
SOFTWARE OT&E " 1

GUIDELINES .

VOLUME III

SOFTWARE MAINTAINABILITY EVALUATOR'S
HANDBOOK
APRIL 1980

AIR FORCE TEST AND EVALUATION CENTER
KIRTLAND AIR FORCE BASE

NEW MEXICO 87117

C-,

-j

AfTECP 800-3

AF'r...........3

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When D.. Entered)

RE:PORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I1. REPORT MUM& 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATA60G NUMBER

,LIIAFTEC P-800-3 U , o
-c -. 5 TY!aJ0. PERIOD COVERED

SOFTWARE OT& . GUIDELINES, Volume III .of five).
-1 softare-R.aintainability Evaluator's P-IEFnook' 4ina. i 1980

.. ". '- -YPRAFORMING O1G. REPORT NUMBER

7 AUTHOR(s) 6. CONTRACT OR GRANT NUMBER(S)

N/A

S PERFORMING ORGANIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT PROJECT. TASK

AREA & WORK UNI-. WUMBERS

HQ Air Force Test and Evaluation Center /
AFTEC/TEBC
Kirtland AFB NM 87117 N/A
II. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE/"// Apr 80
Same as 9. r, 8 -a C PAGES

14 MONITORING AGENCY NAME a ADORESS(il different from Controlling Office) 15 SECURITY CLASS. (ot :his repcr)

UNCLASSIFIED
IS&. DECLASSI FICATION DOWNGRADING

SCHEDULE NIA

16 DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

AFTEC/TEBC point of contact:
Lt Col Michael A. Blackledge, USAF

19, KEY WORDS (Continue on reverse side if necessary and identify by block number)

Software Software Maintenance

Software Testing Operational Test & Evaluation

Software Evaluation (OT&E)
Quality Factors

20. ABSTRACT (Continue on reverse side It necessary and identify by block number)

The Software OT&E Guidelines is a set of handbooks prepared by the Computer/
Support Systems Division of the Test and Evaluation Directorate of the Air Force
Test and Evaluation Center (AFTEC) for use in the operational test and eval-
uation (OT&E) of software. Volumes in the set include: 1 Software Test Man-
ager's Handbook (AFTECP 800-1); 2t Handbook for the Deputy for Software Eval-
uation (AFTECP 800-2); 3q Software Maintainability Evaluator's Handbook (AFTECP "-p
800-3); 4 Software Operator-Machine Interface Evaluator's Handbook £continued)

FORM
DO I JAN 7s 1473 EDITION OF I NOV8 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whan Data Nnterd)

Block 20 continued. '

"(AFTECP 800-4);'-5f- Software Support Facility Evaluation Tools User's Ha. jook
(AFTECP 800-5). The Software Maintainability Evaluator's Handbook was prepared
as a guide for the software evaluator participating in AFTEC's software main-
tainability evaluation process. It provides a description of AFTEC's method-
ology for performing this evaluation, as well as guidelines by which members
of a team of evaluators can independently evaluate a body of software as to its
maintainability. The handbook includes the characteristics by which both the
source code and documentation are rated, as well as examples, explanations,
and definitions.

Acce~sion ~

112
cTI

Pir

UNCLASSIFIED
SECURITY CLASSIICATIO4 OF PAOErWhen Daf* EnEorocr)

SOFTWARE OT&E GUIDELINES

VOLUME III

SOFTWARE MAINTAINABILITY

EVALUATOR'S HANDBOOK

APRIL 1980

AIR FORCE TEST AND EVALUATION CENTER

KIRTLAND AFB, NEW MEXICO 87117

FOREWORD

This volume is one of a set of handbooks prepared by the
Computer/Support Systems Division of the Test and Evaluation
Directorate, Air Force Test and Evaluation Center (AFTEC) for use
in the operational test and evaluation of software. Comments should
be directed to AFTEC/TEB, Kirtland AFB, NM 87117. Volumes in
the set include:

I. Software Test Manager's Handbook (AFTECP 800-1).

I1. Handbook for the Deputy for Software Evaluation
(AFTECP 800-2).

11. Software Maintainability Evaluator's Handbook
(AFTECP 800-3).

IV. Software Operator-Machine Interface Evaluator's Hand-
book (AFTECP 800-4).

V. Software Support Facility Evaluation Tools User's
Handbook (AFTECP 800-5).

71

SOFTWARE MAINTAINABILITY

EVALUATOR'S HANDBOOK

Table of Contents

SECTION PAGE

I. Evaluator Guidelines
A. General 1
B. Maintainability Evaluation Methodology 2

1. Software Categories 4
a. Software Documentation 4
b. Software Source Listing 5
c. Computer Support Resources 5

2. Software Maintainability Test Factors 5
3. Software Maintainability Evaluation

Procedure 9
C. General Evaluator Guidelines 11

1. Response Form 12
2. Response Scale 14
3. Documentation Questionnaire 16
4. Module Source Listing Questionnaire 16

D. Example Response Forms 17
E. Summary of Evaluation Philosophy 22

II. Question Response Guidelines
A. General 24
B. Software Documentation Questions 24

1. Modularity QuestionsD... 0-1
2. Descriptiveness Questions D-13
3. Consistency Questions D-37
4. Simplicity Questions D-46
5. Expandability Questions D-58
6. Instrumentation Questions D-67
7. General Questions D-77

C. Module Source Listing Questions S-1
1. Modularity Questions S-1
2. Descriptiveness Questions S-15
3. Consistency Questions S-36
4. Simplicity Questions S-50
5. Expandability Questions S-66
6. Instrumentation Questions S-75
7. General Questions S-83

III. Cross References
A. General 25
B. Evaluator's Handbook Cross References 25

Hi

ILLUSTRATIONS

FIGURE PAGE

1. Elements of Software Maintainability 3

2. Maintainability Evaluation Procedure10

3. General Evaluator Guidelines 13

4. Evaluator Name Block Example 18

5. Numerical Identification Block Format 19

6. Numerical Identification Block Example 20

7. General Purpose (NCS) Answer Sheet 21

II

PART I

SOFTWARE MAINTAINABILITY EVALUATOR'S HANDBOOK

EVALUATOR GUIDELINES

A. GENERAL.

1. Purpose.

The purpose of this handbook is to provide to the software

evaluator the information needed to participate in the Air Force

Test and Evaluation Center's (AFTEC's) software maintainability

evaluation process. Software maintainability is determined by

those characteristics of software and computer support resources

which affect the ability of software programmer/analysts to change

software. Such changes are made to:

a. Correct errors.

b. Add system capabilities.

c. Delete features from programs.

d. Modify software to be compatible with hardware

changes.

In this handbook, "software maintainability" is limited to

software design and documentation assessments.

2. Use.

This handbook is divided into three parts.

a. The first part provides the evaluator with: (1) a

background of the AFTEC software maintainability

evaluation concept, (2) a basic understanding of

the evaluation procedures, and (3) detailed in-

structions for using AFTEC's standard software

maintainability questionnaires and answer sheets.

The evaluator should read part I in its entirety

and understand the evaluation concept and pro-

cedures prior to beginning any evaluation.

b. Part II contains the questionnaires and explanatory

information on each question. This information is

provided in an attempt to ensure the evaluator

fully understands the intent of each question.

Included are definitions of terms, examples, expla-

nations, and special case response instructions, as

necessary. Each evaluator is encouraged to make

notes in his copy of the handbook which will help

clarify the intent of the questions. Part II of this

handbook is designed to be used as the source of

questions for the evaluation.

c. The final part of the handbook is a cross reference

index. Once an evaluator has confidence in his

understanding of the intent of each question, a

short form of the questionnaire may be used. The

cross reference index will then allow the evaluator

to quickly locate any needed information in the

handbook.

B. MAINTAINABILITY EVALUATION METHODOLOGY.

The methodology for evaluating software maintainability is

based on the use of closed form questionnaires with optional writ-

ten comments. These questionnaires are designed to determine

the presence or absence of certain desirable attributes in a given

software product. The elements of software maintainability and

their relationships are shown in Figure 1 and described in follow-

ing paragraphs. The hierarchical evaluation structure shown in

the figure enables us to identify potential maintainability problems

at various levels: category (documentation, source listings),

characteristic (modularity, consistency, etc.), or a combination of

the two.

2

SLW
Lu uC

OLi

-J - - .

- I--4 Z -- z
'-i caL - LUI

Ln 0- C3)

O Fa C.3 (f) LJ 0- w.J

0

4n4

LU,
z0

- LU >-

::I Z -

2: 0. F- Cl)
LD - n -4 X

w uj __ - uj Z

oL LL - -) a

CD a 50c

0-0,

"U F

LU LUJ LU3

1. Software Categories.

Software consists of a set of computer instructions and

data structured into programs, and the associated documentation on

the design, implementation, test, support, and operation of those

programs. Each software program is separately evaluated and con-

sists of a set of components called modules. A module may, in

general, be at any conceptual level of the program. In FORTRAN,

modules are generally defined to be subroutines; in COBOL a module

is usually a program. The software test manager must decide on the

definition of module for the specific language and system to be

evaluated. For each program there are related categories which are

evaluated for characteristics which affect its maintainability. The

categories, or products, are the software documentation, the software

source listings, and the computer support resources. It is important

to emphasize that only products that will be available to the mainten-

ance programmer are to be considered in an evaluation.

a. Software Documentation.

Software program documentation is the set of require-

ments, design specifications, guidelines, operational procedures, test

information, problem reports, etc. which in total form is the written

description of a computer program. The primary documentation

which is used in this evaluation consists of the documents containing

program design specifications, program testing information and

procedures, and program maintenance information. These documents

may have a variety of physical organizations depending upon the

particular application. The documents are evaluated both for content

and for general physical structure (format). The content evaluation

is primarily concerned with how well the overall program has been

designed (as documented) for maintainability. The format evaluation

is primarily aimed at how the physical structure of the documentation

(table of contents, index, numbering schemes, modular separation of

parts, etc.) aids in understanding or locating program information.

4

b. Software Source Listings.

Software source listings are the computer gener-

ated (or equivalent) form of the program code in its source

language (e.g, FORTRAN, COBOL, JOVIAL, Ada, assembl y

language, etc.). The source listing represents the program as

implemented, in contrast to the documentation which for the most

part represents the program design or implementation plan. In

essence, source listings are also a form of program documen-

tation, but for this maintainability evaluation, a distinction is

made.

The source listing evaluation consists of a separate

evaluation of each selected module's source listing and the con-

sistency between the module's source listing and the related

module documentation. The separate module evaluations are

summarized to yield an overall evaluation of the software source

listing for the given program.

c. Computer Support Resources.

Computer support resources include all the rele-

vant resources such as software, computer equipment, facilities

etc., which will be used to support the maintenance of the soft-

ware being evaluated. Characteristics of and procedures for the

evaluation of computer support resources will be detailed in a

separate document.

2. Software Maintainability Test Factors.

The maintainability of software documentation and source

listings is determined by examining six characteristics or test

factors: modularity, descriptiveness, consistency, simplicity,

expandability, and instrumentation. Definitions of these test

factors and discussions of their application in the evaluation of

the documentation and source listings are given in the following

paragraphs.

5

a. Modularity.

Software possesses the characteristic of modular-

ity to the extent a logical partitioning of software into parts,

components, and/or modules has occurred.

Software that is the easiest to understand and change is

composed of independent modules. Each software product is

therefore evaluated in relation to the extent to which its logical

parts, components, and modules are independent. The fewer and

simpler the connections between parts, the easier it is to under-

stand each module without reference to other parts. Minimizing

connections between parts also minimizes the paths along which

changes and errors can propagate into other parts of the system,

thus reducing the occurrence of side-effects within the system.

As a general guideline, modularity implies that a given

module consists of only a few easily recognizable functions which

are closely related and that a minimal number of links exist to

other modules - preferably only via parameters passed in a calling

parameter list. In addition, the physical format of the documen-

tation should exhibit component independence for its sections,

volumes, etc. There should be separate sections for the descrip-

tion of the major parts which a given document's purpose encom-

passes.

b. Descriptiveness.

Software possesses the characteristic of descrip-

tiveness to the extent that it contains information regarding its

objectives, assumptions, inputs, processing, outputs, components,

revision status, etc.

This attribute is very important in understanding

software. Documentation should have a descriptive format and

contain useful explanations of the software program design. The

objectives, assumptions, inputs, etc., are useful (in varying

6

degrees of detail) in both documentation and source listings. In

addition, the descriptiveness of the source language syntax and

the judicious use of source commentary greatly aids efforts to

understand the program operation.

c. Consistency.

Software possesses the characteristic of consistency

to the extent the software products correlate and contain uniform

notation, terminology and symbology.

The use of standards in documentation, flow chart

construction and certain conventions in I/O processing, error

processing, module interfacing, naming of modules/variables, etc.

are typical reflections of consistency. Attention to consistency

characteristics can greatly aid in understanding the program.

Consistency allows one to generalize easily. For example, pro-
grams using consistent conventions require that the format of

modules be similar. Thus by learning the format of one module
(preface block, declaration format, error checks, etc.) the format

of all modules is learned. This allows one to concentrate on

understanding the true complexities of an algorithm, data struc-

ture, etc.

d. Simplicity.

Software possesses the characteristic of simplicity

to the extent that it lacks complexity in organization, language,

and implementation techniques and reflects the use of singularity

concepts and fundamental structures.

The aspects of software complexity (or lack of

simplicity) that are emphasized in the evaluation relate primarily

to the concepts of size and primitives. The less there is to

discriminate and the more use there is of basic or primitive tech-
niques, structures, etc. the simpler the software will tend to be.

97

The use of a high order language as opposed to an assembly
language tends to make a program simpler to understand because

F there are fewer discriminations which have to be made. There

are certain programming considerations such as dynamic allocation

of resources and recursive/reentrant coding which can greatly

complicate the data and control flow. Real-time programs, because

of the requirement for timing constraints and efficiency, tend to

have more control complexity. The sheer bulk of a module (num-

ber of operators, operands, nested control structures, nested

data structures, executable statements, statement labels, decision

parameters, etc.) will determine to a great extent how simple or

complex the source code is. While it is recognized that the

particular application itself may preclude the possibility of a rea-

sonably simple design or implementation because of requirements

such as a particularly complex real-time scheduling algorithm or

high level mathematical or other theoretical considerations, this

complexity nonetheless makes maintenance more difficult.

e. Expandability.

