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EXECUTIVE SUMMARY

This report describes some new designs for AAW decision aids.

The aids discussed here are experimental systems designed to

complement existing decision aids like the Naval Tactical Data System

(NTDS). The proposed aids summarize and display uncertainties

inherent in AAW information, and aggregate the high volume of data

characteristic of AAW command and control situations into a few

simplified displays. They produce displays of the probability that

attacking aircraft or missiles will penetrate a task force's (battle

group's) defenses undetected, the likely attack routes, the

probability that a threat is located or will first appear at any

location, and the expected damage levels from detected and undetected

threats. Since the experimental decision aids have been formulated

and partially implemented in a six month period, they are not fully

developed. However, they indicate the promise and problems

associated with AAW decision-aiding systems that attempt to process

uncertain, subjective data in a rapidly developing command and

control situation.

The AAW decision environment places a number of stringent

conditions on the nature and performance of decision aids. A large

number of related decisions must be made in several locations during

a short period of time, and these decisions and their consequences

must be communicated rapidly among numerous decision makers. There

is insufficient time to formulate a unique analysis of each decision

problem, and even the amount of information transferred back and

forth between an aid and its users must be limited to those items

that can be entered, processed, and interpreted very quickly. With

these constraints, AW decision aids cannot have the flexibility to

address directly every choice that AAW personnel may be required to

make. Flexibility is maintained by having AAW aids summarize the

implications of available data and assessments, and allowing AW

personnel to integrate any unique elements of the situation into

their decisions.

-ESI-
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g The Analytic and Information Processing Needs for MAW Decisions

In previous research for ONE, ADA has examined the MAW decision

tasks performed at the unit (i.e., single ship) and task force

(battle group) levels. The decision aids descri.bed here are designed

to support MAW personnel at both the unit and task force levels,

although most of them are oriented toward higher-level decisions that

require the user to aggregate information about a large number of

threats.

As part of this earlier research, ADA developed a taxonomy of

the information processing and decision analytic functions relevant

to MAW decisions. These functions include: acquiring and

interpreting information; restructuring and summarizing data;

identifying and analyzing the the major elements of a decision;

identifying patterns and relationships in data; determining the

implications of an analysis; and integrating the results of analysis

with existing knowledge and intuition. The relative importance of

these functions for each MAW decision task was assessed and compared

to the ability of MAW personnel to perform them with existing

decision aids. Those decision-making functions that are both

important for one or more MAW decision tasks and difficult for AAM

personnel to do with existing aids were identified as functional

requirements for new decision aiding systems.

Of the functional requirements identified in this manner, the

experimental aids developed by ADA address the following:

-assess and communicate the uncertainty and credibility
of information produced by detection, tracking,
assessment, and priority setting activities;

-combine the information available about threats and
defensive weapons into an aggregate estimate of
capabilities and intentions;
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- sort and categorize threats according to criteriaI appropriate to a specific combat situation; and

- evaluate alternative defensive actions.

The research described in this report focused on AAW decision

aids with two major capabilities: processing and displaying

uncertainty, and aggregating track-specific data. These

capabilities are central to the functional requirements for MAW

decision aids listed above, and they address two of the most

difficult aspects of making MAW decisions: coping with high volumes

of AAW data, and assessing the uncertain implications of that data.

At present, both of these tasks are done manually by MAW personnel

who interpret the engagement-status information displayed by the

Naval Tactical Data System (NTDS).

Processing Uncertainty

Much of the information processed by AAW decision aids is

uncertain. The tracking and identification tasks are characterized

by uncertain and incomplete data, but NTDS provides only a limited

capability for communicating this uncertainty through an automated

display to those who must make resource allocations. Inaccurate

data and subjective interpretations of incomplete data are rapidly

disseminated to NTDS users without a means for them to judge the

confidence they should place in the resulting displays.

Another type of uncertainty relevant to MAW decisions is the

implication of current tactical data f or future events and

decisions. MAW personnel routinely estimate the future course and

tactics of tracks from current tactical data and assessments of the

enemy's targets and information state (i.e., whether the enemy knows

the location of various targets). Similarly, the chance that a

sensor will fail to detect a threat or a defensive weapon will fail

to destroy it should be considered when taking defensive actions.

-ES3-



In order to make these estimates and inferences, MAW personnel must

* mentally process sev'eral interrelated uncertainties.

The experimental decision aids developed during this research

project attempt to help users make such probabilistic inferences.

They deal directly with the uncertainties inherent in MAW

engagements, ranging from enemy capabilities and intentions to -the

consequences of alternative allocations of defensive resources. The

logic and displays used in these aids provide a method of processing

and communicating subjective assesments of uncertain parameters and

their implications for future actions.

Aggregating Data in AAW Decision Aids

Most of the data displayed by NTDS is tied to individual

tracks. This means that the amount of information about an MAW

engagement increases as the number of tracks increases. As more and

more tracks are processed in a high-density engagement, MAW

personnel will reach a point where they cannot deal adequately with

all of the track-specific data for which they are responsible. When

this happens, they must selectively ignore some of the data and

focus their attention on only the most important pieces of

information. As the amount of track-specific information increases,

so does the difficulty of assessing and focusing on the important

elements of the situation.

Including measures of uncertainty in MAW data and their

implications for future actions and events effectively increases the

amount of information stored in MAW data bases. To give MAW

personnel access to this information, methods are needed to overcome

* the information transfer limit between the displays and the users.

Two approaches that are currently in use are selective data

retrieval and multiple displays. This report describes another

approach based on displays that are not track specific.

-ES 4-



The primary alternative to track-specific data in real-time AAW

displays are symbols representing information about groups of

tracks. NTDS uses this approach to represent a formation of

aircraft with a single symbol. Further aggregation of AAW data can

be accomplished by using symbols to represent such quantities as:

areas where defenses are relatively weak, high concentrations of

threats, probable attack routes, levels of expected damage, etc.

This type of information summarizes the status of an engagement, and

helps a user prioritize the processing of track-specific data.

When information about groups of tracks is combined, the result

can be displayed either as a single symbol or as a quantity defined

over the entire area covered by the display. The second approach is

appropriate for information derived from all of the tracks in the

area covered by the display, such as the probability that a threat

can penetrate to any location near the task force. Quantities

defined over a region and not specific to a single location can be

represented by contours, colors, or shading over an entire display.

Since this type of display is not used currently, it could be

superimposed on the track-specific symbols generated by NTDS.

In general, the decision aids described in this report display

information in the form of quantities defined over the entire area

around the task force. The form of the display is a set of contours

to describe the level of that quantity in each region. The interior

of each contour may be shown in color to make it easier to interpret

the display.

Displays of functions defined over an area were selected

because they show promise for aggregating a lot of information in a

*form that is fairly easy to interpret, and because they are easily

extended to represent the uncertainty associated with events that

* that can occur at any location (e.g., the probability that an

undetected threat will first appear at any point near the task
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force) . In addition, a decision aid based on contours can suammarize

a situation with approximately the same amount of information

regardless of the number of tracks present, thus circumventing the

information transfer limit between displays and users.

Overview of the Proposed Aids

The experimental aids are designed to answer several related

questions relevant to MAW decisions. Answers to all of these

questions depend on the current defensive posture and conditions

affecting sensor performance (including environmental conditions,

electronic countermeasures, jamming, etc.).

- What is the probability that a threat in the vicinity of
the task force will be detected by a given configuration
of sensors under current or anticipated conditions?

- Which attack routes are enemy aircraft and missiles
likely to use in attempting to penetrate our defenses
undetected? Which would give them the best chance of
avoiding detection?

- What is the maximum probability that a threat could
penetrate undetected to any point near the task force,
given estimates of the enemy's objectives and his state
of information about our defenses?

-What is the probability that a currently undetected
threat is located at any point near the task force,
given our current defensive posture and any prior
information about the threat's location (e.g., data
describing a lost track)?

-What is the probability that a threat will be detected
for the first time at any point near the task force,
given our current defensive posture and state of
information?

-Given a policy for allocating defensive weapons to
threats, what is the probability that a threat can
penetrate to any point near the task force without being
destroyed? (The answer to this question depends on both
our ability to detect threats and our ability to
intercept and destroy them.)



-Given a weapons allocation policy, what is the expected
damage to ships in the task force from both detected and
undetected threats, and which threats are expected to
cause the damage?

Aids have been implemented that would help AAW personnel answer

the first five questions. Aids relevant to the last two questions

have been formulated and the formats of their displays have been

specified.

Aids that address these questions can be used to support many of

the MAW decision-making activities at the unit and task force

levels. However, these aids are best suited to activities that

require integrating information about numerous tracks or anticipated

enemy actions in order to establish an appropriate defensive

posture. Thus, at the task force level they are likely to be most

useful for the force positioning and resource allocation activities,

including the positioning of ships and aircraft to maximize the

chances of detecting and intercepting air threats and the assignment

of defensive aircraft (interceptors and electronic surveillance) to

sectors. At the unit level, they would be of the most value to MAW

personnel involved in establishing priorities for dealing with

threats (i.e., which threats should be engaged first).

In the remainder of this summary, each of the aids developed

during this project is described briefly. Several of the aids have

been implemented on a small computer graphics system; initial designs

have been specified for others, but further research will be needed

to implement them. All of the aids, including the ones that have

been implemented, are experimental and variations of each display and

* alternative algorithms to generate them have been explored. For many

of the proposed aids, examples of displays (the results of

algorithmic testing on small sample problems) are presented in the

main report. The data used in all of these sample displays is

hypothetical, and not intended to represent an actual combat

environment.

* -Es7-



Detection Probabilities

This decision aid displays a measure of the probability that a

combination of sensors (primarily radars) can detect a particular

type of threat at any location near a task force. The boundaries of

colored regions in the display represent contours of equal detection

rates. On an intuitive level, regions with high detection rates

correspond to areas with better radar coverage. If the detection

rate in a region is doubled, then the probability that a threat can

traverse the region undetected is halved. This type of display

should be most useful for task force AAW decision-makers concerned

with positioning defensive resources and establishing electronic

emissions control strategies.

The detection rates are a function of the characteristics of the

threat, the physical environment, electronic countermeasures and

jaimming used by both sides, and the status of various surveillance

systems. The logic required to calculate the detection rates from

physical data has not been developed as part of this project, and a

separate research effort will be needed to specify appropriate

algorithms. These algorithms should be based on empirical data

describing the performance of each surveillance system under various

operating conditions.

Op1timum and Likely Attack Routes

This aid produces two related displays: one showing the optimum

routes for attacking aircraft or missiles trying to reach any point

near the task force undetected, and a second showing regions

containing likely, but not necessarily optimal, attack routes. These

displays are generated from the detection rates described above, and

from intelligence estimates of the enemy's objectives and knowledge

of the task force's detection capabilities. The displays also have

the capability to reflect intelligence estimates of the direction

from which the anticipated attack will be launched.

-ES8-



It would be unwise to concentrate too many defenses on theI optimal attack routes. If the enemy's objectives and knowledge

differ from our estimates, or the enemy decides to take a suboptimal

route, defensive capability may be needed elsewhere. Therefore, the

decision aid produces a display showing the relative effectiveness of

various paths to a given target. Under the assumption that an enemy

is more likely to take routes that minimize the probability of

detection or the distance traveled, this display indicates the

relative likelihood that the enemy will select routes that pass

through each region. The interpretation of this display is

consistent with the mixed (i.e., probabilistic) strategies that would

result from a game theoretic approach to the problem.

Surveillance Penetration Probabilities

This decision aid produces a display of the maximum probability

that a threat can penetrate undetected to any point in the vicinity

of the task force. in addition to the surveillance penetration

probabilities for threats that have never been detected (future

attacks), the decision aid can display them for a lost track. In

either case, the display is based on a "worst case" analysis using

the optimum attack routes determined by the preceding aid.

Both the display of detection probabilities and this aid show

the implications of positioning surveillance systems and establishing

an emissions control policy. However, there is a major difference
between the two displays. The latter also shows the implications of

our assessments of enemy tactics, objectives, and knowledge of our
current defensive posture.

Location Probabilities

This decision aid is closely related to the previous one, but it

produces a display of current, rather than projected, threat status.

-ES9-



The display shows the probability that one or more undetected threatst are currently located at any point in the vicinity of the task

force. The display can be generated for threats that have never been

detected and for lost tracks, but different assumptions and data are

needed for these two situations.

Once the location probabilities have been calculated for several

lost tracks (or tracks that have never been detected), it is

relatively simple to calculate and display the probability that one

or more undetected threats exist at any location. Displays for the

location probabilities associated with multiple lost tracks have not

been implemented, but they are a direct extension of the single-track

displays implemented during this research project.

First Detection Probabilities

This decision aid displays the probability that a currently

undetected track (usually part of an anticipated future attack) will

be detected for the first time at any location near the task force.

This information is closely related to the surveillance penetration

and location probabilities. However, first detection probabilities

are better suited to the needs of those assigning defensive weapons

to threats because they indicate the areas where defensive weapons

may have to be targeted. First detection probabilities also

determine the reaction times within which AAW personnel will have to

assign and fire defensive weapons. For this reason, first detection

probabilities are used by other decision aids to calculate the

expected consequences of an engagement.

* First detection probabilities can also be calculated and

displayed for a lost track. However, this requires considerably more

computation than the case of a track that has never been detected; as

a result, this algorithm has not been implemented. Alternative, more

efficient algorithms to deal with this case are under investigation.

-ESlO-
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Total Penetration Probabilities

This aid displays the probability that a threat can penetrate to

any point near the task force without being destroyed. In order to

calculate this quantity, the aid combines the first detection

probabilities produced by the preceding aid with information about

known (i.e., detected) threats and a policy for allocating defensive

weapons to threats. A simple combat model describes the

effectiveness of defensive weapons. The aid produces a display

similar to that for surveillance penetration probabilities, but shows

the probability of survival rather than nondetection. The inputs,

displays, and some of the logic for this aid have been specified, but

it has not been implemented.

This decision aid does not attempt to optimize the allocation of

defensive weapons. Instead it shows the effect of a defensive policy

established by the user. For instance, the user might specify the

defensive weapons to be used against threats in various areas near

the task force, and require that a single defensive weapon be

allocated to each threat within a given distance of the task force,

followed by a second weapon if the first fails. The decision aid

would show the implications of this policy for threat penetration; if

the results are unacceptable, the user could try a different weapons

allocation strategy. In this manner, AAW personnel would retain

control over all of their resource allocation decisions, and the

decision aid would serve to help them test alternative policies and

select an acceptable one.

