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FOREWORD

This report to the Office of Naval Research describes both theoreti-
cal and experimental efforts carried out under contract NOON14-80-C-0498 dur-
ing the period June 6, 1980 through May 31, 1981. The program was carried out
at the Rockwell International Science Center, and was managed by Dr. Paul R,
Newman. The principal investigators were Mr. Mark D, Ewbank and Dr, Newman,
Prof. Walter A, Harrison of Stanford University was a consultant on the
theoretical aspects of tne program. Valuahle contributions were also made by
Or. Pochi Yeh, Mr, Randolph L. Hall and Dr. M. Khoshnevisan of the Science
Center, The contract moniztor for the Office of Naval Research was i

Dr. George Wright,
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1.0 INTRODUCTION

1.1 Program Objectives

This program has several long range objectives. The first and perhaps
foremost is to achieve a fuller understanding at the microscopic level, of the
physics leading to the electro-optic (E-0) effect in solids. A further goal is
to generate a completely generalized predictive methodology which takes as its
input atomic structure and elemental composition and successfully predicts the

electro-optic response for the material, !

Additionally, efforts in electro-optic device development programs a~e
currently reaching performance levels limited not by device design, but rather
by materials characteristics. It is hoped that some of the future experimental
efforts of this program will lead to the successful identification, growth, and
characterization of new high performance electro-optic materials, so badly

. needed hy this emerging technology.

1.2 Previous Work

( Work that is being carried out under this program has evolved from and
is a natural consequence of a Rockwell International IR&D program (Project 864
"Optical Materials") at the Science Center. During FY 1979 and 1980, work was
begun in conjunction with Prof, W,A. Harrison of Stanford University, on the
2K : application of his "Bond-Qrbital Model1"1-3 or chemical-bond approach to the

. prediction of the optical dielectric susceptibility of solids; specifically the

indices of refraction of solids. After several initial successes in predicting

1
C3485A/jbs




‘l‘ Rockwell International

Science Center

SC5266.1FR

the first-order susceptibility, efforts evolved towards second-order “perturba-

4 such as the strain-optic effect and the dc electro-

tion-response"” functions
optic (Pockels) effect. That portion of the effort which is specifically
oriented toward the electro-optic effect is the basis for this program which was
officially funded on June 1, 1980, The remainder of the work on the strain-
optic effect, the anomalous dispersion in the birefringence, and other basic
optical properties of solids will continue to be carried out at the Science
Center under IR&D funding. Clearly, there will be many synergistic advantages

both theoretically and experimentally in having such a comprehensive approach to

the generic topic of the interaction between light and solids.

1.3 Accomplishments

There have been several significant achievements during the first phase
of this project, The theoretical work has progressed to first separating the
physical sources of the electro-optic effect into those which result primarily
from electronic effects and those associated with lattice dynamics or "ionic-
displacive effects." The "Bond-Orbital Model" was then modified so that the
electronic contribution to the electro-optic effect could be calculated simply
and straightforwardly using "universal atomic" parameters and sums over chemical
bonds in the crystallographic unit cell. This theory was tested against Te0,
and predicted an identically zero electronic contribution to the electro-optic

5

tensor in agreement with Kleinman's” symmetry,

The ionic displacive part was next to be investigated. Here, a further

distinction was made between relative motions between ions which do not result

in a change in the unit cell dimensions, and those which do. The approach,

2
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although not completely evolved, has been to seek a mechanism for calculating
the microscopic atomic "spring constants" and then relating these to some mor=
easily measured bulk properties such as the Reststrahl frequency or bulk elastic
constants. It is hoped that this will enahle predictions of electro-optic
properties to be made with a minimum of experimental materials characterization

input.,

Finally, the experimental aspect of this program has been quite fruit-
ful. Original characterization measurements of the linear electro-optic effect
has been completed in TeOz, and begun on another compound: T13AsSe3. The

studies on this latter compound should he complete by late 19831,

1.4 Technical Issues

The most significant technical issue still to be resolved is the iden-
tification of those generalized aspects of atomic configuration and chemical
honds that will allow us t» calculate the requisite electronic and lattice

responses to external perturbations (electric fields and strains).

1.5 Report Summary

The remainder of this report contains the details of our technica)
approach and the results for both the theoretical and experimental aspects of
this program, Finally, there is a short summary of progress and some of our
future efforts. Appendix A is the paper on the experimental efforts on Te0,,

submitted to the Journal of Applied Physics.

3
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2.0. TECHNICAL APPROACH

2.1 Theoretica)

Z.1.1 Electro-optic Coefficients

A reguirement of any theoretical endeavor is that the theory must

incliude a connection to the experiment, In the case of the electro-opti:

effect, the measurement gives an electro-optic coefficient, Fijs which is

dafined by the relationb-8

i AB, = . 7 kEk (2)

‘ where ABij is the change in the relative optical dielectric impermeability and !

E. is the applied electric field. When the frequency of the perturbing electric

< K

field is greater than the piezoelectric response, the crystal is considered to

be "clamped" and the measurement gives a constant strain electro-optic

; . coefficient, r?jk' Elastic deformation occurs for a low frequency (or dc)
-
perturbing field and this "unclamped" situation leads to a constant stress
i %, ' electro-optic coefficient, rljk' The impermeability is defined by
'\
' [ * af.
T IR -1 _ 1
N Bis =am, - (& )iy = (52 (3)
L&
b
£; 4
- C3485A/jbs
b

d
3
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where €5 j is a dielectric constant, n refers to a refractive index and g'l is

the inverse dielectric tensor,

The change in impermeability with applied field can be easily relate:
to a change in refractive index. Let ny be the effective refractive index for 4
particular set of propagation and polarization directions with no applied
etectric field, Then let ny be the effective index for the same set of
propagation and polarization directions but now with the electric field

applied, The change in impermeability is

z -3n, it becomes
3
AB = -2xn/n

The same result can be achieved from differentiation:

dB _d 1,
I T d LAzl (6)

The explicit relationships between an and ABij have been derived® for optically
isotropic, uniaxial and biaxial crystals with the Jight propagating in an
arbitrary direction, For exanple, in uniaxial crystals, the change in the

.

ordinary refractive index is

3.2 2 g
L [52 4By + 57 8By, - ZS152“312]

an, = T+ $Z
0 2 S1 + S2 .

5
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1355:53) # (9.0,1). The

expression for the change in extraordinary refractive can be written

for a propagation direction given hy unit vector § = (S

3 2 2.2 2,027 2 . 2.7,
B RAALN I eV 7 J0d W AN UM O Y VA Wl W LA S Bl e A WA
Mg = mmmgmn | S ST
12
(8)
where n (eff) is the effective extrdordinary refractive indec for the
propagation direction § = 151,57,83
an
n_(eff) = £ 3
2 TS Y STV SRS =y
e v 0(5; Sg, N3

2eiating the imperuneability, and hence the elactro-optic coefficient, to 4
change in refractive indzx is of fundanental importance because 1) experi-
nentally, onc noiinally measires this change in the index of refraction as a
function of applied electric field and 2) theoretically, one calculates the

sertarhatinn of the refractive index due to the applied field,

2.1.2 Susceptibility

Traditionally, the refractive index is related to the microscopic
nature of a crystalline solid via the polarizability and susceptibi]ity.9 In CGS
units

n= v+ 4y (10)

for isotropic materials in the linear regime., The electro-optic effect can be

viewed as one of many nonlinear perturbations to this linear susreptibility; in

6
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particular, it corresponds to a second-order susceptibility. There are many
conventions used for representing the nonlinear susceptibility coefficients.
One method, which is instructive but not rigorous, is to consider a Taylor's
series expansion of the induced polarization, B, in teras of the three conpo-
neats of the total electric field, %t,
to1 £ t 1
5 = a.. EY + 2 ) b.. EYEr 4+ wes (11)
i L7 2 & i3k K ' !
; § PRRRAR
wherg the expansion has been done about the point E“ = 0 and it has heen assumed
that tne induced polarization for zero electric field is zero, i.e., 9i(€t = 0)
= ., Note that the expansion coefficients are aij' bijk’ etc, MNow let the
total electric field be a superposition of two electric fields at frequencies “1
angd )
; 2
SR SR (12)
In component form,
€ £5 = Y1 4 g2 (13)
“m m m *
i- Substituting Eq. (13) into Eq. (11) yields
2

7
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=\ (E' w2 1 ) (E“1 W2 EYWL w2 oo
Pi ‘-‘aU'EJ' +E33+29bijk‘Ej +Ej J‘Ek +Ek |+
J Jk
= Va. E”1 4 )a £92 4 2 bijk EVLERL 4 2 bijk Wy pw)
= ‘; .. . ) i. - / — . k ) — - . _k
j 1] 5 JJ 5k 2 7] 5 2 ]
b.. b..
iJK cwjpw TJK oy ets
+ ) =5 EVIES? + ) 25— EPLED? 4+ e, (14)
5k 2 7]k 5 2 k7]

Since, in the summations over j and k, j and k are only "dummy" indices, it is
possible to interchange j and k in the last term and then conbine the last tw»
terns by factoring out the electric field

b.., b..
P.o= ) a. EYl 4 1% SR+ L J2Ep?

N a.. B2 4+ v g L
1 ¢ | & 2 L 2
R R RS ] b
1,’ w u);
' %k 7Pk * PG B EE - (15)

Now, explicitly include the frequenty dependence of the fields:

(1
et = £ cos ot (16)

mn

and

£{2) cos st (17)

[

w2
Em

Substituting Eqs. (16) and (17) into Eq. (15) gives

8
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b..
. (1) (2) v gk (1) (1) c2
P. =2 a1JEJ os wyt + ) aijEj oS wyt + ) —5= Ej B, 7 cos” ot
J J Jk
b..
gk (2)(2) .2 1 vl (2)
+ %K > Ej B0 CosT wst + %k 5 b]Jk + bikj/ EJ By’ €OS ut cos .t
Using the trigonometric relations of
) 21 N [ 5 a=p 1 .
COS @ COS 8 = 5 COS (v + 3) + cos {a - 3) 7 €0S (24) +1
. 1 b, .
g } 2y€{1) cos wyt v } 2,5E42) cos wyt + }k ¢ elDe{D cos 2ut + 1)
b
tik (2)c(2)
* }k‘"%— By E(cos Zugt 1) 4 }k LU bikj1F§1)E£2) cos () + wy)t 3
- 1 o
3 * }k 7 (hijk * bikj)Egl)Eé?) €os (uy = )t
Expressing P, as a superposition of its various frequency components, i.e,
. o = b0 4 Pl o4 P2y P2 4 p2O 4 puiTu . pit Y (19)
( S TS RS RS it T "3 ’ VY
' these separate components can he written out as
PO . v ik (D1, ((2)(2),
i P i koo
Jk
€ (1) (2)
wp o \ Wy -
P1 L aijEj cos “lt . Pi 2 aijEj cos wzt ,
J J
i - pur -y 2Hk (D) o g ploz - 25-3—"- EDE(2) cos 20,
: i L7 BE wt s P My Sl 2 wpt
¥ Jjk Jk
,‘ ' w)=wy _ 1 (1) (2) -
N p] %kz\(bijk + b'|k‘]]E £ cos (u)l wz)t [ and
'S
I d
;~ ldl+w2 = 1 (1) (2) )
b
bood
f 9
i
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By examining the frequency dependences nf each of these terms, there is an
obvious correspondence to the physical phenomena of optical rectification,
second harmonic generation, and sum/difference mixing., In addition, for the
special case of wy = 0, the sum and difference mixing terms dre equal and
correspond to the linear electro-optic {(Pockel's) effect, which is an induced
polarization at the same frequency as the optical field and is proportional to

the dc electric field,

To define the higher order susceptibilities, one can write the induced

. polarization in terms of increasing powaers of electric fie]d:10

1) v (2) (3) .
P. =) x(‘ B, + ) oSl BB+ Y BT EEE L (21)
i 3 ] J 3k ijk "J 7« 5Kz ijkz 3 kg
( where x(l) is the linear or first-order susceptibility, X(Z) is the second-order

susceptibility, etc. Within this context, the linear Taylor series expansion
coefficients are identical to the first.order susceptibility tensor elements.
Combinations of the second-order Taylor series expansion coefficients correspond
to the second-order susceptibilities. While the above procedure is not

: ( completely rigorous, it does provide the appropriate correspondences.