Software possesses the characteristic of expand-

ability to the extent that a physical change to information, com-

putational functions, data storage or execution time can be easily

accomplished once the nature of what is to be changed is under-

stood.

Software may be perfectly understandable but not

easily expandable. If the design of the program has not allowed
for a flexible timing scheme or a reasonable storage margin, then

even minor changes may be extremely difficult to implement.

Parameterization of constants and basic data structure sizes

usually improves expandability. It is also very important that the
documentation include explanations of how to effect increases/

decreases in data structure sizes or changes to the timing scheme,

and the limitations of such program expandability should be clear.

8

The numbering schemes for source listings, documentation narrative,

and graphic materials must be carefully considered so that physical
modifications to the code and documentation can be easily accom-

plished when necessary.

f. Instrumentation.

Software possesses the characteristic of instrumen-
tation to the extent it contains aids which enhance testing.

For the most part the documentation is evaluated on

how well the program has been designed to include test aids

(instruments), while the source listings are evaluated on how well

the code seems to be implemented to allow for testing through the

use of such test aids. This part of the evaluation reflects the

concern (from a maintainability viewpoint) that the software be

designed and implemented so that instrumentation is either imbedded
within the program, can be easily inserted into the program, or is

available through a support software system, or is available through

a combination of these capabilities.

3. Software Maintainability Evaluation Procedure.

The basic software evaluation procedure involves four

distinct phases: planning, calibration, assessment, and analysis, as

shown in Figure 2.

During the planning phase, the software test manager and
the deputy for software evaluation (DSE) establish an evaluator team

consisting of at least five evaluators knowledgeable in software

maintenance. The program/module hierarchy is established and a set

of representative modules is selected for each program to be
evaluated. This set of modules is chosen by the DSE, as advised by
the software test manager. The schedule for the evaluation is also

established at this time. The software test manager briefs the

evaluator team on the procedures and assigns the necessary identi-

fication information for this specific evaluation.

9

Test Planning

Software Test Manager/
Deputy for Software Evaluation (DSE):

- Establishes Evaluation Structure
- Selects Modules for Evaluation
- Determines Test Factor Weights
- Establishes Time Frame for Evaluation

Software Test Manager:
- Assigns Identification Information
- Completes Evaluator Briefing

Calibration Test

Each Evaluator:
- Completes One Documentation Questionnaire

Completes One Specified Module Questionnaire
Software Test Manager:

- Reviews Completed Questionnaires
- Resolves Misunderstandings
- Debriefs Evaluators

Assessmentj

Each Evaluator:
Updates Calibration Questionnaires
Completes Remaining Questionnaires

Analysis and Reporting

Software Test Manager:
- Accomplishes Automated Questionnaire Data Entry
- Produces Automated Preliminary Analysis
- Reviews Automated Analysis Results

DSE:

- Reviews Preliminary Analysis
- Performs Detailed Evaluation
- Prepares Evaluation Report

Figure 2. Maintainability Evaluation Procedure

10

d 4

i_________

The function of the calibration phase is to assure a

reliable evaluation by ensuring each evaluator has a clear under-

standing of the questions on each questionnaire and their specific

response guidelines. Each evaluator completes a documentation and a

module source listing questionnaire in a trial or calibration

evaluation. The completed questionnaires are reviewed to detect

areas of misunderstanding and the evaluation teams are debriefed on

the problem areas.

In the assessment phase, the evaluation teams update their

calibration test questionnaires based on the results of the calibration

debriefing. The teams then complete the remainder of their assigned

documentation and module source listing questionnaires.

In the analysis phase, the software test manager accom-

plishes the conversion and initial data processing of the question-

naire data. The statistical summaries are then returned to the DSE

for detailed evaluation and preparation of the final report.

C. GENERAL EVALUATOR GUIDELINES.

This section contains general information required by

the individual evaluator for completion of the documentation and

source listing questionnaires. Prior to the calibration test, the

necessary questionnaires and answer sheets will be provided to each

evaluator. In addition, each will get a package of system dependent

data which includes:

(1) Software maintainability evaluation schedule.

(2) Software documentation evaluation list.

(3) Software program/module name/number list.

(4) Evaluator name/number list.

The data contained in this package will be sufficient to

enable each evaluator to properly fill out the identification block

of each answer sheet. The evaluators should use the Software

Documentation Questionnaire and the Module Source Listing Ques-

tionnaire (or this Handbook) to obtain the specific questions.

K 11

The answers to the questions should be entered on a General

Purpose (NCS) Answer Sheet. One NCS Answer Sheet should be

completed for each use of a Questionnaire. If specific written com-

ments are appropriate for a given question, they should be supplied

separately to the DSE. General evaluator guidelines are summarized

in Figure 3. More specific details of using the Questionnaires and

Forms are explained in the following paragraphs of this section.

Examples are contained in section D.

1. Response Form.

The form on which an evaluator records his responses to

questions is the General Purpose (NCS) Answer Sheet. This form is

processed through an optical scanner, so it is important that the

appropriate circles be darkly marked and that no extraneous marks

appear. Errors should be completely erased. Note that the NCS

Answer Sheet contains little explanatory information since it was

designed to be a general form for use by any group using

questionnaires. There are three blocks on the Answer Sheet:

Evaluator Name Block, Numerical Identification Block, and Evaluator

Response Block.

The Evaluator Name Block contains as a minimum the last

name of the evaluator; it can also contain the module name (alpha

only) at the choice of the software test manager. The accuracy of

this block is not as critical as the following two blocks. The sug-

gested format with an example is given in section D.

The Numerical Identification Block contains numeric

codes for the particular questionnaire type, the system, sub-

system, program, module, and evaluator. The numeric codes are

entered in the appropriate column fields (A through L) and the

associated numbered circles are darkened. Extreme care should

be taken to enter all data in this block correctly since this block

is optically scanned and is effectively the only output information

12

General
1. Work independently.
2. Complete questionnaires in specified sequence.
3. Answer all questions--a response of A-F must

be provided for each question.

Calibration Test
1. Complete questionnaires in the sequence:

a. Software Documentation Questionnaire
b, Module Source Listing Questionnaire

2. The specific module to be evaluated is noted in the
test plan along with the list of all modules
selected for evaluation. All necessary identifi-
cation information will be provided in the handout.

Assessment
1. Rework responses as necessary on questionnaires

completed as part of the Calibration Test.
2. Complete questionnaires on the remaining modules in

the sequence specified in the evaluation handout.
3. Take care to correctly complete all information on

the response forms.
4. Carefully observe the specific response guidelines

contained in Part II of this handbook.

Figure 3. General Evaluator Guidelines

13

which uniquely associates the evaluator responses with the correct

evaluator and software program information. The required format

with an example is given in section D. At the option of the

Software Test Manager, additional data can be entered in this

block, such as the date of the evaluation (in the birthdate field)

or the number of hours required to complete the answer sheet

(fields 0 and P).

2. Response Scale

The following response scale should be used to answer

each question:

A. COMPLETELY AGREE (absolutely no doubt)

B. STRONGLY AGREE

C. GENERALLY AGREE

D. GENERALLY DISAGREE

E. STRONGLY DISAGREE

F. COMPLETELY DISAGREE (absolutely no doubt)

One of these responses must be given for each question. In

addition, one or more of the following standardized comment

responses can be selected:

1. I had difficulty answering this question.

J. A written comment has been submitted.

The responses G and H do not currently have any meaning. The

responses A to F indicate the extent to which the evaluator

agrees/disagrees with the question statement. Depending on the

application area and the type of question, these responses can be

interpreted differently. In general, however, the response scale

can be interpreted as follows:

A. COMPLETELY AGREE - There must be absolutely

no doubt when using this response that the product being evalu-

ated cannot be any better with respect to the characteristic

addressed.

14

B. STRONGLY AGREE - This response indicates that

the product being evaluated is very good and very helpful to the

software maintainer.

C. GENERALLY AGREE - This response indicates that

the product being evaluated is acceptable and helpful to the

software maintainer.

D. GENERALLY DISAGREE - This response indicates

that, although the product being evaluated is acceptable, some

improvements are required to make it helpful to the software

maintainer.

E. STRONGLY DISAGREE - This response indicates

that the product being evaluated is unacceptable and major

improvements are required before it would be helpful to the soft-

ware maintainer.

F. COMPLETELY DISAGREE - There must be abso-

lutely no doubt when using this response that the product being

evaluated is unacceptable and must be completely redesigned or

rewritten to be acceptable with respect to the characteristic ad-

dressed. It is emphasized that responses of A or F are in general

not expected since these responses indicate a best possible or

worst possible characteristic relative to software in general.

Occasionally the evaluator may find it difficult to answer

a question because it "doesn't seem to apply" to the program

being evaluated. Most of the time this situation arises when the

particular software requirements do not involve the need for a

certain software attribute; or, the intrinsic nature of the software

(e.g., language used) eliminates the possibility that such a

software attribute can exist. As an example, a particular module

may not have any statement labels. A question statement such as

"Statement labels have been named in a manner which facilitates

15

locating a label in the source listing" addresses a software attrib-

ute (descriptive labels) which, because the software has no

labels, appears irrelevant. However, note that the software will

be more understandable since no branching to labeled statements

can occur. In this case, the absence of labels makes the software

more maintainable, so the evaluator should give as high a response

(A) as if the software had labels that were all very well named.

Sometimes the situation arises where the question implies

the existence of a particular item (chart, matrix, etc.) and the

question asks about the content within the item. If the item does

not exist, then this indicates a serious defect (relative to main-

tainability) of the software. In this case, the evaluator response

should be F. Questions where this situation might arise will have

special response instructions included in Part II.

3. Software Documentation Questionnaire.

This questionnaire is used to evaluate the overall format

and content of the documentation (not including source listings)

for the computer program being evaluated. Although the infor-

mation required to answer the Software Documentation Question-

naire may be spread out among several distinct documents, the

primary information sources which are always considered a part of

the evaluation are the program functional/ detailed design specifi-

cations and the program maintenance/operational procedures.

Contractor programming conventions should also be made available.

The documentation which is to be evaluated is specified to the

evaluator prior to the Calibration Test.

4. Module Source Listing Questionnaire

This questionnaire is used to evaluate the overall format

and content of the source listing for the program module being

evaluated, and to evaluate the consistency between the module's

16

documentation and source listing. The program modules which

are to be evaluated are specified to the evaluator prior to the

Calibration Test.

D. EXAMPLE RESPONSE FORMS

The figures on the following pages contain response form

instructions and examples as summarized below:

(1) Figure 4. Evaluator Name Block Example

(2) Figure 5. Numerical Identification Block Format

(3) Figure 6. Numerical Identification Block Example

(4) Figure 7. General Purpose (NCS) Answer Sheet

17

The following example is provided for completing the Name

Identificiation Block on the General Purpose - NCS -Answer

Sheet used with the AFTEC questionnaires.

7101 11 TNr.
ILII :)C4() R

00 00000000000 @0000
000 .0 I(- Q- . -

©©©(~©©©©©©©©©©Q~ Di

GGG ®®@ ®®® 0-® 000

®G0o-Qi00 0®®G00®®I)*C C
®0GG 000®00@0 Q1@()@ gI- 0

9 G (D@0. @O©~ & 09109()
(9 G K -0 9(@(.C

NOTE: The SEX block and the GRADE or EDUC block need not
be filled in.

Figure 4. Evaluator Name Block Example

18

The following format is required for completing the Date and

Numerical Identification Block on the General Purpose -NCS -

Answer Sheet used with the AFTEC questionnaires. The correct

numerical integers must be written in the appropriate fields.

Extreme care should be taken in entering this data and in com-

pletely covering the associated numbered circle in each column.

This numerical ID is processed by an optical scanner and is

effectively the only way that the questionnaire responses can be

correlated with the system/subsystem/program.. ./evaluator/...

BIRTH DATE IDENTIFICATION NUMBER~ %PF(_i~f

Mo oAY I YR A 1B CIDIE FIGIH II J k - ,

Columns Data Description Range

Birth Date Date Evaluation Started
Mo. Jan - Dec
Day 01-31
Yr. 80-99
A Type of Questionnaire 1 (Documenta-

tion)
2 (Source List-
ing)

B,C System Code 01-99
D,E Subsystem Code 01-99
F,G Program Code 01-99
H,I Module Code 01-99
J,K,L Evaluator Code 001-999
M,N (not used) (Blank)
O,P Time (hrs) to complete questions 00-99

Figure 5. Numerical Identification Block Format

19

The following example is provided for completing the Date

and Numerical Identification Block on the General Purpose NCS

Answer Sheet used with the AFTEC questionnaires.

BIRTH DATE IDENTIFICATION NUMBER SPECIAL CODES

MO. DAYI YR, AIB C 0 E:. F GIHIIJ LMN1 P

0G 0 0 (DG)0 G)G 1 0 0 0G()(0

*A....O (®)®2 @ D @ D @@ @ (((D@ ®
.. 0 0 0QO((2 (D(D (®@ ® @ @®D @0
-AP, (2 0(D(D0 2)() 0(2 () 2 () D () 0
... 00(1)@ DGO(* ®® ® ® G G G G®G®()®®G

I~. QoleoGG 0G®G GGGG®®®®GI

Columns Value Meaning

Birth Date
Mo. Day Yr. Oct. 28 80 Evaluation conducted on 28 Oct 1980

A 2 Source Listing Evaluation
B,C 01 System #01
D,E 02 Subsystem #02
F,G 01 Program #01
HI 14 Module #14

J,K,L 003 Evaluator #003 (Johnson)
0,P 04 Johnson took 4 hours to complete this

questionnare on Module #14.