* Sources of Expcted Damage

This aid produces a display of the expected damage (i.e., threat

level) associated with both known tracks and undetected threats. The

* display is generated in real time, and it changes as threats are

detected, move to new positions, or encounter defensive weapons. It
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is designed to support MAW personnel at the unit level who prioritize

threats and assign defensive weapons to counter them.

Like the preceding display, this one has not been implemented,

but its inputs and the form of the display have been specified. It

includes both track-specific information (for detected threats) and a

threat level defined over the entire area (for undetected threats).

Associated with each known (i.e., detected) threat is the expected

amount of damage it can cause ships in the task force. In the

display the expected damage associated with detected threats is

represented by colored symbols for the tracks. For undetected

threats, the expected damage is represented by contour levels or

colored regions around the task force.

Directions for Future Research

A significant amount of work remains to be done in order to

complete development of the proposed aids. In particular,

implementation of the displays of location probabilities for

undetected (anticipated) tracks and first detection probabilities for

lost tracks has been deferred because these displays require more

computation time than other displays. Alternative algorithms are

currently under investigation, including an approach based on Mar kov

processes described in the Appendix.

Two of the decision aids discussed in this report have not been

implemented: the displays of total penetration probability and

sources of expected damage. However, the current research project

has resulted in a specification of the required input data and the

form of each display. One goal of future research will be to

complete the design and implementation of these displays. A major

.4 requirement for production of these two displays is the development

and implementation of a simple combat model.

-ESl 2-



J Continuing development of the aids presented in this report

should include the implementation of sensor detection models based on

empirical data. In addition, the experimental aids should be tested

on a larger computer system, so that algorithmic inefficiencies can

be assessed and corrected.

Displays showing the density of detected, lost, and undetected

(anticipated) threats, as well as the density of friendly forces,

represent another possible avenue of future research. Such displays

could lead in a natural way to status summaries of controlled areas

and battle zones. This type of display could be valuable in showing

where each side is vulnerable to attack or the repositioning of

opposing forces.

-ES13-
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I. INTRODUCTION

This report describes some new designs for MAW decision aids.

The aids discussed here are experimental systems designed to

complement existing decision aids like the Naval Tactical Data System

(NTDS). The proposed aids suimmarize and display uncertainties

inherent in MAW information, and aggregate the high volume of data

characteristic of MAW command and control situations into a fewv

simplified displays. They produce displays of the probability that

attacking aircraft or missiles will penetrate a task force's (battle

group's) defenses undetected, the likely attack routes, the

probability that a threat is located or will first appear at any

location, and the expected damage levels from detected and undetected

threats Since the experimental decision aids have been formulated

and partially implemented in a six month period, they are not fully

developed. However, they indicate the promise and problems

associated with MAW decision-aiding systems that attempt to prccess

uncertain, subjective data in a rapidly developing command and

control situation.

The MAW decision environment places a number of stringent

conditions on the nature and performance of decision aids A large

number of related decisions must be made in several locations during

a short period of time, and these decisions and their consequences

must be coimmunicated rapidly among numerous decision-makers. There

is insufficient time to formulate a unique analysis of each decision

problem, and even the amount of information transferred back and

forth between an aid and its users must be limited to those items

that can be entered, processed, and interpreted very quickly. in

this environment MW aids must help a user focus on the most

significant elements of the problem and reach his own conclusions

about the beat course of action.

Mh-1-



Time constraints on AAW decisions require that much of the logic

and format of the decision-making process be specified before any

decisions take place. This means that MAW decisions aids must be

based on prepackaged algorithms and display modes, with only a

minimum of subjective input from users. The number of assessments

must be limited to a few key parameters that do not change rapidly

throughout the course of an engagement. With these constraints, AAW

decision aids cannot have the flexibility to address directly every

choice that MAW personnel may be required to make. Flexibility is

maintained by havin- MAW aids summarize the implications of available

data and assessments, and allowing MAW personnel to integrate any

unique elements of the situation into their decisions.

Organization of This Report

The remainder of this introduction summarizes ADA's previous

investigation of the functions that should be provided by MAW

decision aids, and the approach taken in this research project to

design new aide that provide some of these functions. Section II

discusses the benefits and difficulties associated with processing

uncertainty and aggregating data associated with MAW decisions. This

section concludes with a discussion of alternative types of displays

for decision aids that accomplish these tasks, and describes the type

of displays selected for aids developed during this research

project. Section III describes each of the decision aids in detail,

shows how they are related, and discusses their data requirements,

assumptions, displays, and limits. Section IV describes areas where

further research is needed to overcome some of the limitations

associated vith the experimental decision aids, and to develop

improved aids capable of supplying additional support for MWN

decision making activities. The Appendix specifies the logic and

mathematics contained in each algorithm used by the aids. In som

cases alternative algorithms are described, together with their

limitations and relative advantages.
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AAM Decision-Making Activities

In previous research for ONR, ADA has examined the AAW decision

tasks performed at the unit (i.e., single ship) and task force

(battle group) levels. The decision aids described here are designed

to support AAW personnel at both the unit and task force levels,

although most of them are oriented toward higher-level decisions that

require the user to aggregate information about a large number of

threats

The decision-making activities at the task force level deal

primarily with assigning AAW responsibilities and assets to

individual units, and then coordinating their activities. The major

decision-making activities that occur at the task force level are:

-establish operational guidelines for AAW personnel and
interpret rules of engagement specified by higher
levels of command (e.g., define the conditions under
which a unit can fire on an air target without further
authorization);

-interpret intelligence reports and anticipate the type
of air attack that might occur;

- position ships and aircraft to maximize the chances of
detecting and intercepting air threats;

- establish controls on electronic emissions (DICON' and
select electronic warfare tactics;

- designate air defense sectors and assign responsibility
for AAW operations within a sector to a ship or a
sector AMW coordinator;

- assign defensive aircraft (interceptors and electronic
* surveillance) to sectors;

*- establish procedures for the movement of friendly
aircraft near the task force; and

-resolve conflicting decisions or actions by AM( units
and coordinate their activities.

-3-
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The last decision-making activity in this list is made both

before and during an engagement by one of several officers
designated to coordinate air defense activities. The principal

officer in this category is the antiair warfare coordinator (MAWC).

He is supported by a force track coordinator (MT) who monitors and

reconciles the tracking and identification decisions made by units

in each sector. Since the decisions made by these officers are

closely related to those made at the unit level, they currently are

supported by the same decision aids. However, these aids provide

little direct support for the other AAW decision activities in the

list above.

The decision-making activities that occur at the unit level are:

- detect and track aircraft and missiles;

- identify each track (i.e., determine the type of
aircraft or missile, and whether it is friendly or
hostile);

-assess the degree of danger posed by a threat (i.e.,
estimate its mission and the likelihood it will
succeed);

-establish priorities for dealing with threats (i.e.,
which threats should be engaged first);

-assess the capabilities of alternative weapon systems
for countering a threat (i.e., determine whether a
weapon can intercept the threat and the likelihood that
it will stop the threat);

-assign defensive weapons to counter each threat; and

-decide when, or under what conditions, to fire
defensive weapons (e.g., fire a missile when the threat
reaches a certain position).

In practice, these activities are treated as separate

decisions, even though many of them are information processing

activities that support the final decisions to assign a defensive

weapon to an air target and fire the weapon.
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At the unit level, all of the decision-making activities take

place in a combat information center (CIC), where they are supported

by either automated or manual decision aids. The central decision

maker in the dCI is the tactical action officer (TAO). The TAO is

trained to manage all unit AAW operations and coordinate his actions

directly with the AAWC.

The remaining AAW personnel in a ship's CIC report to the TAO.

Their responsibilities correspond to the unit level decision

activities listed above. On a ship with an automated AAW system,

detector/trackers watch radar screens and assign synthetic (i.e.,

computer generated) symbols to radar signals reflected by aircraft

* or missiles. As the radar signals move across the screen, the

detector/trackers instruct the computer to move the synthetic

symbols along the same paths. ID operators use a variety of

information to estimate the identity of each object on the screen,

and modify the synthetic symbols so others can see what they

represent.

Assessing and prioritizing the threats represented by the NTDS

symbols is primarily the job of the TAO and, if the ship has an

automated AAW system, the ship's weapons coordinator (SWC). The SWC

keeps track of the availability of defensive weapons systems and

helps the TAO assess their capability to destroy air threats.

Defensive weapons can be assigned to threats by either the SWC or

the TAO, with the TAO exercising veto power if he does not accept

the SiC's decisions. Working with the SWC may be several

specialized weapon controllers, including an intercept controller,

* fire control system controller, and engagement controller, depending

on the size of the ship and the number of stations in the CIC.

These operators implement the decisions of the SWC and TAO using the

information entered by trackers and ID operators.
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The primary automated decision aid for MAW personnel is the9 Naval Tactical Data System (NTDS). NTDS is a specialized

information processing system that accepts real-time data from

radars, aircraft, weapons systems, operators, and other ships;

processes this information and displays it on small-screen consoles;

exchanges the information via digital data links with other NTDS

units (or units with compatible data systems); and reports some of

the information to other commands and non-NTDS units via teletype.

The primary control and output device for this sytem is an NTDS
console, which consists of a small screen resembling a radar

repeater and a variety of control keys. There are several types of

NTDS consoles, and most consoles can be operated in several

different modes. However, the consoles use commaon data definitions

and symbology, and information or instructions entered at one

console can be observed at other consoles. For instance, a track

detected using one ship's radar can be entered into an NTDS console

and it will appear immediately on consoles aboard other ships with

NT"DS systems that are connected to the same digital data net.

The Analytic and Information Processing Functions

Needed to Support MAW Decisions

in previous research for ONR, ADA developed a taxonomy of the

information processing and decision analytic functions relevant to

MAW decisions. These functions include: acquiring and interpreting

information; restructuring and summarizing data; identifying and

analyzing the the major elements of a decision; identifying patterns

and relationships in data; determining the implications of an

analysis; and integrating the results of analysis with existing

knowledge and intuition. The relative importance of these functions

for each of the MAW decision tasks listed above was assessed and

* compared to the ability of MW personnel to perform them with

existing decision aids. While these assessments were not precise,

they indicated general areas where appropriate decision aids are



most likely to improve the decision process. Those decision-makingf functions that are both important for one or more AAW decision tasks

arnd difficult for AAW personnel to do with existing aids were

identified as functional requirements for new decision aiding

systems.

The functional requirements identified in this manner are:

- assess and coimmunicate the uncertainty and credibility
of information produced by the detection, tracking,
assessment, and priority setting activities;

- combine the information available about threats and
defensive weapons into an aggregate estimate of
capabilities and intentions;

- store and recall subjective assessments of the status
and capabilities of threats and defensive weapons;

- sort and categorize threats according to criteria
appropriate to a specific combat situation;

- identify predefined patterns of data that indicate the
existonce and identity of tracks, and the capabilities
of threats;

- identify trends in enemy tactics; and

- predict outcomes and evaluate alternative defensive

actions.

The experimental aids described in this report deal directly

with the uncertainties inherent in AAW engagements ranging from

enemy capabilities and intentions to the consequences of alternative

allocations of defensive resources. The logic and displays used in
these aids provide a method of processing and communicating

subjective assessments of uncertain parameters and their

implications for future actions.

Even though AMW personnel have a limited amount of time to make

and communicate subjective assessments of the performance of MAW

systems, it is important to design MAW decision aids that can
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process and display the implications of this information as well asf physical data. Currently subjective information is transmitted

verbally among MAW personnel and used to interpret NTDS displays.

For example, a TAO may discount some of the information displayed on

an NTDS console because he knows it was entered by personnel with

relatively little training or experience. Alternatively, he may

take precautionary actions if he suspects that the data on an NTDS

display is incomplete and threats exist that are not displayed. if

future decision aids are to provide more direct support for MAW

decision-making activities, they must process and draw implications

from the uncertainties and subjective estimates considered by MAW

personnel. The aids described in this report represent a first step

in this direction.

The Approach Used to Design the Experimental Aids

The research described here started with a re-examination of

the MAW decision functions that could benefit most from improved

decision aids. The list of functional requirements described above

was consolidated into a few basic functions that could be provided

by a small set of experimental aids. For reasons discussed in the

next section, the research focused on aids capable of processing

uncertainty and aggregating the high volumes of data characteristic

of AAW command and control. Alternative methods of summarizing

uncertain data were considered, and several promising displays were

se3lected for further development.

An initial specification of the data processing required to

generate the displays indicated that it could be done with a small

computer if certain assumptions could be made about the

relationships among the uncertain quantities shown in the displays.

These assumptions are discussed in Section III. The proposed

displays were discussed with Navy research personnel involved in the
design of AAW systems, and revised in accordance with their



comments. Finally, some of the experimental decision aids were

Iimplemented using a small computer graphics system. This turned out

to be a very important step since some of the difficulties

associated with using and interpreting the aids were not apparent

until we tried to implement them. For instance, attempts to

describe the user's prior state of information about an undetected

track in terms of attack routes rather than track locations resulted

in counterintuitive and inconsistent displays. This problem would

not have been apparent without an automated display generator. By

experimenting with the algorithms and displays, we were able to

identify and correct problems in interpreting the inputs and outputs
of the decision aids. (The significance of prior information about

an undetected track is discussed in Section IlI.)
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11.* PRtOCESSINMG UNCERTAINTY AND AGGREGATING DATA

IN AAW DECISION AIDS

This research project focused on designing AAW decision aids

with two major capabilities: processing and displaying uncertainty,

and aggregating track-specific data. These capabilities are central

to the list of functional requirements for MAW decision aids

described in the previous section, and they address two of the most

difficult aspects of making AAW decisions: coping with high volumes

of MAW data, and assessing the uncertain implications of that data.

At present, both of these tasks are done manually by AAW personnel

vho interpret the engagement-status information displayed by NTDS.

Most of the data displayed by NTDS is tied to individual

tracks. This means that the amount of information about an MAW

engagement increases as the number of tracks increases. As more and

more tracks are processed in a high-density engagement, MAW personnel

will reach a point where they cannot deal adequately with all of the

track-specific data for which they are responsible. When this

happens, they must selectively ignore some of the data and focus

their attention on only the most important pieces of information.

However, as the amount of track-specific information increases, so

does the difficulty of assessing and focusing on the important

elements of the situation.

