parameter estimation.

2. To investigate methods for automatically determining the
proper order of a system represented by a noisy set of data

and the limitations of the procedures for doing ao.

3. To investigate methods for automatically extracting the
proper system rescnarcecs from a set of noisy data once

the proper order has been established.

At the present time these objectives have been fully satisfied. Our
present understanding of the resnnance extraction problem will enable
us to construct and test practical automatic procedures for resonance
extraction in the second phase of the current contract. In looking for
automated methods, several other important issuss such as biased
estimates, iterative versus one shot processes, and pattern recognition,
to name a few, were investigated, Many possible techniques were
examined in a gearch for automated methods. These techniques are

summarized in appendix form in Volume II of this report.
1.4 SOME REMOTE SENSING APPLICATIONS OF RESONANCE EXTRACTION

The ideal end product of this type of research is an automatic real
time technique which will take noisy transient signals and estimate the
complex resonances of the structure and tie errors in these estimates.
In studying existing techniques with this one end product in mind it

became clear to us that the method developed is dependent on the specific

uses intended.
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The three major remote sensing applications of the complex resonances

|
|
‘%_l are target recognition, target intelligence, and target camouflage and de-
; coying. Target recognition, as we define it, assumes that previous know-
! ledge of the targets in question 1is known, Target recogultion is also
assumed to be a real-time or a near real-time process. The poles ex-
;'ﬁ tracted from the measured targec's signature can be compared to a target
pole catalog for identification. While this requires work in building
the initial library it makes the actual pole extraction procedures less

complicated (fortunately since they have to be real time) because the

true poles will not have to be separated from the noige poles.

Target intelligence assumes that we are trying to discover the
shape and type of vehicle we are seeing having never seen it before.

Hence this target will not be in a libhrary or catalog. This requires

that the true system poles be separable from the noise poles. In addition
the relation between pole patterns or locations and the target's physical
characteristics must he known. The process, however, does not have to

be real-time and can usually have human input.

T

b
"§
3
:
|

Target camouflage 2nd decoying are potential techniques based on

i

L e T i PRI oM AP 5

knowing the relationships between pole patterns and physical character-
istics. Knowing these relationships a target can be given apparent (to
the radar) new characteristics by modifying its measured pole pattern.

Hence one could make a cruise missile either apparently disappear by

overdamping its resonant return or make it look like another vehicle by
appropriately moving the resonances, Target camouflage is much like
target intellegence in its requirements, The main requirement is develop-

ing the knowlédge of the relationship among the poles and physical config-

uration.

Before much more work is done in this general theoretical area of

e

resonance extraction from transient signals it will be necessary to very

accurately define the desired type of system application to which the

s S P TV P e Y R XN

methods will be applied. In Section 4, Volume I of this report, we de-

fine tentative and very rough forms of the procedures to be applied to
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the target recognition and target intelligence problems. These rough

forms will gain further definition in the second phase of the current

contract.
1.5 OUTLINE OF THIS REPORT

Volume I presents major results and conclusions of the research,
Section 2 addresses the question of what the best methods of estimating
the resonances for this application are. Among the estimation procedures
studied are the conventional technique of using an inhomogeneous set of
equations, eigenvalue decomposition tecnniques, Jain's method, and iter-
ative techniques. Section 3 studies procedures for selecting the proper

order and eliminating extraneous resonances. One major and original

contribution by ETI is presented in Section 3, namely, the maximum likelihood

procedure for order selection. This procedure is capable of automatically
determining the proper order without any prior knowledge of the noilse

level. Also, in Section 3, Henderson's procedure for eliminating extran-
eous regonances 1s testad by numurical example. The procedures presented

in Section 3 allow an efficient, automatic procedure for order selection

and resonance estimation to be constructed by using eigenvalue decomposition
of the data. Section 4 discusses various practical problems that must be
addressed before resouance extraction procedures for a practical radar
target recognition system can be designed. This section serves to relate
the concepts in Sections 2 and 3 to the application under congsideration

in the current contract. Section 4 addresses the basic problem of what

is the best sampling rate and period of observation for the purposes of
resonance extraction. Possible procedures and systems for both target
recognition and target intelligence using natural resonances are presented.
Also in Section 4, two key problems with Prony's method are identified.
Methods for effectively treating these problems are presented which allow

Prony's method to be effective at high noise levels.
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E; Volume II consists of appendices which present the details of
%ﬂ several techniques that have been investigated during this concract.
? | Volume I makes references to Volume II for the details of specific ‘}A
o
i procedures.
b
fa
?-', Volume III contains a large bibliography of Prony's method. Also
E,! in Volume III is a translation of Prony's original paper.
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.2 2.0 COMPARISON OF PROCEDURES FLR RESONANCE ESTIMATION

BEES S -Ae

TR T

2.1 DEFINITION OF TBE RESONANCE EXTRACTION PROBLEM

In this report we consider the problem of estimating the resonances

ANT LT T O

of a linear, time-invariant, physical system, such as an electromagnetic

scatterer, from the measured time-domain system response to the measured

time~domain excitation. We assume that 4 distributed nhysical system
such as a scatterer can be adequately modeled by a single-input, single-
output linear system where the input may be the incident electric field
time history and the output is the reflected electric far-field time
history.

In general, both the excitation and response are required to estimate
the resonances of the svstem. However, for the first part of this section

we consider the case where the excitation 1s a delta function so that the

e X
e PRl
- R P
JRPR N . -

;,; impluse response can be observed. In practical situations the impulse
4 | response can usually be obtained by deconvolution. (Appendix H presents

one deconvolution technique.) The measured impulse xesponse can be

expressed as

|
!
1
1;
!
|
3
1?

k k
i
qi-wi-i-ei-jzl A.1 exp (sj iAt)+ei-Z Aj zj-!-ei (1)
= j=1

AR kit At - Y- S G afanc iy

for i-O,l...,NB where zj - exp(sjcm) are the resonances or poles in terms

]

transform variable, the Aj are termed "residues', 4y denotes the i

e e et LD bl bt i

are the poles in terms of the Laplace-
th

of z-transform variable, the g
sample,
Ns is the number of samples, and At is the time increment between sucessive

samples. Equal increments are assumed.
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Distributed systems normally have an infinite number of modes, i.e.,
k=co. 1In practice, the number of poles that are modeled, n, need not be
infinite but only sufficiently large to yield an adequate approximstion to
the measured response. Tne "best" value of a is strongly dependent on the
number of dominant resonances and the noise level,

Many procedures are available for estimating the resonances. But,
for the first part of this section, we consider ouly the class of procedures
based on Prony's difference equation which has the form

n
= 0, 1=0,1,...,m- (2)
E,; @y Wipg " 0 4=0i1,0000m

where vy denotes the unocrrupted value of 9y 1f wi is replaced by 9, the

Z o q i di 3 i ofl,i°.,u\. (3)

3 " ", In
where di is, in zeneral, nonzero, and is termed the "equation error

matrix form (2) becomes Wx=0 and (3) becomes Qx=d

Ve —
r' 9 9 ‘e qn Fho Wy cee W
where Q = ql q2 eee Qg and W = wl w2 R
. . . . ; L
I It " qm+n_J me m+1 m+n_]

T
are the (M x N)-dinensional data matrices x = [do'al,l’,'“'an] is the N l
= - nsiona
dimensional parameter vector, and d [du’dl""‘dm] is the M~dimens

equation error vector. For convenience we use M=m+l and N=n+l.
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The central problem of all noniterative resonance extraction procedures

is choosing the parameter vector to minimize the magnitude of the equatien

error. Various procedures for minimizing d are available., In this section,
o we examine some of these procedures and jsolate one procedure that is the

most appropriate for resonance extraction,

Once x has been adjusted to minimize d, the roots z of the equation

n

g 23 = 0 (4)
=0

are egstimates of the resonances in the z-plane and define estimates of the

s-plane resonances through 35 = znzg/At, for j=1,...,n where, for the
moment, nak 13 assumed. Estimates of the residues can be taken as the
} coefficients A? that minimize the 'true error" defined as

3

tn

] |
Tle, - XA @, (5) ;
X 1m0 L 4mo 4 3 ;,

The minimizing A? can be chosen by using a standard least-squares technique.

3

| » An important observation can be made from (4): 1If the g, are all

J

uultiplied by the same constant, the roots, z5 s are unchanged. From this

observation it is concluded that the magnitude of the x vector is irrelevant

B S Sy ST

s e TR P e e
% ) Bl
o

in estimating the resonances. Only the direction of x is important,

b
i

In this section we assume that the true number of poles,k, is finite %

and known and that ne=k. The section on order selection procedures discusses \

what courses of action are available when k is not known and poasibly infinite, !

, ;

The presence of measurement error produces a data matrix of rank N while the
true rank without measurement error is k. Measurement error, then, greatly

complicaces estimation of the true order.
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2.2 QUADRATIC ERROR MINIMIZATION

One procedure for minimizing the equation error is straight minimization
of its norm,||d||, or, equivalently, the minimization of the square of the
norm, de. We refer to de as quadratic error (QE). Since d=Qx, the
trivial solution x=0 will always provide the minimum QE. Other values of
X can provide this same minimum value only if the rank of Q is less than N
which occurs only in the absence of measurement error. Nevertheless, we may
proceed in the usual fashion to derive a set of normal equations by equating
the derivative of d-d with respect to X to zero:

Ve (de) - ZQTQx =0

which implies that the value of x that satisfies QTQ x=0 can furnish a sininum.
Unfortunately, when measurement error 1ls present QTQ is nonsingular, and
hence, only the trivial solution, x=0, exists as we noted above. The trivial
solution is not desirable since the zero vector contains none of the

directional information that is necessary to estimate the resonances.

One way out of this dilemma ig to fix ome element of the x vector at a

nonzero value and adjust the remaining elements to minimize de. Suppose

v,

we let an-l. Then Qx=d can be written Qx+q=d where x = [“O’Ql""an—l

- 7
99 9 9%
ql qz vee qn

Q = Y . . N

qm qln+l ‘e qm+n—l

- wd

and a-[qn'qn+l"°'qm+n]T' The deriviative of de with respect to x is
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V= (d"d) = ve [(Qx + q)T(Qx + q)]

= 2070% + ZQTE .

Equating the deriviative to zero implies that

x = - [T

With or without measurement error QTQ is always nonsingular, and hence, its A
inverse exists. It follows that EI can always be used to find a nontrivial

parameter vector. xI is referred to as the reduced or inhomogeneous solution ,
because it satisfies the inhomogeneous equation: Q Qx -ara. 1

The use of the inhomogeneous solution has traditionally been the
procedure for obtaining a parameter vector. We will examine this solution

procedure more closely after another procedure is introduced.