Figure 6. Numerical Identification Block Example

20

NAME IL.- F.-I. MI GENERAL PURPOSE - NCS - ANSWER SHEET
I I I I II II I I I II II l~I ISEE IMPORTANT MANNING INSTRUCTIONS ON SIDE 2

[QOOOOOOOOO U)UUU()UUUU - JUC ASaC 0EFOGH I J1 A B CD E FGHI J ASBCO0E FOaH S

@ i ((@@ 0 i)0 i)@ @ D @@ -: @ AS9CO0EFOGH I J AS8C DE FONHI J A 8CD0EF GH I J

(- (@@ @(D0 P D D @@ - @@ 0 300000000 0 130 0D®®D00 0 30 (DO @@®®@
(E)0 D 00 0 () 0 0(D 0(D a . A 6C DE FOGN ISi A BCODE F G H I5 AS6Ct 0 E G IS

00000000000000000000 0 5000000o Goo 150cG®0@ 20000000009@
()Q(()Q (0 () D 2 Q(2 (0 0 G 0 0 D G AS8C 0EFOGH I J A BC 0EF GH I J A 9C D E FG HIJ

(i 0() E)E ()0 (09 E)()) ()0 6 0000000000 160000000000 20000000009
Q (@@O@ 9) (9)Q@@DO 09 QQ9G AS8CO0EFOGH I J A 6CO0EPFGH I J A 6CO0E F0H I J

(2)I~@~@@@@ 0 10000(2000®®(@ 17()D2Dj00(D90 270000000000
A@@@@@O@@~@ 8 AC 0E F GHI J AB8CO0E F GHI J AS8CO0EFOGH I J

@O@@@@@@OG@@@@@ 00000GJ000 is0000000009 20000000009
9 0e 9(B9 E)0 0 e@0 0)0 0 0 9 0 A 8C DE F GHI J ASBCODEPFOHNI J AS0CO0EF GH I J
@9S@@@@@90 @Q@O@@ @ @@ 0 90000000009 1900000@0009 290000000009

0 A 0CO0E F GHI J AS8CO0EFOGH I J AS8CODEPFOMHI J
0 9(00(0@0000D03 000000 @ 0 @G 10 0000000000 20 0000000009 300000000009

@0 Q 000000 @)9QQQQ(99(2 9(1 A 0C 0E F G HI i A 8C D E QH I J AIS C DEPI F S 4
(9Q 0@@@ 9@I 0 ()0(a9(a@(9(31 000j)S000000)(410000000009 510000000009
@3@®@@@@@0@@)(90 () 8)0 @@® @@@ 0 ABCOEF6GH I J A 6C 0E F G "I J AS8C 0EFOGH I J

0000000000000000000 0 2000000000 4200000@0009 520000000000
A00000000 0 8 AC D E FG HI J AS6C DEFOGH I J A 6C 0EPFG14HI J

_____ _______ _____330000000008 43000000000@9000000009
BIRTH DATE IDENTIFICATION NUMBER SPECIAL CODES AS6CO0EPFGH I J AS8C 0EPFGH I S A 8CO0EPFOHKI i

MO DAY I nR E I C DEFGH I J1 KIjMIJOP 340000000000 440000000000 5400000GO®@@
A 8III C)J 0P614H1 11J EFGH CDEF

00 00 00 000030000(S00G00 46(20G000009 55 00(3)(300000
A0000000000 8 C 0EF GH I S AS8C DEFOGH I J AS8CO0E F G HI J

*-0000000000000000000 3700CQ)D00000D9 40000000009 s60000000000
0- 0Q@ 0 0Q)0 (0 Q (0 0 (D(D(b 9)0 A8CO D E 0 I ASCS D64 E 5 A 8CO PE614 ISJ

N - 0 0(i00 00 0(D0 0 0 Q(0 00 30000000009 uooo®®000o0@ si0000000000
-0o *0000000006 ACO0E FG H ISJ A8C DE FG H I J A 8CD0EF6GH I J

0 0 G) Q (000 0G0 00000000 () () 1 30000000 Its0000000000 ~ss000G000 00
AO .0 0 0 0 0 0 0 0 0 ACO0EFOGH I J A8C DEPF6G1HI J A 8CO0E F G HI J

-o) (@@@®o@@o@o 0 D((D(D(D DG(2 D D039oo00009 490000000008 5900000000

Figure 7. General Purpose (NCS) Answer Sheet

(A copyrighted form. Reprinted by Permission
of National Computer Systems, Inc., Minneapolis,
Minnesota.)

Note carefully the format of the question response section. The
rirs.. 30 answers go in the top half of the three columns; whereas,
the next 30 answers go in the bottom half of the column.

21

E. SUMMARY OF EVALUATION PHILOSOPHY.

This section contains a summary of the general philosophy

which should guide each evaluator in answering the questionnaire.

To begin with, the evaluator will notice that the "questions" are

not questions at all. They are statements describing a particularly

desirable attribute of computer software documentation or coding

practice. In "answering the question," the evaluator quantifies his

subjective viewpoint as to what degree that desirable attribute is

reflected in the system under evaluation. The average of all

evaluators answers on each question then provides the basis for a

statistical evaluation of the maintainability of the system.

The primary consideration for the evaluator is "How maintain-

able would this system be for me?" Keeping this thought in mind

can simplify responses to what on the surface are non-relevant

questions. There are no non-relevant questions; there are situa-

tions/systems that are more/less maintainable because of their lack of

some attributes described in the questions.

It is recognized that some documentation (or source listings)

may not be available to the evaluator at the time of evaluation. If

this occurs, the evaluation should proceed using whatever is

available; but the DSE should be prepared to brief the results

tempered with the limitations under which the evaluators operated.

The definition of module for the evaluation should be well

understood by all evaluators prior to the start of the evaluation.

This definition should be agreed to by both the Software Test

Manager and the DSE.

Unless otherwise specified, the questions should be considered

as investigating both existence and quality of a characteristic;

that is, the evaluator is first to determine whether or not the

test factor is present in the documentation or source listing under

evaluation. If he concludes that it is not present, he must

22

L ==l/Ao" .'

decide if that absence enhances or detracts from software main-

tenance on the system. If it is determined that the factor is

present, the evaluator then tempers his answer to reflect the

"goodness" in his judgment of that factor in the system.

Finally, bear in mind that you have been chosen for this

evaluation because of your demonstrated expertise in software

engineering and software support. That expertise and the pro-

fessionalism you demonstrate in completing this evaluation will go

far in providing the Air Force with a quality software product.

23

PART II

SOFTWARE MAINTAINABILITY EVALUATOR'S HANDBOOK

QUESTION RESPONSE GUIDELINES

A. GENERAL.

The following sections contain information which should help

clarify the intent of each question to the evaluator. Part IlI.B

contains information on each Software Documentation Questionnaire

question. Part II.C contains information on each Module Source

Listing Questionnaire question.

Each question contains question terminology clarification and

special response instructions as necessary.

B. SOFTWARE DOCUMENTATION QUESTIONS.

Each page within this section corresponds to a question from

the Software Documentation Questionnaire. Many questions have

special response instructions which should be reviewed.

24

QUESTION DATA SHEET

Question Number D-1

QUESTION: The documentation includes a separate part for the

description of external interfaces.

CHARACTERISTIC: Modularity (format modularity).

EXPLANATIONS: Personnel working in functional areas need to
have information available in one place.

EXAMPLES: An Interface Control Document (ICD). An Opera-
tor's Manual.

GLOSSARY:
Part: Section, volume, document, subsection, etc. as appro-

priate.
External interfaces: Program input and output data, inter-

rupts.

SPECIAL RESPONSE INSTRUCTIONS:
Answer A if one separate part exists.
Answer B - E if the external interfaces are described in

several separate parts depending upon the effectiveness of that
distribution.

Answer F if no description of external interfaces is avail-
able.

D-1

QUESTION DATA SHEET

Question Number D-2

QUESTION: The documentation includes a separate part for the
description of each major function.

CHARACTERISTIC: Modularity (format modularity)

EXPLANATIONS: Personnel working on a specific function should
have all relevant information available in one place.

EXAMPLES: Personnel working only on the navigation function of
an aircraft operational flight program should have navigation
functional descriptions in one place.

GLOSSARY:
Part: Section, volume, document, subsection, etc. as appro-

priate.
Major function: As defined by the overview or other equiva-

lent information: may be a component, module, etc.

SPECIAL RESPONSE INSTRUCTIONS:
Answer A if a separate part exists for each major function.
Answer B - E if each major function is described in several

separate parts depending upon the effectiveness of that distri-
bution.

Answer F if there is no description of each major function.

D-2

QUESTION DATA SHEET

Question Number D-3

QUESTION: The documentation includes a separate part for the

description of the program global data base.

CHARACTERISTIC: Modularity (format modularity).

EXPLANATIONS: Personnel working with the data base should
have a description of all global data items in one place.

EXAMPLES: There should be a separate part of documentation
containing descriptions, types, ranges, sizes, formats, etc. of
the global data items. Where lists are not complete, plans for
completion should be evident.

GLOSSARY:
Part: Section, volume, document, subsection, etc. as appro-

priate.
Global data base: Set of all variables, constants, etc. which

can be accessed by more than one program module: e.g.,
FORTRAN's COMMON, JOVIAL's COMPOOL, assembly's DATA
MODULE, etc.

SPECIAL RESPONSE INSTRUCTIONS:
Answer A if a separate part exists or there is clearly no

global data.
Answer B - E if the global data base is described in several

separate parts depending upon the effectiveness of that distri-
bution.

Answer F if no description of the global data base exists.

D

D-3

QUESTION DATA SHEET

Question Number D-4

QUESTION: Major parts of the documentation are essentially

self-contained.

CHARACTERISTIC: Modularity (format modularity).

EXPLANATIONS: Sampling major parts of the documentation for
the amount of cross referencing and the essential nature of the
cross referencing should give the evaluator a general impression
as to level of agreement/disagreement with the question statement.
However, cross referencing for the purpose of eliminating bulky
redundancies is acceptable.

EXAMPLES:

GLOSSARY:
Major parts: As essentially defined by documentation table

of contents and physical structure (volumes, sections, units,
etc.): might include major functions, data base description,
external interfaces, test plan, conventions and standards, etc.

Self-contained: Independent, stand-alone document. Makes
no cross references to other major parts of the documentation.

SPECIAL RESPONSE INSTRUCTIONS:

D-4

-~ __ ____ I

QUESTION DATA SHEET

Question Number D-5

QUESTION: The documentation has been physically separated

into (sets of) volumes each with a distinct purpose.

CHARACTERISTIC: Modularity (format modularity).

EXPLANATIONS: Each (set of) volume's introduction should
include an indication of what the (set of) volume's purpose is. A
brief scan of the documents should give the evaluator a general
impression of whether that purpose is relatively distinct, mixed,
matches the stated purpose, etc. Each physically separate volume
should be checked and an accumulative impression formed of the
level of agreement/disagreement with the question statement.

EXAMPLES: Maintenance information should not be physically
included in an operator's handbook.

GLOSSARY: Distinct purpose: These might include functional
specification, detailed specification, maintenance manual, user's
guide, data base description, problem reports, installation instruc-
tions, documentation plan, test plan, etc.

SPECIAL RESPONSE INSTRUCTIONS:

D-5

QUESTION DATA SHEET

Question Number D-6

QUESTION: The documentation indicates that each global data

structure is partitioned into functionally related sets of variables.

CHARACTERISTIC: Modularity (data modularity).

EXPLANATIONS: Documentation describing the program global
data base should include the set of all global data and how it has
been partitioned into global data structures.

EXAMPLES: Geodetic site data should be grouped in one global
data structure.

GLOSSARY:
Global data: Any variable or constant which can be ac-

cessed by more than one module of a program.
Global data structure: A particular grouping of global data

variables and/or constants; e.g., FORTRAN's COMMON, JOVIAL's
COMPOOL.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if there is no
global data (hence no global data structures); the implication is
that data coupling is decreased if there is no global data.

D-6

QUESTION DATA SHEET

Question Number D-7

QUESTION: The documentation indicates that data storage loca-

tions are not used for more than one type of data structure.

CHARACTERISTIC: Modularity (data modularity).

EXPLANATIONS: Typical multiple use of data storage locations
would be dynamic memory management schemes, equivalence and
overlays. Program documentation (perhaps at the module level)
should describe any use of storage locations for these types of
uses.

EXAMPLES: Any use of the EQUIVALENCE statement in
FORTRAN, or SAME SORT, SAME AREA, or REDEFINE in COBOL
should be documented.

GLOSSARY: Type: Examples of types of data structures would
be integer, real, character, array of integer, array of real,
array of characters, records, files, etc.

SPECIAL RESPONSE INSTRUCTIONS: If not indicated in the
documentation either way, answer D.

D-7

QUESTION DATA SHEET

Question Number D-8

QUESTION: The program control flow is organized in a top down

hierarchical tree pattern.

CHARACTERISTIC: Modularity (processing modularity).

EXPLANATIONS:
The documentation should include a program overview section

which will likely describe the overall program control flow among
modules in narrative or chart form.

Control paths which are not strictly down or up in the sense
of level tend to detract from modularity because of the associated
lack of independence which is introduced.

EXAMPLES:

GLOSSARY: Top down hierarchical tree pattern: One imagines a
root system of a tree with each junction (node) representing a
major program function or module and each branch a control path
between the nodes.

SPECIAL RESPONSE INSTRUCTIONS: Answer F if there is no
description (narrative or chart) of overall program control flows.

D-8

QUESTION DATA SHEET

Question Number D-9

QUESTION: The documentation indicates that program initializa-
tion processing is done by one (set of) modules(s) designed
exclusively for that purpose.

CHARACTERISTIC: Modularity (processing modularity).

EXPLANATIONS:
The documentation describing the program functions and con-

trol flow should also describe how the initial program state is
determined (e.g., via execution of one initialization module or
not). Checks of module processing may indicate whether any ini-
tialization processing is mixed with other application functions.

It is usually better if each function, module, submodule,
etc. does not handle its own global initialization. There should
be one part (e.g., a few modules) of the program which is for
initialization.

EXAMPLES:

GLOSSARY: Initialization: The preparatory steps required to
set the initial program data and control states.