This problem will not be overcome by storing and displaying

additional track-specific information. For instance, giving each

track a score or symbol indicating its importance (or threat level)

may simply force more data on an overburdened user. One solution,

* which is currently in use, is to automatically direct the user's

attention to the niext most important track using a scoring rule to

rank tracks. An alternative, which allows the user to exercise more

judgement in the selection process, is to summarize the MAW situation

with a display that is not tied to individual tracks. For example,

-10-
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an aid could display the density of enemy aircraft or the coverage ofg uncommitted defensive weapons in the vicinity of a task force. The

advantage of this type of display is that it can summarize the

situation with the same amount of information regardless of the

numnber of tracks present. The question is whether aggregating

track-specific information and displaying it in this manner can
really help MAW personnel who must ultimately deal with individual

tracks.

AAW personnel will only divert their attention from

track-specific data if they have an aggregate display that presents

the information they were trying to deduce from individual tracks.

Whether or not an aggregate display can accomplish this goal depends

on the needs of various users. Those making decisions specific to a

single track (e.g., vectoring an aircraft to intercept a threat) may

have little need for an aggregate display, except when they are

searching for the next track to process. However, those managing

defensive actions against multiple threats, both at the unit and

track force levels, need to integrate and understand the maior

elements of the situation, set priorities and allocate resources for

those making track-specific decisions, and maintain a capability to

deal with new threats. The aggregate displays described in this

report are oriented toward this latter group of decisi',n-makers.

At the same time that AAW personnel are being overloaded with

data, they need to know the degree of uncertainty associated with the
data they receive. A good defense for an MAW situation presented on

an automated display may be inappropriate if the actual situation

could be significantly different. For example, if there is a

significant probability that an undetected threat exists near a task

* force, it would be prudent to assign additional surveillance systems

and defensive weapons to the areas where the threat is likely to

exist. Some of the displays described in this report are designed to

* help a user judge the likelihood and probable location of undetected

threats.



IIo

Much of the information processed by MAW decision aids is

uncertain. The tracking and identification tasks are characterized

by uncertain and incomplete data, but NTDS provides only a limited

capability for communicating this uncertainty through an automated

display to those who must make resource allocations. Translating
radar signals into the computer-generated symbols displayed by NTDS

requires a sequence of subjective judgements or automated inferences

that cannot always be correct. Inaccurate data and incorrect

interpretations of incomplete data are rapidly disseminated to NTDS

users without a means for them to judge the confidence they should

place in the resulting displays.

Another type of uncertainty relevant to MAW decisions is the

implication of current tactical data for future events and

decisions. MAW personnel routinely estimate the future course and

tactics of tracks from current tactical data and assessments of the

enemy's targets and information state (i.e., whether the enemy knows

the location of various targets). Similarly, the chance that a

sensor will fail to detect a threat or a defensive weapon wiil fail

to destroy it should be considered when taking defensive actions.

These estimates and inferences require MAW personnel to process

mentally several interrelated uncertainties. The decision aids

developed during this research project attempt to help users make

these probabilistic inferences.

Limits on the Amount of Information Displayed by a MAW Decision Aid

The problem with displaying the uncertainties associated with

current MAW data or its implications for future events is that MAW

systems already have the capability of displaying more information

than users can interpret in the time available. Showing MAW

personnel the degree of uncertainty associated with displayed data
* will require them to deal with additional information. For instance,

a display shoving the uncertainty in a track's location might require

-12-

Ni..14Z



the user to visualize the track as a shaded region or a set off contours rather than a single symbol. This may not be practical in a

situation where many tracks must be displayed at once.

The solution to this problem lies in aggregating track-specific

data into displays that are independent of the number of tracks.

Uncertainty and aggregation are complementary requirements; one adds

to the complexity of a display while the other reduces it. However,
both have the potential for transferring to decision aids some of the

information processing and analytic functions currently being done by

MAW personnel.

A simplified view of the problem with displaying uncertainty in

MAW data is shown in Figure 1. information about an MAW engagement,

including radar signals, weapons status, intelligence reports,

location of friendly forces, etc., is collected by sensors and data
links and stored in a data base. In a typical AAW situation, the

contents of the data base are constantly updated to ref lec.t the

physical environment. Information is extracted from the data base

and displayed to MAW personnel, who use it as the basis for making

defensive resource allocations. The amount of information that can

be stored in the data base and the amount of processing that can be

done in real time to generate the displays depends on the computer

equipment available. These limits can be expected to improve as new
technology becomes available. However, there is also a limit on the

rate at which MAW personnel can interpret and respond to the
information contained in the displays. The displays must be designed

to allow personnel to operate within this limit.

Measures of uncertainty in MAW data and their implications for

future actions and events effectively increase the amount of

a information stored in the data base. To give MAW personnel access to

this information, methods are needed to overcome the information

transfer limit between the displays and the users. Two approaches

-13-
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FIGURE 1

FLOW OF INFORMATION IN AN AUTOMATED

AAW DECISION AID

I MEASURES
AND

CONSEQUENCES

I OF

IUNCERTAINTY F"
INFORMATION

TRANSFER
LIMIT

If measures of uncertainty and their consequences are

computed and stored in the data base, then the displays

must be designed so this information can be communicated

to users without exceeding the rate at which they can

interpret the information.



that are currently in use are selective data retrieval and multiple

displays. For instance, an NITDS operator can limit the information

on his display to symbols representing only major threats, and he can

request additional information about any track to be presented on

panels located near the main display. Since AAW personnel already

have selective data retrieval and multiple displays, and are having

difficulty dealing with all of the significant data available, giving

them the option of displaying the uncertainty in track-specific data

will not help them overcome the limit in the amount of information

they can interpret. Displays of the uncertainty in MAW information

will be useful only if the user's attention is restricted to a small

number of tracks or if the track-specific data is first aggregated

into a relatively simple display.

Aggregating detailed AAW data into displays that are easily

interpreted means that some of the subjective information processing

currently being done by MAW personnel must be performed by decision

aids. Whether or not decision aids deal with uncertainty,

increasingly complex decision problems will require that more of the

work of interpreting MAW information be done by decision aiding

systems. However, it will be difficult to accomplish this without

giving the aids the ability to process uncertainty. Many of the

major interpretive tasks performed by MAW personnel involve

assessments of uncertain quantities (e.g., consequences of

alternative defensive actions).

However, decision aids that process uncertain, subjective

information to produce aggregate displays of MAW data will be more

difficult to understand and verify than aids based on "objective"

calculations. For instance, it is relatively easy to have confidence

in an aid that extrapolates a track's trajectory. However this

information may have less bearing on defensive resource allocations

than the likelihood that the threat will try to reach various



targets, including those not located along that trajectory. An aidf that displays these likelihoods would require a set of assumptions or

subjective estimates that users would have to understand and accept.

To assume more of the work of data interpretation and

aggregation currently performed by MAW personnel, aids will have to

incorporate the assumptions and heuristics people use to interpret

NTDS displays and reach a decision. MAW personnel will have

confidence in heuristic aids only if they have control over the

assumptions they contain. To allow this type of control, the major

assumptions contained in the experimental aids are expressed as

variables that can be modified by users to reflect their assessment

of an MAW situation.

Methods of Aggregating MAW Information and Displaying Uncertainty

In order to aggregate track-specific information in MAW decision

aids, it is necessary to define the manner in which the composite

information should be displayed to users. The central display i.n

current MAW systems is a computer-generated map showing the location

of attacking and defensive units. The spatial orientation of this

display reflects the physical nature of the problem and makes it easy

to interpret the relationships among the symbols shown on the

screen. While other types of displays are possible (e.g., a display

showing expected attrition as a function of time), it would be

desirable for any new aids to retain the spatial orientation of NTDS

displays for compatibility and ease of interpretation. The displays

described in Section III all present data as a function of its

location relative to the task force.

* One method of aggregating data that has been incorporated in

-' WIDS is a replay of recent track activity in accelerated time. This

type of display does not really integrate the track-specific

information, but it helps the user do so. The sme sort of display
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could be used to show projected track movements using a deterministic

algorithm to calculate future track positions. The advantage of this

display is that it uses the visual information-processing abilities

of MAW personnel to give them an overview of an engagement's

immediate history or projected future. However, because a user must

watch the display for a period of time in order to integrate the

information presented, it is not well suited to the MAW environment

with its limited decision times.

The primary alternative to track-specific data in real-time AMW

displays are symbols representing information about groups of

tracks. NTDS uses this approach to represent a formation of aircraft

with a single symbol. Further aggregation of MW data can be

accomplished by using symbols to represent such quantities as: areas

where defenses are relatively weak, high concentrations of threats,

probable attack routes, levels of expected damage, etc. This type of

information summarizes the status of an engagement, and helps a user

prioritize the processing of track-specific data.

When information about groups of tracks is combined, the result

can be displayed either as a single symbol or a quantity defined over

the entire area covered by the display. The first approach is

appropriate when the aggregate information refers to a group of

tracks located near each other, such as a symbol indicating a high

density of threats in a particular area. The second approach is

better suited to information derived from all of the tracks in the
area covered by the display, such as probability that a threat can

penetrate to any location near the task force. Quantities defined
- I over a region and not specific to a single location can be

represented by contours, colors, or shading over an entire display.

Since this type of display is not used currently, it could be

superimposed on the track-specific symbols generated by NTDS.

-17-
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All of the decision aids described in Section III display

information in the form of quantities defined over the entire area

around the task force, except for part of the display showing the
sources of expected damage to ships in the task force. Displays of

functions defined over an area were selected because they show

promise for aggregating a lot of information in a form that is fairly

easy to interpret, and because they are easily extended to represent

the uncertainty associated with events that that can occur at any

location (e.g., the probability that an undetected threat will first

appear at any point near the task force). Another reason for

concentrating on this type of display is that the computer programs

needed to generate the displays could be written as a general-purpose

software package and shared by the various decision aids. This

commonality simplified the implementation process and made it

possible to test several displays and algorithms in a short time

period.



III. AAW DECISION AIDS TEAT AGGREGATE UNCERTAIN INFORMATION

This section discusses several experimental decision aids for

processing, aggregating, and displaying uncertain information

relevant to the decisions made by AAW personnel. Each aid is

described in terms of its inputs, displays, data sources, general

logic, required assumptions, and data processing requirements. The

detailed logic and mathematics contained in the algorithms used by

the aids are discussed separately in the Appendix. Some of the

experimental aids have been implemented using a small computer

graphics system. Initial designs have been specified for others but

further research will be needed to implement them. All of the aids,

including the ones that have been implemented, are experimental, and

variations of each display have been explored. The variations in

each aid's displays are discussed in this section, and alternative

algorithms for producing the displays are discussed in the Appendix.

The aids are designed to answer several related questions

rclcvant to INAW decisions.

- What is the probability that a threat in the vicinity of
the task force will be detected by a given configuration
of sensors under current or anticipated conditions?

- Which attack routes are enemy aircraft and missiles
likely to use in attempting to penetrate our defenses
undetected? Which would give them the best chance of
avoiding detection?

- What is the maximum probability that a threat could
penetrate undetected to any point near the task force,
given estimates of the enemy's objectives and his state
of information about our defenses?

- What is the probability that a currently undetected
threat is located at any point near the task force,

* given our current defensive posture and any prior
information about the threat's location (e.g., data
describing a lost track)?
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-What is the probability that a threat will be detected
for the first time at any point near the task force,I given our current defensive posture and state of
information?

-Given a policy f or allocating defensive weapons to
threats, what is the probability that a threat can
penetrate to any point near the task force without being
destroyed? (The answer to this question depends on both
our ability to detect threats and our ability to
intercept and destroy them.)

-Given a weapons allocation policy, what is the expected
damage to ships in the task force from both detected and
undetected threats, and which threats are expected to
cause the damage?

Aids have been implemented that would help AAW personnel answer the

first five questions. Aids relevant to the last two questions have

been formulated and the formats of their displays have been

specified. Although they have not been implemented, they are

summarized in this section.

Aids that address these questions can be used to support all of

the MAW decision-making activities at the unit and task force levels

listed in the Introduction. However, these aids are best suited to

activities that require integrating information about numerous tracks

or anticipated enemy actions in order to establish an appropriate

defensive posture. Thus, at the task force level they are likely to

be most useful for the force positioning and resource allocation

activities, including the positioning of ships and aircraft t.o

maximize the chances of detecting and intercepting air threats and

the assignment of defensive aircraft (interceptors and electronic

surveillance) to sectors. At the unit level, they would be of the

* most value to MAW personnel involved in establishing priorities for

dealing with threats (i.e., which threats should be engaged first).

It is difficult to predict which of these aids will prove most

useful for each of the decision-making activities listed in the

introduction, since both the questions addressed by the aids and the
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activities themselves are interrelated. Individual users may prefer

to look at different displays when performing the same activities,

and should be given the option of doing so. The experimental aids

that appear best suited to each AAW decision-making activity are

shown in Figure 2. As this figure indicates, the aids dealing with

the likelihood that a threat will penetrate both surveillance

coverage and defensive weapons, and the resulting levels of expected

damage, are relatihely important for unit level activities. The

other aids are better suited to positioning and resource allocation

decisions at the task force level.

Similar data and logic are used by the aids associated with each

question listed above. In fact, some of the aids use information

calculated and displayed by others. This means that assumptions and

assessents made for one aid will be reflected in the displays

generated by others. It also means that the aids should be

implemented in a manner that allows them to share data, algorithms,

and the software that generate the displays.

The flow of logic and data used by the experimental aids is

shown in Figure 3. The first aid uses empirical information about

the performance of sensors under various operating conditions and

real-time data about environmental conditions, including enemy

jamming and EM4 activities, to calculate and display a measure of the

probability that threats will be detected at any location near the

task force. The second aid uses this information, and estimates of

the enemy's objectives and knowledge of the task force's defences, to

calculate the optimum and likely attack routes. This aid displays

the likelihood of alternative attack routes as a function of how

closely they correspond to the estimated objectives of the enemy.

The information about detection rates and likely attack routes

* is combined with estimates of the size and direction of an

anticipated attack, and with information about lost tracks, to
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FIGURE 2

THE AAW DECISION-MAKING ACTIVITIES SUPPORTED BY THE EXPERIMENTAL AIDS
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FIGURE 3

THE SEQUENCE OF LOGIC AND DATA USED BY THE

EXPERIMENTAL DECISION AIDS
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produce three related displays. These show the probability that a

9 threat can reach any point undetected, the probability that an

undetected threat is currently located at any point, and the

probability that a threat will first appear at any point. The firstI of these displays is based on the best routes for reaching each point

in the vicinity of the task force. The other two displays are based

on the estimated targets of attacking aircraft or missiles. All of

the displays can be generated for threats that were detected

previously and then lost.

The last two decision aids deal with combat as well as

detection. They display the probability that a threat can penetrate

to any point in spite of the use of defensive weapons. in addition,

they show the sources of expected damage to ships in the task force.