2.3 MINIMIZATION OF NORMALIZED QUADRATIC ERROR

We have seen that de becomes zero when xTx 1s zero which leads to the
problem of the trivial solution. An error criterion that does not necessarily
tend to zero when the parameter vector tends to zero is the normalized
quadratic error (NQE) defined as de/xTx. The deriviative of de/xTx with

respect to x is

RV WS GRS T

T T T !
v de . 2ngx o o de
XX X X (x"x) '

Equating the deriviative to zero implies that

T dTq 1

QQX-TX .
X X
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This is the well-known form of an eigenvalue problem, The only values of

x capable of furnishing a minimum of NQE are the eigenvectors of QTQ. NQE
assumes the minimum as the lowest eigenvalue when x assumes the value of

the weakest eigenvector. We conclude that minimizing NQE effectively avoids
the trivial solution and is equivalent to using an eigenvalue technique to

find a minimizing parameter vector. The weakest eigenvector may be used to

estimate the resonances. Price [9] arrived at this result using different

but equivalent arguments.
2.4  SINGULAR VALUE/EIGENVALUE DECOMPOSITION

Another way of representing the eigenvalue onalysis of QTQ is ithe
eigenvalue decomposition (EVD) of QTQ which can be expressad as

T
Q' = VAV
where V is an (N x N)=dimensional orthogonal matrix whose columns are the

eigenvectors of Q Q and A ig an (N x N)-dimensional diagonal matrix whose ,
diagonal elements are the eigenvalues of Q Q. J

-

PPy

PP ur eren g e~ ko)

In the same way, the eigenvalue analysgis of QQT can be expressed in
the EVD form: ’

Q" = un"

where U is an (M x M)~-dimensional orthogonal matrix whose columns are the

elgenvectors of QQT and AM ig an (M x M)~dimensional diagonal matrix whose
elements are the eigenvalues of QQT.

A o e it ki

A more general form of EVD for nonsquare matrices, known as singular
value decomposition [16] (SVD), effectively performs both EVD's mentioned
above. The SVD of Q 1s expressed as

PP E RS e + = =P
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Q = UsV"

where U and V are the matrixes that were previously defined and S is an
(M x N)-dimensional matrix whose diagonal elements are non-negative and
are called the singular values of Q. The singular values are related to

the eigenvalues by A, = STS and AM - SST.

N

2.5 USE OF EVD/SVD TO APPROXIMATE THE DATA MATRIX

We have seen that straight minimization of de leads to QTq-O which
for the noisy case has only the trivial solution since QTQ is nonsingular.
Two methods to avoid the trivial solution, fixing an element of the parameter
vector and EVD/SVD analysis, have been mertioned. Another interpretation
of EVD/SVD analysis promotes understanding of what these methods accomplish.
EVD/SVD analysis can be interpreted as a method to approximate QTQ or Q
with a matrix of lower rank or, in other words, a singular matrix. When
QTQ is replaced by a singular approximant matrix, the homogeneous equation
mentioned above has a nontrivial solution. It is shown that this nontrivial

solution is equivalent to the weakest eigenvector of QTQ.

T
A singular approximant of P=Q Q can be constructed by using the EVD
of Q*Q as

és = VANS v

where ANS is the diagonal matrix constructed from AN by forcing the smallest
diagonal element or eigenvalue to zero. The eigenvector corresponding to

the smallest nonzero eigenvalue must satisfy Psx-O and hence, it is the
nontrivial solution to the best approximant of the homogeneous equation
QTQx-O. %s is the optimal approximant to P in the sense that 1s the singular

matrix, Pa’ that minimizes the euclidean matrix norm of PB-P.

2=7
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An identical procedure is the use of the SVD of Q to construct an
approximant of Q:

T
68 = Us_V

where S is constructed from S by forcing the smallest singular value to

Zeros Since 9 -Q Q the resulting solution is identical to the solution

obtained with EVD of QTQ

A
One important observation should be made about the approximation Q :

This matrix is not a Hankel matrix in general. Therefore, we cannot use

this matrix to form an approximation to the original waveform.

é} 2.6 SUPERIORITY OF EVD/SVD TECHNIQUES FOR RESONANCE ESTIMATION

So far two methods to find a minimizing parameter vector have been

ﬁ

| ‘
: s found: )%
o »
:.E !
L 1. The inhomogeneous solution
T
i” ; 2. EVD/SVD analysis

T
.
Pl ~gipieeol gl e

P In the following we show that the directions (not just the magnitudes) of
Ef : the parameter vectors obtained using these two procedures are different,

and hence, the estimates of the resonances differ. We also show that in

DS TS

;
r- ‘ one sense EVD/SVD analysis 1s si'perior to the inhomogeneous solution.

; a

r Let xNQE be the wezkest eigenvector of QTQ which has been scaled sc q
1

F that an-l. (Note that scaling the eigenvector does not change its direction,

i and hence, the estimates of the resonances are unchanged.) Let §NQE denote i

Ek the reduced parameter vector which is formed from xNQE Then QxNgE -

3

Tryge * 9 = dyqer BY taking the pseudoinverse of Q we solve for *NQE

e T i T« A 0G| AL

1
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Xqe = ~1070 T + [T g

Since the inhomogenecus solution is defined as EI = -[aTal_lQTE , the

difference between the two estimates 1s

= - =T=.=1 =T
e T ¥ < QQ) T Qdge
When noise is present, this difference can be shown to be, in general,
nonzero. Since an-l for both procedures, the parameter vectors constructed

from these reduced vectors must differ in direction in the general case.

Now that the two procedures have been shown to produce different
resonance estimates, we provide an argument to show that xNQE is the
better of the tw. estimates because it is perturbed less than the inhomo-

geneous solution by the presence of noise in the data.

If we assume that the noise corrputing the waveform is zero-mean,
Gaussian-distributed, and uncorrelated with variance 02 then we can show
that [7]

£(QTQ) = WW + IMo?

£(3TQ) = WW + IMoZ °

=T~ =T~
and £(Q°q) = Ww where I denote the identity matrix of appropriate dimension
in each case, W and w are the uncorrupted matrices corresponding to Q

and a, respectively, ¢ denotes the expectation operator, and M is the
number of rows of Q and Q.

Bl RORLISTHEL Ta i Aoiaauulin it (il .
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In order to perform a completely deterministic analysis of the effects

of noise on each procedure, we replace QTQ, GTQ and aTa with their expect-
ations we derived above.

The EVD of W'W is denoted by W.W = VWASVWT. Then the EVD of
£[Q7Q] is

£[QTq] = vy + o vt

Since WTW and E(QTQ) possess the same eigenvectors, we conclude that
noise has no net effect, on the average, on the eigenvectors of QTQ including
xNQE . Proof is not yet available to support the claim that the expectation
of the eigenvectors is uneffected by noise. However, we provide the following
geometrical argument: The eigenvectors represent the extremes of the directions
present in the data, that is, either the strongest or weakest directions are
represented by eigenvectors. A purely random noise component has no dominant
directions and tends to perturb the eigenvectors equally in all directions
neighboring their unperturbed or noise-free directions. Because of the symmetry
in the perturbations, the average or expectation of the perturbed eigenvectors

should be equal to the unperturbed eigenvectors themselves.

Let ;IE’ which is referred to as the expected inhomogeneous solution,
satisfy

e@D 7, = £@)

=T 2, - =T=
or (-JW+InMO)xIE'WW. (6)

We agsume that the expected solution is representative of actual solutions,

KI.
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The following observations can then be made:

TR R

6 e A R i e b

l. When g=g, i.e., no noise, the expected solution reduces to the

e

P

noise~free or exact solution.

i o S

-
Y SFURPRIERE.

!{ 2., When the noise greatly dominates the signal we have §1Ea=0.

3. From |l and 2, the expected solution is highly dependent on

the noise level.

The third cbservation contrasts the effects of noise on the inhomogeneous

solution and on XNQE® ‘

From the foregoing analysis we conclude the following:

1. xNQE and §I lead to different resonance estimates.

2. Resonance estimiates from §I are considered to be inferior to
those from xNQE because X is expected to display a strong
deperdenze on the noise level while xNQE is expected to remain
invariant with the noise level. In the extreme case when the
noise greatly dominates the signal X. tends to the frivial

solutioh: §I+0.

I

["
P!
':‘ .

I,

g

%’

:

4

Therefore this analysis supports the claim that the eigenvectors are
perturbed less by noise than the inhomogeneous solution. We point out that

the validity of this analysis critically.depends on the validity of the

° e ——— o it P —

agsumption that the results for expected or average cases are trepresentative

of results for actual cases. However, in the following numerical example,

T T

actual cases are presented that support the conclusion that the eigenvectors

are perturbed less by noise.

2-11
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2.7 NUMERICAL EXAMPLE

Figure 2.1 depicts the waveform that is used in this numerical
example. The poles, sj, and residues, Aj’ which define the uncorrupted
waveform are given in Table 2.1. The true number of resonances is k = 12,

The time step is At = 0.2. The waveform consists of 400 samples.

Table 2.2 displays the parameter vector obtained with the inhomogeneous
solution for the case when n=k and M=387 and for various noise levels. When
the noise becomes large all parameters except a tend toward zero. Table
2.3 displays the weakest eigenvector, xNQE’ for N=13 and Mw387 and for the
same noise levels. The parameters in this case show no tendency toward
2ero. This example, then, supports the conclusion that the weakest eigen-
vector 1s effected less by noise than the parameter vector constructed
from the inhomogeneous solution.

Arpendix I presents a technique to discriminate between the true poles
and the extraneous poles for the case when n>k. This technique makes use of
the tendancy of extraneous poles to remain in the left half of the s-plane
when the waveform is reversed while the true poles are negated or "mirrored"

through the imaginary axis of the s-plane. This tendency of the extraneous

poles is closely related to the coefficients tending to zero in this example.

It follows that this behavior is not observed if the weakest eigenvector is

used to estimate the resonances. Appendix I describes in detail the reasons
behind this behavior.

2-12
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Figure 2.1 Waveform used in numerical example,
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E , Table 2.1l. Resonances for uncorrupted waveform
N with associated residues. Resonances
L are expressed in fterms of s-plane poles.
L 3
3
o REAL IMAG. REAL IMAG.
(\
W 1 -0.082 0.926 0.5 0.0
&
N 2 -0.082 -0.926 0.5 0.0
i 3 -0.147 2.874 0.5 0.0
e
P 4 -0.147 -2.874 0.5 0.0
ﬁ-‘ 5 -0.188 4.835 0.5 0.0
SH
- 6 -0.188 -4.835 0.5 0.0
|
3
“?-l 7 -0.220 6.800 0.5 0.0
-
;‘ 1 8 -00220 -60800 On: 000
b
t 9 -0.247 8.767 0.5 0.0
-
i | 10 -0.247 -8.767 0.5 0.0
o 11 -0.270 10.733 0.5 0.0
p
- 12 -0.270 -10,733 0.5 0.0
Yo
:‘ i
o 1
] |
)
’;' a
| ‘ i
i i
‘ !
( |
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Table 2.2 Coefficients for Prony's difference

equation that are constructed from

the inhomogeneous solution.,
3 ¢ = 0,001 o= (0.01 c = 0.1 ¢ =1.0
0 0.3189 ~0.3082 0.1452 0.0384
1 -1.371 0.8076 ~0,0868 =0,0211
2 3.384 -1,216 0.0743 -0,0112
3 -6,193 1.442 0.0257 0.0007
4 9.357 1,251 -0.1543 -0.0393
5 -12.17 0.6396 0.2438 0.0611
6 13,91 0.3044 -0,2537 -0.0245
7 -14.08 -1.355 0.1276 =0.0607
8 12,56 2.196 0.0177 -0.0007
9 -0,724 -2,628 -0.3176 0. 0192
10 6,294 2.450 0.4166 -0.0865
11 -3.,185 -1,914 -0.7654 -0.0861
12 1.000 1.000 1.000 1.000
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Table 2.3 Coeffi~ients for Prony's difference
equation that are constructeq by scaling
1 the weakest eigenvector of Q°Q.

o = 0.001 o = 0.01 g = 0.1 g = 1.0

B 0 0.6327 0.6372 -0,6416 ~0,9769

. 1 ~2,403 -2,453 1,544 0.8649

N 2 5.513 5.689 -2.378 1.275

K 3 -9.668 -10.03 3.024 -1,792

~ 4 14,13 14.68 -2.995 ~0,4695
3 i 5 -17.87 -18.58 2,218 2,061
- 1 6 -19.90 20,69 -6,7908 -0.5889 J
}1 : 7 -19.62 ~20.37 -0.9067 -1.924
I 9 -12.73 -13.16 -3.192 0.9120 \
. 10 7.876 8.118 3.103 ~1.868
£ o -3.686 ~3.766 -2,315 0.1753
; 12 1.000 1.000 1,000 1.000
) Y
L;_ H
: !
|
i
* )f
3
» |
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2.8 INTERPRETATION OF NONITERATIVE ESTIMATION METHODS IN TERMS OF
THE EVD/SVD ANALYSIS OF THE DATA MATRIX

Now that the sense in which the EVD/SVD analysis is superior in
regonance extraction has been defined, we proceed to soften this claim
of superiority by demonstrating that all methods examined thus far can
be interpreted as methods for constructing the parameter vector as a
weighted combination of the eigenvectors of QTQ. The particulas mode of
combination and the particular choice of weights uniquely determine each
method., Hence all methods in the end can be interpreted as particular
methods in which EVD/SVD analysis plays an integral part. The question
of superiority reduces to the question of what is the best way to combine
the eigenvectors to form a parameter vector. Although we may not come
to a conclusive angwer to this question in this report, we examine several

first approaches for the best method of combination in the section on order
selection procedures.