SPECIAL RESPONSE INSTRUCTIONS: If the partitioning is such
that each function is performed by a set of modules and there is
one module in each set expressly for initialization, then strong
agreement with the question should be so indicated. If in addi-
tion, these initialization modules are all executed in preparation to
any other functional activity as the first program action, then
there should be essentially complete agreement with this ques-
tion's statement.

D-9

QUESTION DATA SHEET

Question Number D-10

QUESTION: The documentation indicates that program termination
processing is done by one (set of) module(s) designed exclusively
for that purpose.

CHARACTERISTIC: Modularity (processing modularity).

EXPLANATIONS:
The documentation describing the program functions and con-

trol flow should also describe how the final program state is
determined (e.g., via execution of one termination module or
not). Checks of module processing may indicate whether any
termination processing is mixed with other application functions.

It is best if each function, module, submodule, etc. does not
handle its own termination. There should be one part (e.g., a
few modules) of the program which is for termination processing.

EXAMPLES: FORTRAN's STOP statement and COBOL's STOP RUN
statement could be within the processing area.

GLOSSARY: Termination: The terminal steps required to set the
final program data and control states (might be due to normal/
abnormal termination).

SPECIAL RESPONSE INSTRUCTIONS: If the partitioning is such
that each function is performed by a set of modules and there is
one module in each set expressly for termination processing, then
strong agreement with the question should be so indicated. If in
addition, these termination modules are executed only as a syste-
matic program termination procedure, then there should be essen-
tially complete agreement with this question's statement. Varia-
tions on the program termination processing should result in
appropriate variations in the evaluator response depending on how
much termination processing is mixed with other application func-
tions.

D-10

I

QUESTION DATA SHEET

Question Number D-11

QUESTION: The documentation indicates that program I/O is
done by one (set of) module(s) designed exclusively for that
purpose.

CHARACTERISTIC: Modularity (processing modularity).

EXPLANATIONS:
The documentation describing the program functions and con-

trol flow should also describe how the program I/O is done (e.g.,
via execution of one module or more). Checks of module pro-
cessing may indicate whether any I/O functions are mixed with
other application functions.

It is best if each function, module, submodule, etc. does not
handle its own I/O. There should be one part (e.g., a few mod-
ules) of the program which is for I/O processing.

EXAMPLES:

GLOSSARY: I/O: Input or output of program data.

SPECIAL RESPONSE INSTRUCTIONS: If the partitioning is such
that each function is performed by a set of modules and there is
one module in each set expressly for I/0, then appropriate agree-
ment with the question should be so indicated. Variations on the
program I/0 processing should result in appropriate variations in
the evaluator response depending on how much I/0 is mixed with
other application functions.

D-11

QUESTION DATA SHEET

Question Number D-12

QUESTION: The documentation indicates that program error
processing is done by one set of modules designed exclusively for
that purpose.

CHARACTERISTIC: Modularity (processing modularity).

EXPLANATIONS:
The documentation describing the program functions and con-

trol flow should also describe how the program processes any
error condition (e.g., via execution of one error processing
module or not). Checks of module processing may indicate
whether any error processing functions are mixed with other
application functions.

It is best if each function, module, submodule, etc. does not
handle its own error processing unless adequate corrective meas-
ures are appropriate. There should be one part (e.g., a few
modules) of the program which is for error processing.

EXAMPLES: Editing of input data should be documented.

GLOSSARY: Error processing: The steps requir.d to set pro-
gram data and control states following the detection of an error
condition.

SPECIAL RESPONSE INSTRUCTIONS: If the partitioning is such
that each function is performed by a set of modules and there is
one module in each set expressly for error processing, then
appropriate agreement with the question should be so indicated.
If in addition, these error processing modules are systematically
organized as an error processing function, then there should be
essentially complete agreement with this question statement.

D-12

QUESTION DATA SHEET

Question Number D-13

QUESTION: Each physically separate part of the documentation

includes a useful table of contents.

CHARACTERISTIC: Descriptiveness (format descriptiveness).

EXPLANATIONS: Each separately bound part of the set of docu-
mentation for this program has its own table of contents to assist
in locating program information.

EXAMPLES:

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Answer A to F depending
upon the percentage of documents which have a useful table of
contents: e.g., 100% - answer A, 0% - answer F.

D-13

QUESTION DATA SHEET

Question Number D-14

QUESTION: Each physically separate part of the documentation
includes a useful glossary of major terms and acronyms unique to
that document.

CHARACTERISTIC: Descriptiveness (format descriptiveness).

EXPLANATIONS: Each separately bound part of the set of docu-
mentation has its own glossary of major terms and acronyms to
assist in clarifying other documentation.

EXAMPLES:

GLOSSARY:
Acronym: A term formed by the initial letter(s) of a series

of one or more words.
Example: FORTRAN = FORmula TRANslation.

SPECIAL RESPONSE INSTRUCTIONS: Answer A to F depending
upon the percentage of documents which have a useful glossary:
e.g., 100% - answer A, 0% answer F.

D-14

QUESTION DATA SHEET

Question Number D-15

QUESTION: Each physically separate part of the documentation
includes a useful index.

CHARACTERISTIC: Descriptiveness (format descriptiveness).

EXPLANATIONS: Each separately bound part of the set ,f docu-
mentation has its own index to assist in locating information.

EXAMPLES:

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Answer A to F depending
upon the percentage of documents which have a useful index:
e.g., 100% - answer A, 0% - answer F.

I

D-15

QUESTION DATA SHEET

Question Number D-16

QUESTION: It is easy to locate specific information within the

documentation.

CHARACTERISTIC: Descriptiveness (format descriptiveness).

EXPLANATIONS: The evaluator should repeatedly conceptualize
the need for locating a specific piece of information that might be
needed for maintenance, and then check the documentation for the
effort required to locate the information.

EXAMPLES: One piece of frequently needed information might be
the contents of the parameter list. Another might be a list of
what modules call another module. The evaluator should consider
some specific piece of information and assess the ease of locating
that information.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:

D-16

QUESTION DATA SHEET

Question Number D-17

QUESTION: The documentation includes a useful version descrip-

tion document.

CHARACTERISTIC: Descriptiveness (format descriptiveness).

EXPLANATIONS: Some document should be readily available
which describes the current operational version of each con-
figuration controlled program. In hierarchical library systems,
c'-uments should be available describing each level of the
libr)rv.

EXAMPLES:

GLOSSARY: Version description document: A document which
describes the version of each computer program.

SPECIAL RESPONSE INSTRUCTIONS: If the documentation is a
baseline (original version or an all-encompassing rewrite), the
evaluator should answer A.

D-17

QUESTION DATA SHEET

Question Number D-18

QUESTION: A useful master list is available which identifies all

software documentation.

CHARACTERISTIC: Descriptiveness (format descriptiveness).

EXPLANATIONS: A reference list should be available in one
overview document or in a separate document which lists at least
all delivered program-related documentation by name and descrip-
tion; if several programs are part of the software developement
effort, then the list should contain information on all programs.

EXAMPLES:

GLOSSARY: Master list: This may be a reference list in one
overview document, or a separate document itself.

SPECIAL RESPONSE INSTRUCTIONS:

D-18

II--I i

QUESTION DATA SHEET

Question Number D-19

QUESTION: Any dynamic allocation of resources (storage,
timing, priority, hardware services, etc.) is explained in the
documentation.

CHARACTERISTIC: Descriptiveness (constraints descriptive-
ness).

EXPLANATIONS: The documentation describing the functional/
detailed program specifications should include a section which
explains what dynamic allocation features are used by the pro-
gram. These features may be considered necessary depending
upon the application, but all are considered to increase the effort
required to maintain a program.

EXAMPLES: The most common dynamic allocation feature is pro-
bably storage allocation. There may be allocation routines which
must be called to get or release memory. Also, the priority
scheme or timing allocation for particular "rate" groups may
depend upon certain phases of a mission and dynamically change
on that basis. Likewise assignment of control of tape drives,
discs, communication lines or other hardware may be done in some
dynamic manner.

GLOSSARY: Dynamic allocation: Any assignment of a resource
which is (or can be) done during the execution of a program;
contrasts with "static allocation" which implies the resource as-
signment remains fixed throughout program execution.

SPECIAL RESPONSE INSTRUCTIONS:
Answer A if it is clear there is no dynamic allocation of

resources for this program.
Answer B - F otherwise.

D-19

QUESTION DATA SHEET

Question Number D-20

QUESTION: Timing requirements for each major function of the
program are explained in the documentation.

CHARACTERISTIC: Descriptiveness (constraints descriptive-
ness).

EXPLANATIONS: The allocated time for each major function
operating in a real-time environment should be described in the
documentation. In addition, the timing relationships among major
functions, or the framing scheme, should also be described and
readily available.

EXAMPLES:

GLOSSARY: Major function: The program overview, hier-
archical chart, etc. will ordinarily define what major function
(and its components) means; it usually will correspond to a
module or group of modules as defined for a given program eval-
uation.

SPECIAL RESPONSE INSTRUCTIONS:
Answer A if it is clear that this program has no timing re-

quirements (e.g., is non-real time).
Answer B -F otherwise.

0-20

QUESTION DATA SHEET

Question Number D-21

QUESTION: Storage requirements for each major function of the
program are explained in the documentation.

CHARACTERISTIC: Descriptiveness (constraints descriptive-
ness).

EXPLANATIONS: Allocated storage requirements for each major
function should be described in the documentation. Even if a
program does not have any "critica~l storage requirements, there
should be an explanation in the documentation covering the pro-
gram's environment.

EXAMPLES:
In a program operating in a paged storage environment, the

page limitations (number of pages, boundary requirements, etc,)
should be described.

For programs operating in a resident/non-resident environ-
ment, relationships to the roll-in area requirements should be
described.

GLOSSARY: Major function: The program overview, hierarchical
chart, etc. will ordinarily define what major function (and its
components) means; it usually will correspond to a module or
group of modules as defined for a given program evaluation.

SPECIAL RESPONSE INSTRUCTIONS: Answer F if there is no
explanation of the storage requirement(s).

D

D-21

QUESTION DATA SHEET

Question Number D-22

QUESTION: The inputs to each module are explained in the

documentation.

CHARACTERISTIC: Descriptiveness (module descriptiveness).

EXPLANATIONS: Input parameters passed via parameter pack-
ages or argument lists ano global data used by each module as
input should be described.

EXAMPLES: The documentation for a trigonometric subroutine
describes what data is input (an angle), the form (in radians),
limitations (0 < angle < n/ 2), and how it is input (passed as a
single precision real number in the first parameter).

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:

D-22

QUESTION DATA SHEET

Question Number D-23

QUESTION: The processing done by each module is explained in
the documentation.

CHARACTERISTIC: Descriptiveness (module descriptiveness).

EXPLANATIONS: The algorithm(s) which generate the outputs
from the inputs should be described in the documentation.

EXAMPLES: A trigonometric functici should have a description of
the function itself, the algorithm used, and any limitations.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:

D-23

QUESTION DATA SHEET

Question Number D-24

QUESTION: The outputs from each module are explained in the

documentation.

CHARACTERISTIC: Descriptiveness (module descriptiveness).

EXPLANATIONS: Output parameters passed via parameter or
argument lists and global data altered by each module should be
described.

EXAMPLES: The documentation for an inverse trigonometric
subroutine describes what data is output (an angle), the form (in
radians), and how it is output (passed as a double precision real
number in the second parameter).

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:

D-24

QUESTION DATA SHEET

Question Number D-25

QUESTION: Special processing considerations (error, interrupt,

etc.) of each module are explained in the documentation.

CHARACTERISTIC: Descriptiveness (module descriptiveness).

EXPLANATIONS: Any special considerations, such as the dif-
ferent types of errors possible and their effects, the effects of
interrupts and the effects of other asynchronous events should be
described.

EXAMPLES: In a message processing program, processing limita-
tions may cause loss of an incoming character. The documenta-
tion for the input handler should describe this condition and its
response to it.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:

0-25

QUESTION DATA SHEET

Question Number D-26

QUESTION: There is a flow chart (or equivalent) for each
module which adequately illustrates the inputs, general pro-
cessing, and outputs for the module.

CHARACTERISTIC: Descriptiveness (module descriptiveness).

EXPLANATIONS: Some form of functionally-oriented presentation
of each of the program components should be available in the
documentation. This could take the form of flowcharts, Process
Design Language (PDL) with functional commentary, Hierarchical
Input-Processing-Output (HIPO) charts, etc.

EXAMPLES:

GLOSSARY: Flowchart (or equivalent): A logic flow diagram in
which symbols are used to represent operations, data, flow,
equipment, etc. Examples are: FORTRAN flowchart, Process
Design Language (PDL), Hierarchical Input-Processing-Output
(HIPO) chart, etc.

SPECIAL RESPONSE INSTRUCTIONS: Answer F if module flow-
charts (or equivalent) do not exist.

D-26
'

QUESTION DATA SHEET

Question Number D-27

QUESTION: Program initialization and termination processing is
explained.

CHARACTERISTIC: Descriptiveness (external interface descrip-
tiveness).

EXPLANATIONS: The documentation should cover both the data
and the steps required to initialize the operation of this program
within the system and to effect both normal and abnormal termi-
nation of the program.

EXAMPLES: An Operational Flight Program may have no termina-
tion procedures short of power off; however, most such programs
determine the source of the power outage, and whether any
memory locations need be protected, etc. Such considerations
should be documented.

GLOSSARY:
Initialization: The preparation steps required to set the

initial program data and control states.
Termination: The terminal steps required to set the final

program data and control states (might be due to normal/abnormal
termination).

SPECIAL RESPONSE INSTRUCTIONS: The evaluator should study
both initialization and termination processing explanations. The
response A-F should reflect overall how well both have been ex-
plained.

D-27

QUESTION DATA SHEET

Question Number D-28

QUESTION: Recovery from externally generated error conditions
which could affect the program is explained.

CHARACTERISTIC: Descriptiveness (external interface descrip-
tiveness).

EXPLANATIONS: The documentation should include an explanation
of overall error processing. This description should include a
description of the recovery of the program from error conditions
generated external to the program, but affecting its capability to
function. In most cases, this explanation will concern the
recovery from lack of or bad input data or parameters to the
program.