These displays make use of the first-detection probabilities produced

by the other aids because the effectiveness of defensive weapons

depends on where a threat is first detected. These two aids process

both known threats and anticipated (but currently undetected)

threats; using a simple combat model and a specifited policy for

allocating defensive weapons. They show the effectiveness of

alternative weapons allocation policies and indicate the relative

hazard posed by detected and undetected threats. This information

can be used to determine the defensive resources that should be held

in reserve to deal with new threats as they appear.

The remainder of this section discusses each of the experimental

decision aids in more detail, showing typical outputs as they appear

on a small-screen computer-driven display, or as they will appear

* when all of the aids are implemented.

Detection Probabilities

This decision aid displays a measure of the probability that a

* combination of sensors (primarily radars) can detect a particular

type of threat at any location near a task force. A typical display
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is shown in Figure 4 for a group of three ships with active radars.

The ships are represented by small circles, and the colored regions

around them indicate the likelihood that a threat will be detected in
a fixed time interval. For all displays presented in this report,

red represents the region of highest probability, yellow areas are

associated with moderately high probabilities, green zones denote

moderately low probability regions, and the regions of lowest

probability are colored blue. Thus, the colored regions in Figure 4

indicate that the probability of avoiding detection decreases as the
threat moves closer to one or more of the ships. (If this aid were

implemented on a more sophisticated computer graphics system, the
display would also indicate the actual range of probabilities

associated with each color.)

An alternative way to display the detection probabilties in

Figure 4 is with a set of contours like those shown in Figure 5. In

fact, all of the displays of quantities defined over the entire area

near the task force can be represented by contours similar to those

in Fiqure 5. Contour displays are easier to generate that colored

regions, and they do not require a color graphics system. However it

is more difficult for a user to interpret a contour display,

especially when many additional symbols are superimposed on them.
Since ease of interpretation is important in AAW displays, we have

chosen to implement them with colored regions rather than contours.

The boundaries of the colored regions in Figure 4 and the

contours in Figure 5 represent contours of equal detection rates.

The probability that a threat will be detected at a particular point

is equal to the detection rate at that point multiplied by the length

of time that the threat remains at (or near) that location. As a

threat moves along any given path, the probability that it will
remain undetected can be calculated from the detection rate at points

-25-
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along the path and the speed with which the threat is moving (which

determines how long the threat is located at each point along the

path) .

At a more intuitive level, regions with high detection rates

correspond to areas with better radar coverage. If the detection

rate in a region is doubled, then the probability that a threat can

traverse the region undetected is halved. Thus, a display like the

one shown in Figure 4 can be used to ensure that a balanced

surveillance capability is established to protect important ships

from an undetected threat. In particular, the display shows areas

where radar coverage is relatively weak for certain approaches to

high-value units. This type of display should be most useful for

task force AAW decisions concerned with positioning defensive

resources and controlling electronic emissions.

The primary assumption contained in this aid is that radar

detection probabilities can be adequately modeled and calculated from

detection rates. The detection rates are a function of the type of

threat, the phys-!-,.l environment, electronic countermeasures and

jamming used by both sides, and the status of various surveillance

systems. These quantities and the corresponding detection rates can

change with time. However, once the detection rate is determined, it

is assumed to contain all the information necessary to compute the

detection probabilities for a threat taking any path through the

area. One consequence of this assumption is that the probability

that a previously undetected threat will remain so depends only on

the detection rate at its current location, and not on the route

taken to reach that point. Another consequence is that the

probability of detection is independent of whether the surveillance

systems were able to detect a track at an earlier time. (This

assumption can be removed by describing the performance of

surveillance system in probabilistic terms, and updating this

-28-



uncertainty as tracks are detected near the task force. However,

this would require a difficult set of assessments about the

uncertainty in sensor performance.).

The logic required to calculate the detection rates from

physical data has not been devieloped as part of this project, and a

separate research effort will be needed to specify appropriate

algorithms. For the experimental aids described here and the display

shown in Figure 4, the assumption was made that detection rates

decline with the distance from each radar and that the detection

rates for multiple radars are additive. This assumption was made to

produce an illustrative set of displays, but is not required by any

of the aids. The data used in all of the displays is hypothetical,

and not intended to represent the capabilities of actual sensors.

The algorithms used to represent the capabilities of actual

snsors should be based on empirical data describing the performance

ofeach system under various operating conditions, including possible

dependencies among radars. It may be possible to use theoretical

models of radar performance to guide the specification of the

algorithms, but the result should be a reasonably simple set of

equations that correspond to the Navy's experience in using the

ensors. Part of this development effort should be the specification
of the external factors (e.g., weather, types of jamming, ECK) that

have the most significant impact on detection probabilities. Once

the algorithms have been specified, the data required to produce the

displays will be available from existing MAW command and control

systems. If the algorithms are developed to summarize the

effectiveness of sensors, rather than model the details of

electromagnetic propagation, the amount of computation needed to

produce displays similar to Figure 4 should be well vithin the

capabilities of fairly small computer systems.

-29-



Optimum and Likely Attack Routes

This aid produces two related displays: one showing the optimum

routes for attacking aircraft or missiles trying to reach any point
near the task force undetected, and a second shoving regions

containing likely, but not necessarily optimal, attack routes. These

displays are generated from the detection rates described above, and

from intelligence estimates of the enemy's objectives and knowledge

of the task force's detection capabilities. The displays also

reflect intelligence estimates of the direction from which the attack

will be launched.

A typical display of the optimum routes to avoid detection is

shown in Figure 6. This display shows the best attack routes when

there are three radars generating the detection probabilities shown

in Figure 4, the enemy is free to attack from any direction, his

primary concern is avoiding detection, and he knows the location and

performance of the radars. As Figure 6 demonstrates, the routes

generated by this display n@p'd not he straight lines. The aid uses a

dynamic programmaing algorithm to calculate the best route to each
point in vicinity of the task force, and the algorithm is capable of

diverting an attacker around a strong radar field in order to avoid
detection. The algorithm is very efficient and converges quickly to

a set of paths like those in Figure 6. it is described in detail in

Section 2 of the Appendix.

Since the algorithm relies on the detection probabilities

produced by the first decision aid, it requires the same assumption

(i.e., that the performance of detection devices can be modeled by

detection rates). In addition, the algorithm assumes that the

detection rates are sufficiently smooth in the vicinity of the task

force that flight paths can be approximated by paths consisting of
straight line segments through a grid of fixed reference points. in

practice, this is not a restrictive assumption and the computational
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errors caused by using it can be minimized by using a fine grid of

reference points. The grid used to generate Figure 6 is fairly

coarse (approximately 10 by 10), but the paths are very similar to

those that would be generated using a finer grid.

The attack routes shown in Figure 6 change significantly if the

intelligence estimates used to generate them are modified. For

instance, Figure 7 shows the optimum routes when the attack is

assumed to come from the north only (i.e., the top of Figure 7). In

this case, the best way to reach many locations near the task force

(including the central ship) is to take a circular route around the

task force and attack from the east or west.

The display in Figure 7 uses the same assumptions as those that

generated Figure 6, except for the direction of the attack. In

particular, both figures assume that the enemy's primary objective is

to minimize detec Lion. if we change this assumption so that the

enemy's objective is to minimize both the probability of detection

and the distance traveled to reach any given point, then the optimal.

paths shown in Figure 7 (i.e., those for a northern attack) change to

those in Figure 8. In Figure 8, the attack routes are much more

direct, reflecting the need to minimize distance (i.e., conaserve

fuel) as well as avoid detection. The parameter that defines the

relative importance to the enemy of minimizing detection and distance

can be controlled by AAW personnel, based on intelligence estimates

or observed enemy behavior. However it is unlikely that this

parameter will have to be changed often.

The user also can control part of the aid's logic describing the
enemy's knowledge of the task force's surveillance capability. If

there is reason to believe that the enemy does not know the exact

location of the radars, or is unaware that some of the detection
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devices are operating (as in the case of passive detection devices),

this information can be entered and the display of optimal attackI routes will change accordingly.

It would be unwise to concentrate too many defenses on the

optimal attack routes If the enemy'Ss objectives and knowledge

differ from our estimates, or the enemy decides to take a suboptimal

route, defensive capability may be needed elsewhere. Therefore, the

decision aid produces a second type of display shoving the relative

suboptimality of various paths to a given target. An algorithm that

produces this display is described in detail in Section 3 of the

Appendix. If we assume that an enemy is more likely to take routes

that minimize the probability of detection or the distance traveled,

then this display indicates the relative likelihood that the enemy

will select routes that pass through various regions. This

interpretation is consistent with the mixed (i.e., probabilistic)

strategies that would result from a game theoretic approach to the

problem.

Figure 9 shows this display for the case where the enemy is free

to attack the central ship from any direction, his primary concern is

avoiding detection, and he knows the location and performance of our

radars. in this case the most likely attack routes (i.e., those that

do the best job of minimizing detection) are from the south and

east. Figure 10 shows the same display when the attack is assumed to

come from the north. This display shows that an enemy attempting to
minimize detection is likely to take an indirect route and approach

the target (the central ship) from the east.

* The displays produced by this aid do not require physical data

other than that needed to generate the detection rate probabilities.

However, the calculation of optimal and likely attack routes requires

several important assumptions about the enemy's tactics, objectives,
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and knowledge. These estimates should be supplied by intelligence

9 analysts, with the aid serving to show the implications of their

assessments for allocating defensive resources.

Surveillance Penetration Probabilities

This decision aid uses information produced by both aids

described above to produce a display of the maximum probability that

a threat can penetrate undetected to any point in the vicinity of the

task force. This display is based on a "worst case" analysis using

the optimum attack routes. Figure 11 shows the surveillance

penetration probabilities for the case where the detection field is

that shown in Figure 4, the enemy can attack from any direction, he

is trying to avoid detection, and he knows the location and

performance of the radars. In this case, the enemy follows the

optimal paths shown in Figure 6, and the probability that he will

reach any point near the task force is represented by the colored

regions in Figure 11. The boundaries of these regions correspond to

various probabilities of penetration, and those boundary values c~an

be selected by the user. The probabilities of penetration decline as

the threat gets closer to the radars. (The exact values of the

probabilities corresponding to the contours in Figure 11 are not

significant since the data used to generate this display is

hypothetical.)

Like the detection probabilities in Figure 4, the display in

Figure 11 shows the implications of positioning surveillance systems

and establishing an emissions control policy. Using this aid, AAW

personnel could examine the detection capabilities associated with

alternative allocations of surveillance systems and emissions control

* strategies, and select the one which provides the best mixture of

good coverage and low visibility. For example, if a fourth radar is

positioned southeast of the central ship, the surveillance

penetration probabilities change to those shown in Figure 12. In
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this case, the inner region of low penetration probabilities has beenf expanded by the addition of the fourth radar. Even though Figure 12

contains more individual units than Figure 11, the amount of

information conveyed to the user by the probability regions remains

approximately the same. The addition of many more ships and radars

would still produce a display with approximately the same amount of
information for AAW personnel to interpret.

Although the detection probabilities in Figure 4 and the

surveillance penetration probabilites in Figure 11 both show the

effects of the same surveillance capability, there is a major

difference between the two displays. Figure 11 also shows the

implications of the assumptions about enemy tactics, objectives, and

knowledge. For example, if it is assumed that the attack will come

from the north, the display of surveillance penetration probabilities

in Figure 11 changes to that shown in Figure 13. In this case, the

region of low penetration probabilities has expanded to include most

of the area south of the task force since a threat entering from the

north would have to travel a long indirect route to reach this area.

(Figure 7 shows the minimum detection routes for this case.)

if it assumed that threats attacking from the north will attempt

to minimize both the probability of detection and the distance

traveled to reach the target, the penetration probabilities in

Figure 13 change to those in Figure 14. In Figure 14, the region of

low penetration probabilities has expanded to the east and west
relative to the display in Figure 13, to reflect the assessment that

* the enemy is unwilling to travel the long distance required to pass

through these locations on the way to the task force.

* In addition to the surveillance penetration probabilities for

threats that have never been detected, the decision aid can display

them for a lost track. Figure 15 shows the probability that a track

lost north of the task force (i.e., at the blue dot) can
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penetrate undetected to any other location. This display shows the

surveillance penetration probabilities immediately after the track is

lost, based on the assumption that the threat is primarily interested

in avoiding detection and knows the location and performance of the

radars. Unlike the previous displays, this one is specific to a

single track and should only be generated for MAW personnel

processing that track. It is possible to combine this display with

the ones showing surveillance penetration probabilities for tracks

that have never been detected and show the probability that any track

(including the lost track) can reach various locations undetected.

However, it is more meaningful to combine the location and

first-detection probabilities produced by the following decision aids.

The displays of surveillance penetration probabilities do not

require any additional data or assumptions beyond those required to

calculate detection probabilities and likely attack routes, except

for information about lost tracks. This information is readily

* available from existing AAW systems. Furthermore, very, little

additional data processing is needed to calculate and display the

surveillance penetration probabilities once the detection

probabilities and attack routes have been determined.

Location Probabilities

This decision aid is closely related to the previous one, but it

produces a display of current, rather than projected, threat status.

The display shows the probability that one or more undetected threats

are currently located at any point in the vicinity of the task

* force. The display can be generated for threats that have never been

detected and for lost tracks, but different assumptions and data are

needed for these situations. A complete technical description of

this aid is presented in Section 4 of the Appendix.
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Since this decision aid deals with the current location of

threats, it is relevant to MAW personnel at the unit level who are

responsible for detecting and tracking threats, and identifying

tracks. In addition, it could provide support for decision-makers at

the task force level who must position their forces to defend against

current threats.

A typical display of location probabilities for a lost track is

shown in Figure 16. In this display, a track was lost at a location

north of the task force and it remained undetected for 10 minutes.

The colored regions show the probability that the track is currently

located at any point within 10 minutes flying time of the point at

which it was lost. This display is based on the assumption that the

track is equally likely to travel to any point it can reach in 10

minutes. In other words, the prior probability distribution for the

location of the track is assumed to be uniform. (This assumption

will be changed later.) Since the track has not been detected and

the chances of detection are higher as it approaches the task force,

the track is probably moving away from the task force into regions

where detection is less likely. This effect is illustrated in

Figure 16.

The display in Figure 16 is generated by calculating the

probability that a lost track will be detected again if it travels

along the minimum detection routes (or the routes corresponding to a

combination of minimum detection and distance) from the point where

it was lost to any point it can reach in the time available. Bayes'

Rule is used to combine this set of probabilities with the prior

probability distribution for the track's location to produce an

updated distribution of location probabilities. The display shows

the updated distribution.