Here we will show that our previous cluaim of superiority of EVD/SVD
analysis only holds in a rather restricted case and restricted sense, and
that an unqualified claim of superiority in the general case is not wise.

The inhomogeneocus solution can be expressed as a linear combination
of the eigenvectors of QTQ. To show this, we begin by noting that by
Cramer's rule it is possible to write
T

a ]

- 1
X - A [AlN’AZN’llo, nN

I Oy
th th T
where Aij denotes the element of the 1~ row and j column of adj Q°Q.

Also we have the identity

ad QTQ = det QTQ VA;1VT

N, T
- det Qg 3, 2 (7)
i=1 i
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where vy £ the ith column of V £ the ith eigenvector of QTQ corresponding
to Ai. A scaled parameter vector constructed from Xy which yields identical
pole estimates is

X, = [AlN,AZN,...,ANN]T
i.e., the Nth column of adj QTQ. From (7) it follows that x
combination of the eigenvectors:

1 is a linear

N
x = Lo vy
i=1
where the weighting coefficients are Ci = det QTQ viN/Ai and ViN is the
element of the 10 row and the Nth column of V. Thérefore, the estimates
obtained with the inhomogeneous solution are equivalent to the estimates
obtained using a weighted combination of the eigenvectors, Note that the

eigenvectors are weighted in inverse proportion to the corresponding
eigenvalues,

In the so-called EVD/SVD method of obtaining the parameter vector
the weighting coefficients are all zero except the coefficient corresponding
to the weakest eigenvector of QTQ which 1s non-zero. This method chooses
the weakest eigenvector as the '"matural" approximation to the eigenvector
corresponding to the zero eigenvalue for the noise~free case.

The sengitivity of X to noise level is a particular function of the
way the eigenvectors are weighted to form Xpe For the noise-free case,
all coefficients except the one for the weakest eigenvalue are zero and
xI is simply a scaled version of the weakest eigenvector of QTQ. However,
for the nolsy case xI is not determined only from the weakest eigenvector
but 18 a combination of ail eigenvectors. Since the eigenvectors span the
space of all possible parameter vectors, xI then has components that may
not be appropriate for resonance estimation, These inappropriate perturb=-
ation of X, are maifested in the expected sensitivity of X to the noise
level., We stress that the components that are appropriate for resonance
extraction have no clear definition at this time. Any absolute claim of

superiority of one method over another is, in our opinion, ill-advised.

2-18
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So far we have only considered the case when n = k and WTW has only

one zero eigenvalue. In this case, it seems quite appropriate tc choose
the weakest eigenvector of QTQ as the ''matural" approximation to the weak-
est eigenvector of WTw which is the true parameter vector in the noise~free
case. But what is the appropriate choice when k < n? 1In this case, WTW
has more than one zero eigenvalue so that it seems appropriate to combine,
in some way, the weakest n - k eigenvectors of QTQ to form a parameter
vector. But what i1s the best method of combination? Also, it is necessary
to reduce the dimensionality of the parameter vector when k < n since there
are only k regonances and an N-dimensional parameter vector yields n = N-1

resonance estimates. How can this be done? These questions will be explored

further in the section on order selection procedures.

2.9 JAIN'S METHOD

Another interesting method to find a parsmeter vector was developed

by Jain and Gupta [17]). Although Jain uses this method with the pencil-
of~functions procedure [18], we examine this method in the context of

Prony's difference equation. The pencil-of-functions method is described
in Appendix D. Jain's method consists of choosing the elements of x as
the square roots of the diagonal elements of the adjoint matrix of QIq.

The choice of signs for the square roots was not a problem in the original

! ' pencil-of-functions method since for a large class of problems the square

roots were known a priori to be positive. However, we are not as fortunate
with Prony's difference equation: there is no means to establish the signs

of the square roots a priori. Nevertheless, it is instructive to overlook ,

¥
4
f

) this difficulty and to examine how the method may be interpreted in terms

of the EVD of QIQ. Jain's method can be interpreted as a means of construct-

ing a parameter vector from the eigenvectors of QTQ just as the previous

i two methods were interpreted.

]
f? Jain's method chooses the parameter vector as

] o T T
| xJ - [.t\/ql) i- A22’0 ¢ ey i. ANN }
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5 where the choice of sign is somehow known a priori. From (7) the diagonal
;fx’ elements of adj QTQ can be expressed as

}I‘ ’ A - % det QTQ v2
AL i1 A 1]
! =

where vij deno.es the element of the ith row and jth column of V., It is
clear then that Xy is a combination of all the eigenvectors even though i
it is not a linear combination. Again, each eigenvector is weighted in

inverse proportion to the corresponding eigenvalue as was done in the

combination for Xpe It follows that X then is influenced by all the

}
eigenvectors which may not be appropriate for resonance extraction., What %

lt
effect the mode of combination has on xJ is difficult to estimate. -

s | Because of the weights used in the combination for X1y we would expect

N X; to yield comparable resonance estimates to those yielded by Xr although :
: these estimates would be different.
1

2.10 ITERATIVE TECHNIQUES

o e e e kMl

One can use EVD/SVD of QIQ to construct parameter vectors and estimate
b the resonances. But to obtain a fit to the response, coefficients A must
3 be chosen to minimize (5). This two-step procedure is peculiar. It would
seem that both the z5 and A3 gshould be adjusted simultaneously for the

best f£it to the waveform, Henderson [15] has shown that for the noisy case
the regonance estimates obtained by choosing the parameter vector as the
weakest eigenvector of QTQ do not provide the absolute minimum of (5) or,

in other words, they do not provide an optimal fit to the data in sense

Kimen msillaiN S pAah A (. a T oL

of (5). The basis of this behavior can be traced to the fact that the

weakest eigenvector minimizes NQE. Minimizing NQE is not equivalent to
minimizing (5).

‘l
P

H

i

1

%

a
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To the authors' knowledge, only iterative procedures, such as that
described by Evans and Fischl [19], (also described in Appendix G) can
be used to choose both A and 25’ simultaneously to minimize (5). Hence,
if we wish to "improve' the estimates beyond those obtained with the EVD/SVD
of QTQ we must resort to an iterative technique. The question of how much
the choice of error criterion alters the estimates can be approached with

a relation between the two criteria obtained by Evans and Fischl [19]:

d = X¢ (8)
where
_ —
a 0 L] L] . 0
% % .
. L ] 0
. . e o @ Qo
x. = an an-l 3
0 a
n .
L] L] o [ ] L] n-l
0 0
— n —
T
is an M + N - 1 x M)-dimensional matrix and r = {ro,rl,...,rm+n] is

the residual vector obtained by adjusting only the Aj‘ to minimize (5)

for a given set of z? corresponding to a given parameter vector:

b
n
eyt
r,oeq - j%% Aj (Zj) , 1=0,1,...,m+n.

2-21

L e -
s B G A o £ ki ahchailans e e AL i




T N T

. Tﬁ, T T G e TR L T

From (8) we observe that minimizing the norm of r provides a minimum upper
bound on the norm of d through

Hall < 115 (el

where ||XT|| is defined as the largest singular value of X', Since the
characteristics of the X matrix depend on the data, we expect that certain
extreme cases can be found where the two minimizations yield radically
different estimates. Our own experience with actual data indicates that the
two procedures yileld comparable results when care is taken to apply each
technique in the proper fashion. It is clear, however, that minimizing one
error loosely minimizes the other so that if we are not too critical we may
claim that both errors are approximately minimized simultaneously. Unfor-

tunately it is not possible to predict how loosely the two minimizatlons are

coupled without knowledge of the particular data given for resonance extraction.

Mosat iterative techniques attempt to minimize (5). Another novel
iterative method, known as the iterative generalized least-squares procedure,
does not attempt to minimize (5) but attempts to remove the source of
"asympotic bias" of the parameter vector by "whitening the residuals". On
pages 214~219 of Eykhoff [20] the source of the bias is defined as
correlated residuals. On pages 244-247 the generalized least-squares
method is defined and an algorithm due to Clarke [21] 1is presented as a
means of implementing the method. Clarke's algorithm is specialized and
applied to "whiten the residuals" of the least-squares Prony technique in
Appendix A of this report. The generalized least-squares procedure is
fundamentally attempting to minimize the equation error and is not attempting
to minimize (5). Furthermore, the procedure attempts to neutralize asymtotic
bias which is only defined for an infinite data sequence in the strictest
interpretation. For these reasons, the generalized least-squares procedure

is fundamentally different from the other type of iterative methods wa have
discussed.
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For the inhomogeneous solution, which Clarke's procedure begins with,
the bias is due the presence of a second-order noise term, ETE, in

aTa - (W + E)T(ﬁ +E) = ﬁTﬁ + WTE + ETﬁ + ETE. This same term is the source
of the MOZI term in (6) which was held to cause the noise level sensitivity
of §I' Perhaps the most significant comparison that can be made is between
the generalized least-squares procedure and choosing the weakest eigenvector
as the parameter vector. Both of these estimation techqniques neutralize
the i1l effects caused by the second-order noise term meationed above.
Although they will, in general, yield different estimates, the estimates are
expected to be comparable in accuracy.

One major drawback of the iterative procedures is that they often do
not converge, Guaranteed cunvergence is a requirement for any automatic
resonance extraction procedure. We, therefore, recommend that the iterative
techniques be avoided in this application. The use of EVD/SVD analysis to
form resonance estimates is the safest procedure and can achieve the degree

of accuracy of the iterative techniques.