EXAMPLES:

GLOSSARY: Recovery: The procedures taken to report/correct
some program failure (resulting from an external error condition
in this case and probably recognized as bad input data).

SPECIAL RESPONSE INSTRUCTIONS:

D-28

QUESTION DATA SHEET

Question Number D-29

QUESTION: The process of recovering from internally generated
error conditions is explained.

CHARACTERISTIC: Descriptiveness (external interface descrip-
tiveness).

EXPLANATIONS: The documentation should include an explana-
tion of overall error processing. This description should include
a description of the recovery of the program from error conditions
encountered within the program and not directly caused by the
environment external to the program.

EXAMPLES: The documentation explains that, in cases where a
divide by zero is possible, a check is made of the divisor and
alternate processing is instituted to recover from the error.

GLOSSARY: Internal error condition: Any algorithm failure due
to processing of internally defined data.

SPECIAL RESPONSE INSTRUCTIONS:

D-29

QUESTION DATA SHEET

Question Number D-30

QUESTION: Input of program data is explained.

CHARACTERISTIC: Descriptiveness (external interface descrip-
tiveness).

EXPLANATIONS: The documentation should describe what data is
input, the form of the data, any limitations on the data, and how
it is input.

EXAMPLES:
1. Card deck or card deck image input: Line-by-line

description of input, giving format, range or limitations of each
data field, type (numeric or alphanumeric, integer or floating
point), etc.

2. Multiplex Bus: Description of all data structures to be
received from the bus, giving source and timing of data blocks
(such as a block received from the inertial navigation system once
per second), the sequence, definition, and scale factors of the
parameters in a block, etc.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:

0I30
D0-30

QUESTION DATA SHEET

Question Number D-31

QUESTION: Output of program data is explained.

CHARACTERISTIC: Descriptiveness (external interface descrip-
tiveness).

EXPLANATIONS: The documentation should describe what data is
output, the form of that data, and how it is output.

EXAMPLES: Complete description of the program output, be it:
1. Listing (printout),
2. CRT display (data displayed on a Heads Up Display

[HUD]), or
3. Mux Bus, etc.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:

D

-I

D-31I

QUESTION DATA SHEET

Question Number D-32

QUESTION: There is a useful set of charts which show the
general program control and data flow hierarchy among all
modules.

CHARACTERISTIC: Descriptiveness (internal interface descrip-
tiveness).

EXPLANATIONS: Whatever method is used to present the flow,
the presentation should be understandable and complete.

EXAMPLES: The documentation should include a set of system
flowcharts, Process Design Language (PDL), Hierarchical Input-
Processing-Output (HIPO), etc. which show the program control
and data flow either together or separately.

GLOSSARY: Chart: Flowchart, Process Design Language (PDL),
Hierarchical Input-Processing-Output (HIPO) chart, etc.

SPECIAL RESPONSE INSTRUCTIONS: Answer F if no set of
charts exists.

D-32

QUESTION DATA SHEET

Question Number D-33

QUESTION: There is a master list (chart, table, section, etc.)
identifying where each global variable is used.

CHARACTERISTIC: Descriptiveness (internal interface descrip-
tiveness).

EXPLANATIONS: A part of the documentation should be a master
list identifying where each global variable is used. This list con-
tains information used by maintainers of all modules and it is

important they use the same list.

EXAMPLES: In many programming systems, an automated global
data cross-reference report may be generated.

GLOSSARY: Global variable: Any variable which can be ac-
cessed by more than one module of a program; global constants
should also be identified.

SPECIAL RESPONSE INSTRUCTIONS: Answer F if no master list
or its equivalent exists. Answer A if it is clear that no global
variables exist in the progrz •

D

0-33

QUESTION DATA SHEET

Question Number D-34

QUESTION: The global variable master list includes information
about each global variable such as type, range, scaling, units,
etc.

CHARACTERISTIC: Descriptiveness (internal interface descrip-
tiveness).

EXPLANATIONS: The documentation should contain a separate
data base description in which all global data is described to
include information on type, range, etc. This list is important in
that it contains information used by maintainers of all modules.

EXAMPLES:

GLOSSARY: Global variable: Any variable which can be ac-
cessed by more than one module of a program; global constants
should also be identified.

SPECIAL RESPONSE INSTRUCTIONS: Answer F if no master list
or its equivalent exists. Answer A if it is clear that no global
variables exist in the program.

D-34

QUESTION DATA SHEET

Question Number D-35

QUESTION: The use of any complex mathematical model (tech-

nique, algorithm) is explained in the documentation.

CHARACTERISTIC: Descriptiveness (math model descriptiveness).

EXPLANATIONS: The documentation should contain details on the
use of any complex algorithm to include input requirements and
limitations.

EXAMPLES: The documentation for a numerical integration
algorithm might specify that a minimum number of intervals be
selected for a specified result accuracy.

GLOSSARY: Complex mathematical model: e.g., Fourier trans-
form, Laplace transform, numerical integration/differentiation
scheme, control theory algorithm, statistical technique, etc.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if it is clear that
there are no complex mathematical models (techniques, algorithms)
used in the program.

D-35

QUESTION DATA SHEET

Question Number D-36

QUESTION: The documentation on each complex mathematical
model includes information such as a derivation, accuracy require-
ments, stability considerations and references.

CHARACTERISTIC: Descriptiveness (math model descriptiveness).

EXPLANATIONS: The documentation should contain enough
detailed explanation or cross-references to allow the maintainer to
modify the algorithm or its implementation and be aware of the
implications or be able to locate references which make the impli-
cations clear.

EXAMPLES: A numerical algorithm that depends on double pre-
cision processing should have a description of the implications to
accuracy if single precision were to be substituted.

GLOSSARY: Complex mathematical model: e.g., Fourier trans-
form, Laplace transform, numerical integration/differentiation
scheme, control theory algorithm, statistical technique, etc.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if it is clear that
there are no complex mathematical models (techniques, algorithms)
used in the program.

D-36

QUESTION DATA SHEET

Question Number D-37

QUESTION: It appears that a useful set of standards has been

followed for the development of the documentation.

CHARACTERISTIC: Consistency (format consistency).

EXPLANATIONS: Consistent documentation means that the main-
tainer can spend less time learning the organization of the docu-
mentation and more time learning the content. The documentation
should be scanned for adherence to standards.

The evaluator may know in advance that documentation
standards were generated and he can see that they were followed.

The evaluator may not know in advance but may be able to
tell from the organization of diverse parts of the documentation
that standards were available and followed.

Confusing documentation organization indicates misuse or no
use of documentation standards.

EXAMPLES: Following either contractor standards developed
locally or universal standards (e.g., ANSI FORTRAN) which help
understandability. Usually the format consistency of the documen-
tation indicates how much a standard/convention, etc. has been
followed.

GLOSSARY: Standards: Procedures, rules, and conventions
used for prescribing disciplined program design and implementa-
tion.

SPECIAL RESPONSE INSTRUCTIONS:

D-37

QUESTION DATA SHEET

Question Number D-38

QUESTION: It appears that a set of standards has been followed
for the construction of all (program and module) flowcharts (or
equivalent).

CHARACTERISTIC: Consistency (format consistency).

EXPLANATIONS: The flowcharts of the program and its modules
should be scanned for conventional use of symbols, labeling
consistency, etc. There may be a stated standard (e.g., ANSI
FORTRAN) against which the flowcharts may be compared.

EXAMPLES: The documentation contains a section describing the
flowcharting methodology and it is clear from the flowcharts that
the methodology has been followed.

GLOSSARY:
Standards: Procedures, rules and conventions used for

prescribing program design and implementation.
Flowchart (or equivalent): A logic flow diagram in which

symbols are used to represent operations, data, flow, equipment,
etc. In the broad sense, would include FORTRAN flowchart,
Process Design Language (PDL), Hierarchical Input-Processing-
Output (HIPO), etc.

SPECIAL RESPONSE INSTRUCTIONS: Answer F if there are no
flowcharts (or equivalents).

D-38

QUESTION DATA SHEET

Question Number D-39

QUESTION: Documentation of each major functional part of the

program follows the same format.

CHARACTERISTIC: Consistency (format consistency).

EXPLANATIONS: Each major functional area of a program should
have the same documentation format as far as is practicable in
order to aid understandability.

EXAMPLES: An airborne computer may contain major modules
dedicated, for instance, to navigation, bombing, and air-to-air.
Each of these modules would need input, output, and processing
sections. All input sections should be similar; all output sections
should be similar, etc.

GLOSSARY: Major functional part: The program overview, hier-
archical chart, etc. will ordinarily define what major function
(and its components) means; it usually will correspond to a module
or group of modules as defined for a given program evaluation.

SPECIAL RESPONSE INSTRUCTIONS:

D-39

QUESTION DATA SHEET

Question Number D-40

QUESTION: The format of the documentation reflects the organi-

zation of the program.

CHARACTERISTIC: Consistency (format consistency).

EXPLANATIONS:
Program parts are easier to maintain if the documentation has

separate sections to describe each of those parts. This simplifies
looking for details concerning those program parts.

There can be other considerations which may influence the
evaluator in responding to this question. What is desired is
basically the evaluator's general impression as to the usefulness
of the documentation format in understanding the overall program
organization.

EXAMPLES: Major program functions, the program data base,
etc. might have separate sections. The descriptions of how the
program is designed to be tested should be reflected in the
format of the documentation such as providing sections for unit
test procedures and sample test data if appropriate.

GLOSSARY: Organization of the program: Design of the pro-
gram as components, modules, global data base, units, segments,
etc.

SPECIAL RESPONSE INSTRUCTIONS:

D-40
.1i

QUESTION DATA SHEET

Question Number D-41

QUESTION: It appears that programming conventions have been

established for the interfacing of modules.

CHARACTERISTIC: Consistency (design consistency).

EXPLANATIONS: Module interface design is extremely important;
improper interfacing can lead to many hidden errors. Program
design conventions should be documented. In addition, the
module descriptions can be scanned to determine whether such
conventions have been established and/or followed. The establish-
ment of linkage conventions is especially important for assembly
language modules.

EXAMPLES: Inputs and outputs, both argument type and global
data type, require coordination between the sender(s) and the
receivers(s). Such coordination requires explicit description of
all attributes of each such variable and should be listed in an
interface control document.

GLOSSARY:
Interfacing of modules: The passing of control, data, or

services between two or more modules.
Convention: Agreed method or form of presentation to

provide consistency and understanding.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if it is clear that
there is no interfacing between any of the modules.

D-41

QUESTION DATA SHEET

Question Number D-42

QUESTION: It appears that programming conventions have been

established for I/O processing.

CHARACTERISTIC: Consistency (design consistency).

EXPLANATIONS:
Program I/O processing is the interface of the program to

the rest of its environment.
The module descriptions should be scanned to determine if

any particular design consistency/conventions have been followed
for program I/O processing.

EXAMPLES: One module or set of modules should be clearly
identified as interfacing the computational system to the real
world. All attributes of all inputs and all outputs should be
clearly identified. This data is essential to all personnel inter-
facing with any 1/0 data, whether externally (to/from real world)
or internally (to/from processing routines).

GLOSSARY: I/0 processing: The physical input or output of
program data.

SPECIAL RESPONSE INSTRUCTIONS:

D-42

QUESTION DATA SHEET

Question Number D-43

QUESTION: It appears that design conventions have been

established for error processing.

CHARACTERISTIC: Consistency (design consistency).

EXPLANATIONS: Centralized processing of error conditions
generally improves the maintainability of a program. Under such
centralized error processing, any module which communicates an
error condition to an error processing routine must do so pro-
perly. Therefore, error processing procedures must be docu-
mented and followed.

EXAMPLES: An error type is generated and passed to the error
processing routine(s). The routine generating the error type
"knows" that the error processing routine will handle it properly
when both parties have followed the documented procedures.

GLOSSARY: Error processing: The procedure followed after a
program failure due to some recognized error condition.

SPECIAL RESPONSE INSTRUCTIONS:

D-43

-7 -

QUESTION DATA SHEET

Question Number D-44

QUESTION: A naming convention for modules appears to have

been used.

CHARACTERISTIC: Consistency (design consistency).

EXPLANATIONS: Naming conventions help to describe processing
and input/output. The maintenance programmer should be able to
easily recognize calls to processes external to the module being
changed. Although the listing may not be available to confirm
conventions, the documentation should contain standards or con-
ventions for naming yet-to-be-designed modules.

EXAMPLES: All routine names begin with "SUB" (for subroutine)
or "XR" (for external-routine).

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:

D-44

II

QUESTION DATA SHEET

Question Number D-45

QUESTION: A naming convention for global variables appears to
have been used.

CHARACTERISTIC: Consistency (design consistency).

EXPLANATIONS: Naming conventions help to describe processing
and input/output. The maintenance programmer should be able to
recognize global variables easily, since extra caution must be
used when making changes which deal with data which is either
generated or used outside the module being changed. Although
the listings may not be available to confirm conventions, the
documentation should contain standards or conventions to be
followed during programming.

EXAMPLES: All variables which are global variables have names
beginning with "XG" (external-global); no other type of variable
name begins with that letter combination.

GLOSSARY: Global variable: Any variable or constant which can
be accessed by more than one module of a program.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if there are no
global variables.

D-45

QUESTION DATA SHEET

Question Number D-46

QUESTION: The terminology used in the documentation to

describe the program is easily understood.

CHARACTERISTIC: Simplicity (format simplicity).

EXPLANATIONS: The general use of English and program terms
should be simple, straightforward, easily understood; any terms
or acronyms needing to be clarified should be defined prior to
use and included in a glossary for reference.

EXAMPLES: A program that calculates MTBF should define Mean
Time Between Failures - what the acronym means plus how the
figure is calculated.

GLOSSARY: Terminology: Technical or special terms relevant to
this particular computer system.

SPECIAL RESPONSE INSTRUCTIONS:

0-46

QUESTION DATA SHEET

Question Number D-47

QUESTION: The documentation is physically organized as a
systematic description of the program from levels of less detail to
levels of more detail.