An alternate, but somewhat similar, approach in specifying suscepti-
i': bilities is to define the ith component of the polarization density vector as ﬂ
;-3 the negative of the partial derivative of the total energy density with respect
to the ith component of electric field. Then, by expressina the total energy
density as a Taylor series expansion in the electric field, the susceptibility
coefficients can be related to the derivatives of this total energy density with

respect to the various fields. Still another method has been invoked in defin-

10
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ing the second-order susceptibility, which explicitly emphasizes the frequency
dependence. A general form of the second-order polarization can be writtentl

w0

PF,) = ] xg?& (=as 0’y omn') E5(Fan') By (Fhuma’) do' (22)
Jk -

where negative frequencies are permitted by assuming E; (Fo0) = EL(F,-u).

J
The specific definitions for three second-order susceptibility are: 12
i) Second Harmonic Generation p2u i v 2o g 123}
: Y i Sk ijk 7§ Tk Ve
i1) dc Effect (Optical Rectification) P9 = ¢ O 2 g (24)
1 jk ijk "3 "k
{ iii) Electro-Optic Effect S P Al (25)
i fk ijk 7§ Tk

‘ Note that these second-order susceptibilities are assumed to all be distinct
tensor quantities. The symmetry in the subscript indices for the three types of
susceptibitities is as follows. Second harmonic generation and optical rectifi-

( cation susceptibilities are symmetric in j and k since interchanging two optical
fields of the same frequency is physically insignificant. The electro-optic

susceptibility is symmetric in i and k as seen from a quantum mechanical formu-

Eul Jation, utilizing the electric dipole approximation, or as seen from a thermo-
~ dynamics argument, This latter argument can be understood by investigating the
} 3 following question: "What is the total susceptibility that the optical field
;; 'sees' when the dc field perturbs the first order susceptibility?" The

f : polarization is

C3485A/jbs
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Pi = ¢ X)k 2 X1gk J £ (26)
where X??k = X?jk in Ea. (25). For a principal axes coordinate system,
xsi) is diagonal. To simplify the total susceptibility, consider the dc field
- 0o _ .0 D _ 0 _
to be along x i.e,, E1 = Ex and E2 z E3 = 0, Then
(1) €0 .0 80 . 0 €0 . 0 |
! Lap’ *oan & X 112" x x 113 ! |
. e0 0 r (1) eo .0 e .0
P2 |* X211 Ex o' xapp Fid X213 Ey £

eo .0 €0 .0 (1) g0 .0
P3 X311 312 By [x33" * x313 B,] £3

In order that this total susceptibility tensor be symmetric, which is a

requirement of thermodynamics, it is necessary that:

en  _  eo
ik T X (28)

i.e., the "electro-optic" susceptibility is symmetric in the first and third

indices. This implies that the “condensed notation" is obtained by contracting

In contrast, for both

the two indices which do not refer to the dc field,

second harmonic generation and optical rectification, the two indices of the

optical fields are "condensed."

Finally, by equating the change in refractive index, due to the

electro-optic susceptibility perturbing the linear susceptibility, with the

12
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change in impermeability via the electro-optic coefficient (see Eq. (5)), a
direct relation between the second-order, electro-optic susceptibility,

X??k’ and the electro-optic coefficient, Fijke may be obtained, A simple
technique for approximating this relation is to write the perturbed refractive

index as

/T*’ 411,)((1) + ',(eoF.\,

n+oan =
V /
e0 172
1w an D) e A€
X 1 + 471)((1)

ceoc\i/2
. (1 + uz.i) (29)

and then use the binomial expansion on the square root to give
: 1 40
¢ n+an=nll+s [-%#T—-] *eee ), (30)

Then, by referring to Eq. (5},

eo,
[

2
AN~ ==less s o (31)
which implies that
< 0
:\B ~ ;4.1;] --E. (32)

and, since aB ~ rE from Eq. (1), one obtains

eo
-4n
> . . r -~ ——-n - . (33)

Performing the rigorous matrix inversion required to convert the full
7,11,13

susceptibility tensor to the impermeability tensor yields the relation

13
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-4n 3
Py * s (34)
©iikk
where ¢, = n% =1+ 4nx$%) is the optical dielectric constant., Note that con-
vention implies "condensing" the first and second indices in Fikj while “condens-

ing" the first and third indices in X??k' However, in hoth cases, the "con-

densed" indices do not refer to the static electric field. Also, the dielectric

constants reflect directions other than that specified by the static field,

Let's verify Eq., (34) for a specific example. Consider symmetry point
group 422 with the dc electric field applied in the <100> direction. Then, fron
combining £qs. (2) and (3) and using the electro-optic matrices in Kaminow 4

Turner,’ the perturbed impermeability is

( l/né 0 0 0
' 17 0o 0 0
| 1/n2 o0 o0 E, 1/n2 0 0
B - 0 el 0 o o | | o w2 e ] (39)
0 0 -rqy O 0 0 ra1Ex 1/n:
0 0 0 0

where n_ is the ordinary index and n

o is the extraordinary index, Referring to

e

Eq. (26), the perturbed susceptibility tensor can be written as

Xo 0 0
eo
0 x x213%
eo0
0 x3128c  xe
14
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. 0 _ eo _ eo _ eo
STNCE X213 ™ X312 © ~X123 T "X321

lities. Note the y, and y, are the linear ordinary and extraordinary suscepti-

are the only nonzero second-order suscepiibi-

bilities, i.e, ng =1+ 4nKO and "é = 1+ 4ny,. From Eqgs. (3) and {10),

1 0 0 o 0 0 20 0
Bl o0 1 0] + 4n 0 xo a¢ ] = | 0 nZ dnag (37)
0 0 1 0 Ax  Xe 0 dway né

where ay has been defined as Ay = X§?3Ex = X;?ZEX. Using the Gauss-Jordan

matrix inversion technique to invert g-1 gives

L
ng 0 0
1 (4nay)? -4aa
B = 0 AR v it v Vet v 'V L R 4 S
‘ nZ " oagnz - (%}noAx) nZa? -.€4nA;TZ
2
0 Ll - -:10..---
. FZRZ T (Ana)? RZAZ T (dER)?
o'e oe
L 0 0
0
-4
-l & W (33)

( 0 oe
- NoNe e
£ -
‘ .
. in the limit that ay is small so that terms containing (ax)" where n > 1 are
f. taken to be zero. Now, equating the matrix elements in Eqs. (35) and (38) :
' implies that

: 41"x ~ nZn
, oe
b
i
' % 15
;'; C3485A/jbs
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or
“hixgy -dmagp

Fa1 = 27— = —Tir— (39)

41 no"é no-ne

which is in exact agreement with Eq. (34),

2.1.3 Units

A recurring problen encountered when dealing with various nonlinear
quantities is comparing and converting between MKS and CGS units, It therefore
seems appropriate to summarize some of the conventions used in presenting

experimental data, along with a few conversion factors,

The experimental electro-optic coefficient, r.., is generally expressed

iJ
in the MKS units of (meter/volt), whereas the second harmonic generation coeffi-

has often been given in the “"catch-all" units of (esu) and in the
2)'

cient, dij’

MKS units of {meter/volt) or (coulomb/voit

The ambiquity of tne "esu" can be cleared up by explicity expressing
the esu in CGS units., This ambiguity stens from the multiple definitions for an
"esu." That is, 1 esu = 1 statcoulonmb for charge, 1 esu = 1 statvolt for poten-
tial, 1 esu = 1 statamp for current, etc. For second harmonic generation
coefficients (or any other second-order nonlinear coefficient), an "esu" in CGS

units is defined as

statcoulomb
1 statvolt? (40)

1 esu =
where 1 statvolt = 2,998 x 1()2 volts and 1 coulomb = 2,998 x 109 statcoulombs,

Another frequent problem concerning MKS units involves the MKS definition

of the permittivity of free space,

16
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_ -12 __coulomdb . newton-meter [ _ -12 coulomb
= 8.854 10 " weir S Snetar? X [ volt ] = 8.858 107" ToTE Sheter

(41)

for several different reasons. First, it turns out that €0 is dimensionless ani

numerically equal to (4n)‘1 when expressed in CGS units:

- 8.84 x 10°12 _coulomb 12,998 x 109 statcoulomb | 2.998 x 107 volts '
) <O x volt-meter couTomb x ““statvolt ;
¥
1 meter 1 statvolt - centimeter ) 1 (42) ;
. 100 Ceatimeter | ~ statcouTomb I R :

Secondly, there are two conventions for the relation defining the second harmonic
generation coefficient, These two relations, referring back to Eq. (23) for

comparison, are

o W oW
. P = d”kEJ E, (43)
and
2 _ Wopw

where the two indicated second harmonic generation coefficients differ by a factor

of ¢,. That is to say,
0

coulomb meter

= dije Notez) = & Yij (Sete) - (45)
i 8 Note that other second-order nonlinear coefficients, such as the electro-optic

coefficient, which can be expressed in units of (meters/volt), usually do not
require this factor of €0 when converting to other units. (Instead, use the
conversion factor (4ne,) which is dimensionless and equal to unity.)

t A 17
e C3485A/jbs
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As a specific numerical example, consider the results of two different
second harmonic generation experiments on Te02. The first experiment14 used
Eq. (44) to define dy, and reported a value of [dja] = 0.69 x 10-12 m/v,  The
second experiment15 used Eg. (43) to define dys and the result was ldldl = 1.45 x
10~ esu, In order to directly compare these two values, use Eq. (45) on 0.69 x
10‘12 m/V value so0 that the same definitions for the coefficient, d14, is employed

and then convert to esu:

-24 coulomb 2.993 «x 109 statcoulomb

-12
ldlal = EO (0-69 X 10 m/v) = 6.1 x 10 TO‘]‘{Z_ X[“ """""""""" }

?
| 22998 x 107 volt ’ N 1 esu = 1.6 x 1772 esy
statvolt statcoulomb/statvolt? *
(46)

which is in reasonable agreement with the other value of 1.45 «x 10-9 esu.