]
2.11 GFYERALIZATTIUNS
Up to this point, we have considered only the case that satisfies
v tlie following restrictions:
1. Prony's difference equation is used to estimate the resonances.
2., The impulse response of the system can be measured.
¢ New the more general case where thesa restrictions have been relaxed is
considered. The generalization is accomplished by replacing Prony's
difference equation with the equation
» n
j%% (Bj Pyg ~ aj qji) ~ gy i=0,1,...,m. (9)
»
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where p

t -
i1 and qji are che 1 h samples of the jth filters on the input and
output, respectively, of the system as shown in Figure 2.2,

Figure 2.2 depicts a single—input, single-output linear system whose
transfer function is denoted Ht and is referred to as the "true transfer

function". The input to the system is denoted pt and is not necessarily

an impulse. The output to the system 1s dencted qt. Both the input and ¢
output are corrupted due to measurement error to form the measured input, )

m
p , and the measured output, qm. An estimate of the true transfer function

is to be constructed. The poles and residues at tha estimated transfer

function are estimates of the resonances and residues of (1) for the case ‘T
|

of nonimpulse excitation.

Equation (9) can be written in matrix form as $ 8 = g where
pom— —
990 Y10 *** %0 Poo " Pno
9%i: %1 7 %1 Por *tt Par

Q =

qom qlm cen qnm pom s p
hame

is the (M x 2N)-~dimensional data matrix and 6 = [-ao,-al,‘..,~a1,80,s

T {
Lo s
is the 2N-dimensional parameter vector.

The filters in the model of Figure 2.2 are typically chosen as first-
order discrete filters whose transfer functions, F

zero or one pole or both,

i o

3 (z), may possess one
Once 6 1is adjusted to minimize g an estimate of

- i

3

the transfer function of the system can be formed as %
)

|

Q0F0+ou.+anFn !

%
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Estimates of the z-plane poles of the system, zj , may be taken as the

poles of ", The AE may be taken as the residues of H=,

The special case of Prony's method results from this general scheme

J

when the Fj(z)-z and the input is zero, 1i.e., p?-o for i=0,...,n. In

this case, (6=g reduces to Qx=d.

Any of the methods for constucting a parameter vector with Prony's
difference equacion can be applied, with suitable modifications, to construct
8. The most straightforward way to construct 6 is to choose it to minimize
8*3/9*8 which is equivalent to choosing 6 as the weakest eigenvector of O * {

where the asterisk derotes the transpose conjugate,




>

TR TN T T T R T T W W v

SYSTEM

MODEL

Figure 2.2. Generalized model of a linear system. e'

and e are measurement error sequencesg.
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2.12 SUMMARY AND CONCLUSIONS !

Some of the more significant conclusions of this section are summarized ?
below:

1. The analysis of the noise effects on the inhomogeneous solution j
and the lowest eigenvector of QTQ indicates that the lowest

eigenvector 1s less 3ensitive to noise than the inhomogeneous !

solution. Hence, the inhomogeneous solution is considered less

desirable of the two for resonance estimation.

2. All noniterative methods for finding a parameter vector; that is,
the inhomogeneous solution, Jain's method, and EVD/SVD analysis;
can be interpreted as methods of combining the eigenvectors of

QTQ to congtruct a parameter vector,

3. Iterative techniques are fundamentally differen: from the nonitera-
tive techniques which we have examined in this section. Most
iterative techniques choose the parameter vector to minimize the
"true error" between the given data and an approximation to the

data while noniterative techniques attempt to minimize 'equation

RS- RES- SN P )

error". There is no reason to believe that minimizing '"equation ‘

' ) error" produces less accurate estimates than minimizing "true !!
l

error”. While it may be more satisfying to minimize '"true error', !

it is questionable that the added expense and possibility of !
divergence associated with an iterative technique is merited by any

» gain in accuracy that might exist.

4. The iterative generalized lease-squares algorithm due to Clarke
[21] is fundamentally different from the other iterative techniques
) reviewed in this section in that it does not attempt to minimize
"true error”". It is not completely clear what this method accomplishes

since the criterion it attempts to satisfy, that 1s, "white residuals",
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cannot be realized exactly with a finite data sequence.

If we were
to use an iterative technique for our application we would prefer

that it satisfy some type of tangible criterion s::h as minimum
"true error". For this reason the iterative generclized least-

squares procedure is judged to be less useful that .he other
iterative techniques for our application.

R TRt = A

5. All mathods for congtructing a parameter vector for Prony's
difference equation carry over to the generalized mude!) with
sultable modifications where necessary.

6.

For the purpose of automatic resonance extraciion when it is

known that n=k, the estimation procedure where the parameter vector

is chosen as the weakest eigenvector of QTQ or 0 * Q 18 judged to

b2y
be best of all iterative and noniterative methods. A aimilar pro-
cedure for the case where n>k is defined ia the section on model t
order selection procedures. 1
M

——.

(e
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3.0 PROCEDURES FOR ORDER SELECTION

3.1 INTRODUCTION

In Section 2, we assumed that k, the true number of resonances,
which 1s equivalent to the rank of W, was known. In practical applications
of resonance extraction procedures this assumption is unrealistic. The
estimation of k for noisy data 1s not a simple problem since Q will be full
rank or of rank N, whereas if there were no noise, Q = W, and the rank of
W is easily determined.

Furthermore, in Section 2, we assumed that n = k. In this section
we examine the case where n> k. Since the parameter vector is of length
N = n <+ 1, there will be n resonance estimates produced by the estimation
techniques of Section 2. There will then be n - k extraneous resonance
estimates. We will present a procedure developed by Henderson [15] for
solving this problem in this section.

In Section 2, it is shown that the noniterative procedures for
estimating the resonances can be interpreted in terms of the EVD of QTQ.
Each estimation method that we studied combined the eigenvectors in a
particular way to form a parameter vector. It is not surprising that EVD
analysis holds a central position with regard to all of these particular
methods since EVD is simply a way of rearranging the information in a
matrix in a form that reveals the essential characteristics of the infor-
mation. Each estimation method is a particular way of combining the
information to form resonance estimates. For this reason we adopt EVD
analysis as a standard tool to be applied in any noniterative automatic
regonance extraction procedure. Iterative procedures are not considered
for this application because of their inherent problems such as lack of

convergence and computational expense.
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When n = k we concluded in Section 2 that the weakest eigenvector of

QTQ was the most "natural" approximation to the null eigenvector of wTw
where the term '"null eigenvector' denotes an eigenvector corresponding to
: a zero eigenvalue. But in the case where n > k, there are n - k null

;‘ ’ eigenvectors of wTw. Are we then to take some combination of the n - k

. weakest eigenvectors of QTQ as the most '"natural' approximation to the

ﬁ "true" parameter vector? This question is addressed in this section.

v

{{-, Distributed linear systems such as a scatterer often have an infinite
v number of modes which means that k is infinite. What courses of action

are avallable to us in this case? In practical cases there will be only a
. finite number of strong modes present in the data due to the fact that in
ﬁj[ any practical case the dominant frequencies present in the excitation will
‘; i be limited to a frequency band of finite width, Highly damped modes will
'§| also be weak. The weaker modes will be lost in the measurement noise so
that even though k may be, in truth, infinite, practical considerations

" dictate that k be estimated at a finite value.

!

if % This section concentrates on answering three questions:

E'.‘ 1. How can the true number of resonances be estimated when n > k,
!

k is unknown, and the noise level is unknown? (Order selection

| procedures)

How can the eigenvectors of QTQ be best combined to form a

nanied e
[ 8]
IS

parameter vector once an estimate of the true order is

-

available? (Procedures for constructing resonance estimates)

NEERI SPF S )

r 3. How can the extraneous resonance estimates be eliminated?

f Only the simple case where Prony's difference equation can be applied j
( H
Lt is considered in this section. ]
{
3 1
x ¢
E,:....- i
s 3-2
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; 3.2 STATISTICS OF THE EIGENVALUES OF QTQ

¢ The problem of estimating the order or rank of me reduces to the
problem of discriminating which eigenvalues of QTQ correspond to zero
eigenvalues of WTW. If we assume that M > N then QTQ will have no zero
eligenvalues due to the nolse in the data. In order to isolate the
eigenvalues that would normally be zero we must come to some understanding

of how the noise perturbs the eigenvalues. The first step toward this

understanding is realizing that the eigenvalues of QTQ can be described

as random variables. The statistics of these random variables depends

to a large degree on the statistics of the noice in the data. In most
practical circumstances the statistics of fthe noise will remain unknowm.
Beyond this, it is simply convenient to assume, in order to remain completely
general, that the nois i1is altogether unknown but that it has certain very

general characteristics by which it can be distinguished as noise. These

characteristics are taken to be:

1. Uncorrelated from sample to sample or white. (If we
assume that the nolse is due to a very large or infinite

|

I
number of very small uncui.trolled influences which are ;,
sufficiently distant from each other to remain independent

then the noise can be expected to be white).

2. Normally=-distributed with zero mean and standard deviation
of . (By the Central Limit Theorem [22] if a random
variable is the sum of an infinite number of independent,
zero-mean random variables, each with any distribution

whatsoever, subject to certain very general constraints,

et et L e et M i 2 m!

then that random variable is normally-distributed and

zero—-mean,)

The assumption of white noise is believed to be the best assumption

that can be made when nothing is known about the noise. This conclusion




is derived from the following line of logic: If the noise is correlated
or nonwhite, it can be decomposed into a deterministic component and a
purely random or uncorrelated component. The deterministic component

of the correlated noise represents undesired information which cannot be
distinguished from the desired information. The deterministic component
must then be modeled by increasing the order of the difference equation
model beyond that required by the desired information. The unmodeled
portion of the noise is then uncorrelated and comprises the residuals

of the model. An uncorrelated noise sequence represents pure randomness

or lack of information aad is the most difficult of all sequences to model.

Summarizing this argument, if we are given only the data and absolutely
no other information, we must assume that all deterministic components

in the data contain information and the reyidual, purely random component
is white noise. We desire to develop a procedure to estimate the '"true"

order based on the assumption that the noise corrupting the '"true'" data
is white.

Given these assumptions about the statistics of the noilsge, a
description of the statistics of the eigenvalues is desired. The statis-
tical literature falls considerably short of an adequate analytical
description of the statistics of the eigenvalues of a matrix such as QTQ
although crude approximations to the statistics can be found (23].
Derivation of an analytic expression for the statistics is not a simple
task. Our approach 1is to derive an adequate approximation for the eigen-
value statistics based on empirical studies. (An example of the type of
studies performed is shown in Figure 3.2.)

Before defining a model of the eigenvalue statistics (or eigen-

statistics for short) it is useful to examine the eigenvalues of the expec-

tation or average value of QTQ. If the EVD of WTW = VWA: VWT, then the
EVD of E[QTQ] = Vw[Ag + IMcz]VWT. In other words the EVD of the expecta-
tion of QTQ is equivalent to the EVD of WTW except that each eigenvalue
has Moz added to it. This is illustrated in Figure 3.1. The observed
eigenvalues in specific random picks of Q have some distribution about
these expected values, We desire to find an approximation for this
distribucion.
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The eigenvalue matrix has the form

K -
Al
AW 0
2
W .
AN .
0 * W

where AY E_AZ : are the eigenvalues of WW. The model that is
proposed for the eigenstatistics can be written as a particular form of

the EVD of QLQ:

< see S A

Q' = vinf + v3v°

where V is an (N x N)-dimensional orthogonal matrix whose columns are the
elgenvectors of QTQ, Y 1s an (N x N)=dimensional diagonal matrix whose
diagonal elements are samples of the random variable y. The frequency

function for y is denoted f(y) and completely describes the eigenstatistics

of the model. This model is chosen because it provides an adequate descrip-

tion of the statistics that have been observed in empirical studies.