If a track remains undetected for longer periods of time, the

4 updated location probabilities change to reflect both the ability of

the track to travel farther and the inability of the radars to regain

-46-

7-



E-

.0

0

E-4 0

o

u~0

1-
4 c

-4O.

E1.

1-4

E-4 0 0

w

S0

1-4

.~0

14

0

b. I

- ~ 2 -

*. .. 0



contact. For example, if the last track in Figure 16 remains

undetected for an additional 10 minutes (i.e., it has been lost for

20 minutes), the updated location probabilities become those in

Figure 17. in this case, the region likely to contain the lost track

has expanded and moved farther from the task force.

The display of location probabilities uses data produced by all

of the decision aids described earlier, and thus requires the same

assumptions and input data. In addition, the algorithm for

calculating updated location probabilities must have a prior

probability distribution for the location of a lost track. This

information could be assessed directly by AAW personnel, but it is

doubtful that they will have time to do so. Alternatively, the prior

distribution can be generated using a set of heuristic rules about

the objectives and performance of air threats, and MAW personnel can

accept this prior or modify it to reflect any special information or

circumstances.

For instance, if we assume that a lost track is most likely to

continue moving in the direction it was traveling at the time it was

lost, the aid can automatically generate a prior distribution like

that shown in Figure 18. in this example, the track was traveling

south when it was lost at a point north of the task force (at the

blue dot). The prior location probabilities are assumed to be

highest for points south of track 's initial position, and they

decline with the extent of the course change required to reach them.

Using this prior distribution produces the updated location

probabilities shown in Figure 19, given that the track has avoided

detection for 10 minutes. A comparison of Figures 16 and 19 shows

that the prior distribution based on the track's direction at the

time it was lost has significantly altered the updated location

probabilities. Figure 19 indicates that the track is likely to be

closer to task force than it was when it was lost (in keeping with
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the prior distribution of Figure 18), but the fact that it has not

been detected means that it is unlikely to have traveled as fat as

possible to the south.

The displays of location probabilities illustrated in

Figures 16-19 show the uncertainty associated with a single lost

track. However, once the location probabilities have been calcul .ted

for several lost tracks (or tracks that have never been detected), it

is relatively simple to calculate and display the probability that

one or more undetected threats exist at any location. Displays for

the location probabilities associated with multiple lost tracks have

not been implemented, but they would resemble Figure 19 with several

regions colored to show the likelihood of several undetected tracks.

The calculations required to determine the location

probabilities of tracks that have never been detected are

considerably more difficult than those for a lost track. The

difficulty lies in the fact that the number of attacking aircrdtt 'Ur

missiles, the times at which they initiate the attack, and the points

at which they enter the region shown on the display are not known

Probability distributions can be specified for these quantities, and

they can be used to generate location probabilities for undetected

tracks using the algorithms employed for lost tracks. However, the

amount of computation required to do this is significantly greater

than that for a lost track. For this reason the implementation of

this display has been postponed while other algorithms are

investigated. One alternative to the algorithm that generated the

location probabilities in Figures 16-19 is based on Markov

processes. It is discussed in the Appendix.

First Detection Probabilities

This decision aid displays the probability that a currently

undetected track will be detected for the first time at any location

near the task force. This information is closely related to the
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surveillance penetration and location probabilities. However, first

detection probabilities are better suited to the needs of those

assigning defensive weapons to threats than penetration or location

probabilities because they indicate the areas where defensive weapons

may have to be targeted. First detection probabilities also

determine the reaction times within which MAW personnel will have to

assign and fire defensive weapons. For this reason, first detection

probabilities are used by other decision aids to calculate the

expected consequences of an engagement.

The probability that a threat will be detected for the first

time at a given location is equal to the probability that it can

reach that point undetected (i.e., the penetration probability)

multiplied by the probability that it will be detected in the

vicinity of that point, which is calculated from the detection rate

at that location. This information is available from the other

decision aids, which means that the display of first detection

probabilities requires the same input data and assumptions as the

previous aids.

If it is assumed that the enemy will use the minimum detection

routes to reach any point near the task force (see Figure 6), and he

is equally likely to attack through any point in the vicinity of the

task force, the resulting first detection probabilities are shown in

Figure 20. This display shows that threats are most likely to be

detected for the first time in the annulus around the central ship.

Since there is a low probability that a threat can penetrate to the

immediate vicinity of the central ship without being detected, the

probability of first detection declines in this region.

However, the assumptions used to generate Figure 20 are not very

* realistic. As discussed earlier, certain attack routes are more

consistent with the enemy's tactics, objectives, and knowledge than
others. The likelihood that the attack route will pass through any

* -53-
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point near the task force is calculated and displayed by one of the

aids discussed above (see Figure 9). This information can be used to

produce a better estimate of the first detection probabilities. The

algorithm used to incorporate this information in the display is

described in detail in Section 3 of the Appendix.

Figure 21 shows the display of first detection probabilities if

the likelihood of various attack routes is that indicated by

Figure 9. In this case the enemy is attempting to reach the central

ship while minimizing the probability of detection, he is free to

attack from any direction, and he knows the location and performance

of the radars. The first detection probabilities in Figure 21 are

considerably different than those in Figure 20 because the display in

Figure 21 makes use of the fact that the attack is likely to come
from the south and east (as shown in Figure 9).

First detection probabilities can also be calculated and

displayed for a lost track. However, if the track has been

undetected for any length of time, the calculation must be done in

two steps. First it is necessary to calculate the probability that

the track is currently located at any feasible location (i.e., one it

can reach in the time since it was lost) using the algorithms

contained in the previous decision aid. Then the aid can calculate

the probability that the track will be detected for the first time as

it continues from each possible current location. Finally, all of

the resulting first detection probabilities can be combined and

displayed. This requires considerably more computation than the case

of a track that has never been detected, and, as a result, this

algorithm has not been implemented. An alternative algorithm based

on Markov processes has been explored for this aid as well as the

previous one. Its application to first detection probabilities is

described in Section 3 of the Appendix.
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Total Penetration Probabilities

This aid combines .the first detection probabilities produced by

the preceding aid with information about known (i.e., detected)

threats and a policy for allocating defensive weapons to determine

the probability that a threat can penetrate to any point near the

task force without being destroyed. This calculation uses a simple

combat model to describe the effectiveness of defensive weapons. It

produces a display similar to that for surveillance penetration

probabilities (see Figures 11-15), but the display shows the

probability of survival rather than nondetection. The inputs,

displays, and some of the logic for this aid have been specified, but

it has not been implemented.

Like the display of surveillance penetration probabilities, this

display is designed to help MAW personnel evaluate the positioning of

defensive ships and aircraft. However, total penetration

probabilities can be used to Judge the effectiveness of the current

defensive posture in eliminating future threats, in addition to

detecting them.

A typical display of total penetration probabilities is

illustrated in Figure 22. it shows the probability that a particular

type of threat can reach any point near the task force, including the

locations of various ships, given that the enemy can atta-'- from all
directions and attempts to avoid detection until a de'f-siv .4eapon

* is fired at him. Since this display has not been iui, -asnt-.,. the

* regions of equal penetration probability in Figure 22 may no.

correspond exactly to the data used to generate the previous displays.

The display in Figure 22 is generated using a simple combat

model based on the probability that various defensive weapons can

destroy a threat as a function of the distance from the threat to
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weapon at the time it is fired. Typical data is shown in Figure 23,

where the probability that a particular defensive missile can destroy

an attacking aircraft is plotted for various ranges. This data could

be derived from either the results of tests performed with the

defensive missile system or a more detailed model of the weapon's

characteristics and performance. If detailed combat models are

available, they should be summarized by performance curves like that

in Figure 23, and not used directly to generate the display in

Figure 22. It is more important that the aid produce a reasonable

estimate of the penetration probabilities in real time than it is to

display the results of a complex combat simulation.

Using data like that in Figure 23 and a weapons allocation

policy specified by the user, the aid calculates the number of

defensive weapons that can be fired at the threat in the time

interval between detection and arrival at the target, the range at

which each weapon will be fired, and the resulting probabilities that

"lie tlhreat will reach various points on the way to the target. This

calculation is performed for both known and undetected threats.

In the case of undetected threats, the calculation is repeated

for each of the locations at which the threat could first appear and

weighted by the corresponding first detection probability. Since

there may be a large number of points at which a threat could be

detected for the first time, this will require more computation than

that required for most of the other decision aids. However, several

approximation techniques are available to simplify the probability

calculations so they can be done in real time. These include

* proximal analysis and various numerical integration techniques.

Further research is needed to letermine which solution techniques are

best suited to the problem.

This decision aid does not attempt to optimize the allocation of

defensive weapons. Instead it shows the effect of a defensive policy

established by the user. For instance, the user might specify the
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defensive weapons to be used against threats in various areas near

the task force, and require that a single defensive weapon be

allocated to each threat within a given distance of the task force,

followed by a second weapon if the first fails. The decision aid

would show the implications of this policy for threat penetration,

and, if the results are unacceptable, the user could try a different

policy. In this manner, AAW personnel would retain control over all

of their resource allocation decisions, and the decision aid would

serve to help them test alternative policies and select an acceptable

one.

Sources of Expected Damage

This aid uses the same logic and data as the previous one, plus

information about the amount of damage that can be caused by various

threats, to produ.-e a display of the expected damage (i.e., threat

level) associated with both known and undetected threats. The

display is generated in real time, and it changes as threats are

detected, move to new positions, or encounter defensive weapons. It

is designed to support MAW personnel at the unit level who prioritize

threats and assign defensive weapons to counter them.

Like the preceding display, this one has not been implemented,

but its inputs and displays have been specified. A typical display

is shown in Figure 24. It includes both track-specific information

(for detected threats) and a threat level defined over the entire

area (for undetected threats). Associated with each known (i.e.,

detected) threat is the expected amount of damage it can cause ships

in the task force. in the display the expected damage associated.

with detected threats is represented by the color of the symbols for

the tracks, with red indicating the most dangerous threats. For

undetected threats, the expected damage is represented by the coloredJ regions around the task force. According to this figure, the next

attack is expected to come from the north.
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This display is based on the same combat model used by the
preceding aid, and thus requires the same data and assumptions. In

addition, it requires a table showing the amount of damage various

threats could cause each type of ship in the task force if they can

complete the attack sucessfully. This information usually is

expressed as the fraction of the ship's combat potential that would

be destroyed if the ship sustained a successful attack. This

fractional loss is multiplied by the relative value of each ship to

produce a measure of damage from the attack.

The preceding decision aid calculated the probability that both

known and currently undetected threats would reach specified

targets. These probabilities are multiplied by the damage associated

with a successful attack to determine the expected damage levels.

For known threats, the expected damage levels are translated into

colored track symbols. For undetected tracks, the expected damage

levels are associated with the locations at which the threats could

appear and colored regions are displayed to show locations with

similar damage potential. Like the preceding aid, this one is based

on first-detection probabilities rather than location probabilities

since the allocation of defensive weapons depends on where threats

are first detected.

The calculations required to generate this display are similar

to those for the preceding aid. In particular, the computations

required to generate the expected damage regions for undetected

threats will exceed those needed for most of the other aids since the

calculation must be repeated for each point at which an undetected

threat could appear. However, the approximation technique envisioned

for the preceding aid could also be used to generate the display of

expected damage in real time.
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IV. DIRECTIONS FOR FUTURE RESEARCH

As discussed in the preceding section, a significant amount of

work remains to be done in order to complete development of the

proposed aids. in particular, implementation of the displays of

location probabilities for undetected (anticipated) tracks and first

detection probabilities for lost tracks has been deferred because

these displays require more computation time than other displays.

Alternative algorithms are currently under investigation, including

an approach based on Markov processes described in the Appendix.

Two of the decision aids discussed in this report have not been

implemented: the displays of total penetration probability and

sources of expected damage. However, the current research project

has resulted in a specification of the required input data and the

form of each display. One goal of future research will be to

complete the design and implementation of these displays.

A major requirement for production of these two displays is the

development and Implementation of a simple combat model. This model
will describe the effectiveness of various defensive weapons as a

function of the range to an incoming threat and the threat's

characteristics. The combat model should include a simple method for

specifying a large numb~er of defensive strategies with a few

parameters. Navy personnel will select a defensive strategy using

these parameters, and the total penetration and expected damage

displays will exhibit the implications of the chosen strategy.

With the addition of a comb~at model, we can revise the objective

function used to determine the most likely attack routes. Currently,

the relative likelihood of alternative attack routes is based on the

enemy's objective of minimizing both the probability of threat

detection and distance traveled. However, minimization of the

probability of detection is only a surrogate for the true enemy

* -64-
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objective, which is to maximize the damage inflicted on the task

force. Detection probability was chosen as a substitute for damage

levels until the combat model becomes available because these

quantities are correlated: defensive response times are shorter for

threats that successfully avoid detection until they are close to

their targets. Future research will incorporate the damage potential

associated with each path, as specified by a combat model, into the

algorithm that predicts the most probable attack routes for incoming

threats.

This modification of the choice of routes by incoming threats

will affect the appearance, but not the logic or implementation, of

most of the experimental displays. The more realistic attack routes

will affect the displays of surveillance penetration probabilities,

location probabilities, first detection probabilities, total

penetration probabilities, and sources of expected damage. (See

Figure 3 in Section III).

Continuing development of the aids presented in this report

should include the implementation of sensor detection models based on

empirical data. In addition, the experimental displays should be

tested on a larger computer system, so that algorithmic

inefficiencies can be assessed and corrected. One set of unanswered

questions deals with the computational savings possible from

efficient approximation techniques, particularly for the calculations

of first detection and total penetration probabilities.

Displays showing the density of detected, lost, and undetected

(anticipated) threats, as well as the density of friendly forces,

represent another possible avenue of future research. Such displays

could lead in a natural way to status summaries of controlled areas

and battle zones. This analysis could be valuable in showing where

each side is vulnerable to attack or the repositioning of opposing

forces.
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APPENDIX: TECHNICAL DESCRIPTION OF ALGORITHMS

1. Detection Rates and Probabilities

For many of the displays described in this report, it is

necessary to calculate the probability that an incoming aircraft will

be detected as it approaches and passes through the task force area

along a specified path. This probability depends on the operating

characteristics of the detection devices, environmental factors, and

properties of the incoming aircraft.