. The electro-optic coefficient, r the second harmonic generation

ij?
coefficient, dij’ and the second-ord2r susceptibility, ngz, all have the same

: dimensions, as is evident from Eqs. (25), (34), (43), and (44). Provided that
these coefficients are consistently defined, in contrast to the situation in

Eqs. (43) - (4k), a particular coefficient may be expressed in units of

(meter/volt), (cou]omb/vo]tz), (esu), etc., by using the following conversions:

L meter , [4n < 8.850 10-12‘76%%%%2%2F] = 1.113 x 10710 SU 00D (47)
1 coulomb _ [2.998 < 109 statcouloﬂb] ) [2.998 « 102 volt] ) 1 esu
volts coulomb statvolt statcoulomb/statvolt<

= 2.695 « 10"1% esy (48)

18
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1 meter 11.113 x 10”7
volt

10 +14

coulomb/volt? [2.645 < 10 esu] _ “

'7&%555ﬁ&ﬂ7?""""‘J X i CouTomb/volt? |~ 2,998 x 10% esu
(49)

. ) 3 -
1 meter N [100 cent1meter} . [2.098 x 10 volt] = 2,993 « 10% centimete

(50)

whare each quantity in the square brackets, [ ], is dimensionless and has a
value of unity, As a numerical exanple, utilizing these conversion factors, let
us determine the electro-optic susceptibility (in esu) for GaAs associated with
an experimental electrg-optic coefficient of ra1 - 1.2 « 10712 m/V and a
refractive index of n = 3,60, Using Egs. (34) and (49),

4 esu

280 (3.60)Y 1.2 1071 /v 2,993 107 E5%1 /4y = 4.3 « 1077 esu
213 ' Vet Leew m/v . ~ .

(51)

Finally, fron a theoretical point of view, the most convenient repre-
sentation for these dimensions {see BOM section below) is charge3/energy2. To
be compatible with this form (and, in addition, combining the results from

Egs. [49) and (50)), Fg. (40) can be rewritten as:

| esy - Lstatcoul 1 centimeter 1 statcoulomo? (52)
T statvoltZ™ - T statvolt erg

since 1 statcoulomb = 1 centimeter-statvolt and 1 statvolt = 1 erg/statcoulomb,

19
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2.1.4 Bond Orbital Model

2.1.4.1 Introduction

One form of tight-hinding theory, the Bond Orbital Model (BOM), has
praviously been used to describe numerous electronic and lattice properties ¢
crystalline solids. As originally foraulated by Prof., W.A, Harrison of Stanford
University, the BOM was applied to tetrahedrally coordinated solids, in parti-
cular, to the elenental and zinchlende semicondactors, s? Specifically, this
model has been used to calculate the dielectric properties of teirahedral
solids, including the refractive index for the zinchlendes! and for the
cha1c0pyrites,16 along with second-order optical susceptibilities for wurtzite

17 Further refinemeats in the tight-binding paraneter-

and zincblende compounds.
jzation have praviously occurred!®:19 and are still in progress.20 These new
sets of paraneters do not affect the basic tenets of the BOM formalism itself,
bit enter only when applying the theory to certain specific cases. The BOM has
recently been reviewed in detail and its scope of applicability has been

extended to include other crystal symmetries.3

2.1.4,2 Susceptibility

The lowest-order susceptibility can be expressed with the BOM through
an expansion of the total energy in the electric field, The second-order sus-
ceptibility is then realized by carrying the expansion to one higher order in
the electric field. The simplifying concept of the BOM, which permits a "first

principles" prediction of the dielectric properties, is the following. By

20
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calculating the change in polarization in each "chemical" bond caused by the

optical electrical field, one obtains the total susceptibility by summing up th-
contributions from each individual bond, When the crystal geometry (i.e., each
bond) is perturbed by a dc electric field, the polarization associated with each

] bond changes, Consequently, the susceptibility is also modified and it is this

change in susceptibility with respect to the dc electric field which corresponds

to tha linear electro-optic (Pockels) effect,

An alternative, but equivalent, procedure is to directly associate the
change in polarization per bond due to both the optical and dc electric fields
witn the second-order susceptibility, In the BOM, the dipole moment, D, of each

boni is written as

L -1/2
b= -erds) = - od V(¥ - 3 / (53

where e is the electronic charge, ¢ is the "center-of-gravity" for hybrid ordi-
tals, d is the interatomic distance vector between the two bonding atoms, a is
the “"polarity" of the bond, V2 is the "covalent" bond enerygy, and V3 is the
"polar" bond energy. With reference to Eq. (22), the first-order susceptibil-
( ity, X(l), is the average change in dipole moment responding to the optical
electric field, EoPt. In addition, the second-order susceptibility, x(2)’ is
the average change in dipole moment responding to both E°pt and the dc electric
field, Edc. These two susceptibilities can be expressed as derivatives in these

electric fields by

>

S (1 e (59)

and

21
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(2) . d2p (55)

1
Ty
where the average has been obtained by systematically summing over each tyne of

bond in the crystal and then dividing by the volume, v, occupied by those bonds,

The derivative of the dipole moment per bond with respect to one or
both of the electric fields can be written in terms of partial derivatives of
the dipole moment per bond with respect to various BOM parameters or interatnnic
distance, multiplied by the change in that particular BOM parameter as a func-
tion of the appropriate electric field, This is just an application of the

chain-rute for partial differentiation.

For example, the derivative in the first-order susceptibility becomes

. db) \ . ad \’raé\ 4 0 2

(- W+ ()

(85 Yo ! _“-_](_3.5_\ (56)
{ ) R ' J . :
4eoPrt 3F tyEoPt

(ay ) \
aV2 3t

Each partial derivative can be evaluated separately., By making the assumption
that the frequency of the optical electric field is high enough so that the
lattice cannot respond to it (i.e., greater than the Reststrahl frequency), the
interatomic distance can be taken to be independent of the optical electric

field. In other words,

(57)

Since the covalent energy can be represented as being proportional to the square

of the interatomic distance, i.e,,

22
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.16 - ‘
vy - ST (58)

where i is Planck's constant divided by 2n and m is the electron mass Cﬁz/m =

7.62 ev-:?), the chain-rule gives

s = ([ SSeer ' - - -212]- 0 (54)
sooopt s TN opt)L 2d T ~anpf’ d]° .

Therefore, only the "polar" bond energy tera in Eq. (56) is nonzero, Evaluating

this term yinlds

,'35 S PR av=3/2 ry
5o evd V5 vy« Vg (60)
and
v
fL3 . gont (
{ T - yed « E7V7/2 (A1)

| where EOPt is the unit vector giving the direction of the optical electric
field, This last equation results from the change in energy due to the inter-
action of the dipole with the total electric field. This dipole energy is
- yed . (£OPL, Edc)/z. Finally, by substituting Eqs. (57), (59), (60) and (61)
into £q. (56), the first order susceptibility can now be written as

- 2y2d. (d+ FOPL
2

Xji = PP ¥ £ R (62)
R W bonds (V5 + V§)§7?

where E?pt is a unit vector in the jth direction which represents the optical

electric field,

23
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Following a similar procedure for the second-order susceptibility, the

derivative of Eq. (56) with respect to the dc electric field becomes

\

¢ -_.".2,@.&,,\ - r_a_\b.-} /-Qg_](-a.{é_: + (3.\%-}(_3.2_5.._) + a_\%-]a.z.g (63)
L J N \ ! H N LAV Z . ’
drOPtypde £ LoE® Tavpod o™ VaaV, " o tggde vy

Lalila il

where any terns involving the variation of interatomic distance with the optica’
Y

electric field have been dropped. Noting that

()= yed £9¢ /2 (64)
. oF
and
> 2
(33.9. = -.3.6.\{.3.\/_2_/_3._ (55\

in addition to using Eq. (A1), implies that the "electronic” portion of the
second-order susceptibility can be written as
‘ , . ade . c0pt
:E : Wav.d de B0 ) d e
[2) 3 Y . . !
Jed 2371 J k (66)

2) . .
X§jk (electronic) = 4=

This contribution to the second-order susceptibility has been called the "elec-

( tronic” part since it has been derived from the deformation of the electron dis-
tribution in the bond., The deformation of the electron cloud due to both the

optical and dc electric fields results in a change in the "polarity" of the bond.

g'.

1y

"‘ Another contribution to the second-order susceptibility arises from
2, those terms in Eq. (63) which involve the lattice response to the dc field.

i ‘ . This "lattice" contribution has been further divided into an "ionic displacive"

' 24
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part and “"piezoelectric/photoelastic" part, The "ionic displacive" component
involves only the relative motions of the atoms whereas the “"piezoelectric/

photoelastic" component allows a piezoelectric strain or bulk lattice distor-
tion. The reason for this last division is to permit compatibility with dis-
tinction of a “clamped" or "unclamped" measurement of the electro-optic coef-

ficient. A “clamped" measurement corresponds to a second-order susceptibility

which includes only the electronic and the ionic disnlacive lattice contribu-

tions, and not the piezoelectric/photoelastic portion,

The “"lattice" contribution to the second-order susceptibility is obh-
tained by comhining Eg, (55) witn the first two terms of Eq. (63). Evaluating

edach factor in this latter equation, for which an explicit, simplifying expres-

sion can be obtained, implies

23 - -
R eyVZ Vi + Ve 3/2 [67)

. =52 .
2 . 2 -
YA ZAVI B I (84)

]

[ie%

| [
"LI&
i

+

(1]

4
Q4
L=
<
SN

[]

and, just as in Eq. (59),

4%

(3!3_\ - (_Qg-)(.igg]
~aEdC' 5pd¢ 5 gdc

-2V
(—a—d—[- 2] . (69)
.BE&J e

2 Then, by substituting the above 3 equations along with Eq. (61), the "lattice"

contribution to the second-order susceptibility can be written as

25
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2y2
(2) . e? L)

xiii(Nattice) = 7 ———t
13k bonds [V% + V%)gf?

ad d,
. ’ s F t
[LV% N V%)\"'L) + 2(V3 - 2v3) 1o ) (@ . E0PH ] (70)

where a distinztion is made between the magnitude of the interatomic distance

vector, d, and the ith

component of the interatomic distance vector d; (i.e.,
d = :&adi;i)' This contribution to the second-order susceptibility is called
the liattice" part since it has been derived from atomic displacements (both
relative atomic motions and bulk piezoelectric distortions) due to the dc elec-
tric field, [In fact, the lattice response to the dc field enters into the for-

mularization as a single factor, (38/3E?C), which is the change in the inter-

atomic distance vector with respect to the dc electric field.