The frequency function, £(y), can be approximated as

2M/N
2
(1 + By) ]

where K 18 a scalar constant chosen so that

f“’ £(y)dy = 1,
0

-1
2
(M - "g'N)U .

and
B =

3-6
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The form of this frequency function is based on the frequency function
found on page 261 of reference [23]. Substantial modifications were

tequired to fit that frequency to empirically observed statistics.

NIRRT W G T

A

This approximation or rule for the eigenstatistics 1s quite accurate

when M/N > 2, is acceptable in accuracy when 3/2 < M/N < 2, and is generally .
increasingly unacceptable in accuracy as M/N approaches 4/3 or falls below
4/3. 1In practical situations quite often M >> N so that the rule usually

LM ol 0

is sufficiently accurate. Figure 3.2 compares this rule against the
observed statistics for a particular value of M/N. The histogram of
Figure 3.2 is formed from the results of 200 Monte Carlo trials where each 1:
trial consists of the EVD of QTQ and Q 1s composed entirely of noise ‘

samples. The aolse was uncorrelated and normally-distributed with zero- 1

mean and standard deviation o, All thirteen eigenvalues from each trial

were used to compile the histogram so that the histogram represents a

ol e s

compilation of 2600 eigenvalues. Since Q is composed entirely of noise,

e

the eigenvalues of WTW are all zero in this case or A: = 0. It follows i
that the eigenvalues of QTQ by our model consist solely of samples of the
random variable y. The approximation to the frequency function is plotted
with the histogram for comparison in Figure 3.2. The rule has been tested
at various other values of M and N with good comparisons in each case

provided that M/N > 3/2. For the case shown we note that the rule seemr }

to describe all features of the eigenstatistics.

The model of eigenstatistics provides information about how the
eigenvalues of QTQ should behave. In particular, the model can be used
to distinguish those eigenvalues of QTQ that correspond to zero eigenvalues

of WTW since these eigenvalues consist entirely of samples of the random

variable y and no other component, whereas, the other eigenvalues have
deterministic components that serve to distinguish them. The method in
which the model is applied to discriminate between the eigenvalues 1s

covered in our description of order selection procedures which follows.
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3.3 PROCEDURES FOR ESTIMATING THE TRUE ORDER

Here we consider the problem of estimating k, the "true'" number of
resonances given the EVD cf QTQ for some value of n > k. Inaccurate
resonance estimates result when n is less than the number of dominant
resonances since in this case the unmodeled resonances appear as a larga
noise component. It must be assumed that n can be chosen sufflciently

large for the resonance extraction procedures to be effective.

In practical cases the noise level 1s unkuown. The order selection
procedure we use then should not depend on this information. We have found

three procedures that are suited for this problem:

1. The likelihood ratio criterion [24].
2. Akaike's Information Criterion [24,25].
3. Meximum likellhood criterion developed by ETI,

The first two criteria were designed for use with the minimum quadratic
error for a particular model order. [Ilse of these criteria required that
a model be fitted to the data for all orders L of possible interest.
Because fitting a model at large number of possible values for 2 1g an
expensive procedure and because we desire to use the EVD to determine the
model order, we adapted the first two criteria to use the eigenvalues of
QTQ instead of the QE. What effect this modification has cu the results
will be discussed when each criteria is described.

The likelihood ratio criterion after beingz adapted for the use with
the eigenvalues, can be stated simply as
l__—‘q'__<6

AZ + 1

Alﬁkzi "'iAN' This criterion is based on the principle that the eigenvalues

corresponding to zero eigenvalues of WIW wili be nearly equal, especially

when M/N >> 1. & is the threshold below which the eigenvalues are considered
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equal. The order is chosen somewhere in the vicinity of where the

criterion ls satisfied for several consecutive values of &. The criterion

will in general not continuously increase as & increases because the

random nature of the eigenvalues is such that the test must be successful

several times to be sure that the proper order has been reached. Use

of the criterion is illustrated in Figure 3.3. The order is chosen as
k” = N - 27, where ¢” is the value of & for which the criterion is satisfied.

The § parameter could be chosen by use of the eigenvalues model developed

in this section.

Akaike's criterion as it has been adapted for use with the eigen-

values is

20
AIC(R) = 20 Ay oy *HF W - 1

The criterién is evaluated for & = 1,...,N. If the value of % that

minimized AIC is denoted L °, the estimated order is then k” = N -4~ .

In order to adapt this criterion for our purposes, we have probably taken

a few more liberties than Akaike would have permitted. If the criterion

defined above does not work well it should not be taken as a true

reflection of the performance of the original criterion. Figure 3.4

TH s st i flooi R S SO

illustrates the application of Akaike's criterion.

The third order selection procedure is the maximum likelihood (ML)
criterion. This criterion was developed gpecifically for application to
the eigenvalues of QTQ. This procedure examines the smallest £ eigenvalues
and assesses the likelihood that those eigenvalues are due to noise only or,
in other words, correspond to the zero eigenvalues of WTW. This is done

by comparing the observed eigenvalues to the known frequency function of y.

e TR R T S e l_ -

The standard measure of how well a set of observed values match a
known distribution is the likelihood function. The likelihood function
that is used for this criterion is the mean log-likelihood defined as
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Figure 3.3. 1Illustration of likelihood ratio criterion
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where Lo is the expected log-likelihood assuming the eigenvalues are due
to noise only and is defined as

Lo (N,M) = _{ £, (y;N,M) 2n fl (y;N,M)dy

The Lo term normalizas the criterion relative to the expected likelihood.

cest is an adjustable parameter corresponding to the unknown standard

deviation of the noise, o; and

4B 2M/N |
£, (A iN,M30 ) = K |———— :
1 k est (l+BAk)2
where B = i 5
M - EN)O

Because the standard deviation of the noise is unknown, Uest must be
adjusted to maximize LZ. The maximum of LE is taken to be the likelihood
that the % smallest eigenvalues are due to noise. The value of ceat that
maximizes Lz is an extimate of the unknown noise level. When the maximum
of Lz falls below a certain value, which is called the cut-off likelihood
and is denoted Lc, the observed eigenvalues are so widely distributed that

(13
[ ]
Tt
i A i AR xS e AN

the extreme values fall well into the tails of the frequency function

PRNEPPUR T R

regardless of how oest is adjusted. Presumably when this occurs some of
the eigenvalues are not due solely to noise and deviate significantly from

E the noilse eigenvalues.
¥

P,

gl The criterion can be interpreted in the following way. T ast is :
{ adjusted to fit the set of observed eigenvalues into the statistical .

JR

distribution for noise eigenvalues. When the best fit poss.ible does not
vield a sufficiently high likelihood that the eigenvalues are due only to
noise then the criterion is triggered.
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§ The waximum likelihood procedure for order selection consists of
g' the following steps:

0 1., For ¢ = 2,3,...,N adjust 9 ast to maximize Ll'

E 2. Choose 2 as the largest value of % such that
b max
- cest Li >Lc fori- 2,3'0-.’20

3. The selected order is then N - £“ and the value of Oest

that maximizes L,~ 1s an estimate of the noise level,o .

)

max ,
4, 1If O st LL > Lc for ¢ 2,...,N, then the procedure cannot

discern a significant difference between the observed eigen-

values and the eigenvalues of a matrix with purely random

data.

The choice of the cut-off likelihood, Lc’ determines how sure one

wants to be that the lower eigenvalues are due to something other than

noise. When the observed eigenvalues are due to noise only, the maximum

s |

of LQ tends to vary randomly about zero. Figure 3.5 shows a histogram of

the maximum of Lz. From the histogram it can be concluded that 1f LC is
chosen as -1 then there is approximately one chance in a hundred that the
criterion will be triggered due to noise only. Because of the nature of
the likelihood function, this false alarm rate for LC = -1 ghould be

relatively indifferent to the values of M, N, or 2. Lc = ~] should

therefore represent a false alarm rate of approximately one in a hundred

for all problems.

3.4 PROCEDURES FOR CONSTRUCTING A PARAMETER VECTOR

LL:
F'
'
5:’

Now that several possible procedures for selecting the order have

been defined, we coasider the questions:

1. How can the eigenvectors of QTQ be best combined to form a

.

parameter vector for resonance estimation?

2. How can the extraneous resonance estimates be eliminated?

3-14
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Flgure 3.5. Histogram of log-likelihood

function for eigenvalues due to
noise only. 100 Monte Carlo trials.
M= 512, N =16, and £ = 8
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In Section 2, it is demonstrated that all the noniterative resonance
estimation techniques, e.g., the inhomogenecus solution, Jain's method,
or choosing the weakest elgenvector, can be interpreted as different ways
? of combining the eigenvectors of QTQ to f orm resonance estimates. We

¥ concluded that choosing the weakest eigenvector as the 'best" estimate of

L the null eigenvector of WoW was the most '"natural" estimation procedure
RN for the case when n = k. For the case when n > k the "patural' estimate
: of the parameter vector is less clearly defined.

Any vector, xz, in the space spanned by the £ weakest eigenvectors
T 8

\;ﬁl of QTQ gsatisfies

LA

2T, &
X X

‘ >

;;1 M2 Lty

1‘1 where N = & 1is the estimate of the "ture" order. Stated differently, any

;1\ vector in the space spanned by the % weakest elgenvectors produces a value
1 of NQE less than the value of Az. It follows that any xz can be consiuered

as an approximate solution to Prony's difference equation. Unfortunately,

there are many choices for xz. In addition, xz is N-dimengional so that

R o o -

! it will yield n resonances when N - £ 1is the appropriate number of reson- i

‘ ances. Henderson [15] devised a method to resolve these difficulties. i
v | ' g
o Henderson's method is based on a concept he termed '"the z“h auto- X
¥
3 | regression nullspace' which 1s defined as the rowspace (the space spanned :
E by the rows) of the (& x N)-dimensional matrix {
- ag @y tee oAy 0 0 +ee @ 1
: a0 see 0 g
? o %0 k :
r G " : : : |
" [ ] L ] * LN 3 :‘
} 0 0 ag a; ak ‘
i“ N
b where the a, are, in this case, the elements of the true parameter vector,
r# ‘ the true order is k, and N = k + 2. Let h = [ho’hl’hz""’hn]T be any 3
% vector in the row space of Gg. Henderson proved that the roots of the '
A { polynomial, }

3-16
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; constitute a superset of the roots of the "true" polynomial,
t k
;., z: a Zj = Q.
: j
! 3=0
P
?[‘ The roots of the true polynomial are the exact z-plane poles of the system.

The othar 2~1 roots of (l0) represent extraneous roots. A vector h can be

found to produce any specified set of extraneous roots.

The essence of Henderson's method consists of approximating the
rowspace of G, by the space spanned by the %" weakest eigenvectors of QTQ.
By making this approximation it 1s possible to form an estimate of the
"reduced" (k“+l)-dimensional parameter vector. Here N = k“+%° where k~
is an estimate of the true order k. The procedure is:

l. Form a matrix whose rows consist of the &° weakest eigenvectors

of Q"Q. i

2, Use a Gaussian elimination procedure on the matrix of step 1

to form an (£” x N)=dimensional matrix with zeros in the

opposing corners. The matrix has the form:

XXXX0000
0XXXX000
00XXXX00
000XXXX0
0000XXxxX

[

where "X" denotes a nonzero element. This matrix is intended £
to approximate G2 in some sense.