CHARACTERISTIC: Simplicity (format simplicity).

EXPLANATIONS: Generally, the documentation produced during a
software development effort should successively describe require-
ments, preliminary design, detailed design, operation/maintenance
manual, test plan, etc. This will reflect a natural progression of
program description from levels of less detail to levels of more
detail.

EXAMPLES: Within any given documentation product, e.g., the
detailed design specification, there should be a sequential pro-
gression from descriptions of less detail (e.g., overview) to
descriptions of more detail (e.g., module design).

GLOSSARY: Physically organized: The documents, volumes,
chapters, sections, etc.

SPECIAL RESPONSE INSTRUCTIONS:

D-47

QUESTION DATA SHEET

Question Number D-48

QUESTION: Each part (sentence, paragraph, subsection, section,
chapter, volume, etc.) of the documentation tends to express one
central idea.

CHARACTERISTIC: Simplicity (format simplicity).

EXPLANATIONS: All documentation should be scanned. If the
documentation has been written in a simple understandable manner,
then more than likely each part will address one primary topic
(and subparts, one primary subtopic, etc.). The descriptions
will be simple and to the point.

EXAMPLES:

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:

D-48

QUESTION DATA SHEET

Question Number D-49

QUESTION: The amount of cross referencing among parts of the
documentation contributes to the understandability of the program
description.

CHARACTERISTIC: Simplicity (format simplicity).

EXPLANATIONS: Some parts of the documentation may use cross
referencing well while other parts may not. The evaluator should
study the documentation until a reasonably well-founded overall
impression is formed.

EXAMPLES: A narrative description of a file layout cross
referenced to a figure graphically displaying the file is good. A
simple reference to the figure with no narrative is not.

GLOSSARY: Cross reference: A note, statement, section
number, etc. which directs a reader from one part of the docu-
mentation to another part.

SPECIAL RESPONSE INSTRUCTIONS:

D-49

I!

QUESTION DATA SHEET

Question Number D-50

QUESTION: The documentation indicates that the program source

language is a high order language (HOL).

CHARACTERISTIC: Simplicity (design simplicity).

EXPLANATIONS: Even though the system design dictates a
non-HOL, a HOL is desirable from a maintainablity standpoint.
Less knowledge of internal machine operating characteristics is
required to maintain a HOL program.

EXAMPLES: A particular communication processor program is
better designed in assembly language due to the nature of bit
manipulation requirements; however, assembly language programs
are harder to maintain due to the machine dependency of assembly
languages and the specialized knowledge required to maintain
them.

GLOSSARY: High order language: A programming language that
does not reflect the structure of any one given computer or that
of any given class of computers: Non-assembly, non-micro code,
non-machine; e.g., FORTRAN, JOVIAL, PL/I, PASCAL, etc.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if the program
source language is completely HOL. Answer F if the program
source language is completely non-HOL. Answer in the range B
to E if the source language is a mix of HOL and non-HOL by
approximate percentage:

B - > 80%
C - 60%
D - > 40%
E - " 20%

D-50

QUESTION DATA SHEET

Question Number D-51

QUESTION: The documentation indicates that the use of recur-

sive/reentrant programming techniques is not excessive.

CHARACTERISTIC: Simplicity (design simplicity).

EXPLANATIONS:
The documentation should identify within a general "program

design considerations" section or the individual module description
sections whether recursion or reentrancy is to be utilized. Many
languages (or at least a particular implementation of a compiler)
do not allow recursive and/or reentrant code. Some languages
(e.g., stack-oriented languages like Pascal) allow recursion as a
natural language capability.

The evaluator should get an overall impression of how much
recursion/reentrant programming is a part of the overall program
design. If done with care, some use of recursion or reentrancy
can simplify the overall program design even though the particu-
lar modules which are recursive/reentrant will probably be harder
to maintain because of those concerns.

EXAMPLES: Utility modules generally use these techniques.

GLOSSARY:
Recursive programming techniques: The use of operations

which are defined in terms of themselves: a recursive module is
one which uses a call to itself within the body of the code.

Reentrant programming technique: The technique of inter-
rupting a program module at any point by another user and then
resuming execution at the point of interruption. A reentrant
module is one which can be concurrently used by more than one
user.

Excessive: Detracts from simplicity.

SPECIAL RESPONSE INSTRUCTIONS:
If the documentation does not indicate, then:

Answer A if the language does not allow such techniques
(example: COBOL).

Answer F if the language does allow such techniques
(example: ALGOL or assembly language).

D-51

QUESTION DATA SHEET

Question Number D-52

QUESTION: The docimentation indicates that each program

module is designed to perform cnly one major function.

CHARACTERISTIC: Simplicity (design simplicity).

EXPLANATIONS: From the standpoint of simplicity, it would be
easy to maintain a program in which each module performs only
one function. Even if each module (or nearly each) per-forms
only one major function and possibly one or two related functions,
the program should still be simple and easy to maintain.

EXAMPLES: A print module may make a decision as to where to
return in a program based upon the data printed. This may
detract little from the simplicity; however, it would preclude an A
answer.

GLOSSARY:
Function: A sub-division of a process.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if each
module performs just one function. Answer B-F based on the
proportion of modules which perform more than one function,
e.g., B if 10% or less to F if 90% or more.

D-52

- 4

QUESTION DATA SHEET

Question Number D-53

QUESTION: The documentation indicates that resource (storage,
timing, tape drives, disks, consoles, etc.) allocation is fixed
throughout program execution.

CHARACTERISTIC: Simplicity (design simplicity).

EXPLANATIONS: Dynamic allocation tends to increase the level of
complexity of a module, thereby making maintenance more difficult
and time-consuming. The sharing or dynamic reassignment of
resources should be a highlight of a section describing special
processing (control) considerations, memory allocation, timing
requirements by mission phase, etc. As another recourse, the
evaluator can check the individual module descriptions for pos-
sible mention of any dynamic resource allocation.

EXAMPLES:

GLOSSARY:
Resource allocation: The assignment of a particular resource

to a particular program task, function, module, etc.
Fixed: Is not reassigned from initialization to termination or

reinitialization of the program.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if resource
allocation is fixed throughout the entire program or is controlled
by the operating system (i.e., transparent to the programmer).

D-53

QUESTION DATA SHEET

Question Number D-54

QUESTION: The documentation indicates that the control flow

among modules is easy to follow.

CHARACTERISTIC: Simplicity (design simplicity).

EXPLANATIONS: The documentation should include narrative or
a hierarchical flowchart which gives a clear, concise, easily
understood general overview of the sequence in which modules
(and perhaps submodules) are invoked and what controls that
sequence.

EXAMPLES:

GLOSSARY: Control flow among modules: Which modules call and
are called by other modules.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if all modules
are entirely independent.

D-54

QUESTION DATA SHEET

Question Number D-55

QUESTION: The timing scheme designed for the program is

easily understood from the documentation.

CHARACTERISTIC: Simplicity (design simplicity).

EXPLANATIONS: The program documentation should include a
separate section which describes overall timing requirements and
the timing scheme designed to satisfy those requirements. This
description should be clear, concise, and easily followed.

EXAMPLES:

GLOSSARY: Timing scheme: Time slicing, time sharing, priority
levels, rate groups, etc. as applied to the overall sequencing and
execution of program functions.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if there are
clearly no special timing considerations.

D-55

._

QUESTION DATA SHEET

Question Number D-56

QUESTION: The program is designed so that modules are not

interrupted during execution.

CHARACTERISTIC: Simplicity (design simplicity).

EXPLANATIONS: Whenever special processing is required to
handle the possibility of being interrupted, a higher level of
complexity will exist in a module.

EXAMPLES:

GLOSSARY: Interrupted: Execution is suspended without the
knowledge of the module being suspended.

SPECIAL RESPONSE INSTRUCTIONS:

D-5

QUESTION DATA SHEET

Question Number D-57

QUESTION: It is evident from the documentation that a knowl-
edge of mathematics beyond basic algebra is not required to
understand the mathematical functions performed by the program.

CHARACTERISTIC: Simplicity (design simplicity).

EXPLANATIONS: There may be a few complex functions, but on
the average most of the functions require no mathematics beyond
basic algebra. In this case, the evaluator might generally or
strongly agree with the question statement. If there appears to
be many complex functions, the evaluator may want to generally
or strongly disagree with the question statement.

EXAMPLES:

GLOSSARY: Basic algebra: Functions (including trigonometric
and geometric functions), equations, polynomials (including
series), graphing of functions, basic manipulations, etc.; ex-
cludes calculus, differential equations, Fourier transforms, statis-
tical algorithms, etc.

SPECIAL RESPONSE INSTRUCTIONS: The evaluator should
respond on the basis of overall program considerations.

D

A

D1-57

.'S.

QUESTION DATA SHEET

Question Number D-58

QUESTION: A numbering scheme has been adopted which allows
for easy addition or deletion of narrative parts of the documenta-
tion.

CHARACTERISTIC: Expandability (format expandability).

EXPLANATIONS: Computer program documentation can be
voluminous and subject to frequent changes due to program
modifications and format requirement alterations. This question
seeks to determine if:

a) A numbering convention has been established for format-
ting the documentation; and,

b) the format enhances:
1 identifying volumes, sections, and paragraphs; and pages,

and,
2 adding and deleting information without generating

attendant rippling effects throughout the rest of the document.
Determine if a numbering scheme has been established. Assess
the ease with which a volume/section/paragraph/page can be
located and the extent to which a change in document content will
affect the numerical identifiers of other parts of the document.

EXAMPLES: Consecutive numbering of pages makes it difficult to
add/delete pages. Use of a hierarchical numbering system to
number pages by section reduces the number of succeeding pages
affected by changing the contents of a section.

GLOSSARY: Number scheme: A formatting convention used to
facilitate identifying some part of a document.

SPECIAL RESPONSE INSTRUCTIONS:

D-58

.

QUESTION DATA SHEET

Question Number D-59

QUESTION: Graphic materials (figures, charts, lists, etc.) are
physically separate (e.g., on separate pages) from narrative
description.

CHARACTERISTIC: Expandability (format expandability).

EXPLANATIONS: Graphic materials should always be on separate
pages. Changes in narrative are more easily typed when narra-
tive and graphic materials are not co-located on the same page.

EXAMPLES:

GLOSSARY: Graphic materials: Tables, figures, equations.

SPECIAL RESPONSE INSTRUCTIONS:

D

D-59

QUESTION DATA SHEET

Question Number D-60

QUESTION: A numbering scheme has been adopted which allows

for easy addition or deletion of graphic materials.

CHARACTERISTIC: Expandability (format expandability).

EXPLANATIONS: Graphic materials in computer program docu-
mentation can be subject to frequent changes due to program or
requirement modifications. A suitable numbering scheme should
have been established such that graphic materials can easily be
identified and added/removed without having a rippling effect on
other numbered items in the document. It should be determined
if a numbering scheme has been established. The ease with
which graphic materials can be located and the extent to which
adding or deleting an item affects the assigned identifiers of
other items should be assessed.

EXAMPLES: Consecutive numbering of figures across major
sections requires more changes when adding or deleting figures
than numbering consecutively within a major section.

GLOSSARY:
Numbering scheme: A formatting convention used to facili-

tate identifying some part of a document.
Graphic materials: Items such as tables, figures, and

equations.

SPECIAL RESPONSE INSTRUCTIONS:

D- 60

- --. .,.aSl.f

QUESTION DATA SHEET

Question Number D-61

QUESTION: The program timing scheme appears to be flexible
enough to allow for modifications (e.g., reorganization, addition,
deletion of functional parts).

CHARACTERISTIC: Expandability (design expandability).

EXPLANATIONS: In many applications, specific program functions
must be performed at periodic intervals, within predetermined
time intervals, or at a definite point in time. This question seeks
to determine the extent to which the program's timing scheme
restricts desired changes to a program's design.

EXAMPLES: A function that must be performed every 10 micro-

seconds will conflict with the design of a different function
requiring 10 or more microseconds of uninterrupted processing.

GLOSSARY:
Timing scheme: A convention based on wall clock time or

processor clock time that controls execution of a program's func-
tions.

Flexible: Modifiable.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if there are no
required program timing considerations.

D-61

QUESTION DATA SHEET

Question Number D-62

QUESTION: There is a reasonable time margin for each major

program function (rate group, time slice, priority level, etc.).

CHARACTERISTIC: Expandability (design expandability).

EXPLANATIONS: Program functions should be designed such that
required timing constraints are met with "room to spare." Too
little reserves limit the ability to add processes to a function.
Too much reserve, on the other hand, may indicate processing
inefficiency due to resource underutilization.

EXAMPLES: A program function requiring a periodic 5 millisecond
time slice is allocated a dedicated 20 millisecond time slice. The
timing margin for this function is 75%.

GLOSSARY:
Timing margin: A percentage of the time allocated to a

process that is still available for use; calculated by the ratio of
spare time to the total time frame.

Program function: A generic term used to reference one or
more program processes.

Time slice: A predetermined period of processer time.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if the program
has no timing requirements because timing margins will not be of
any concern (e.g., program in non-real time). Also answer A if
each timing margin is at least 25%.

0-62

QUESTION DATA SHEET

Question Number D-63

QUESTION: Documentation narrative explains the procedures for

altering basic data storage sizes.

CHARACTERISTIC: Expandability (design expandability).

EXPLANATIONS: How to alter the capacity of data storage is not
always obvious. Very often, storage has been judiciously
allocated to interface with various portions of the program.
Documentation narrative should not only describe how to alter
basic data storage sizes, but should also identify those interfaces
which might be impacted by such changes.

EXAMPLES: Creating a new variable in the middle of a labeled
common region can affect all program processes that use that
storage area.

GLOSSARY: Basic data storage sizes: The size of program data
structures upon which program processing depends; the structure
may be an array, a table, space allocated by an assembly
directive, etc.

SPECIAL RESPONSE INSTRUCTIONS:

tI

D-63

'I

QUESTION DATA SHEET

Question Number D-64

QUESTION: The program has been designed to allow for an

increase in storage utilized before storage capacity is exceeded.

CHARACTERISTIC: Expandability (design expandability).