In summary, the second-order susceptibility has been described in term:
of the Bond Orbital Model, General fornulae (Eqs. 62, 66 and 70) have been de-
rived, which permit direct calculation of the first-order susceptibility and the
electro-optic, second-order susceptibility for any compound with a known crystal
structure, The necessary BOM parameters (V,, V3 and y) are readily available
and the only missing ingredient is the factor that quantifies the lattice re-
sponse to the dc electric field. Some examples on evaluating this factor are
given below. The second-order susceptibility then can be converted to an

electro-optic coefficient, r by using Eq. (34) in conjunction with Eqs. (3),

ikje
(10), and (62).

A few numerical applications for the first-order susceptibility and the
electronic contribution to the second-order susceptibility and electro-optic

tensor are illustrated in Table 1. Comparisons with experiment will be

26
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meaningful only when the Tlattice contribution to the second-order susceptibility

is included in the calculation and therefore will be postponed until later,

2.1.4.3 Application to Tetrahedrally Coordinated Conmpounds

The prescription for calculating susceptibilities, given in the
preceding section, has been applied to the binary zincblende compounds, Since
all bonds are equivalent, the summations over bonds which appear in Egs. (62),
(66) and (70) can be simplified to give analytic expressions that do not contain
any summations, By factoring the BOM parameters out of the surmmation because
they are independent of bond, the summations can be evaluatel for the four

interatomic distance vectors:

A 1) a3 (71)

32 - (1,-1,-1) 4//3 (72) W
a3 . ,-1) a3 (73) |
344 - 1,a1,1) 43 (74) §

where d = /3 a/4 and a is the lattice constant. The summation in Eq. (62)

becomes

:E: id - {4d2/3 for i = ] (75)

4 bonds B 0 for i 2 j

and the summation in Eq. (66) becomes

Z +4/3 d3/9  for i #J 2k
d.did, = . (76)
4 bonds ' J 0 for i=jori==korj=k
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However, the choice of signs for the four interatomic distance vectors in
Eqs. (71)-(74) was arbitrary. The crystal could have been represented equally

well by at1) = (1,-1,-1) a3, 8@ - (L1107, 3G) < (1,-1,1)d/43 and

3(4) = (1,1,-1)d//3. Equation (75) is invariant to this sign change but

Eg. (76) is not; the right-hand-side of Eq. (76) must be negated. BRefore deal-

\

ing with the lattice response necessary to proceed with Eq. (70), the simplified

expressions for Eqs. (61) and (66) will now be written as

Ne/ y2 V3 d2
----------- for 1 = 3
12(v] + v2)3/2
RO I A o7
1] !
) for § 2 j
L
and
[ /3 Ned 3 w3, 4
, -y for i #3j ¢k
{ (2) 24 (V% + V%)
Xijk (electronic) = 1 (78)
0 fori=Jori==%Xorjs=x«k
' L

4/a3 = 3/3/16/d3 is the electron density (i.e.,

f

respectively, where N = 3/v
the number of electrons in four bonds). These two equations agree with Eqs. (4-

28) and (5-13) of Reference 3.

, In order to simplify Eq. (70), the lattice response in the binary zinc-
' blendes, induced by a dc electric field, must first be estimated. As the ini-
tial step, consider only the ionic displacive portion of the lattice response,
] * Using GaAs as a specific example, the relative motion of a Ga cation, in a dc

field, will be determined with respect to a rigid lattice of As anions. This
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relative motion is illustrated, in an exagerated fashion, in Fig., 1 for

Edc = EdC i. This perturbed interatomic distance vectors can be written as
X

3 < - 53,1, 1A (79)

32 L s a1, -0d3 (29)

3 - niesl 1, 2403 (81)

{ . .

3‘4) = (-[1 + 8], -1, 13d/V3 (82)
where U = ux = 5d//3 x is the relative vector displacement of the Ga cation, By
associating two lattice vibrational frequencies with a "classical" spriny i
constant, K,21

where C, and C; are the "bond-stretching" and "bond-bending" force constants,
the displacement can he obtained, The force of the displaced Ga cation is

equated with the force exerted by the dc electric field on this cation:
P = K3 = eer B (83)

where U is the vector displacement, e is the electronic charge, e? is the

dimensionless "transverse" effective charge and Edc is the applied dc electric

field corrected for the dc surface charges. Solving for the displacement gives
3eer £9¢q2

LI
U e Ry (84)

and e?, Co and C1 have been calculated or tabulated in Reference 3.
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As(3) As(1)
(-2) (+2)
4 (3
X
44
As{4) As(2)
(+2) (-2)
z
Fig. 1 Relative motion of Ga cation in a rigid lattice of tetrahedrally

coordinated As anions, induced by a field, Egc.
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Now, referring back to Eq. (70) along with Eqs., (79)-(82) and (84),
evaluate the lattice response factors (adilaE?C) and (3d/aE;C) for each of the

four bonds. The first factor is

2
de. Uy -3ee!“. d ' _
SS8d/ (V3 E;) = - —- = ce-—zz-v fOr 1 = j
s, j gde ~ ATC T80T
e - J (85}
.13
J 0 for § % j

which leads to a summation, in the crystal geometry factors in Eq. (70), of

F'_ui
— Z dy for i = j

£9° 4 bonds

:E : 3d, J
1 font
“dc (4. B ) =7

4 bonds an

0 for i # j
L
Y d C : : ! §
= + 4“7/Ej for i = j = & (86)
~ 0

since Z d = ~4u

4 bonds "k
terms only to first-order in the displacement. To first-order in §, the second

j° This summation is taken to be zero when retaining

factor becomes

ad  _dv/T+725/3 - d
v R S (87)
an Ej

where, for example, the - sign is for bonds 1 and 2 while the + sign is for

bonds 3 and 4 when E?C = Ex' By performing a binomial expansion on the squared

root,
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Iy * 42
od +) _8d Sill[g[ = Silj{?_ié_f{- (33
Jpde T ogpde Ty e 4 (Co + 8C1) ’
J IR

where |U| is the magnitude of the displacement, Substituting this into the las*

term of Egq. (70) gives

d. v3 eex d
E : o FONt, T E : \ 20
e d e gy o= T ECY (+).d.4d, (3

4 honds d aEJ k 0 F 8C1)

and this last sumnation reduces to

2{: -49-/3 for is g
/ = N
(+).d.d, 1

4 bonds J ‘ 9 for i jJori=%kor j=c«

-
(&)
H
=

I

As in Eq. (7A), th2 sign is dependent upon the choice of sign for the four
interatonic distance vectors., Finally, by replacing the results of Egs. 36},
(89), and (90) into Eq. {70), the ionic displacive lattice contribution to th-

second-order susceptibility for zinchblendes can be written as

*
, /3 Nedery2V3(V3 - 2v2id3
48 Qatice) - 02T AT o
* 2 2
24 (V3 + V31> (c ¢ 8C))

where N is again the electron density., Numerical examples using this last
equation along with Egqs. (77) and (78) are presented in Table 2 for the simple
tetrahedral solids, which have force constants listed in Table 9-1 and

transverse effective charges calculated from Eq. (9-24) of Reference 3.

The BOM susceptibility formulae for the zincblende compounds, i.e,
Egs. (77), (78) and (91), can be readily modified to accommodate the chalcopy-

rite, abc,, crystal structure. In the "quasi-cubic" approximation,16 the

33
C3485A/jbs

p




Rockwell International

Science Center

0N

1
"

SC5266,1F~

bl B+ ¢l - 10y~ v8°1 9°¢e Ind
dctol+ A2 vt e 491 6v°C 48n)
1S°61+ 6L°0~ 651~ 66°1 12 13n3
B2 0T+ ¢y 0~ £ Y- V150 B/ pe¢ suz
GG LU+ op°1e- 88 ¢t 18°¢ qsul
G0 p+ 5Y° U+ 0$°21- 92¢°¢ Sv°¢ syey
61 p+ &€ 70+ AR vt 9t ¢ de9
[A/w 21-b1 x ] v, [nea -0t ] [nsa ,-01 > ] u {vlpe apuaigoul?
Am>_uwwwm_v J1uoy) Amvx (31u043291(9) Amvx

SPUBLYOULY wwoS Joj ‘u0LINgiJIuo) satde(dsi( >tuo]
ay3 buipn{ou] *s$3uatdlyje0) 213d(0-04323|3 3yl 4O uoLljenjeal

¢ °l4e}

34
C3485A/jbs

Py




o — ]
‘l Rockwell international
- Science Center
SC5266. 1FK

chalcopyrite is regarded as being a zincblende with two different types of honds,

Tnen, the sumnations over bonds in Eqs. {62), (66), and (70) reduce to two ter-s
instead of a single term; one for a-c bonds and another for the b-c honds. Each
of these two terms is evaluated separately using the appropriate set of BUM
parameters and interatomic distance which characterize the corresponding bhond,

For exaaple, the first-order susceptibility of £q. (77) becomes

R v2\2d42 .Z 242
Ne‘/ ‘“Y__\iz-.(j.— + ~--.\£i _7,_ for i = ‘]
28 S u2 372 ATPRE )
(1) » \V2 + Vr; a-c V2 + V bec
’('ij
9 for i+ 3 . (92)

The second-order susceptibilities can similarly be written as twd terms with the
Teading numeric factor being halved to compensate for the separation of tihe

contributions from the two types of bonds., The "quasi-cubic" approximation

12ads a1 isotropic first-order susceptibility, i.e. ‘gl) = (1) = Kgé)- Like-
!
wise, the second-order susceptibility has (X§§% = ng%} = ﬂngé = X3§;
(2) o (2),
\ - ]

X132 © Xp3] * If the actual symmetry of the chalcopyrite structure (42m) is

enployed in Egs. (62), (66), and (70), then the degeneracies in the suscepti-
v (1) (1) , (1) (2) L2y o820 . (2)
~ - = f = = \
bilities are broken: y 11 = X22° * x33 and {xy53 X321) X213 = X312) *
c(2)y o (2),
X132 X231 °
§ .
e 2.1.4.4 Lattice Dynamics
k. ' General formulae, which can be used to determine the first- and second-

order susceptibility tensors, have been given in Egs. (62), (66), and (70). AN

three of these formulae require a knowledge of i) the crystal geometry which
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specifies the interatomic distance vectors and ii) the BOM parameters that
characterize each type of bond., In addition, the last formulae (Eq. 1)
requires a knowledge of 1ii) the lattice response o a dc electriz field, Tne

purpose of this section is to provide one detailed procedure for evaluating iy

latter lattice response factor, :38/3235;.