3. Form an (2* x k* + l)~dimensional matrix, H , by eliminating the L'{

zeros and appropriately shifting the rows of the matrix in step 2.
Each row of this matrix should be an approximation to the true

parameter vector in some sense.
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Perhaps the eigenvectors should be weighted somehow according

to their relative merits in estimating the resonances before
being loaded into the matrix. The weights might be based on

LA 3
¢
E ! 4, The "best'" estimate of the true parameter vector is the
g' strongest eigenvector of HTH.
Y
This procedure is an ingenious way of getting around the difficulties |
we mentioned previously and is intuitively pleasing. However, if we choose
to be critical, it is clear that some very perplexing questions could be
asked about this procedure. For example, what error criterion or other ‘
quality measure of the estimates does the reduced parameter vector obtained I
with this procedure satisfy? ;
On further study of this procedure, other unanswered questions arise: (
1. The procedure begins by loading the eigenvectors into a matrix.
I
t
!

how well the corregponding eigenvalues fit within distribution

for the noise eigenvalues in the third step of the ML proce-

dure or on the values of the corresponding eigenvalues them-

. selves. How should the weights be defined?

e

2. The use of Gaussian elimination to form an estimate of G,
may not be the besgt procedure to use since Gaussian elimination
can emphasize certain directions in the space spanned by the
eigenvectors that were not actually dominant originally. This

emphasis of certain directions could unduly perturb the reduced ?
parameter vector.

T TR T I

It may be possible to use certain orthogonal
transformations in place of Gaussian elimination so that the

magnitudes associated with the directions are not altered. What

specific procedures can be applied in place of Gaussian elimination? '

These questions merit further study.

1
[l
i
1
)
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L 3.5  NUMERICAL EXAMPLES

i The waveform used in the numerical example of Section 2 1is used

y again for these numerical examples which illustrate the order selection

procedures and the procedure to eliminate extraneous resgonances. The

;"' waveform 1is corrupted with uncorrelated, normally-distributed noise with
Ceo zero—-mean and standard deviation ¢ = 0,0l. The data were used to £fill the
Y (M x N)-dimensional matrix Q where M and N were chosen to be 379 and 20,
?": regspectively. The number of samples used in filling Q is M + N - 1 = 398,

The last two samples of the waveform were unused. The eigenvalues resulting

A from the EVD of QTQ are shown in Figure 3.6. We note that it is rcadily

?fi apparent to the eye which eigenvalues are due solely to noise.

3

A Table 3.1 displays the resonance estimates obtained using the weakest

sf i eigenvector of QTQ and by using Henderson's procedure to eliminate the |
- extraneous poles. Since the poles must occur in conjugate pairs when they

& ﬁ are complex, we only show the poles in the upper half of the s-plane (posi-

?F ; tive-imaginary region of s-plane). The extraneous resonances that result

?7 : from the weakest eigenvector are not shown. Hendergon's algorithm does,

L‘ | in fact, eliminate the extraneous resonances and does yield relatively i

i' accurate estimates of the true poles. But when the estimates using Henderson's ‘

procedure are compared to those using the weakest eigenvector, we note that
¥ ‘ Henderson's procedure produces less accurate estimates. The reasons behind
the legs accurate results are thought to be related to some of the unanswered

questions about Henderson's procedure which are enumerated in this section.

e T

.‘“:Ekv‘:-?"’?_':""‘."f'—v"-‘ TET ST ;e %
Y —— e S S,

Table 3.2 displays the results of applying the maximum likelihood i

-

order selection procedure to the observed eigenvalues in Figure 3.6.
We recall that this procedure selects an integer, L°, as the largest

value of £ such that

max

L < a 2 ceol
qest L LC for 1 '3, L

Eﬁa-

.
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i
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Table 3.1. Comparison of resonance estimates in terms of
s-plane poles.

Real Parts of Poles

‘ Estimated

True Full s True*
Order Order

-0.082 -0.082 -0.128
-0.147 -0.146 -0.118
-0.188 -0.185 -0,100
~0.220 -0,218 -0.232
=0.247 -0.251 -0.299
-0.270 -0.269 -0.276

': N g
ru‘ Imaginary Parts of Poles
T — R :
;, : ' True Order Order !
3 0.926 0.926 0.955
3 2.874 2.873 2,965 :
4.835 4.838 4.819 {
| 6.800 6.802 6.722 5
8.767 8.766 8.743 1
10.733 10.737 10.746 é

) * Estimates for true order formed by using
Henderson's procedure.

** Estimates using the weakest eigenvector of ;
QrQ. The extraneous poles are not shown. !

e
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Table 3.2. Results of application of the
Maximum Likelihood order selection
procedure.

2 max Lz Yast
2 0.435 0.009778
3 0.431 0.009991
4 0.439 0.01011
5 0.444 0.01021
6 0.355 0.01045
7 0.305 0.01065
8 0.191 0.01096
9 -93.9 | m=———-
10 -93.9 |  eee——
11 -93.9 |  mm———
12 -93.9 |  eeme—=
13 -93.9 ]  emee—-
14 -93.9 | e
15 -93.9 | =
16 -93.9 |  e=m—e——-
17 -93.9 |  me——
18 -93.9 | me=——-
19 -93.9 ]| -
20 -93.9 |  e=———
3-2:
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by adjusting st for each value of L. If the cut-off likelihood were

The column in the table labeled max L, tabulates the maximum of LZ obtained
chosen as L. = -1 (which is the recommended value), then the procedure
selects £° = 8 since this value gatisfies the above requirements. The
selected order is then N -~ £° = 12 which is exactly the true order. We
conclude that this procedure works very well for this particular example.

A more severe test can be imagined, however, where the two groups of
elgenvalues are not so clearly distinguishable. Also, note that the method

ylelds a very reasonable estimate of the noise level at 2 = 8.
i f

An attempt was made to perform a more severe test but representative
resiits were not produced. The crude algorithm we are currently using to

search for the maximum likelihood breaks down for the more severe case.

The problem, though, is purely mechanical and does not indicate a true limit-

ation of the method. The true test o¥ the procedure is its application to
real, measured data.

Table 3.3 shows the results of applying Akaike's criterion to the
observed eigenvalues. The miniiaum value of AIC (L) defines the order.
From Table 3.3, we observe that tie sndnimum occurs at £ = 1. One wonders
1f a larger value of N were usc.’ vhether AIC(L) would go through a clearly
defined minimum., If we assume that £° = 1 is an accurate prediction, then
the gelected order is N - ¢” = 19 which is not the true order. We conclude
that Akaike's cricerion does not work very well when applied to the eigen-
valucs. This counclusion does not indicate that Akaike's original criterion
18 not effective since the criterion we have used has been considerably
modified to enable application to the eigenvalues. Akaike's original

criterion wds never intended to be used in this way.

Table 3.4 displays the results of applying the likelihood ratio
criterion to tha observed eigenvalues. We observe that the values of
l- Az/kz+1 for £ < 8 do not differ significantly from the values for
2 > 8. There is theu no clean break point for choosing the order. We
conclude that the likelihood ratic criterion, as we have applied it, is

not guitable for selecting the order from the observed eigenvalues.

e e e e
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i
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Table 3.3.

Results of application of Akaike's critzrion

for order selection.

L N o T YO, T

EEETTSTIE G TEINT SN Tt ks

AIC(R)
1 -3.40
2 -3.21
3 -3.18
4 -3.18
5 -3.16
6 -2.96
7 -2,94
8 ~2.80
9 +2.,77
10 +2.79
11 +2.98
12 +3.00
13 +3,18
14 +3.26
15 +3.40
16 +3.60
17 +3.82
18 +4.18
19 +4,59
20 +4,97
3-24
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Table 3.4. Results of application of the
likelihood ratio criterion.

% 1 - Az/xg+1

e S etk s

0.1812
0.0293
0.0102
0.0225
0.3844
0.0201
0.1399
0.9962
0.0257
10 0.1744
11 0.0213
12 0.1722
' 13 0.0829
3 14 0.1329
15 0.1900
16 0.1996
) 17 0.3057
18 0.3382
19 0.6802
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3.6 SUMMARY AND CONCLUSIONS

Some of the more significant results of this section are summarized

Henderson's procedure for constructing a parameter of reduced
dimension has been tested on synthetically-generated data and
has produced accurate resonance estimates although the estimates
were less accurate than those obtained using the weakest eigen-
vector procedure. Some unanswered questions about Henderson's

procedure merit further study.

Three methods for estimating the true number of resonances were
introduced in this section. On testing each procedure with
synthetically~-generated data we found that only oune of the
procedures gave a reasonable estimate of the true number of

resonances. This method was the maximum likelihood procedure.

A model has been developed for the statistics of the eigenvalues
of QTQ assuming that the noise corrupting the waveform is white
and gaussian-distributed. The model is used in the ML procedure

for selecting the order.

The HFTI algorithm [16] is judged to be less useful for order
determination because it provides no means of constructing

a4 parameter vector.

Another method for order estimation is the time-reversal
technique described in Appendix I. Almost nothing is known
about the precise way in «~hich this procedure is able to
discern which resonances are extraneous. We are, therefore,
hesitant to recommend this procedure until it is better

understood.
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AUTOMATIC PROCESSING CONSIDERATIONS

. THE AUTOMATIC RESONANCE EXTRACTION PROBLEM FOR RADAR TARGET
, IDENTIFICATION

There are two types of resonance extraction problems that can be

) i \ asgociated with the radar target identification application:

| 1. Resonance extraction for target recngnition.

2, Resonance extraction for target intelligence.

8
!
i

g

)
:Q; ) All that is required in the first problem is to select a pole set,
Pf from a library of resonances for known targets, that best characterizes
va an observed waveform. The observed waveform, in this case, is the time-
~!3 domain radar return from the target of interest. This problem, depending
;‘; ) on how it is approached, can be much simpler than the second problem. The ¥
»f; second problem invnlves the identification and characterization of a ]

previously unknown carget. In contrast to the first problem, this problem !
has no apriori information to work from.

i
Lo ? ‘
g‘ The first requirement in each of these problems is that the radar '
r‘. return be measured in some fashion. We discuss some preferred ways in
' which the measurements should be performed next.
r k|
4,2 THE DATA ACQUISITION PROBLEM ;
E} There are three parameters that describe the mode of measurement ;
i \ of a sampled transient waveform which are important for the effectiveness
E | of resonance extraction procedures. These are the period of observation,

T, the sarpling rate, w, and the number of samples measured, NM' The

period of observation is simply the time duration of the waveform from
the first sample to the last. The sampling rate is defined by w = 27/At

where At is the time interval between successive samples. These parameters
are related by T = ZﬂNM/w.
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There are four more parameters that describe a '"region of feasibility"

i and a "preferred locus" in w - T space shown in Figure 4.l. These parameters
It .