In this section of the appendix, we derive a formula for the

probability of avoiding detection while traveling a short distance in

the task force vicinity. Assuming the probability of detection along

any portion of a path is conditionally independent (given the sensor

detection rate) of the probability of detection elsewhere along the

path, nondetection along a path can be approximated by the product of

probabilities of traveling undetected over each small segment of the

path. in particular, the algorithms described in succeeding sections

of this appendix operate under the assumption that realistic flight

paths can be approximated by piecewise linear paths over a

sufficiently fine grid of points.

Inputs

- Rate of detection of the approaching aircraft or missile.

- Velocity of the incoming aircraft or missile.

Output

_ Probability of traveling in a straight line between two
neighboring points, without being detected.
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Assumptions

- The detection rate is sufficiently smooth that paths
over a short distance can be approximated by a straight
line.

- The aircraft or missile travels at a constant velocity
(i.e., its maximum sustainable velocity).

- Given all physical data and detection characteristics,
detection attempts ("looks") by a configuration of
sensors are independent of previous looks.

Data Sources

The logic required to calculate the detection rates from

physical data has not been developed as part of this project,

and a separate research effort will be needed to specify

appropriate algorithms. In principal, the detection rate can be

calculated by combining the following information for each

sensor:

- Type of device (radar, IFF, etc.);

- Detection characteristics (signal/noise ratio,
directional biases, etc.);

- Status (ON/OFF, passive/emitting, reliability, damage
sustained, etc.);

- Location;

- Environmental conditions (weather, chaff, jamming,
etc.), and their effect on the sensor.

All of this information is either currently available on the Navy

Tactical Data System (NTDS), or will be available in future systems.

A simplifying assumption that could be used to calculate the overall

detection field from this data is that detection by one device is
conditionally independent (given environmental conditions and status)

of detection by other sensors. However, it is not necessary to make
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this assumption, nor do any of the algorithms or aids require this

conditional independence. A more practical model would estimate the

detection rate for a group of sensors based on empirical data.

In addition to characteristics of the sensors, the detection

rate may be influenced by properties of the threat. For instance,

certain aircraft (e.g., stealth aircraft) are less likely to be

detected by radar devices. An estimate of the effects that the

design of the threat has on the detection rate should be made based

on available empirical evidence.

In the absence of sufficient information to specify the exact

detection characteristics of each sensor device, a convenient

functional form can be substituted for the detection rate. The

correct functional form can be determined from the large quantities

of empirical data available for all Navy detection devices. For

testing the experimental displays, ADA chose to use a detection rate

that is inversely proportional to the square of the distance from the

device. In this formulation, the capabilities of each device are

completely specified by its location, a parameter denoting its

strength at the source, and a second parameter representing the

dispersion of its detection potential over distance. The detection

rates derived from this model, although they are not based on

empirical data, nonetheless produce plausible displays.

Formulation

We wish to determine the probability of traveling along a

specified path between the two points zo and zl, without being

detected. Let z(t) represent the position of the threat at time

t, with z(t.) - z and Z(tl) - 21. Then the detection

rate r at any point along the path is defined by:

r(z(t))dt - Prob. {detection occurs in (t, t+dt) I no detection
prior to time t and location z(t) at time t!
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The assumption implicit in this definition is that the detection rate

at z(t) does not depend on the path taken to reach z(t). In
particular, the success of a detection attempt (flook*) at time t

is independent of the number, location, and timing of all previous

looks.

Let P(t) be the probability of remaining undetected through

time t. The following derivation produces an expression for P(t).

P(t + dt) - P(t) (1 - r(z(t))dt)

dP(t) = -r(z(t))P(t)
dt

t 1

P(t) - exp {tt r(z(t)dt

Next, represent the path as a function on the two-dimensional

plane. That is, let z(t) a (x(t),y(t)). Assuming monotonicity of

the path in the first dimension (since we will later assume that the

path can he approximated by a straight line, there is no loss of

generality in this assumption), a simple change of variables yields:

x1

PMt - exp { X1 r(x, y(x)) dx}fo d'

At this point, we introduce the assumption of constant line
.2 .2velocity V, where V - (y + x ) . With this assumption we candx

derive an expression for L and use it in the formula above:

x2f2
(1) P(t) exp r(x, y(x)) j 1 df V d

0
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The difficulty of evaluating this expression depends on the

functional forms of the detection rate r and the path y(x). For

simplicity, we assume that the path can be approximated by a straight

line. This assumption is quite reasonable in the context of our

problem, since actual flight paths tend to be approximately linear

over short distances. Under this assumption, the path derivative is

a constant. Then f or simple functional forms of r, (e.g., detection

rate for each sensor inversely proportional to the square of the

distance), the integral in Equation (1) can be evaluated directly.

In more complex cases, numerical integration techniques must be used.
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2. Penetration Probabilities and the

Dynamic Programming Algorithm

The dynamic programming (DP) algorithm is used to find an
optimal path to each point in the vicinity of a task force from a

fixed set of starting points. If the set of starting points is
outside (or at the edge of) the detection range, then the probability
of flying along the optimal path undetected is the penetration
probability. If a single location is chosen as the starting point,

the optimal paths produced by DP can be used to show penetration
probabilities for a lost track starting at that point. Another

application of the DP algorithm is to discover all optimal paths
ending at a particular target point. This information is used to
determine the relative suboptimality of various paths to a target
(see the next section of this appendix).

There are actually two similar problems that can be solved using
the DP approach. One problem is to determine the minimal detection

paths, the other is to find the paths which optimize an objective
function containing terms for minimizing both detection probability

and flight time. For ease of discussion, the minimal detection case
will be described first, although the other case is a generalization

that subsumes it. A second generalization of the problem, to the
case where enemy information about the detection field is imperfect,

is developed at the end of this section.

Problem Statement

Sensors are attempting to detect approaching aircraft. At each

point x, there is a detection rate r(x) defined by the current
operating characteristics of these sensors and environmental

conditions (weather, chaff, jamming, etc.). Given an initial set of
probabilities for reaching each point undetected (zero for points not
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I
in the starting set), what is the maximum probability of traveling

undetected to each point? Which path results in this minimum

probability of detection?

Inputs

- A starting set of points with associated (non-zero)
probability that they can be reached undetected. (For many
applications, this probability is 1.)

- Rate of detection of approaching aircraft.

- Maximum sustainable velocity for incoming craft.

Outputs

- Optimum paths from the starting set to each point in the task

force vicinity.

- Probability of reaching each point, along an optimum path,
without being detected.

Assumptions

- The detection rate is sufficiently smooth that the minimum

detection path between any two points can be approximated by

a piecewise linear path.

- Approaching aircraft fly at a constant velocity (typically
their maximum sustainable speed in an attack situation).

Data Sources

The detection rate can be calculated from information about

detection characteristics, location, current operating status, and

environmental conditions for each sensor, as described in the first

section of this appendix. All of this information is either

currently available on the Navy Tactical Data System (NTDS), or will
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be available in future systems. The assumption typically used to

calculate the overall detection field from this data is that

detection by one device is conditionally independent (given

environmental conditions and status) of detection by other sensors.

The maximum sustainable velocity for incoming craft can be

estimated by Navy personnel from intelligence information.

Formulation

Lay down a rectangular grid of points covering the entire task

force vicinity or detection area. Flight along any path will be

approximated by straight line travel between neighboring points of

the grid. Each point has eight neighbors as depicted in Figure A.1,

and the entire grid has N points.

0 0 0

0 x 0

0 0 0

Figure A.l: The 8 Neighbors of Any Point X Located
on a Rectangular Grid

Let p(i,j) be the probability of traveling undetected along

the straight line from point i to neighboring point j. This

quantity is calculated directly from the sensor detection rate and

velocity of approaching aircraft (see the first section of this
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* I
appendix). Let V(i) represent the probability of reaching point

i, without being detected, along the best path found so far. The

initial value V0 (i) for this function is normally zero if i is

not in the starting set; otherwise it is a value specified by the

inputs.

The DP Algorithm

1. Initialize V(i) = V0 (i), for all points i = 1,2,...,N.
Set FLAG = TRUE. Set B(i) = i, for all i.

2. Set V(i) Max {V(i), p(ji) .V(j) Ij is a neighbor of i}
for i - 1,2,...,N. If this step changes V(i), set FLAG
to FALSE and set B(i) to the index of the neighbor j
which optimizes the above expression.

3. If FLAG - TRUE, then halt, otherwise continue to Step 4.

4. Set FLAG = TRUE and go to Step 2.

On every iteration, this algorithm determines a path to each

point i and evaluates the probability of traveling undetected along

the path. Paths are found by starting at i and finding the best

path to a point in the starting set that goes through some neighbor

of i. In particular, the algorithm uses the following recursive

equation:

V*(i) - max{V(i), p(j,i) • V*(j) I j is a neighbor of i,

where V*(i) denotes the maximum penetration probability for any path

from the starting set to point i. If the optimal path to each

neighbor is known, then the best path to i must be discovered on the

next iteration. The best route from each neighbor is determined

simultaneously by the algorithm. On each individual iteration an

approximation (the best path found so far) is used so that the entire

path to point i need not be examined.
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After termination, the optimal path to i can be traced

backwards, from i to B(i) to B(B(i)), etc., until a point s is

reached with B(s) = s. This endpoint must be in the starting set.

The DP algorithm converges monotonically to the maximum

penetration probabilities, V*(i). In fact after k iterations,

every path from the starting set to point i consisting of at most

k straight lines between neighbors will have been implicitly

considered. Since the longest optimal path can pass through at most

N points, the algorithm will terminate after at most N+l

iterations.

The termination criterion of Step 3 states that the optimum

values have been found if they do not change from one iteration to

the next. This is a valid termination criterion because if a better

path to i exists, one can prove that a better path to some point on

that path must be found in Step 2.

implementation

The application of this algorithm to the stated problem can be

very efficient. Minimum detection paths can be expected to go from

any starting point to an interior point by avoiding areas with a high

density of sensors. Thus ordering schemes similar to that shown in

Figure A.2 are used to improve the speed at which paths to interior

points are found in Step 2. In practice, the DP algorithm normally

terminates with optimal paths after only 2 or 3 iterations.

In order to calculate p(i,j), the probability of traveling in a

straight line from i to neighbor j without being detected, we

* must assume that the incoming aircraft travels at a constant line

velocity, V. If V is the maximum sustainable velocity for the

a plane, then p(i,j) will be the maximum probability of escaping

detection along the straight line path. The procedure for
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1 2 3 4 5

16 17 18 19 6

1s 24 25 20 7 1
14 23 22 21 8

13 12 11 10 9

FIGURE A.2: ORDERING SCHEME FOR PATH FINDING ALGORITHM



calculating p(i,j) from physical data is described in the section on

detection rates and probabilities at the beginning of this appendix.

Simple Example (Minimal Detection Problem)

Consider a grid consisting of nine points, as in Figure A.3,

with a single radar located at the center of the grid. (In general,

sensors may also be placed anywhere between grid points.) Let the

starting set be the two points labeled 1 and 8 in this figure,

with initial values of one. Assume that the radar field is symmetric

about the center of the grid, and that the values for traveling in a

straight line are given by:

p(1,2) - .8, p(2,8) - .5, p(2,9) - .4, p(1,9) -. 25.

The detection probabilities for all other pairs of points are

determined by symmetry. These values correspond to a weak radar

under the assumption that the radar detection rate falls of f with the

square of the distance from the sensor.

1 2 -3

8 -9 4

7 .6 :5

Figure A.3: A Simple Example of Minimum Detection
Paths Found by the Dynamic
Programming Algorithm
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The first iteration of the DP algorithm produces the following

paths from the seven points not in the starting set (* denotes

optimality):

Endpoint Value Path
*2. .8 (2,1)
*3. .64 (3,2) then path from 2
*4. .51 (4,3) then path from 3

5. .41 (5,4) then path from 4
6. .5 (6,8)

* 7. .8 (7,S)
* 9. .4 (9,8)

On the second iteration, the direction of circulation shown in

Figure A.2 is reversed (this alternation of ordering occurs

throughout the algorithm, and considerably speeds execution). The

path from point 6 starts with (6,7), and the path from point 5 starts

with (5,6). These paths are optimum, with values .64 and .51

respectively. Thus the third iteration of the algorithm will find no

improvements and termination will occur. The optimum paths are

displayed in Figure A.3. Note that these routes shun the central

region as much as possible, and therefore do not minimiLze the total

distance traveled.

Generalized objective Value

As discussed in Section III, it more realistic to assume that

the enemy chooses his flight paths based on objectives other than

minimizing detection probabilities. Since his ultimate goal is to

inflict damage on the fleet, he may wish to minimize the defensive

reaction time for Navy vessels. This involves both avoiding

* detection and decreasing flight time.

Both of these objectives can be incorporated into the DP

algorithm by changing the interpretation of V(i). Define V(i) to
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be the objective value along the best path to point i found so far.

In particular, let

V(i) - c(ml +F2m2 ) P(i),

where P(i) - probability of reaching i undetected along
the chosen path,

ml number of horizontal or vertical line
segments along this path,

m2  number of diagonal line segments along the
path, and

c trade-off value relating each additional
horizontal path step to a percentage
increase in detection probability.

The DP algorithm is changed only in Step 2; the optimization in

this step becomes:

V(i) = Max {V(i), c(j) .p(j,i). V(j) j is a neighbor of i}

where c(j) - c/ if j is a diagonal neighbor of i, and c(j) - c

otherwise.

The relative importance (to incoming threats) of avoiding

detection versus minimizing flight time is an additional input

required for this generalization of the DP model. It is expressed as

the value of the trade-off parameter c. As c approaches zero,

distance becomes all-important, and the shortest, straightest paths

will be optimal. At c - 1, the minimal detection paths are found,

exactly as before. For intermediate values of c, paths will be

chosen that are moderately straight and yet avoid the heaviest areas

of sensor concentration. See Figure A.4 for an illustration of the

effect of changing this model parameter. The source of this

information would be intelligence estimates based on the enemy's

prior tactics.
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FIGURE A.4 INFLUENCE OF THE PARAMETER ON FLIGHT PATH

raar

START

_ The smaller the value of the parameter c, the more direct the flight path
will be.



Example

Suppose the trade-off value is c -. 5 for the nine-point sample

problem given earlier in this section. This implies that minimizing

flight time (flying straight paths) is quite important to the

attacking aircraft. The optimum paths in this case are shown in

Figure A.5 below. Note the shorter routes taken to reach points 4,

5, and 6.