The approach taken here is intended to give only the ionic displazive
contribution to the lattice response, Hence, the calculated electro-optic

coefficients should be compared with "clamped" electro-optic meas.irement,

8riefly, the method may he outlined as follows. Consider an isnlated
aton (40, which is free to move in respinsa to a "d¢' electric field,
surrounded by a riqid lattice of N n2ighboring atoms (#1, 2, ««o N}, Let atom

47 be coupled to each of tnese fixed neighboring atoms by a classical spring,

which is characterized by the sp-iny constant, K;, where i = 1,2, «+¢ N, For
small displaceqents, the relative mation of atom #0 with respect to the rigid
lattic can be determined hy equating the force, which the electric field exerts
on the effactive charye of atom #), with the force that the N springs exert on
aton #0 when it is displaced fron equilibrium., The spring constants are quan-
tified by treating atom #0 as a simple harmonic oscillator and solving the
equation of motion for frequencies and normal modes of vibration, By associ-
ating the frequencies of vibration with the IR absorption (Reststrahl) fre-

quencies, the spring constants are determined,

In order to specify the problem in more detail, let Fo be the vector to
the equilibrium position of atom #0, let f be the vector to the displaced

position of atom #0, let U be the vector displacement, and let Fi be the vector
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to the fixed position of atom #i (i = 1, 2, ++s N), as illustrated in Fig, 2 for
N = 3, Assuming that all springs are unstretched when atom #0 is at its

equilibrium position, the force, Fi’ on aton #0 due to the it spring is

| T R .
E i"'i\'ri'r'"ri'ro”_l}'“:_ﬂ— (93) ;
‘ i i
where IFi - Fol is the unstretched lenyth of the itN spring, |Fi - #| is the |
i
stretched length, (;Fi - F - IFi - Foi) is the amount of stretch in the it" ;

spring, and (F. - F)/|F, - F| is the direction of the restoring force for the

1 1

th spring. Note: defining the restaring force as being directed from the

. i
displaced position of atom #0 to the fixed position of atom #i assumes that the

spring "connections" to the atoms are free to pivat,

when the dc electric field is zero, the equation of motion for atom #0

s
, N [
d2r S ¥ 1
"o qE7 °* .ZK] 'rl - - ”!1 - Fo” —~ 50 =0
1=] Ie, -7
(94)

?
4 where my is the mass of aton #0. The simple form of this differential equation f

results from the assumption of an isolated atom coupled to a rigid lattice.

If a spring which connects two atoms, both "free" to respond to external

e ey
.o

. influences, is included, then a more complicated set of coupled differential
> . equations must be solved., The displaced position of atom #0 is related to the
%~3 equilibrium position by
F
: R (95)

!
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and it is the vector displacement U which undergoes simple harmonic motion.

That 1is,

d(t) = 4 cos (wt + 3) (96"

d:F der d‘t; o »
iz e A (97)

where U = AXx + Ayy + azz is a snall quantity. Then, the equation of motion
becomes

m 2 (rt F ) + ¥ 1 E.L.:.'iql_](f r’-) = 9 (go‘.
° ° qn [ ‘ ’

This equation represents a set of nonlinear differential equations which are
q q

coupled in the three unknowns, ax, AY, and AZ.

; The nonlinear factor in E3. (98) can be linearized in the followinjy way.
= - i i i = - Z P Tz -277y2
io = T Fo which inplies that d. = /{x; = x V2 + (¥ =y 07 + (7, - 707,

Then, the ;-component of the nonlinear factor in Eq. (98) can be written as

Let 4

= = e

LIS

» >
( _Zi.l_ﬁzl(x. - x) = - Yiol 7 %o - ) —_—
- r R i A CTIEE Y LA (PR )2+ (zy -z, - az)?
§ . (xj = x, - &)

1

\/1 - (a’%’;)[(xl - XO)AX + (yi - _yO)Ay + (z‘i - zo)Az]

where only term in first order in aAx, Ay and Az have been retained. By using the

g . binomial expansion on the denominator, this nonlinear factor becomes

39
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IFi 3 ?ol : 1
S e x) = (X - Xo = Bx) % gy [ (xg = xg )20+ (xy - Xo)(yi - Yol
Iry - ¥ io
+ (xi - xo)(zi - ZO)AZ] . (99,
Finally, th2 linearized equation of motion can be written as
.o K v e .
+ mo¢2u + 12=:1 ‘-F-----F--—i-? (Fi - ro){(ri - ro) . u} ] =0 (100}

which is an eigenvalue equation in the displacement variahble, 1.

By diagonlizing the matrix, A, whose elements are given by

A = ¥ el — Fo-F 0 IF L f) , (101)

the eigenvalues, modz, are determined and, hence, the three frequencies are
associated with the three normal modes of vibration for a given set of spriny
constants, K; (i = 1,2, ++« N). An appropriate set of sp~ing constants can be
found nunerically by using iteration techniques, in which the Ki's are varied
the eigenfrequencies obtained match the experimentally observed lattice

optical phonon frequencies.

Once the spring constants are known, the "dc" electric field can be ap-
plied and the force exerted by this electric field will exactly balance the

forces of the springs on atom #0. Specifically, again linearizing the forces of

o A

| I

. the springs (see Eq. (99)), we obtain

et R 3
g, e

N K.
eet gl -, iZi ﬁ;“*ﬁ;‘ﬁz (F, - ?0){(F1 - Fo) . U} (102)
3 * i~ o

-, v
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where e? is the effective transverse charge. Solving this equation for the
displacement vector, U, will result in the determination of the ionic displacive

lattice response factor, (93/3Egc?.

Initial steps have been taken in applying the above procedure to
Ted,, Since the telluriun atons are mu:h heavier than the oxygen atoms,
assuming that the tallurium atons form a "rigid" lattice is probably a
reasonable approximation. Using the details from the crystal structural

. . 2 . . 1 s o
determlnat1on,~2 consider an oxyjen with an equilibrium veltor position (in

(n.63, 1.29, 1.39)., 1Its "first" nearest neighbor

(1}

coordinate units o1 4) of Fo

» >

telluriun atons are located at f® (9.10, 0.19, 0.0} and £y = (2.30, 2.49,
1.91), which correspond to dyy = 1.92 & and dyy = 2.09 ', respectively. Tne
bond anjle between the oxygen and these two telluriun atoms is 140.8°, which

differs considerably with the 1A3° sugyested in Reference 22,

Coupling the oxygen aton to only these two tellurium atoms is not

sufficient to constrain the oxyjen to the specified equilibriumn position., At

least one additional coupling must be included for the equilibrium position to

be uniquely determined. The next nearest neighbors to oxygzen atom #0 are two
( pairs of oxygen atoms., One pair has an interatomic distance of 2.65 A and the
other pair is 2.75 A away. However, utilizing any of these four oxygen-oxygen

E': couplings would complicate Eq. (94); that is Eq. (94) would become a coupled
?'7 differential equation since the motion of one oxygen atom would now depend on

the variable positions of other oxygen atoms.

i - In order to maintain the uncoupled form of Eq. (94), oxygen atom #0
A must be viewed as interacting only with tellurium atoms, Therefore, the third
X
)
;~;

K]
) C3485A/jbs
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coupling is made to the next nearest te!lurium atom, located at F3 = (-0.10,
-0.10, 3.81) with d35 = 2,90 &, The spring between this tellurium atom an

oxygen atom #0 might be considered as a "collective" spring, representing the

coupling between oxygen atom #) and all other neighbors except telluriua aton,

#1 and #2.

The infrared frequencies of vibration in Te02 have been determined from
reflectivity and Raman spectra.23 Th2 two highest energy wmodes should corre-
spond ty the longitudinal and transverse motions of oxyjen #3 with respect to
telluriums 41 and #2, The experiment23 has a pair of high energy modes for both
the longitudinal and transverse cases. The longitudinal frequencies are 812 and
720 ¢n~! whereas the transverse frequencies are 769 and 643 em~l, The simpli-
fied model assumed above would have thase pairs of frequencies appear degenerate.
Therefore, for the purpose of determining the spring constants in Te0,, the

; geometric mean of these pairs of frequencies is used, giving longitudinal and
transverse modes which correspond to 764.6 em-l o= 13.1y and 703.2 cm'1 = 14,2y,
respectively. Note that the geonetric mean is employed instead of the arith-

| metic average since the former can be done in frequency or wavelength and give

consistent results, whereas the latter can not. ]

In order to simplify the fitting procedure of the spring constants, the
two springs between oxygen atom #0 and tellurium atoms #1 and #2 are assumed to
be characterized by the same spring constant, even though the interatomic dis-

: tances are slightly different. Then, by obtaining the eigenvalues corresponding

by

i_§ to the matrix specified by Eq. (101) for any given set of spring constants, a

f reasonable fit to the experimental absorption frequencies was accomplished. The
) % set of spring constants, K1 = Kz = 197 g/sec2 and K3 = 270 g/secz, yield

’. L]

£ iz
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absorptions at 761.6 em-l = 13,13, 699.3 cm-l o= 14,30, and 169.9 en-l = 58.8h,.
The highest eneryy vibration (13.13,) is identified as a longitudinal mode since
the corresponding eigenvector is only 6.6° away from being parallel to the
interatomic distance vector between tellurium atnns #1 and #2, The other twn
modes (14.32; and 58.86,) are transverse because their corresponding eigen-
vectors are nearly perpendicular to this tellurium interatomic distance vector,
deviating by 6.6° and 0.6° respectively. The lowest energy absorption (538.85 )
can also be compared with the experiment.23 There does exist a transverse mode

at 174 cm'l = 57,5, which agrees rather well with the calculated value,

The fina' step of determining the displacement of oxygan atom #) in
response to a “dc” electric field is complicated by the fact that the transversz
effective charge in Eq. (102) is dependent upon the direction of displacement in
addition to the crystal structure, This dependence has heen evaluated for a few

specific crystal structures,3 and a general solution will be obtained in the

follow-on to this contract., Until the transverse effective charge is deter-
mined, the ionic displacive contribution to the second-order susceptibility can- q
not be calculated in Teoz. Furthermore, the sensitivity of the displacement
vector with respect to the “collective"” spring constant needs investigation,
But this too requires an evaluation of the transverse effective charge and,

hence, will be postponed to a later date,

One last comment can be made regarding the applicability of this lat-
tice dynamics model., The relative motion in zincblende compounds suggested by 7
Fig. 1 should be adequately described hy Eqs. {93) - (102). Consequently, an

alternate expression to Eq. (91) may be abtained which depends directly on the

43
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infrared absorption frequencies rather than the force constants, Co and Cl'

Presumably, these experimental absorption frequencies are more readily availanle
than the latter force constants for the zinchlende compounds, Additionally, the
similar ionic displacive motion that occurs in the chalcopyrites should also be
accommodated by Eqs. (93) - (102} by permitting distinct springs between a-c ani

b-¢ atom pairs.