I3 are:

L 1. The expected period of time that the transient returns are

i above the noise, 'I‘max
. - ’ -
f : 2, One-half cycle of the lowest frequency of interest, Tmin ﬂ/wLOW,

3. The highest sampling rate available or feasible on the measurement
apparatus, Woax? and

4, The Nyquist sampling rate for the highest frequency of interest,

Woin = 2prew’

If adequate measurements of the frequencies of interest are to be
made, w and T must fall within the region of feasibility. For adequate
measurements to be possible at all, it is required that the region of
feasibility exist or that ©oax > Yin Also, the possibility of i

adequate measurements requires that the maximum number of samples that
| is feasible, (NM)max’ satisfy

PP T

& W T T —T

N.) 5 wminTmin
M max — pX

(

{ The preferred locus defines the most desirable portions in the region

of feasibility (and outside this region as well). It should be noticed
that the locus is a broken line. The corners of the locus have

JE S v )

£ b wimli o ne

special meanings. The corner at Wiin and Tmax represents the point
where holding the sampling rate constant while increasing the number of
samples ceases to provide any more information. Any further increase in

the period of observation improves nothing since the added portions of

RO el i SR anaer s - cabanll el Eulin. S

the waveform are dominated by noise. Further information cen be provided

' only by increasing the sampling rate while increasing the number of samples.
pk Thus the corner is formed. By continuing to increase the number of samples i
the second corner is reached. This corner represents the point where

0
4 further increase in the sampling rate is impossible. At this point the .

only option available is to increase the period of observation (even %

though this provides little benefit) while increasing the number of samples.

1

%

y
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The primary objective in data acquisition is compiling the maximum
amount of information about the object of interest. This can be done best :
if the largest number of samples that is feasible to measure and store on
the measurement apparatus is usged. Therefore, the point on the preferred
locus for which N, = (NM)max defines the best values of w and T for

M
resonance extraction. !

We realize that tinere is much more o the data acquisition problem
than simply selecting the sampling rate and period of observation but
beyond just making accurate measurements these are the only parameters

of concern for resonance extracticns

4.3 TWO FACTORS EFFECTING THE ACCUPACY OF PRONY'S METHOD

Quite often in the literature the semsitivity of Prony's method to

noise in the data has been noted. The sources of this sensitivity can be

isolated to two factors: dense sampling and bias. The term ''dense sampling"
o means that the sampling rate of the waveform is much higher than the
sampling rate required to faithfully record the highest frequency of
interest or the Nyquist frequency. The dense sampling problem can be
ameliorated by proper manipulation of the data. The bias problem can also

be ameliorated and is discussed after the dense sampling problem.

4.3.1 THE DENSE SAMPLING PROBLEM

Kulp [14] has performed an excellent study of the effects of the

T T T T S T R I T TR T (e

sampling rate on the accuracy of the estimates obtained by Prony's method.

The effect which Kulp demonstrated can be explained by the following simple
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example. Consider the noilse-free exponential waveform, w = exp(-at). Two
samples of this waveform, which are spaced At apart in time, are given by
W, = exp (-at) and w, = exp(-at =-nAt). The '"resonance" for this waveform
is an s~plane pole at s = -a. The two noise corrupted samples 9 and 9

which correspond to wo and w, can be used to form an estimate, S;s of the

single resonance as

1 At 4,

This expression is nothing more than a first-order Prony procedure to

estimate the single resonance. It can be verified that

w

1
-Q-—Qn—“ .

At Vg

The point to be made i1s that the error in the estimate, s, + o, 1s

inversely proportional to the sampling interval

q,w
sl 4+ a = j% &n 10 .
91

This same polnt can be made for higher orders and for the least-squares
version of Prony's method as well as all procedures that are based on Prony's
difference equation. Another quantity that displays a dependence on the
sampling interval is the condition number of the matrix ﬁTﬁ (in the notation
of this report) which is used in the least-squares version of the Prony
procedure. In fact, Kulp used the condition number to derive bounds on the
error in the coefficients of Prony's difference :equation. The dependence

of the condition number and the dependence of the error in this example

on sampling rate are different aspects of the same phenomenon. By this

example we have briefly explained the problem of dense sampling.
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. When we are given a waveform with no other information how do we
S know whether it is densely sampled or not? One possible procedure is to
take the Fouriler transform of the waveform to determine its frequency
content. If most of the energy is concentrated in the lower frequencies,

the waveform is densely sampled.

One way of removing the effect of dense sampling is to use a pre-

processing technique such as the redundant-averaging scheme described in
Appendix E of this report. Another, perhaps more girect, way 1s altering
the way in which the data matrix is filled. For example, if the Fourier
transform indicates that the sampling interval can be increased D times,

where D is an integer, without aliasing any of the dominant frequencies

of the signal, then an alternate form of the data matrix can be used as

before to estimate the resonances: ]

_ —_ i
9% 9 %2 %
9 9py1 Y2p+1 " Yapel ’

! where m >D - 1 is required if all of the data are to be used. 1In order

= to obtain the proper s~plane pole estimates At must be multiplied by D.

e i e e it i M e o ma SN

3 4.3.2 THE BIAS PROBLEM

The bias problem is very complex. There are different definitions for
the term 'bias". The definition that we use is the standard definition of
bias found in basic textbooks of statistics [22]. If we denote the !
estimated parameter vector as X and the true parameter vector as x then x is

said to be an unbiased estimate if

.o V.
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glx] = x

where x 1s an N-dimensional random variable whose random nature is due
to the randomness of the noise in the data. The unbiased nature of any
estimate is strongly dependent on the particular procedure used to form

the estimate.

The bias problem can be observed and approached from many directions.
Eykhoff [20] describes the "asympotic bias" in terms of "correlated
residuals". The bias can be described in terms of suboptimal parameters
in the sense that they do not minimize the "true error' defined by (5)
although this approach to the problem involves factors other than just the
bias such as the choice of error criterion. The fact that equation error

b of Prony's difference equation is minimized by the inhomogeneous solution
i

might lead one to conclude that the particular choice of equation error as
the quantity to be minimized causes the bias. On closer examination we

must disagree with this conclusion. It is not the choice of error criterion

i that causes the bias but how the error criterion is minimized or, equi-

by,

valently, how the minimizing parameter vector is constructed. OQur obser-

~

vations of Section 2 seem to indicate that 1f the parameter vector is

AT Y vr‘wwﬁrt‘rm TR T ST TR T T

chosen as the weakest eigenvector of the transpose product of the data

; matrix, then the best estimates are obtained for the case when n = k. The
symmetrical perturbations expected in the eigenvectors with uncorrelated
noise seem to indicate that the expectation of the weakest eigeunvector

is equivalent to its "true" value without noise so that the weakest
eigenvector should be unblased. At the present time, we have no rigorous
proof that the weakest eigenvector is unbiased but we feel that it is

capable of proof.

If the noise is Gaussian-distributed and uncorrelated, using an

iterative least-squares technique to minimize "true error" produces an

|
|
|
|
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unbiased estimate. Unfortunately, iterative techniques are not well-

suited for our application.

For the case when n > k, Henderson's procedure (Section 3) should
effectively avoid the problems of bias based on our current understanding

of the bias problem.

One method of treating both the bias problem and the dense sampling
problem while still using the inhomogeneous solution is to simply increase
the number of poles modeled or n, This method is described in Appendix B.

Unfortunately, this method suffers from the problem of extraneous poles.

We believe that the previous so-called problems associated with
Prony's method stem from the failure to cure both the bias problem and
the dense sampling problem., Unfortunately, curing one problem does uot
cure the other so that it is very easy to fall into one trap, if not both.
If both of these problems are treated, we have found that Prony's method

produces excellent estimates from data with high noise levels.

4.4 THE TARGET RECOGNITION PROBLEM

The target recognition problem can be broken into roughly four
subproblems:

1. data acquisition,
2. preprocessing of the data,

3. data transformation or characterization, and
4. clasgification.

We have already discussed the data acquigition problem. The pre-
processing problem might consist of choosing which portions of the wave-
form to use, filtering the waveform, decimating the waveform, or other

similar procedures. The preprocessing is intended to condition the data

ety
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so that the data transformation procedure can be applied efficiently. The

data transformation problem can be handled in different ways. One means

of transforming the data may be to apply a resonance extraction procedure
to transform the information into a set of poles and residues. After the
data are transformed, we must decide to which class the data belongs. In

‘ the target recognition problem the classes are defined by the pole sets

of known targets. The classification problem then consists of choosing

which pole set, if any, in the library of pole sets, best fits the observed
radar return.

The data transformation problem need not be treated as a resonance
extraction problem. Several other approaches to this problem were studied
by Miller [26]and include:

1. Using a linear predictor from a library of linear predictors ‘
(each predictor corresponds to a pole gset of a known target) i
to predict the next values of the observed waveform and then
using the mean-squared error between the observed waveform

and the predicted waveform as a measure of the match [2].

2. Fitting each pole set in the library to the observed waveform
by choosing residues to minimize the mean-squared error

between the modeled waveform and the observed waveform: and then

R e

using the mean-squared error as a measura of the match.

3. Correlating the observed waveform with a library of waveforms

and using the correlation coefficient as a measure of the match.

T AT T ):W”"F'-—‘w e .

At the present time, it appears that fitting each pole set in the

library to the observed waveform (the second approach enumerated above)

-

is the most reliable and easily implemented of all. The processing needed
for this particular approach 1s small compared to what might be needed

for the application of a resonance extraction procedure. In addition an

optimal least-squares fit to the data can always be obtained by using

linear, non-iterative methods. An automatic procedure using this approach
might consist of the following steps:
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1. Data acquisition.

2. Discarding portions of the waveform that do not contain
significant amounts uf energy.

3. Fitting each pole set in the library to the data.

4, Assigning probability values, Pi’ according to how well
the ith pole set fits the observed data.

Pi is the probability that the actual target is the ith known target
in the library. The rule by which the probabilities are assigned would
most likely be developed by a training process where the target identifi-
catioq system observes varilations in the measure of fit'of each pole set
to a known target at various ranges and orientations. The training process
could continue even after the system becomes operational by using alternate
means of identifying the observed targets. 1If all the probabilities are
sufficiently low then the obseirved target is declared an "unknown target'.

Further study is needed, however, before a firm conclusion can be

made about which approach is the best. In particular, attention should

be given to which procedures are most efficient with regard to the mode

in which they are implemented, e.g., hardware, software, parallel processing,

or gsequential processing, etc. Such questions will be studied further in
Phagse II of the current contract.
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4.5 THE TARGET INTELLIGENCE PROBLEM

Like the recognition problem, the target intelligence problem can
be broken into subproblems: A

1. Data acquisition

2. Preprocessing
3. Order selection

4. Construction of resonance estimates

5. Estimating physical features of the target.

. e e —
e e

4~10

e e A R T ] R ARE
[ e et Stk vl B




sy ST - T S T - oo v e T 8T EERRT T T T Al e gy BT AT 2 T P TR T TR
PO P CIS L ST O L. i i . [T L R . ~

But unlike the recognition problem, there is no library of information
to work from. The data acquisition prob! has already been discussed.
In the following paragraphs we describe the most probable form that an
automatic resonance extraction system will take based on our present

understanding of th.. resonznce extraction problem.

The ultimate aim of the intelligence problem is to gain some kind of
useful information about what the unknown rarget is. For the purposes of
this report, we must assume that thie irf~ .ation is going to be derived
frum the poles. Then the intelligence problem considered in this report
requires that poles be extracted from the unknown target's radar return.
Thile could possible be done in real time. However, most likely, a wave=-
iorm would be stored and processed at a later time. Perhaps the stored
~avef. rm would consist of an average of all the returns observed by the
target identification system for the unknown target. Regardless of the
manner in which the waveform is constructed, .ome automatic procedure to

p:rform pole extraction is requireu.

The preprocessiug step for a Prony-type resonance extraction procedure
might consist cf the fol'owing:

1. Discard portions of the waveform that do not contain significant

amournits of energy.