EXPLANATIONS: Over time, the amount of data storage space
required for program applications almost always increases. A
program should be designed so that additiona; storage allocations
can be made without the need for program design or hardware
modification.

EXAMPLES:

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Answer A if at least 25% of
the storage capacity is available for future use.

D-64

! ~ .

QUESTION DATA SHEET

Question Number D-65

QUESTION: Those modules dependent upon data structure sizes

are identified.

CHARACTERISTIC: Expandability (design expandability).

EXPLANATIONS: Changing the definition of a data structure will
invariably impact the modules that use it. Therefore, the docu-
mentation should contain a list of "affected modules" for each data
structure so that changes to the structure can be accompanied by
appropriate changes to the modules.

EXAMPLES:

GLOSSARY:
Data Structure: Grouping of data elements (variables and

constants) into arrays, records, files, etc.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if it is clear that
no modules are dependent upon data structure definitions. This
will be unlikely in large software programs.

0-65

QUESTION DATA SHEET

Question Number D-66

QUESTION: The program has been designed so that functional

parts may be easily added or deleted.

CHARACTERISTIC: Expandability (design expandability).

EXPLANATIONS: Programs designed using a top-down, struc-
tured methodology often consist of functional parts which are
interrelated, yet independent, of one another. That is, each
part can be viewed as a "black box" externally. Such parts are
usually easily added, deleted, or replaced. However, functional
parts designed with complicated, delicate interfaces are more
difficult to deal with. An impression should be formed from the
module descriptions and program overview information whether the
functional parts could be easily added or deleted.

EXAMPLES: Functions executed as a result of a table-driven
executive can be easily added and removed by modifying the
contents of the table.

GLOSSARY: Functional parts: Primarily modules, but also
includes groups of modules that perform major functions.

SPECIAL RESPONSE INSTRUCTIONS:

D-66

QUESTION DATA SHEET

Question Number D-67

QUESTION: There is a separate part of the documentation for

the description of a program test plan.

CHARACTERISTIC: Instrumentation (format instrumentation).

EXPLANATIONS: Testing is generally regarded as a separate
organizational function. It is helpful to those individuals involved
in testing to have test information gathered into one part of the
documentation.

EXAMPLES: The documentation may include volumes of test
information sheets. It may include test plans; acceptance test
procedures (ATP), formal or preliminary qualification test (FQT,
PQT) procedures. It may include sets of sample input data with
expected output data.

GLOSSARY: Program test plan: Set of descriptions and pro-
cedures for how the program is to be (or can be, or has been)
tested.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if a separate
part exists. Answer F if the description does not exist. If for
some reason the program test plan description is distributed over
several separate parts (e.g., one part per unit/module descrip-
tion), then answer in the range B to E as to the effectiveness of
that "separation" from the point of view of program test/retest.

D-67,~

QUESTION DATA SHEET

Question Number 0-68

QUESTION: There is a separate part of the documentation for

the description of sample test data.

CHARACTERISTIC: Instrumentation (format instrumentation).

EXPLANATIONS: Comparison of input/output data before and
after program changes have been made is one of the best ways to
assure that changes have been made properly and that no extra-
neous errors have been introduced.

EXAMPLES:

GLOSSARY: Sample test data: The input and output data used
for the program tests.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if a separate
part exists. Answer F if the description does not exist. If for
some reason the sample test data description is distributed over
several separate parts (e.g., one part per unit/module descrip-
tion), then answer in the range B to E as to the effectiveness of
that "separation" from the point of view of program test/retest.

D-68

QUESTION DATA SHEET

Question Number D-69

QUESTION: There is a separate part of the documentation for
the description of program support tools which would aid in
testing the program.

CHARACTERISTIC: Instrumentation (format instrumentation).

EXPLANATIONS: Program support tools are not generally a part
of the operational software. Descriptions of program support
tools are often voluminous and would merely lead to confusion if
they were included with descriptions of the operational software.
However, the descriptions of program support tools are absolutely
necessary and should therefore constitute a separate part of the
documentation.

EXAMPLES: A FORTRAN reference manual is an absolute neces-
sity to a scientific programmer, but is definitely not considered to
be an integral part of applications software documentation.

GLOSSARY: Program support tools: General debug aids, test/
retest software, trace software/hardware features, use of com-
piler/link editor/library management/configuration management/text
editor/display software tools.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if a separate
part exists. Answer F if the description does not exist. If for
some reason the description of program support tools for testing
is distributed over several separate parts then answer in the
range B to E as to the effectiveness of that "separation" from the
point of view of program test/retest.

D-69

QUESTION DATA SHEET

Question Number D-70

QUESTION: A set of test procedures to be used for program

check-out are explained.

CHARACTERISTIC: Instrumentation (design instrumentation).

EXPLANATIONS: Program test procedures, in order to be useful,
must provide adequate information to completely describe test
inputs, outputs, and environment.

EXAMPLES: One good test of the adequacy of the explanation of
the program test procedures is for the evaluator to visualize how
easy it would be to execute step-by-step one or more of the
particular test procedures. If the information is not presented in
a step-by-step fashion with a complete discussion of the test
environment, test inputs and expected test outputs, then the test
will probably be difficult to perform.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: If no test procedures
exist, then answer "F."

D-70

QUESTION DATA SHEET

Question Number D-71

QUESTION: The set of test procedures provides useful unit

testing information.

CHARACTERISTIC: Instrumentation (design instrumentation).

EXPLANATIONS: The test procedures will ordinarily be des-
cribed in terms of unit testing information and integration testing
information. The test procedures should describe test procedures
for sub-units of the program as well as for overall program
testing. It is often infeasible to test the entire program during
modification/testing of only one sub-unit.

EXAMPLES:

GLOSSARY: Unit: Units may be modules, submodules, groups of
modules or some other organization depending upon the contractor
and the application area.

SPECIAL RESPONSE INSTRUCTIONS: If no test procedures
exist, then answer 'IF."

D-71

QUESTION DATA SHEET

Question Number D-72

QUESTION: The set of test procedures provides useful informa-

tion on limitations/incompleteness.

CHARACTERISTIC: Instrumentation (design instrumentation).

EXPLANATIONS: The testing agency, in order to know what was
actually tested and to what extent it was tested, must know the
limitations of test procedures.

EXAMPLES: The documentation should contain the ranges of
variables tested and not tested as well as modules tested and not
tested.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: If no test procedures exist
or there is no information on the limitations/incompleteness of the
test procedures, then answer F.

0-72

QUESTION DATA SHEET

Question Number D-73

QUESTION: The program has been designed with the capability
to display test inputs and outputs in summary form.

CHARACTERISTIC: Instrumentation (design instrumentation).

EXPLANATIONS: Many programs process tremendous quantities
of data and the test inputs/outputs likewise consist of tremendous
quantities of data. In such cases, it is desirable to have a
program automatically compare the test data and display only the

differences/errors to the maintainer.

EXAMPLES:

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: If the module does not

process a great deal of data, so that there is no need to sum-
marize the test inputs/outputs, your answer should lie in the B-E
range.

0-73

QUESTION DATA SHEET

Question Number D-74

QUESTION: The documentation describes a standardized set of
program test data (input and output) that has been designed to
exercise the program.

CHARACTERISTIC: Instrumentation (design instrumentation).

EXPLANATIONS: This question relates to both quality and exis-
tence of test data. In order to assure that test data properly
exercises or tests the program, it must be carefully designed to
do so. Randomly assembled data will not usually exercise all
parts of the program, whereas carefully designed test data will.

EXAMPLES:

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:

D-74

QUESTION DATA SHEET

Question Number D-75

QUESTION: The documentation indicates that the program has
been designed to include software test probes to aid in identifying
processing performance.

CHARACTERISTIC: Instrumentation (design instrumentation).

EXPLANATIONS: Test data alone is usually not sufficient to
adequately test a program. Certain parts of the program can
only be tested by insertion (or activation) of special executable
code which is used strictly for testing purposes.

EXAMPLES: If the language provides debug capabilities or such
options as conditional compilation, then the designer is much more
likely to consider the use of test probes as a normal part of the
program. However, it is still possible under more adverse condi-
tions for the design to include separate functions which can be
individually invoked for the purpose of collecting appropriate
processing performance information.

GLOSSARY:
Include: Presently in-line or can be inserted in-line through

activation.
Software test probe: Section of code or special module

which collects certain process parameters; generally the activation
of the probe can be controlled through user options.

Processing performance: Accuracy, timing, etc.

SPECIAL RESPONSE INSTRUCTIONS:

D-75

QUESTION DATA SHEET

Question Number D-76

QUESTION: Error checking within the program has been de-
signed to include such features as diagnostic reporting, I/O
parameter checking, runtime index range checking, etc.

CHARACTERISTIC: Instrumentation (design instrumentation).

EXPLANATIONS: These particular test tools, as well as many
others, are of particular importance to program instrumentaion
and test.

EXAMPLES: The documentation describing error processing/error
codes/error messages, or perhaps report generation could be
checked to determine what type of error checking appears to be
done. In addition, the general design conventions/standards
might indicate what error checking conventions have been
adopted. The source language compiler may have options which
allow for the generation of run-time parameter checking (e.g.,
index range).

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: The evaluator must judge
which particular types of instrumentation he feels should be
included, and answer A - F according to his estimation of the
adequacy of what actually exists.

D-76

QUESTIONS DATA SHEET

Question Number D-77

QUESTION: Modularity as reflected in the program documentation

contributes to the maintainability of the program.

CHARACTERISTIC: General questions.

EXPLANATIONS: Software possesses the characteristics of modu-
lariy to the extent a logical partitioning of software into parts,
components, modules has occurred.

EXAMPLES: The software has been partitioned into easily com-
prehendable "sections." Each "section" is independent from every
other "section" as much as is reasonable; i.e., to understand any
given "section," requisite knowledge of other "sections" has been
kept to a minimum.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Please give your general
feeling about the modularity of the documentation.

0-77

QUESTION DATA SHEET

Question Number D-78

QUESTION: Descriptiveness as reflected in the program docu-

mentation contributes to the maintainability of the program.

CHARACTERISTIC: General questions.

EXPLANATIONS: Software possesses the characteristics of
descriptiveness to the extent that it contains information regarding
its objectives, assumptions, inputs, processing, outputs, com-
ponents, revision status, etc.

EXAMPLES: Program objectives are explained, subprogram objec-
tives are explained, communication links are either specifically
explained or there is a detailed plan for setting up the communi-
cation links. Revision status of the documentation is clear.
Source listing revision status is either clear or a detailed plan for
revision status tracking is explained, etc.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Please give your general
feeling about the descriptiveness of the documentation.

D-78

QUESTION DATA SHEET

Question Number D-79

QUESTION: Consistency as reflected in the program documenta-

tion contributes to the maintainability of the program.

CHARACTERISTIC: General questions.

EXPLANATIONS: Software possesses the characteristics of con-
sistency to the extent the software products correlate and contain
uniform notation, terminology and symbology.

EXAMPLES: Things are done similarly in different parts of the
documentation. Once an individual learns how the documentation
is set up, he can turn to .any part of the documentation and see
exactly what he expects to see. A set of documentation standards
appears to have been set up and followed.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Please give your general
feelings about the consistency of the documantation:

9 D-79

QUESTION DATA SHEET

Question Number D-80

QUESTION: Simplicity as reflected in the program documentation

contributes to the maintainability of the program.

CHARACTERISTIC: General questions.

EXPLANATIONS: Software possesses the characteristics of
simplicity to the extent that it lacks complexity in organization,
language, and implementation techniques and reflects the use of
singularity concepts and fundamental structures.

EXAMPLES: The organization of the documentation is logical.
Uncomplicated, descriptive terminology is used throughout. Each
section or part of the documentation addresses a single subject
and is minimally dependent upon other parts for a full under-
standing.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Please give your general
impression about the simplicity of the documentation.

D-80

QUESTION DATA SHEET

Question Number D-81

QUESTION: Expandability as reflected in the program documenta-

tion contributes to the maintainability of the program.

CHARACTERISTIC: General questions.

EXPLANATIONS: Software possesses the characteristics of
expandability to the extent that a physical change to information,
computational functions, data storage or execution time can be
easily accomplished.

EXAMPLES: The documentation contains standards for program-
ming which enhance expandability of the code.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Please give your general
impression of the overall expandability of the documentation and
the program design as reflected in the documentation.

D-81

QUESTION DATA SHEET

Question Number D-82

QUESTION: Instrumentation as reflected in the program docu-

mentation contributes to the maintainability of the program.

CHARACTERISTIC: General questions.

EXPLANATIONS: Software possesses the characteristics of
instrumentation to the extent it contains aids which enhance
testing.

EXAMPLES: The documentation contains test cases which show
known input and expected output. The documentation also con-
tains a plan or standards for program instrumentation. Some sort
of DEBUG mode execution is specifically addressed.

GLOSSARY:
Debug: Removal of bugs.
Bugjs): Latent error(s).

SPECIAL RESPONSE INSTRUCTIONS: Please give your feelings
about the instrumentation of the software as reflected in the
documentation.

0-82.

QUESTION DATA SHEET

Question Number D-83

QUESTION: Overall it appears that the characteristics of the
program documentation contribute to the maintainability of the
program.

CHARACTERISTIC: General questions.

EXPLANATIONS: Software maintainability is a quality of software
which is defined as those characteristics which affect the ability
of the software engineers to:

1) Correct errors.
2) Add system capabilities through software changes.
3) Delete features.
4) Modify software to be compatible with hardware changes.

EXAMPLES: The program documentation is designed to aid you in
maintenance of the subject software. It is not after-the-fact
documentation except in those cases where it should be.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Please give your general
impression as to how well the documentation would aid you in
maintenance of the software under study.

D8
D-83

C. MODULE SOURCE LISTING QUESTIONS.

Each page within this section corresponds to a question from
the Module Source Listing Questionnaire. Many questions have
special response instruction which should be reviewed.

D-84

Question Data Sheet

Question Number S-1

QUESTION: Functionally related data elements have been or-
ganized into logical data structures.

CHARACTERISTIC: Modularity (Data/Control Modularity).