1 m23

1 6
Figure A.5: A Simple Example of optimal Paths Found by

the Dynamic Programming Algorithms When
the Enemy's Objective is to Minimize
Detection and Distance Traveled

The effect of introducing a value for the path length into the

objective function is also illustrated by the comparison of Figures 6

and 7 in Section inI of the main report.
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Generalization to Perceived Rates of Detection

The enemy may not be certain of the exact strength and placement

of Navy sensors. The less sophisticated the enemy's equipmtent for

discovering the whereabouts of emitting devices, the more imperfect

or "fuzzy" his perception of the detection rate will be. in

addition, he may be unaware of passive detection devices altogether,

and thus will not attempt to avoid them.

In order to account for these two effects, the dynamic

programming algorithm should force incoming planes to choose their

paths based on the perceived detection rate. However, the

penetration probability f or the chosen paths still is evaluated using

the true detection field.

To determine the perceived detection rate r'(x), probability

distributions are used to describe intelligence estimates of the

enemy's state of information about the location of each of the

emitting sensors. The mean of each distribution would be the actual

sensor location. In most cases the location distribution would be

symmetric about its mean, but directional biases can be incorporated

if evidence supports their existence. Then r' Cx) is the expected

value of the detection rate at x given these probability

distributions.

Since the functional form for the sensor detection rate is

nonlinear, the "fuzzy" detection rate r'(x) will not be identical

to the original detection rate r(x). There will be corresponding

changes induced in the probability of traveling undetected between

neighbors since this quantity is computed directly from the detection

rate (ace the first section of this appendix for detail.). This may

cause the dynamic programming algorithm to choose different paths for

the perceived detection rate than for the true detection field.
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Implementation of Perceived Detection Fields

Uncertainty about the location of an emitting radar for a fixed

observer position is equivalent to uncertainty about the observer

location for a fixed radar position. This is true because the

detection rate depends only on the relative positions of sensors and

threats, and environmental conditions between each detection device

and an incoming object. Therefore, the perceived detection rate

r'(x) can be determined by calculating the expected value of the

true detection rate (compensated for unanticipated passive detection)

using the probability distribution for radar location over an area

centered at x. The size of the area receiving a non-negligible

weight corresponds to the spread or variance of the distribution

function. The larger the area, the more uncertainty exists, and the

fuzzier the observer's picture of the detection field will be.

A good approximation to r' (x) can be obtained by taking an

appropriately weighted average of the true detection rates at a

discrete set of points within a given radius of x. In particular, a

weighted average of the field at a point and its neighbors provides

one representation of the perceived detection field.

If the observer's uncertainty about the detection rate is the

same for all sensor devices, then the effect on the probability of

traveling undetected between neighboring points is relatively

simple. In this case, the transformation is:

* - p,(i,li) p(i,l ) d . p (j

where 1i is a neighbor of point i in a specified direction, and

wj is the nonnegative weight assigned to neighbor j of i, such

that wi + wj -I.
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The choice of weights (or equivalently, the probability

j distribution over sensor location) depends on the quality of

information available to attacking aircraft, as determined by the

sophistication of their devices for detecting and locating

emissions. A single input parameter is used to describe this level

of sophistication in the current implementation of the aid. The

parameter corresponds to the variance of a symmetric distribution

about the actual sensor location. The source of this parameter would

be a subjective assessment by Navy personnel, based on intelligence

information.

One possible (although conservative) setting for this parameter

is to assume the enemy has perfect information; this is equivalent to

the original version of the OP algorithm. As the quality of

information is reduced by lowering the sophistication parameter, the

perceived location of the sensors and the detection rate become

fuzzier. Thus circuitous routes for incoming threats trying to avoid

detection become less likely, particularly if an objective value

placing some importance on flight time is included.
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3. First Detection Probabilities and the

Relative Suboptimality of Paths

For the display of first detection probabilities, the

probability that each path will be chosen by incoming aircraft must

be evaluated. This calculation requires some of the same assumptions

concerning enemy behavior as the dynamic programming algorithm, but

it is recognized that suboptimal (especially near-optimal) routes may

be chosen. Reasons for choosing a suboptimal path are:

1. Imperfect information (both our intelligence
information and the enemy's);

2. Imperfect estimation of the trade-off between
detection avoidance and flight time;

3. Other objectives, such as avoiding defensive
strength or staying in formation;

4. The use of a mixed strategy randomly selected from a
set of good paths in order to make enemy behavior
less predictable.

The problem is to find the relative likelihood of the various

paths to a specific target, and then aggregate over all possible

targets. We have developed two different approaches for solving this

problem. One method compares the objective value obtained along the

best path to the target which passes through a particular point with

the objective value for the optimal, unrestricted route to the

target. The objective value used here will be the same as for the

generalized dynamic programming algorithm, including a term for

minimizing distance along the path and the possibility of imperfect

enemy information about sensor locations. The second approach uses

an assumption of localized random behavior to allow suboptimal paths

to be chosen. This probabilistic solution technique uses both

dynamic programming and Markov chain theory.
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Inputs

- Sensor detection rate.

- Maximum sustainable velocity of incoming threats.

- Relative importance (to the enemy) of avoiding detection
versus minimizing flight time.

- Level of sophistication of enemy devices for detecting and
locating emissions.

- Expected number of aircraft starting at each point (incoming
tracks only).

- Probability distribution for the target location.

Outp~uts

Both models to be described in this section produce displays of

the probability of first detection at each point on the grid. In

addition, an intermediate output of the first model is a measure of

the relative suboptimality of passing through any point on the way to

each possible target point T. This quantity will henceforth be

denoted the "ratio of suboptimalityn.

Data Sources

The detection rate is calculated from NTDS information on the

status and location of sensor devices and environmental conditions.

The perceived detection rate for an observer with imperfect

information about the location of Navy sensor devices is computed as

described in the section of this appendix devoted to the dynamic

programming algorithm. This calculation requires an input parameter

describing the sophistication of enemy devices for detecting and

locating emissions. The source of this parameter is a subjective

assessment by Navy personnel, based on intelligence information.
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The relative values of avoiding detection and minimizing flight

time, and the maximum sustainable velocity for enemy aircraft, must

also be assessed by Navy personnel based on intelligence information.

The target distribution for incoming threats can be estimated

from the relative importance of each Navy vessel. Displays have been

generated by the experimental decision aids using a number of

different target distributions. However, for simplicity the examples

in this report assume that the target of each threat is a single ship.

Ratio of Suboptimality Approach

For each target pcint T, define the ratio of suboptimality

RT(x) by:

V (x) * VT (x)
R (x) - *

V (T

where V*(x) is the objective value associated with the optimal path

for reaching point x from the starting set, and VT(x) is the

objective value associated with the optimal path from x to T.

Thus RT(X) is the ratio of the value of the best path to point

T that passes through point x to the optimal objective value of a

path to point T that is not constrained to pass through x.

RT(x) can be calculated for all x by executing the DP

algorithm twice. The first run of the algorithm is used to compute

V*(i) for all i (including, of course, the target point T). On

the second run the starting set contains only the point T, with

initial condition V0(T) - 1. From this data, the DP algorithm

will produce the optimal paths from every point to the target T.

*, If a target distribution is used, only the latter usage of the

DP algorithm must be repeated for each target point receiving
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non-nt7ligible weight. Thus a maximum of N+l executions of the DP

algorithm will be required to compute the ratio of suboptimality for

all N grid points.

Examples

Consider the simple nine point example of Figure A.5. Let the

target point be point 9 (the center point), and let all the other

parameters of the problem remain the same. Then R9 (x) has the

following values:

Point Ratio
1. .8
2. .8
3. .51
4. .51
5. .41
6. .64
7. .64
8. 1.0
9. 1.0

Since the points 3, 4, and 5 are not on or near a good path from

the starting set (points 1 and 8) to point 9, they have the lowest

ratios. This indicates that it is unlikely that a path passing

through any of these points would be chosen.

Figure 8 in the main report gives the display of the relative

suboptimality of paths for a more complex example. In this example,
the center ship is designated as the target point, attack is allowed

from any direction, and the enemy's objective is to maximize his

probability of avoiding detection.

Application to First Detection Probability

In order to calculate the first detection probability at each

point, we need to know the likelihood that the flight path of an

incoming aircraft passes through that point. The ratio of
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suboptimality R provides a measure of that likelihood by specifying

the relative loss in objective value incurred when the flight path

must include that point.

The first detection probabilities are based on the assumption

that the probability of passing through a point is proportional to

the ratio of suboptimality at that point. In this case, the

probability of first detection at a point is given by:

PdRX) Prob(detect at x on given path)
R(i)

i
where the term on the right denotes the probability that detection

occurs while near point x if the aircraft chooses to travel a given

path containing point x. That probability is conditional on two

things: first, that the plane reaches the preceding point on the path

(say, point y) without being detected, and second, that the plane is

then detected while attempting to travel to point x. The latter

quantity is just 1-p(y,x), and the former is the product of the

nondetection probabilities for travel between the points of the path

that precede x. A simple multiplication of the two quantities

yields the desired probability of first detection near x for the

chosen path.

We have implemented the above model under the assumption that

the route chosen to reach each point is the optimal path determined

by the dynamic programming algorithm. The first detection displays

shown in the main report were produced in this manner.

An alternative method of finding first detection probabilities

is to assume the incoming threat will choose from among a set of

"reasonable" paths rather than necessarily choosing an optimal path.

For a given target point, the ratio of suboptimality algorithm

' associates a reasonable path with each point x on the grid. This
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Path connects the starting set with point x, and then continues toI the target point T. In order to determine the probability of first

detection, we assume the probability of choosing this path is

proportional to the ratio R T(x). Paths or portions of paths that

are optimal or near-optimal will have a high likelihood of being

chosen, both because the ratio will be higher for these paths, and

because they will be repeated many times. For example, the optimal

path will, at the very least, be counted once for each point through

which it passes.

As before, we can easily determine the probability that

detection will first occur at any point, given that one of these

paths is chosen. Weighting each of the N paths by the

corresponding value R T(x), we can determine the overall first

detection probabilities for the case of a single target by the

formula given below.

Pdx) N R RTO)) Prob(detect at x on path j)
Pd~x) *J~lI R TiM

To generalize this procedure to multiple targets or a target

distribution, simply weight the first detection probabilities

calculated individually for each target point by the probability that

the point is actually the target.

This procedure should generate first detection displays that are

similar in general appearance to the examples shown in the main

report. Although this approach poses no computational difficulties,

it has not been implemented.
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lMarkov Chain Approach

The main difference between the assumptions necessary for the DP

algorithm and the first detection algorithms is that the latter do

not make the implicit assumption that an optimum path is always

chosen by incoming attackers. In particular, the ratio of

suboptimality algorithm assumes that the enemy pilot chooses from a

relatively small set of paths, according to their relative merits.

Alternatively, the !4arkov chain model is formulated so that, at each

point, the path of an incoming threat is uncertain. In this way, an

approaching aircraft can choose to travel along any piecewise linear

path through points on the grid, although paths with poor objective

values will be chosen infrequently.

The output of this model is the probabilistic location of first

detection for incoming aircraft. Alternatively, if an estimate of

the size of the next attack is available, the output can be the

expected number of planes to be first detected at each location. In

addition, the methodology can be extended easily to predict the first

detection probabilities for lost tracks.

Formulation

A Markov chain is defined by a set of states, an initial

probability distribution over those states, and transition

probabilities for moving from one state to another. The initial

distribution represents the probability that, at time zero, a

quantity (i.e., a threat) is in each possible state. A state is said

to be "absorbing" if it is not possible to make a transition from

L that state to any other state. The probability that a transition to

that absorbing state will eventually occur, and hence cause the chain

* to terminate there, is called the absorption probability.
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The movement of a plane within the task force vicinity can be

modeled by a Markov chain with the state defined by two factors: the

location of the plane and whether or not it has been detected. Since

the number of possible locations on the grid is finite, so is the

state space of the Markov chain. The one-step transition

probabilities of this chain are the probabilities that the plane will

choose to travel from a point x to each of the eight neighboring

points. A successful transition will occur if the plane is not

detected while flying this route, otherwise the plane is absorbed

into the "detected" state associated with point x.

Although the standard description of a Markov chain includes an

initial probability distribution over the set of states, it is

equivalent to allow the initial vector describing the occupation of

states to be any set of non-negative numbers. In our case, this

leads to a simpler interpretation of the algorithm, in which the

initial vector represents the expected number of planes with attack

routes starting at each point. To return to the probabilistic

formulation, one could divide the expected number of planes at each

point by the total expected attack size.

The Markov chain approach requires the following definitions:

0(x) a expected number of planes to start at
location x (in general these planes can be
part of a future attack or lost tracks);

p(x,y) a probability of traveling in a straight line
from grid point x to a neighboring grid
point y, without being detected;

c -multiplicative reduction in nondetection
probability for each additional horizontal or
vertical step taken along a path;

P(y,T) - probability of traveling undetected along an
"optimal" path from y to target T;
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Z(x,y,T) c(nl + /2n2). p(x,y)" P(y,T), where n1
and n2 represent the number of straight and
diagonal steps along the DP-optimal path from
x to y to T.

The calculation of p(xy), the probability of avoiding

detection while traveling between two neighboring points, is based on

the sensor detection rate, as described in the first section of this

appendix. The "optimal" path used in the definitions of the path

detection probability P(y,T) and the objective function Z is the

path found by the dynamic programming algorithm. Note that

Z(xy,T) is the objective value associated with going from x to y

and then taking the DP-optimal path to the target T.

Let each of the N points of the rectangular grid describing

the task force vicinity correspond to two states in the Markov chain,

one in which the plane is undetected, and an absorbing state in which

the plane has been detected. The chain starts in the initial

position described by the vector I0' and then transitions are

allowed between neighbors. The objective function Z is used to

determine the transition probabilities Q for this Markov chain. In

particular, one alternative is to make the probability of heading

from a point x to a neighbor y en route to target T, denoted

Q(xy,T), proportional to the objective function Z(x,y,T).

During an attempted transition from x to y, a plane would be

detected with probability p(x,y), and hence absorbed into the

appropriate state corresponding to point x. The goal of the

algorithm is determine how many absorptions occur at each point,

i.e., the expected number of planes to first be detected at that

. point.

Recall that Q(x,y,T) is the transition probability from x to

neighbor y if the target is T. Using the given probability
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distribution over the set of targets, we can calculate the overall

1 probability of heading from x to y by:

Q(x'y) Q U(x,y,T) • Prob(target is T).
T

Implementation

To calculate the expected number of planes to be first detected

at a point x, we could find the absorption probabilities for this

transient chain. For a large number of grid points this calculation

might require considerable computer resources; a more efficient

technique is described below.