2. Fouriar~transform ‘FFT) the waveform to determine if the wave-

fcrm is densely sampled.

3. Perform necessary adjustments to correct the dense sampling

problem 1if it exists.

The order-seleccion and resonance extimation subproblems can be
handled uging the EVD of the da.a matrix, the ML procedure for selecting
the order, and Henderson's procedure for eliminating the extraneous
resonances. Certain unanswered questions about Henderson's procedure
and the ML procedure should be explored befcre the exact form of these

procedures is set.
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The fifth subproblem will be studied in Phase II of the present
contract.

This subproblem consists of establishing a relationship betwaen
the pole patterrs and the physical characteristics of the target. At the
present time very little is known about this subproblem.
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4.6  SUMMARY AND CONCLUSIONS

7

Pt

Some of the more significant results of this selection are summarized
below:

1. Guidelines have been established for selecting the optimal

sampling rate and period of observation for measurement of a

e "?"" g *.;‘E "’ S e

transient waveform that is to be used in resonance extraction
procedures.
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Two independent factors effecting the accuracy of estimates of

Prony-type procedures have been identified. These factors are

"dense sampling" and "bias'". The effects of dense sampling
can be alleviated by preprocessing techniyues or by alternate

means of filling ti -~ data matrix.

it =

The bias problem can be

RN SETRE D S NS Y. IS "R

o ameliorated by proper construction of the parameter vector

; : (Henderson's procedure).

; . 3. Two distinct problems fall within the target identification

b definition: target recognition and target intelligence. Each :
r‘ ‘4
L ! of these problems must be treated in a unique fashion. 4
! 4, Tentative furms for procedures and systems to handic both the

)

Ls

o

target recognition problem and the target intelligence problem
have been defined.

-

Phase II of the current contract will further
refine these tentative plans.

e e
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5.0 CONCLUSIONS AND FUTURE EFFORTS

5.1  SUMMARY OF VOLUME I

At the end of each section, except the Introduction, a summary was
provided for the results of that section. Below we summarize the con-

clusions that will serve to determine the course of further efforts.

1. Iterative techniques are not considered for the automatic
resonance extraction application because of their inherent

problems such as lack of convergence and computational expense.

2. The various noniterative estimation procedures can be inter-
preted ag different methods of combining the eigenvectors of ;
the EVD of the data. There are certain "preferred" methods
of combining the eigenvectors of which Henderson's procedure
is an example for the case n > k. The "preferred" methods ;
are thought to produce unbiased estimates of the coefficients

of Prony's difference equation although no proof is available.

3. The ML procedure for selecting the model order is capable of
selecting the proper order without any knowledge of the noise

level whatsoever by simply observing the eigenvalues of the data,

4. Guidelines have been established for selecting the optimal

sampling rate and period of observation for measurement of a

T WTT

~

transient waveform that is to be used in resonance extraction

it 8%

procedures.

5. Methods for automatically sensing the problem of dense sampling

Sit=ain o 2t o

and for allaying its effects have been proposed.

6. Tentative forms fo. procedures and systems to handle both the

target recogaition problem and the tarpet intelligence problem

have been defined.



5.2  CURRENT STATUS OF AND UNANSWERED QUZSTIONS ABOUT RESONANCE

EXTRACTION METHODS

At the present time it is possible to coustruct automated, efficlenct
procedures to:

1. Estimate the number of resonances present in the data, and

2. Construct estimates of the "true" resonances that in some

sense fit the original data,
with no knowledge cf the noise given whatsoever.
be quite tolerant to noise.

These procedures should

The procedures are based on the eigenvalue
analysis of the data.

The maximum likelihood procedure for ordetr selection, described in
Section 3, will perform the first step.
in Section 3, will perform the second step.
adequately at this time, there are some unanswered questions, that if

addresgssed, could create new ways to further improve performance.

One unanswered question relates to the statistics of efgenvaliues
for alternate forms of the data matrix that might be used to allay the
effects of dense gampling. If the eigenvalue statistics do change
significantly, then another model for the statistics must be developed for
the alternate forms of the data matrix and used in the ML procedure for
order selection. Another question relates to the proof that EVD allows
unbiased estimation of the coefficieunts of Prony's difference equationm.

Such a proof is needed to place the uge of EVD techmiques on firm ground.

Other unanswered questions about Henderson's procedure which were
posed in Section 3 are:

1. How should the weakest eigenvectors be welghted pricr to the

ugse of this procedure?

What specific procedures can be applied iu place of Gaussian
elimination in this procedure?

5-2
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Further study along the lines of these questions will almost certainly
yield further improvements in the procedures. Perhaps the most important
unanswered question is how well the methods for preprocessing, order

selection, and resonance estimation will perform with real measured data.

5.3 FUTURE EFFORTS

Under Phase II of the current contract the concepts and procedures
developed in Phase I will be further developed and plans for specific non-
cooperative target recognition (NCTR) systems will be further refined.

To accomplish the above the following questions must be addressed:

1. What is the relationship between the natural resonances and

the physical shape and dimensions of a target?

2. What forms can a NCIR system assume? Which form is the best
under what conditions?

3. What modifications are required if the procedures are to he
implemented in hardware?

Answers to these questions will be pursued by simulating possible NCIR

systems with measured data in the second phase of this contract.
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7.0

LIST OF SYMBOLS

Roman Symbols:

true residues
egtimated residues

a constant that determines the value
of y that maximizes f1

coefficients of a linear combination
of the eigenvectors

integer that specifies how many times
the sampling interval can be increased
without allasing any of the frequencies
of interest

M-dimensional equation error vector
ith element of the equation error vector

particular equation error vector that
satigfies QxNQE = dNQE

error matrix defined as é—ﬁ uw F
measurement error of the ith sample

transfer fupction of the jth filter in
the generalized model

frequency function for y

approximation Lo the frequency function £

(2 % N?-dimensional matrix whose rows span

the L' autoregrasejon nullspace.

equation error vector for the generalized model
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ith element of the equation error vectoer
for the generalized model

(2 x k” + 1)-dimensional matrix used in
Henderson's procedure.

estimate of the transfer function of the
single-input, single-output system which
models the scatterer

any N-dimensional vector in the row space
of Gz

jth element of h

an identity matrix of appropriate dimension
general index

general index

congtant that determines the amplitude of fl
true number of poles

estimated number of poles

estimate of the true order k

cut-off normalized meau log-likelihood used in
the maximum likelihood procedure for selecting
order

normalized mean log-likelihood function

expected normalized mean log-~likelihood for
pure noise

index associated with the lower eigenvalues
number of rows of Q, M~ m + 1
equals M-l (defined for convenience)

number of columns of Q, N=n + 1
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number of samples in the measured waveform

&

number of samples in the analyzed waveform

number of poles modeled 1

-

transpose product of Q or QTQ

the probggility that the actual radar target
is the 1~ known target in the target library

Any (N x N)~dimensional singular matrix

(N x N)~dimensional singular approximant to P

the ith sample of the output of the jth filter
on the excitation in the generalized model

(M x N)-dimensional measured data matrix

(M, x n)~-dimensional version of Q or Q with the
N™ column removed.

an alternate form of Q that is useful in treating
the dense-sampling problem

the n-rank approximant to Q
the Nth column of Q

the ith sample of measured response of the
linear system

the ith sample of the output of the jth filter
on the response in the generalized model

the (M + N-1)-dimensional residual vector

the ith element of r

(M x N)-dimensional diagonal matrix whose
diagonal elements are non-negative and are
called the singular values of Q

true s-plane poles

estimated s—-plane poles

7=3
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P

the (M x N)-dimensional matrix constructed
from S by forcing the smallest singular value
to zero.

Laplace - transform variable

period of observation (length of waveform
in time)

expected period of time the measured transient
waveforms are above the noise

one~half cycle of the lowest frequency of
of interest, equals w/wL0

time variable

time step

(M x M)~-dimensional orthogonal matrix whose
columns consist of the eigenvectors of QQ

(N x N)-dimensional orthogonal ma&rix whose
columns are the eigenvectors of Q°Q

the (N x N)-dimensional orthogonal matri¥ whose
cclumns consist of the eigenvectors of W'W

the ith eigﬁﬁvector of QTQ corresponding to

Ai or the { column of V.
t%ﬁ element of V belonging to the ith row and
3 column

(M x N)-dimensional true data matrix
uncorrupted version of g

uncorrupted value of 4y

matrix constructed from the coefficients of
Prony's difference equation

any N-dimensional parameter vector or vector
of coefficients at Prony's difference equation

a% n-dimensional version of x or x with the
N element removed

solution of the inhomogeneous equation,
=T =T=
QQx, = Qg

7=4
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scaled parameter vector constructed from X
which yields identical pole estimates

expected inhomogeneous solution

weakest eigenvector of QTQ

n-dimensional vector construcgﬁd from XNOE
by scaling XNoE  5° that its N thelement 93
one and then gEiminating the N~ element.

parameter vector constructed with Jain's
method

any vector in the space sganned by the ¢
weakest eigenvectors of Q°Q

(N x N)~dimensional matrix whose diagonal
elements consist of samples of the random
variable v

a random variable used to model the random
component in the eigenvalues due to noise
in the data

z-transform variable

true z-plane poles

estimated z-plane poles
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Greek Symbols:

est

coefficlents of Prony's difference equation

scaling factor for the output of the jth filter
on the excitation in the generalized model

element of the ith row and jth column of

adj QTq

cut—-off parameter used in the likelihood ratio
criterion for selecting the order

)
2N~dimensional parameter vector for th:
generalized model

{N x N)=~dimensional diagonal matrix whose
diagonal elements are the eigenvalues of Q°Q

(M x M)-dimensional diagonal matrix whose T
diagonal elements are the eigenvalues of QQ
diagonal (N x N)-dimensional matrix constructed
from AN by forcing the smallest diagonal element
to zero

(N x N)-dimensional diagonal matrix whose
diagonal matrix whos% diagonal elements are
the eigenvalues of W'W

ith eigenvalue of QTQ the eigenvalues are
ordered Al SAy S 8 AN
ith eigenvalue of WTW, the eligenvalues are
ordered A} < A¥ <... <a¥

expectation operator

adjustable parameter used to form the maximum
likelihood gstimate of o from the lower eigen-
values of Q°Q

the standard deviation of the assumed Gaussian-
distributed, zero-mean, and uncorrelated noise
corrupting the samples of the waveform
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g ' - the (M x 2N)-dimensional data matrix for the E
A Q |
;’ generalized model 1
. o - sampling rate (angular frequency) %
[ k
. - - i
;~ l ] YHTGH highest frequency of interest j]
YLow - lowest frequency of interest 1

w -~ Maximum feasible sampling rate :

) max |
|

Woin -  Nyquist frequency, equals Z"HIGH |
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Miscellaneous symbols:

|14l -~ denotes the euclidean norm of vector A
or matrix A

v - gradient operator with respect to the
X vector x

adjA = denotes the adjoint matrix of matrix A
or the transpose of the matrix of cofactors
of A

detA - denotes the determinant of matrix A

inA - denotes the natural logarithm of sowme real
or complex number A

exp (A) - denotes e, the base of natural logarithms,
raised to the power A

I
[
s ekl Sl N it

A - denotes the inverse of square matrix A
A% ~ denotes the transpose conjugate of complex
matrix A

i

7-8