2.1.4.5  Symmetry

The symmetries of the calculated first- and second-order susceptibility
tensors, determined by the sumiations over bonds in Egs. (62), (66) and (70) of
various combinations of interatomnic distance vectors, must reflect the symmetry of
the lattice, This point was illustrated for the zincblende structure in Egs.
(75), (76), (86), (89) and (90). The symmetry requirements on the second-order
susceptibility are specified by the point group symmetry.7 And as mentioned pre-
viously, thermodynanics requires the first-order susceptibility to be symmetric.

The formulae associated with the BOM must fulfill these symmetry requirements,

Examining the first-order susceptibility expression, Eq. (b2), it is
obvious that the crystal geometric factor for each bond, didj’ is symnetric in i
and j. Therefore, the summation over bonds is also symmetric in i and j. The
electronic contribution to the second-order susceptibility, Eq. (66), is almost
as simple, The crystal geometric factor for each bond can be written as didjdkv
which is symmetric in i, j and k, as is the summation over bonds. However,
Kleinman's symmetry5 implies that the second-order susceptibility coefficients,

arising from electronic processes where there is no absorption or dispersion,

44
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are symmetric in all three indices. Consequently, the BOM electronic
contribution to the second-order susceptibility is seen to be consistent with
Kleinman's symmetry condition., Finally, no general statement can be made, at
this time, concerning the symmetry of the crystal geometric factors in Eq. (70),
which describe the lattice contribution to the second-order susceptibility,
Presunably, as indicated in Eq. (28), these factors will turn out to be syu-

\

metric in i and k only.

2.2 Exparimental
The experimental efforts in this progran have focussed on two materi-

als: Te0, (telluriun dioxide or paratellurite) and TljAsSey (thalliun arsenic

selenide or TAS). In much the sane manner as was shown in the theory, we have
chosen materials in which w: hope to be ahle to experimentally separate the
electronic and ionic contributions to the E-0 effect, TAS is a ternary
chalcogenide semiconductor with a moderate bandgap of ~ 1leV, Although there is
some evidence of soft mode behavior24 in this system, it is thought that the

dominant mechanism in TAS is the electronic response. Te0, possesses character-

( istics that suggest comparable contributions from both effects to the E-0 re-

sponse. Being a well known acousto-optic materia1,25 Te02 exhibits a soft mode

i-' phase transition?® under moderate pressure (~ 9 K bars)., Additionally Te0, has
;_: a reasonably high c(=») of approximately 4 and an c(o) of about 25. Our experi-
;:f ) mental efforts in T1jAsSe; to date have been of a rather preliminary nature and
: ! will be completed during the next few months., The Tel, work has progressed much
!
& more quickly and is essentially complete (see Appendix A) at present,

hY

.
)
;
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2.2.1 Teﬂz

The point group symmetry22 of Te02 is tetragonal: 422, Tnis implies
that the material ic optically uniaxial and has only two non-zero electro-optic
coefficients (r41 = -r52).7 Te0, is also weakly piezoelectric having one non-
zero piezoelectric coefficient?’ dy: = 8.13 x 10-12 C/N, indicating there is

considerable response of the lattice to the presence of a dc electric field.

Although Kleinman's symmetry5 suggest that materials having the symmetry of 422
should have no non-zero second-order susceptibility coefficients, the underlying
assumption of Kleiaman's formalism nmake it inappropriate when one of the elec-
tric fields is dc (L = 0), as is pointed out ahove (see Theory). In any case,
experimentsl4’15’23’29 have shown that there is an apparent "violation" of
Kleinnan's symmetry in Teoz even at optical frequencies (both electric fields
have w # 0). We shall, therefore, examine the details of the dc E-0 effect in

this material,

If light is propagated along the <J11> direction, the two nornal modes
occur with the polarization along <100> (ordinary) and along <0I1> (extraordi-

nary). The impermeability tensor becomes:

1

S BEE i
. B = 0 1 +r, . E (103) ]
§ . ﬁ;? 411x 1
Tafy  f raky DR !

If we write the polarization vector:

v o

RAak Y%,
R

“ P = (1, 2, %,) (108)
' §
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where L; = the polarization direction cosines, we can calculate the dielectric

response by:

L s Rr=p(B)P -

1
i Ry L, ) T"o- 0 ’r41Ey L,
0 '—L— r 3
n< 417 x Y
0
N S - 2 (195)
41~y 41 "« né Z '

Now in particula- for E = E,, and P = {100), which is the ordinary

polarization:

1
0
0 1 roE 0
ﬁg" 41 x
1
0 raqEs 77 0 (106)

Therefore, n = n, and the ordinary index is unaffected by the electric field,

If we now let P = 1//2(0 -1 1), which is the extraordinary polarization:

1 P | 1 1
n-g--(e‘m =R = 72 (0 -1 1) -n?)- 0 0 77 0
1
0 ﬁ-g— r41Ex -1
0 r..E ] 1
41 "x ﬁg
1 1 ]
= ’Z[i‘«' - Uyt W] (107)
0 e
47
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where n,(eff) is the effective extraordinary index for a propagation direction

of <011>. Thus it is only the extraordinary index (or mode) that is affectad

for our particular choice of the crystal cut which is shown in Fig, 3,

An experimental sample which utilized the interaction geonetry shown in

Fij. 3 was constructed from Tel, single crystal material thdt was obtained

commercially from Crystal Technology in Mountain View, California.

The actual dimensions were 1.9 x 0.57 x 0,72 cm, Crystallographic
alignnent was accomplished using the X-ray back reflection Laue technique. A
typical alignment shot taken normal to ths <100> face is shown in Figq, 4. Tha
sanple was wire sawed out of a larger boul2 and then ground and polished, After
final polishing of the end optical faces, the sanple was viewed using monochro-
matic (63284) light, as shown in Fig., 5. When wmonochromatic polarized light was
{ propagated to excite both optical modes, and then examined at the output with a
crossed polarizer, an interference pattern (see Fig. 6) resulted which indicatad
that the sampie was slightly wedged, By simultaneously reflecting a laser bean
off tne front and back surfaces, the wedge angle was found to be approximately
0.3 degrees. This agrees well with the number that is derived by measuring the
distance between the fringes, and substituting into the following relations. The

phase difference, r, between the ordinary and extraordinary mode is given by:

i L 2me
’ P= == (ng(eff) - n)) (108)
'_§. where A = optical wavelength, n,(eff) and n, are the refractive indices, and 2 =

the interaction length., The phase difference between adjacent fringes is given

by :
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Te0, electro-optic sample configuration,
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Fig. 4 Laue X-ray photograph of <100>surface in TeO,.
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AT = -f-’l (ng(eff) - n) (1) - 2,) (109)

where 2y and g, are the respective interaction lengths for the two fringes. Tne

2
absolute phase difference, between adjacent light (or dark) fringes a distance
dO apart, is n, Further, one can relate the distance between fringes, dq, to

the wedge angle, «, by:

e

4%° 7 ﬁ;(é%'ry':‘ﬁo‘y (110)
using the small angle approximation. If the optical path length changes, the
fringe pattern will move up or down depending on the sign of the effect, 9If
course, this change in optical path length may result from either of two different
effects: 1) a change in the physical length of the crystal due to mechanical
strains induced by the inverse piezoelectric effect and 2) a chanje in the (ex-
traordinary) index of refraction, We shall show below that the first effect is
negligible in Te0,. Therefore, assuming that the fringes move only as a resul?

of & change in the index, the distance the fringe pattern moves, dy, is given

by:

[“é (eff) - ne(eff))
(ne' {eff) - n

nwe

9

(111)

%
a o]
in the limit of small q. Here ne‘(eff) = np(eff) + Ane(eff) with Ane(eff) =

-ZnEJ(eff) rzlEx where we have assumed that the index has been modified by a dc

electric field, Ex' Taking the ratio of d1/do and solving for ra1s % obtain:
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ray = Mdy/dg)/ (2E n defr) (112)

All that is required then is to measure the fractional shift in the fringe
pattern for a given applied electric field. In order to quantitatively deter-

mine this ratio, the sample was placed in the optical setup shown in Fi1g, 5,

Photographs of the fringe patterns and the fiducial crosshairs for
various applied fields are shown in Figs., ha - 6¢, The applied voltages were
-4,9, 0 and + 4.9 kV. The result was dy/dy ~ 1/2 for 9.8 kV. This corresponds
to an index change of an,(eff) = 8.3 x 1076 and an electro-optic coefficient of
irgpi = 9.75 x 10°12 m/v,  The sign of this electro-optic coefficient was od-
tained by correlating the direction of the fringe shift, the wedge angle and the
sign of the appliad voltage. The result is that rgp = - 2.76 x 19712 m/V., The
( closely spaced fringes in the lower right corners of Figs. ha - 6c are probably
due to a slight rounding of the presumed flat optical face near the edge of th2

sanple,

An estimata of the physical distortion to the sample due to the strain

resulting fron the inverse piezoelectric effect, is given by the following:

; ey = L djiEj (113)
~ ) J
'; -
= where e; is the strain, dji is the piezoelectric coefficient and Ej is the ap-
plied electric field, The only non-zero piezoelectric coefficient30 for the
i 99
3 point group 422 is dy,. The measured valuel? for Te0, is dyq = 8.13 x 10-12 C/N.
' "
f % The change in wedge angle resulting from the piezoelectric strain induced by an
A Y
. electric field of 9.8 kV is 0.009° or 0.3% and will, therefore, be neglected,
)
b i
N 54
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The strain induced by the inverse piezoelectric effect does, however,

affect the index via the strain-optic effect giving rise to a change in

impermeability given b_y:31
8B, = ) Piie. = ) Piid Bl (114,
LR SRR NN R AL
where pij is the relevant component of the photoelastic tensor for Tel,. Indeed

we may dafine a secondary electro-optic coefficient by:

(2) _ . \
RPHRIMESTES (115,
J
Since in our expariment EK = F.1 and dkj = d14, P44 is the only non-zero
component which contributes to the secondary E-0 effect, This component has

432

been measure and has the value Py = -0.17. The secondary E-Q coefficient

therefore has the value:

(2) 12

ray = P44d14 = -1,38 x 10 m/V (116)
( Using the applied dc voltage of 9.8 kV, we deduce a change in effective index of
i an g (eff) = +1.50 x 10°° (117)

If we now subtract this result from the number which was experimentally derived

(at constant stress), we obtain
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6 -5

kAne(eff))exp - (Ane(eff)]SE_O = 8,3 x 107" - 1,5 x 10

= -0.67 x 1070, (117)

This in turn yields a value for the prinary £-0 coefficient at constaat strain
of :