Set 1. to the initial distribution of expected planes. Set

E0 (x) a 0 for all grid points x. Then for an iteration counter

k - 1,2,...,

Hk(x) = I (Q(yx) p(y,x) 'Ik-l(Y))
y

Ek(x) - Ek.l(x) + (Q(y,x)" (1-p(y,x)) "rlk-l(y))

y

Halt when R k (x) < , for some positive E. The parameter
x

E is the tolerance of the algorithm, and can be set to any desired
positive value.

Thus, planes are accumulated in the vector E as they are

* detected along their flight paths, and planes yet to be detected at

iteration k are distributed according to fl As k tends to

infinity, Ek converges to the vector of expected number of planes

I to be first detected at each point. Therefore, if termination occurs

at iteration j,

I-A29-
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E(x) - U oi)
i 0

is an approximation to the first detection probability at x. In

fact, it serves as a lower bound, and the total sum of the

differences between E(x) and the true absorption probabilities for

the Markov chain is less than the tolerance factor s divided by the

total number of planes.

Simple Markov Chain Example

Consider the simple 2x2 grid of Figure A.6. For this example,

let a single attacking aircraft begin at point 1, and attempt to

reach its target at point 4. A single radar is located at point 4

and surrounded by a symmetric detection field determined by:

p(l,2) - .7 - p(1,3)
p(2,3) .4
p(2,4) ..3 - p(3,4)
p(l, 4 ) - .1.

For simplicity, let c-l, so that the minimum detection paths shown

in the figure are optimal.

i 2

P 1 3 4

Figure A.6: Minimum Detection Paths for a Simple 2x2 Example
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I
The objective function Z is symmetric with respect to points 2

and 3, and hence is determined by the following values.

Z(1, 2) - .21 M Z(1,3)
Z(1,4) = .1
Z(2,1) - .147 - Z(3,1)
Z(2, 3) - .12 - Z(3,2)
Z(2,4) - .3 - Z(3,4)
Z(4,4) - 1.0

The transition probability Q(1,2) is determined by:

Z(1,2) .21Q(l,2) = Z(1,2) + Z(1,3) + Z(1,4) = .51

or approximately .4. Since the probability of avoiding detection

along the path from point 1 to point 2 is only .7, the transition

from 1 to 2 will only be completed with probability .28.

The complete set of transition probabilities for this Markov

chain, including the probability of absorption during attempted

transitions, is given in Table A.1 below. Since the target state,

point 4, is an absorbing state, it is immaterial whether or not

detection is assumed to occur there.

Transition To

1 2 3 4 Detect

1 0 .28 .28 .02 .42

2 .18 0 .08 .16 .58

Transition

From 3 .18 .08 0 .16 .58

8 4 0 0 0 0

Table A.l: Transition Probabilities, Including Detection

I
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The first detection probabilities can be found by solving a

small system of equations for the absorption probabilities of the
Markov chain. The resulting first detecion probabilities are

approximately

Pd(l) - .47 Pd( 2 ) -.2, Pd( 3) - .2, Pd( 4) a .13.

Note that the probability of first detection at the target site is
less than the probability of survival along a minimum detection path
(.13 versus .21). This result is due to the fact that a path other
than the minimum detection path will sometimes be chosen by incoming

threats.

Characteristics of the First Detection Algorithms

1. The first detection algorithms allow probabilistic rather

than deterministic choice of paths. Suboptimal paths

receive consideration in proportion to their merit. Thus,

this type of approach is more robust than the tbP method.

2. Using probabilistic models, known, lost, and undetected

planes can be aggregated easily. This is a more difficult

process under the dynamic programming method due to its
deterministic nature.

3. The first detection algorithms require execution of the

dynamic programming algorithm once for each possible target

point. Thus, they may be up to an order of magnitude

slower than the DP approach.

-4. The outputs of the first detection algorithms are required

inputs for the calculation of expected damage levels.
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4. Location Probabilities and Lost Track Algorithms

The major difference between the lost track algorithms and the

other methods described thus far is that more information is

available about a lost track then an undetected track. In

particular, a lost track was detected and observed for some known

period of time. From this information, we can calculate its probable

current location. In addition, track history and current location

can be used to determine more accurately the probable target of the

aircraft, and hence to improve the accuracy of the penetration and

first detection displays.

Corresponding to the two algorithms developed in the preceding

section, there are two methods for evaluating penetration and first

detection probabilities for a lost track. This section will

concentrate on the formulations of lost track displays utilizing

dynamic programming and the ratio of suboptimality. Most of these

algorithms have been implemented, although some of the more complex

* methods are still under development. The relatively simple extension

of the Mar kov chain approach to the lost track case will be described

at the end of the section.

Inputs (For All Lost Track Algorithms)

-Sensor detection rate (both actual and perceived).

-Maximum velocity of the threat.

-The location x where the threat was last observed.

-The time interval t (in minutes) since that last
observation.

-Target distribution.
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Outputs

- Probability distribution over the current location of the
track;

- Penetration probability;

- First detection probabilities.

Data Sources

As before, the sensor detection rate is determined from physical

data. The maximum velocity can be estimated from the track history

and a probabilistic ID associated with the lost track. The remaining

input information can be obtained from track history, with the target

distribution calculated using kinematics.

Formulation of the Lost Track Current Location Probabilities

The probability that a lost aircraft is currently located at

position y can be calculated using Bayes rule. It is proportional

to the product of the probability of traveling undetected from x

to y and the prior probability that y was the aircraft's

destination. Letting D be the event of non-detection for t

minutes, then

[y.xD1 {Dx,y} {yjx}

f(Dix,y) {yjx)
y

k. where the bracketed quantities denote conditional probabilities.
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Prior Distributions for Current Location of a Lost Track

The prior distribution for the current location of the track

({yjx)) can be determined from track history, a target distribution,

and knowledge of the aircraft's maximum speed. Using only the latter

information, some possible prior distributions are:

(1) A uniform distribution over all the points that the
aircraft could reach in t minutes or less.

(2) A uniform distribution over all the points that the
aircraft could reach in t minutes or less along the
optimum (or minimum detection) routes determined by
the dynamic programming algorithm.

(3) A uniform distribution over the outer envelope of
either of the regions defined by (1) or (2).

The first two distributions make only very weak statements about the

destination of the track. The last distribution reflects the strong

assumption that the track is attempting to travel as far from point

x as possible.

The prior distribution must also reflect our state of knowledge

about the track's target. After choosing a general form for the

distribution, (either (1), (2), or (3)), we perform an updating

process using a target distribution derived from the application of

kinematics to the track history and/or obtained from intelligence

information. During this updating process, L(x), the prior

probability of being located at point x, is determined by

TWx) UWx
L (x)

JIT(y).- U(Y)
* y

where T(x) is the probability that x is the plane's target and

* UWx is the value at x of the chosen uniform distribution. This

distribution L(x) is a valid prior distribution for the destination

of the plane after t minutes.
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Figure 17 in Section III of the main report depicts a target

distribution using the information that the plane was heading south

when last observed. This distribution would be appropriate if the

plane is more likely to continue in the same direction than to

radically alter its course. ordinarily this is true, because the

incoming plane does not know that it was previously under observation

and currently is unobserved.

A target distribution could also be determined by the placement

of emitting Navy ships. For example, if the center ship was

perceived as the main target, then the target distribution would

resemble a set of concentric circles centered at that ship. In

general, a target distribution can use target values for all Navy

ships to determine the likelihood that each particular ship is the

target of the attacking aircraft. These target values would be

assessed by Navy personnel from intelligence information.

Probability of Undetected Travel for a Lost Track

Evaluation of the probability of traveling undetected from x

to y in t minutes requires an assumption about the trajectory

chosen. We assume that the optimum paths found by the DP algorithm

are taken. This assumption is reasonable since these paths minimize

detection probability; given that no detection has occurred, these

paths are more likely to have been chosen. However, note that this

criterion excludes some points that could be reached in time t by

straight paths. Therefore, we choose not to consider prior

distributions of the form of (1).

The probability of traveling undetected from x to y along

the optimal paths must be adjusted to reflect the fact that exactly

t minutes have passed. This can be done by decreasing the velocity

* along the path so that the destination y is reached at the

* appropriate time. This change in velocity can be interpreted as

* -A.36-



selection of a path that deviates slightly frost the optimal

trajectory, and takes longer to complete.

Current Location Display for a Lost Track

The posterior probability for a track to be located at a given

point is obtained from the prior distribution and the probability of

traveling undetected between that point and the point at which sensor

contact was lost. These distributions are combined according to the

Bayesian formula previously mentioned.

An example of the display generated by this set of probabilities

is given in Figure 18 in Section III of the main report. For this

picture, track history (the track was heading south when sensor

contact was lost) was used to determine the prior distribution. The

display shows the probability of current location for the aircraft

ten minutes after the last sensor contact, which occurred at the

location marked by the blue dot.

The display of the probable current location for a lost track

will change over time. As the time since the last observation

increases, the likelihood that the plane is still in the task force

vicinity decreases. The rate of this decrease depends on the

original reason why the track became lost. There are at least three

ways in which sensor contact with a track can be lost:

- Destruction of the track;
- Evasive maneuvers or jamming tactics employed by the enemy;
- Failure of the tracking system, due to mechanical failure of

the sensor, range limitations, or reception difficulties.

If a weapon was fired at the track, there is a known possibility

*that the threat will be destroyed. This possibility must be included

in the prior distribution. Since the threat will not be detected

after it is destroyed, application of the Bayesian update formula
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will increase the likelihood of destruction as time passes without

the occurrence of detection.

If the track was lost for another reason, it can be assumed that

it continued along its planned flight path. (However, if evasive

maneuvers or jamming tactics were employed, that planned flight path

may include a radical course change.) As the length of time since

the last observation increases, the likelihood that the threat has

flown out of sensor range (or been destroyed), which may be near zero

initially, will increase. This happens because fDjx,y} decreases

with t for all points y within sensor range. Figures 15 and 16

in the main report illustrate this effect.

For t large enough, the probability that the lost aircraft is

still located in the task force vicinity will become negligible, and

that track can be dropped from consideration.

Penetration Probabilities for a Lost Track

Calculating the maximum probability of penetration for a lost

track is similar to determining penetration probabilities for an

incoming plane. However, a lost track will penetrate deeper while

avoiding detection than an incoming plane starting at the same point

because the lost track is known to have successfully avoided

detection for a given length of time.

The penetration probability is calculated using the DP algorithm

with the starting set equal to the set of points that can be reached

in t minutes or less along the minimum detection paths.

* Equivalently, detection is assumed not to occur for the first t

minutes of travel from point x; all paths are evaluated by the

* dynamic programming algorithm under this assumption.
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The paths determined by this method may not be the same as the

minimal detection routes for incoming paths. A suboptimal path which

travels through regions of concentrated sensor activity may become

optimal when detection is disallowed for the first t minutes of the

path. Thus, this maximum penetration probability is truly a

worst-case analysis of the situation.

An alternative approach is to evaluate the penetration

probabilities for the paths which are optimum before assuming

nondetection for t minutes. This approach reflects the fact that

the pilot does not have the information of failure to detect when he

chooses his path. The probability of penetration along the optimum

paths are then evaluated under the constraint that detection can not

occur for the first t minutes. This method can easily be

generalized by including a term for minimizing flight time in the

dynamic programming objective function.

Although this procedure produces a more realistic probability of

penetration than the worst-case display, it still does not utilize

the updated probabilities of the current location of the track. That

data will be utilized for the first detection display.

Pirst Detection Probabilities for a Lost Track

The first detection probabilities for a lost track can be

computed using the ratio of suboptisnality (described in an earlier

section of this appendix). To illustrate the method, suppose there

is a single target point T, and let x be the location of the last

sensor contact with the track. Then execution of the following steps

will produce the first detection probabilities conditional on the

target being point T.
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1. Compute RT(y), the ratio of suboptimality for each
point y, where the starting set for the dynamic
programming subroutine is the single point x. This
procedure associates a path from x to y to T with
each point y.

2. Compute the probability of being first detected at each
point along the path from x to y to T, conditional
on failure to detect for the first t minutes along
this path.

3. Let the probability of choosing the path associated
with point y be proportional to RT(y).

4. Aggregate over all these paths to find the first
detection probability at every point.

This process can be repeated for all target points and the

results weighted by the probabilities associated with the targets.

The target distribution will be strongly influenced by the

information contained in the track history. However, the failure to

detect over a period of time implies that points which could have

been reached within time t from the original location x are

unlikely to have been the target; the target distribution should be

updated to reflect this fact.

The procedure outlined above requires a moderate amount of

computational effort. The main source of complexity is the

requirement that the ratios of suboptimality be determined for each

target point. This implies that the DP algorithm must be executed

once for each point with non-negligible target probability.

Approximately the same order of magnitude of computational effort is

needed to implement the Markov chain algorithm, which also can

produce first detection probabilities for lost tracks (see the

* discussion at the end of this section).

A shortcoming of the procedure described above is that knowledge

* of the failure to detect for t minutes is not used to change the

likelihood that each path was chosen (except for a Sayesian update of
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the target distribution). An alternative approach is to utilize the

probability of current location to specify a distribution for the end

point y of whatever path was taken during the t minutes since the

track was lost.

Assume first that the current location of the track is known to

be point y. Then the steps of the revised algorithm are:

1. Compute RT(z), the ratio of suboptimality for each
point z, where the starting set for the dynamic
programming subroutine is the single point y. This
procedure associates a path from y to z to T with
each point z.

2. Compute the probability of being first detected at each
point along the path from y to z to T.

3. Let the probability of choosing the path associated
with point z be proportional to RT(z).

4. Aggregate over all these paths to find the first
detection probability at every point, given current
location (after t minutes) y and target point T.

This process could be repeated for all target points and all

possible current locations, and the results weighted by the

appropriate target and current location distributions. Although this

algorithm appears to require a great deal of computation, the dynamic

programming algorithm need only be executed once for each point on

the grid. However, the current location distribution must also be

calculated, and this would increase computation time over the

algorithm described earlier in this section.

* Application of the Markov Chain Approach to Lost Tracks

An alternative method for evaluating first detection

probabilities for a lost track is to use the Markov chain approach

* - developed in the last section. For this algorithm, lost tracks can

be treated identically to incoming (unobserved) tracks. That is, the
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method will calculate the probability of first detection of a lost

track provided it is given a starting distribution for the track.

That starting distribution can be determined from the probability of

current location; as we described earlier in this section, the

current location probabilities can be computed using Bayes rule.

The extra information available about the track's past history

can be used to improve the accuracy of the target distribution and/or

transition probabilities for this aircraft.

The lMarkov chain approach is currently in the developmzental

Phase. For this reason, the application of this algorithm to lost

track first detection probabilities has not yet been implemented.
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