2

r > = 40,62 x 1071 myy (119)

where the superscript S indicates constant strain ("clamped"). This value can

be conpared with other nonlinear optical measurenents in Te0,; for examdle,

SHG: - 1,85 « 1072 sy = o x 0.61 x 10722 myv (120)

47471 "

derived fromn second harmonic generation measurenents,14,15,28,29 (Note that the

diq here is distinct from the piezoelectric coefficient referred to above,)

S SHG
g and dyy

should be made between the electro-optic susceptibility:

These comparisons should not be made directly between r . Instead they

« S
nZn2r
eo 0 e 4] -12
A =L T TR T MV (121)

SHG

and the second harmonic generation susceptibility d14 .
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2.2.2  TljAssey

Thallium arsenic selenide or TAS is a ternary semiconductor which
crystallizes with the trigonal point group symmetry 3m, This implies that TAS
is optically uniaxial and should have 4 non-zero electro-optic components:7 f13
razs 33, and reye This compound has been the subject of extensive investiga-

32 acousto-optic,33'35 and non-]inear36 (second harmonic

tion for its optic,
generation) properties, It is transparent from the near (0.9 um) to mid (14 um)
IR. By using some of the formalism associated with the dielectric impermeabil-
ity tensor derived above (Section 2.2.1), we now examine the electro-optic

effect in TAS,

As a preliminary example, let us consider the case of an x-y-z
rectangular prism cut so that the long dimension is along x. The dc electric
field is aguiied normal to the long direction and along y. The third direction
or z, is parallel to the optic axis, Light is then propagated along x and
polarized along y (ordinary) or along z (extraordinary). The dielectric

impermeability tensor is then:

1
7 0 0
< p-] o LarE  re (122)
nZ " T2ty sl
. 1
. 0 P51Ey e
;1
b The off-diagonal components, r51Ey, produce a small rotation of the
4

indicatrix about the x axis by an amount:

2r..E
- ¥ tan 20 = 5Ly . (123)
Iy l? - 17 +r, .k
: ng ns 227y
: 57
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An upper estimate of this rotation (assuming ry, = 100 x 10-12 m/V) for voltages
of 5KV is o < 1°, and, therefore, this effect will be ignored. Light polarized

along y (ordinary) has the effective index:

n3r __E
n=n - 2227 (124)

n=n . (125)

Therefore, it is only the ordinary component which is affected by the dc
field. If we then arrange to have the incident light linearly polarized 45°
between y and z, or along <011>, both modes will be excited. Nue to the
difference in propagation velocities, tha two modes will emerge out of phase

with one another by an amount, T, given by:

r = 2;& (an) {126)

where as before 2 is the interaction length, x is the wavelength and an is the
birefringence (ng-n,). The polarization state at the exit face will be in
general ellipitcal, with circular and linear polarizations as specific cases
(for 90° and 0° or 180° phase differences, respectively). As we have shown, if

an electric field is applied along y, then the birefringence, and hence, T,

changes by:
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(127)

{12+

To experimentally observe this effect, we set up the sample and optics

as shown in Fig., 7, The laser used was a He-Ne 3.39 un laser. The compensator

was adjusted to give linearly polarized light with no field applied, The pola-

rizer was then "crossed" so that essentially na light was observed at the detec-

tor., As the electric field was increasad, a series of oscillations in the sig-

nal from the detector was observed as the state of the light exiting the crystal

changed ellipticity. The voltage required to change the signal by one oscilla-

tion (or the phase by =) is called the half-wave voltage V_ and is given by:

o _ =22 22
e W A
3
Loz Mo Va2
X 2y

where y is the distance between the electrodes,

dimension:
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Letting y and 2 be of unit

(131)
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The sample used in this preliminary experiment was fashioned from an
in-house gr'own36’37 boule of T13AsSe3. The sample was first wire sawed from the
boule and then mechanically ground and polished (on the optical faces) to fin-
ished dimensions of 0.36 x 0.32 x 1,27 cm for y, z and x, respectively, Silver
paint was used for electrodes, The sample resistance with no applied field was
greater than 20 Mohin which meant the resistivity was more than 2 x 107 ohmn-cm.
This is consistent with the room temperature, and an approximately 1 eV band-

gap.36 Figure 8 shows the data for this preliminary experiment,

Using the voltage between peaks of 2.2 kV and the sanple dimensions of
1.27 cn for g and 0,36 cn for y and the room temperature index at 3.39 ,m of
7o 311 x 10712 m/y, and the nalf wave voltage V_ = 8 kv, This

result includes the piezoelectric-induced effects,

3,37, we find r

OQur next experiment, tn be carried out under the follow-on to this

contract, will be to place the electric field along z, with the same sampl=

geometry as befaore, The dielectric impermeability tensor then hecomes

ﬁé + r gk, 0 9
0
B - 0 R 0
Fg 1373
0 0 S - (132)
7t "33t

With 1ight propagating along x and polarized along y, (the ordinary mode), the

index becomes:

.. 3
NG =Ny - —7— = (133)
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$C81-14144
T 1 I
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| | 1
-2 0 +2

VOLTAGE (kV)

Fig, 8 Plot of detector intensity vs applied voltage from electro-optic
measurement in T13A55e3.
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The orthogonal polarization along z (the extraordinary mode) has the followin:

index :

t is cowmon practice to define the effective birefringence in terms of a

combined electro-optic coefficient r.:
tnc = (n, -n) - 3 N3ra, - nir )
= e 0 2 e 33 o 13
E.ron3
3¢ /
s ng -y - 252 1135)
with
nfr\
1 0 13, \
; e 7 T33 =~ T~ ) . (136
e
The field dependent phase retardation is then i

2'" 1/

= =0 ‘n3 - n3
b7 Mat3y - "ari3lEs

b |

o

¢ z

A

L rcE3ng . (137)

L{ - The half-wave voltage V_ in this case is:
2
% 2n = 2% 4 r v nl/y (138)
y.. A cCne
! 4
i
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V“ ol S £139)
e C

for unit sample dimensions.

It will, therefore, be possible to measure r. using the same experi-
mental arrangement as before, by merely removing the silver paint electrodes

from the y-faces and placing them on the z-faces,

The coefficient ry3 can be independently obtained by a longitudinial
measurenent on a z-cut plate. The index change seen by light propagating along

the z direction polarized in the x-y plane (pure ordinary) is simply:
(140)

which can be measured in a Fabry-Perot configuration. Then by knowing "3 and
re, we can calculate rsge The coefficient rgy can be measured as a rotation of

the indicatrix using a longitudinal geometry with propagation along the y axis,

Finally, in order to obtain the "clamped" electro-optic coefficients,

r?j, it will be necessary to experimentally determine the piezoelectric

coefficients and photoelastic constants of T13AsSe3.
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3.0 SUMMARY AND RECOMMENDATIONS

In summary, this progran has advanced well, with significant progress
being made on both the theoretical and experimental portions of this program,
The groundwork has been established for the theoretical approach to the electro-
optic effect in solids. The underlying philosophy to our m2thad is to use a
generalized “chemical hond" approach to the first- and second-order electric
susceptibility., This methodology utilizes nearest-neighbor interactions, an!
parametrizes the relevant matrix elements in terms of universal atonic parai-
eters, Calculations, therefore, only reguire a knowledge of elemental
composition and the atonic bond configurations, This approach lends itself to
predictive comparisons of electro-optic response not only within a 3iven c¢rystal
structure (making elemental substitutions) but between different structures as

well,

Details of the methodology associated with the Bond Orbital Model have
been given along with applications to the specific cases of the chalcopyrite and
zinchblende crystal structures, Initially, however, the Bond Orbital Model was
only applicable to calculations of the response of the electronic systen to
probing fields of frequencies above the Restrahl frequency and below the first
inter-band or interactomic transition., Therefore, the next level of sophis-
tication introduced into the problem was an attempt to include the lattice
dynamics.

The approach here (still being developed) was formulated in terms of

the microscopic spring constants. Knowing these spring constants, one could, in

principle, calculate the relative displacement and resulting lattice distortion
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of a crystal in the presence of a dc electric field, Then, by knowing the new

equilibrium ionic positions, one can recalculate the susceptibility and hence

the electro-optic effect, The process is evolving alony lines oriented towar:ds
obtaining these microscopic spring constants from macroscopic measurable proper-
ties of the materials such as elastic constants or lattice mode frequencies,
This approach tends to somewhat diminish the overall generality and, therefare,
predictive properties of the methdod in that wore measurements are required ba-

fore the calculations may be undertaken, This, however, should not bhe taken as

. an end result, but rather as an intermediate step in an evolving process., At
sone future dat2, it is hoped also to be able to generalize the lattice responsa
to structure and e'enental composition, thereby recovering the predictive

capabilities,

The experimental portion of this prograa has involved measurenents of

the electro-optic effect in TeOZ and TI3AsSe3. The Te02 data is complete and

has yielded the val e r4§ = - 0,61 x 10”12 m/V. Experiments on TljAsSeq at
3.39 ym havs2 just hegun but a preliminary result indicates Irzgl = 11 x 10'12 n/V,

Further measurements will be carried out on T13AsSe3 during the next phase of
( the proyran to obtain ™1 and ry3. Additionally, other materials such as SbSI
and Barium Titaniun Niobate (BTN) will be approached experimentally during the

next phase of this program, SbSI has one of the highest reported piezoelectric

- coupling coefficients of any soh’d,38 and should have a correspondingly large
é' electro-optic effect, BTN has been shown to have a significant electro-optic
i"‘ effect.39 Structural considerations have shown that it may be possible to
H
a5 . substitute lanthanum or potassium on some of the sites in the unit cell,

o
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Qur recommendation, therefore, is to proceed with the theoretical wart

to approach a completely generalized formalism which has predictive capabili-
ties, In addition, the experimental work should proceed to evaluate materials
which provide insight and feedback to the theory, as well as provide new high

performance materials for further applied device efforts,
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APPENDIX I

LINEAR ELECTRO-OPTIC EFFECT IN TELLURIUM DIOXIDE*
M.D. Ewbank and P.R. Newman
Rockwell International Science Center

1049 Camino dos Rios
Thousand Daks, CA 91360

ABSTRACT

The only non-zero dc electro-optic (or Pockel's) coefficient in
tellurium dioxide was measured at constant stress. The result was ra = -0.76
x 10’12 m/V. The secandary electro-optic effect, due to the converse

piezoelectric and photoelastic effects, is approximately twice the observed

electro-optic response.

*This work was supported by ONR contract number NOOD14-80-C-0498.
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I.  INTRODUCTION

Tellurium dioxide (paratellurite or TeO,) is a well-known acousto-
optic r.1a1:eria1,1’2 utilized in devices such as acousto-optic tunable fil-
ters,3’4 beam deflectors and modulators. The anomalously slow acoustic shear

1 in the <110> direction which can be associated with the onset of a

velocity,
soft lattice mode transition,5 leads to a favorable acousto-optic figure-of-
merit. The presence of nearby phase transitions in ferroelectric materials

6 suggests that the electro-optic

which exhibit superior electro-optic behavior
effect in Te0, may also be enhanced by this softening lattice mode. Conse-
guently, the room temperature value of the single non-zero dc electro-optic
coefficient (rZI) for TeO, was determined experimentally at a wavelength of

6323 A,

IT. EXPERIMENT

7 of tellurium dioxide is 422, which implies

The point group symmetry
that TeO, is optically uniaxial and has only two non-zero electro-optic
coefficients (r41 = -r52).8 An optical quality sample of Teoz was
fabricated, using material obtained commercially from Crystal T~~ .olo , Inc.,
with the orientation for the measurement of ry; indicated in Fig *. "
optical faces, 1.9 cm apart, were perpendicular to the <011> direction, and

the silver-painted electrodes, separated by 0.57 cm, were normal to <100>. A

schematic of the optical setup is illustrated in Fig. 2. At a wavelength of

2
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6328 A, Te0, is optically transparent and its refractive indices at room

9

temperature’ are n, = 2.2585 and Na = 2.4112,

)

For light propagating in the <011> direction and polarized in the
11> direction {i.e., at 45 degrees from <100> and <0I1>) both the ordinary
and extraordinary modes of propagation are equally excited. When the ordinary
and extraordinary beams exit the Te0, sample, the relative phase shift, T,
between ordinary and extraordinary beams, assuming that the dc electric field
is zero and that the front and back surfaces are exactly flat and parallel,

will be

I = (2na/x)(n (eff) - n ) (1)

where £ is the sample interaction length, A is the wavelength, and n_. is the

0
ordinary index. The effective index of the extraordinary wave, ne(eff), for

this propagation direction is given by the relationl0

(eff) = /2'none//ng + ﬁé (2)

n
e

with n, being the extraordinary index.

Since the ordinary and extraordinary waves have equal amplitudes, the
intensity of the analyzed beam will vary with the orientation of the analyzing
polarizer, because the polarization state of the unanalyzed light is either

linear, elliptic or circular depending on the relative phase retardation of

the two modes. If the front and rear surfaces of the sample are wedged

3
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slightly, an interference fringe pattern will result. The spacing, dy,
between adjacent fringes which have a relative phase shift of n, can be

written:

o A
Yo * ZaTn TeFFT - ] (3)

in the 1imit that the wedge angle, a, is small.

When an external dc electric field, E,, is applied in the <100>
direction, the extraordinary wave experiences a change in impermeability
of rZIEx’ which corresponds to an effective extraordinary index change,

; 10
an,{eff), given by

Ang(eff) = -rp £ nd(eff)/2 (4)
in the approximation that this change in index is much less than the index
itself. The superscript "T" indicates that the measurement is performed under
constant stress ("unc1amped")6. (This change in effective index is maximized
for the <011> propagation direction only in the limit of the birefringence
approaching zero. For the birefringence of Te0, at 6328 A, the maximum occurs
when propagating about 3 degrees away from the <011> direction; but the
difference in effective index change for these two propagation directions is
less than 0.5% and therefore is negligible.) Since the dc electric field does
not affect the ordinary wave, the phase shift between ordinary and

extraordinary modes will change with external electric field by an amount that

4
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can be determined by combining Eqs. (1) and (4). More specifically, the

fringe pattern will shift-by a distance, d;, when the dc field is applied:

) z[né(eff) - ne(eff)]
dy = a[ﬁg(efff'- no] (5)

where né(eff) is the effective extraordinary index for a non-zero dc field
(i.e., né(eff) = ng(eff) + ang(eff)). The fringe shift with respect to the

separation between fringes can then be written as the ratio:
(dl/do) T 2 Ane(eff)/k (6)

in the approximation that the change in effective extraordinary index is much
less than the effective birefringence, [ne(eff) - no]. Finally, the electro-
optic coefficient, rll, can be expressed as a function of this fractional
fringe shift, the external dc electric field, the wavelength, the sample
interaction length and the effective extraordinary refractive index in the

following form:

-x(d, /dn)
rT x 170 (7)
41 - lEan(effS ‘

Voltages of -4.9, 0.0 and +4.9 kV were supplied to the electrodes on
the x-faces of the Te0, sample and produced the interference fringe patterns

shown in Fig. 3. The relative motion of the fringes, or fractional fringe

5
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shift, was determined, from photographic measurements referenced to a fixed
cross-hair, to be approximately 1/2 fringe (* 20%) for an applied voltage
change of 9.8 kV. It should be noted that the closely spaced fringes in the
lower right corners of Figs. 3a, b, and ¢ are probably due to a slight round-
ing of the presumed flat optical face near one edge of the sample. Addi-
tionally, thé fine rectangular fringe pattern is caused by Fresnel diffraction
from the sample aperature. The wedge angle was found, by comparing simul-
taneous reflections from both optical faces, to be approximately 0.3 degrees,
which is roughly consistent with the number of major fringes shown in Fig. 3.
Since the wedge angle is so small, Eg. (7) has been used to calculate a room
tenmperature value for the magnitude of the electro-optic coefficient of Ted,
at 6323 A, which was [rg,| = 0.76 x 10712 m/v. Equation (4) indicates that
this corresponds to an effective extraordinary index change of an (eff) = 8.3

x 10‘6.

The sign of this electro-optic coefficient was obtained by correla-

ting the direction of fringe shift with respect to the sign of applied voltage
and the orientation of the wedge angle with respect to the optic axis. The
orientation of the optic axis was determined by noting that, for this direc-
tion of propagation, the extraordinary beam experienced a "walk-off", with

;A; respect to the ordinary beam, of 3.7 degrees in the direction of the optic

: axis. Referring to the fringe patterns in Fig. 3, the electrodes lie on the

. faces perpendicular to the fringes, with the ground electrode being on the
upper right face. The wedging, as determined by retroreflection, indicated

that the interaction length in the portion of the sample, which corresponds to

6
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the region near the upper left surface of Fig. 3, is longer than the interac-
tion length near the lower right surface. When a positive voltage was applied
to the lower left face, the fringes shifted toward the Tower right where the
interaction length has decreased. In order to maintain a constant phase
difference fer a given fringe, the optical path length must remain the same.
Since the physical path length decreased for a positive voltage, the index
apparently increased to yield a constant optical path length. Then, by

utilizing Eq. (4), the electro-optic coefficient, rzl, must be negative.

Finally, the results of this electro-optic measurement on TeO, at

6323 A can be summarized as
rhy = -0.76 x 1071 (8)

for the room temperature value.

ITI. DISCUSSION

The above experiment with Te02 measures relative changes in optical
na*h lengths between ordinary and extraordinary waves, caused by the applica-
*<~n of an external dc ¢ iric field. However, thre~ physical phenomena can
<w- .« ir a change in the optical path length: (1) the electro-optic effect
« = 4 ractly changes the refractive index, (2) the converse piezoelectric

wr'=n changes the physical dimensions of the crystal (in particular,

1

. .« an3'e), and (3) the secondary electro-optic effect (the photoelastic

7
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or strain-optic effect due to the converse piezoelectric, induced strain)

3
i ' which also modifies the refractive index.
The strain, e;, which results from the converse piezoelectric effect,

can be calculated by using the relation:11

e.=l‘d..E. (9)
J

where dji is the piezoelectric coefficient and Ej is the electric field. The
physical deformation can then be estimated from the measured value of the only
non-zero piezoelectric coefficient12 (d14 = 8,13 x 10’12 C/N) and the external
dc electric field. This shear strain corresponds to a change in wedge angle
of approximately 0.3% for an applied voltage change of 9.8 kV and a negligitle

{ fringe shift.

The secondary electro-optic effect gives rise to a change in

impermeability, 48B;, given by13

where Pij is the photoelastic constant, e; is the piezoelectric strain, dkj is

the piezoelectric coefficient and Ej is the electric field. Then, the

{-

‘;,' secondary electro-optic coefficient, rgi), can be defined by the equation

.

X (2)
1 : rie = % Pi; dkj . (11)
1Y

LW

b

. 8
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Since dj4 is the only non-zero piezoelectric coefficient, only pgq contributes
to rgi) in Eq. (11), and this photoelastic constant has been found
experimenta]ly1 (p44 = -0.17). The secondary electro-optic coefficient is
-1.38 x 10‘12 m/V, which corresponds to a change in effective extraordinary
index of Ane(eff) = +1.50 x 10°° using an equivalent form to Eq. (4) with a
1.7 x 10° V/m electric field. Subtracting this secondary electro-optic
coefficient from the measured value at constant stress (see Eq. (8)), one

13

obtains the primary*” electro-optic coefficient for TeOZ:

ri - +0.62 x 1072 (12)

1

where the superscript "S" indicates constant strain ("c]amped").6

There have been numerous measurements of the second harmonic
generation (SHG) coefficient in T9029’14'16 which have shown a violation of
leinman's symmetry re1ation.17 The results of these measurements yield a
reasonably consistent value of approximately

9

- 145 x 1077esu = ¢_ x 0.61 x 10712

\d,

‘4] n/V (13)

for a fundamental wavelength of 1.064 um, and where €, s the permittivity of
free space. Note that this dj, is distinct from the piezoelectric coefficient
in Eqs. (9)-(11). In addition, both the symmetric and antisymmetric nonlinear

optical susceptibilities for sum and difference mixing have

9
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been measured in Te02, and the symmetric coefficient is in good correspondence

with the SHG value in Eq. (13).18

Previous attempts have correlated the second order susceptibilities
of optical rectification and the linear electro-optic effect.19 Also, com-
parison with SHG have been made,21’23 but only when absorption and dispersion
17)

are negligible (i.e., the same conditions for Kleinman's symmetry'’). These

comparisons should not be made directly between ril and digG. Instead, they

should be done between the electro-optic susceptibthy,19

m/N (14)
I

and the second harmonic susceptibility, d?j“. Since a non-zero SHG coef-

ficient for Te0, violates Kleinman's symmetry, the necessary assumptions about

absorption and dispersion must be inappropriate and, hence, the relationship

between the electro-optic and SHG coefficients for Te0, is not straight-

forward.

Qualitatively, the SHG coefficient, while being non-zero, is still
recognized as being small in magnitude when compared to other materials. As a
consequence, the electronic contribution to the electro-optic effect is
assumed to be approximately zero. Then, since the measured electro-optic
coefficient is also small, the conclusion is that the expected soft-mode
enhancement of the ionic contributions to the electro-optic susceptibility

does not occur.
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VI. LIST OF FIGURES

Crystal orientation for Te02 electro-optic sample.
Optical configuration of electro-optic measurement.
Interference fringe patterns in Te0, for (a) -4.9, (b) 0.0 and (c)

+4.9 kv,
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