EXPLANATIONS: There may be a physical grouping of func-
tionally related data even though it is somewhat unsatisfactory in
showing what the functional relationship is. The evaluator should
give a response based upon how easy it is to determine the
functional purpose of the data by observing how the data has
been organized, grouped, etc.

EXAMPLES: As an example of data structuring, suppose a state
vector for an object in track has the information: ID, position,
velocity, acceleration. And, suppose a maximum of 100 objects
could be in track at one time. The data structuring capabilities
of FORTRAN would perhaps represent this situation as:

REAL POS (100,3), VEL (100,3), ACC (100,3), STATE (100,10)
INTEGER ID (100)
EQUIVALENCE (STATE (1,1), ID (1)),
1 (STATE (1,2), POS (1,1)),
2 (STATE (1,5), VEL (1,1)),
3 (STATE (1,8), ACC (1,1))

GLOSSARY:
Functionally related: Having to do with the same task.
Data elements: Variables, constants.
Data structure: Group of data elements and/or other data

structures; e.g., array, record, file, etc.

SPECIAL RESPONSE INSTRUCTIONS. It is not likely that the
evaluator's answer will be A or F since most modules will have
some logical organization of data, but few will have a superior
organization.

S-1

Question Data Sheet

Question Number S-2

QUESTION: The concepts of structured programming have been

applied to the control structures in this module.

CHARACTERISTIC: Modularity (Data/Control Modularity).

EXPLANATIONS: The concepts of structured programming control
structures can be adopted whether the language is high order or
assembly. Some high order language syntax guarantees that only
the basic control structures can be used. Other high order
languages (e.g., FORTRAN) give some help in constructing the
basic control structures with judicious use of the GOTO state-
ment. Assembly languages generally require that a convention be
established and MACROS be used in order that only the basic
control structures will be consistently used.

EXAMPLES: D m=: DO Mr. condition A. Process I.

SENT ER BT EXIT)

GLOSSARY:
Structured programming control structures: Only three

basic control structures are sufficient in structured programming.
They are: the SEQUENCE of operation (assignment, add, etc.),
IF THEN ELSE (conditional branch to one of two operations and
return), and DO WHILE (operation repeated while a condition is
true). Only two other constructs should be used: DO UNTIL
(operation repeated until a condition is true) and CASE (operation
which provides the transfer of program control to a specific loca-
tion within a compile-time system).

SPECIAL RESPONSE INSTRUCTIONS. The evaluator should form
a general opinion as to how well this module has conformed to the
use of only these basic control structures. Answer A only if
there is no deviation, answer F only if the module's logic struc-
ture is extremely disorganized.

S-2

Question Data Sheet

Question Number S-3

QUESTION: The use of techniques which involve the sharing of
memory locatiois (e.g., overlay, equivalence, same area) is not
excessive.

CHARACTERISTIC: Modularity (Data/Control Modularity).

EXPLANATIONS: Multiple use of memory locations tends to make
the program more difficult to maintain.

EXAMPLES: Memory sharing techniques would include dynamic
memory management, FORTRAN's EQUIVALENCE operation,
COBOL's SAME AREA operation, and memory overlay techniques.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there is
no sharing of memory locations by this module.

4

S-3

Z

Question Data Sheet

Question Number S-4
QUESTION: The use of global data in this module is not exces-
sive.

CHARACTERISTIC: Modularity (Data/Control Modularity).

EXPLANATIONS: Use of global data tends to decrease the inde-pendence of modules and make the program more difficult to
maintain.

EXAMPLES: In COBOL, examples of global data would be switch
settings and the parameters in a CALL USING statement.

GLOSSARY:
Global data: Variables or constants which can be accessed

by more than one module.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there is
no global data used in this module.

S
I

S-4

Question Data Sheet

Question Number S-5

QUESTION: The number of entry points of this module is not
excessive.

CHARACTERISTIC: Modularity (Processing Modularity).

EXPLANATIONS: Multiple entry points tend to increase the
number of external interfaces, making program maintenance more
complex.

EXAMPLES:

GLOSSARY:
Entry Point: Statement (address) to which control is trans-

ferred; first executable statement.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if the
number of entry points is one.

5-5

Question Data Sheet

Question Number S-6

QUESTION: The number of exit points of this module is not
excessive.

CHARACTERISTIC: Modularity (Processing Modularity).

EXPLANATIONS: Multiple exit points tend to increase the number
of external interfaces, making program maintenance more complex.

EXAMPLES:

GLOSSARY:
Exit point: Statement (address) from which control is

transferred; last executable statement; e.g., multiple RETURN
statements in a FORTRAN program reflect multiple exit points.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if the num-
ber of exit points is one.

S-6

Question Data Sheet

Question Number S-7

QUESTION: This module performs only related functional tasks.

CHARACTERISTIC: Modularity (Processing Modularity).

EXPLANATIONS: Modules that perform unrelated functional tasks
tend to defeat the purpose of modularity and present more infor-
mation to the maintainer than he needs to perform maintenance in
a single functional area.

EXAMPLES: The following list of module task descriptions in-
creases in its complexity and thus would decrease in the score for
this question.

1. Module A reads input data, calls Module B.
2. Module B reads input data, conducts error check-

ing, calls Module C.
3. Module C reads input data, conducts error check-

ing, conducts initial processing, calls Module D.
4. Module D calculates the position of the weapon sys-

tem (navigational tasks) and calculates the amount
of fuel remaining.

GLOSSARY:
Functional task: Part, element; a series of contiguous com-

putations, which produce one or more results.

SPECIAL RESPONSE INSTRUCTIONS:

5-7

Question Data Sheet

Question Number 5-8

QUESTION: Each function3l task of this module is an easily
recognizable block of code.

CHARACTERISTIC: Modularity (Processing Modularity).

EXPLANATIONS: Just as modules should be functionally indepen-
dent to enhance understandability and modifiability, so should
tasks within modules be as independent as possible.

EXAMPLES: Each subsection of code which represents a func-
tional subtask to the primary task of computing a reliability value
is easily recognized.

GLOSSARY:
Functional task: Part, element; a series of computations

which produce one or more results.

SPECIAL RESPONSE INSTRUCTIONS:

S-8 Ai

Question Data Sheet

Question Number S-9

QUESTION: It appears that each iteration block within this
module has a single entry point.

CHARACTERISTIC: Modularity (Processing Modularity).

EXPLANATIONS: Jumps into the body of any iteration block
increase coupling to other blocks of code and can defeat iteration
block initialization.

EXAMPLES: The following FORTRAN iteration block (implied DO
loop) potentially contains more than one entry point:

300 CONTINUE
A=A+B
I=I+1

400 CONTINUE
A=A-B
J=J +1

IF (I.LT.NONE) GOTO 300
IF (J.LT.NTWO) GOTO 400

In COBOL, nested PERFORMs are an example of poten-
tially more than one entry point. (See example under S-10.)

GLOSSARY:
Iteration block: A sequence of instructions in a module that

is repeated until a specified set of conditions is either met (DO
UNTIL) or not reached (DO WHILE).

Entry point: An instruction at which execution of a block
begins.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if all itera-
tion blocks satisfy the one entry point criterion.

S-9

Question Data Sheets

Question Number S-10

QUESTION: It appears that each iteration block within this
module has a single exit point.

CHARACTERISTIC: Modularity (Processing Modularity).

EXPLANATIONS: The intent is that with the exeption of error
exits, there should be no jumps out of the body of any iteration
block. It is also best (but might only be a minor detraction) if
there are no calls to other modules within an iteration block and
that the only exit is through the terminal statement which is a
natural part of the iteration block. The ESCAPE (jump from the
body to the immediately following executable statement) is also
only a minor detraction if used properly and not excessively.
Multiple exits also tend to increase coupling between blocks of
code.

EXAMPLES: COBOL example with three entry and exit points:

A-PARA
ADD 1 TO I.
MOVE DAT(I) TO OUT(I).

B-PARA
ADD 1 TO J.
MOVE DAT(J) TO OUT(I).

EXIT-PARA
EXIT.

PERFORM A-PARA THRU EXIT-PARA UNTIL I >92.
MOVE 1 TO I.
PERFORM A-PARA UNTIL I >90.

GLOSSARY:
Iteration block: A sequence of instructions in a module that

is repeated until a specified set of conditions is either met (DO
UNTIL) or not reached (DO WHILE).

Exit point: Statement where control leaves the iteration
block.

SPECIAL RESPONSE INSTRUCTIONS: The evaluator should
answer A only if the exit is always through the natural iteration
block exit or if there are no iteration blocks in the module.

S-10

Question Data Sheet

Question Number 5-11

QUESTION: It appears that each decision block within this
module has a single entry point.

CHARACTERISTIC: Modularity (Processing Modularity).

EXPLANATIONS: Jumps into the body of any decision block
decrease relative independence of blocks of code and can defeat
decision block initialization.

EXAMPLES:

GLOSSARY:
Decision block: A sequence of instructions in a module that

contains a conditional branch to one of two operations (an IF
THEN ELSE control structure).

Entry point: An instruction at which execution of a block
can begin.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if all decision
blocks satisfy the one entry point criterion or if the program is
totally COBOL.

S-11I

Question Data Sheet

Question Number S-12

QUESTION: It appears that each decision block within this
module has a single exit point.

CHARACTERISTIC: Modularity (Processing Modularity).

EXPLANATIONS: The intent is that with the exception of error
exits, there should be no jumps out of the body of a decision
block except as the natural part of the decision syntactic struc-
ture. It is also best (but might only be a minor detraction) if
there are no calls to other modules within a decision block. The
ESCAPE (jump from the body to the immediately following execut-
able statement) is also only a minor detraction if used properly
and not excessively. Multiple exits also tend to increase coupling
between blocks of code.

EXAMPLES: COBOL decision block with two exit points:

IF A = B GOTO C
ELSE GOTO D.

GLOSSARY:
Decision block: A sequence of instructions in a module that

contains a conditional branch to one of two operations (an IF
THEN ELSE control structure).

Exit point: Statement where control leaves the decision
block.

SPECIAL RESPONSE INSTRUCTIONS: The evaluator should
answer A only if the exit is always through the natural decision
block exit.

S-12

Question Data Sheet

Question Number 5-13

QUESTION: When this module completes execution, control is
returned to the calling module.

CHARACTERISTIC: Modularity (Processing Modularity).

EXPLANATIONS: Control structure is simplified and maintenance
simplified by keeping linkage singular.

EXAMPLES:

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Answer A if there is no
calling module (e.g., program module) or this module returns to
the calling module. Answer F if this module does not return con-
trol to the calling module. Any answer other than A or F should
be brought to the attention of the Software Assessment Team
chairman.

5-13

Question Data Sheet

Question Number S-14
QUESTION: The use of the same variable for both input and

output is not excessive in this module.

CHARACTERISTIC: Modularity (Processing Modularity).

EXPLANATIONS: Using variables as both input and output type
tends to confuse the maintainer as to their function at specific
times during the processing.

EXAMPLES:

GLOSSARY:
Input: Global data or data parameter in argument list used

in the module.
Output: Global data or data parameter in argument list and

assigned a value within the module.

SPECIAL RESPONSE INSTRUCTIONS:

S-14

Question Data Sheet

Question Number S-15

QUESTION: Inputs to this module are described in a preface
block.

CHARACTERISTIC: Descriptiveness (Preface Block Descriptive-
ness).

EXPLANATIONS: Each module should have a preface block which
includes a description of each of the inputs. This contributes to
overall understanding of the module by the maintainer. Note that
in COBOL, the Identification, Environment, and Data Divisions may
contain much of the preface block information.

EXAMPLES:

C* ARGUMENTS -INPUT - REAL ARRAYS:
C* POS X,Y,Z POSITIONAL VECTOR (METERS)
C* VEL VELOCITY VECTOR (M/SEC)
C* ACC ACCELERATION VECTOR (M/SEC/SEC)

C* STATE STATE VECTOR (POS, VEL, ACC)

GLOSSARY:
Input: Global data or data parameter in argument list used

in the module.
Preface block: Separate set of contiguous comments which

precedes the main body of the module (a similar block at any
other common module location would be satisfactory).

SPECIAL RESPONSE INSTRUCTION: If there is no preface block
answer D, E, or F on the basis of whether the module inputs are
clearly described at any other place in the module. More than
likely the answer should be F if there is no preface block.

If there is a description of inputs in a preface block, then
keep in mind that the response anchors A and F are only for
extremely good or extremely poor descriptions, respectively.

S-15

Question Data Sheet

Question Number S-16

QUESTION: Outputs from this module are described in a preface
block.

CHARACTERISTIC: Descriptiveness (Preface Block Descriptive-
ness).

EXPLANATIONS: Each module should have a preface block which
includes a description of each of the outputs from the module.
This contributes to overall understanding of the module by the
maintainer. See S-15 for COBOL.

EXAMPLES:

C* ARGUMENTS - OUTPUT - INTEGER VARIABLES
C* LAT LATITUDE (DDDMMSS)
C* LONG LONGITUDE (DDDMMSS)
C* ITIME CURRENT TIME (HHMMSS)
C* INT DELAY INTERVAL (HHMMSS)
C* ITGT TIME OVER TGT (HHMMSS)

GLOSSARY:
Output: Global data and data parameters in argument list

which are assigned a value within the module.
Preface block: Separate set of contiguous comments which

precedes the main body of the module (a similar block at any
other common module location would be satisfactory).

SPECIAL RESPONSE INSTRUCTIONS: If there is no preface
block answer D, E, or F on the basis of whether the module
outputs are clearly described at any other place in the module.
More than likely the answer should be F if there is no preface
block.

If there is a description of outputs in a preface block, then
keep in mind that the response anchors A and F are only for
extremely good or extremely poor descriptions, respectively.

5-16

Question Data Sheet

Question Number S-17

QUESTION: The purpose of this module is described in a preface
block.

CHARACTERISTIC: Descriptiveness (Preface Block Descriptive-
ness).

EXPLANATIONS: Each module should have within the preface
block, a statement of the functions and tasks to be performed by
the module. This contributes to overall understanding of the
module by the maintainer. See S-15 for COBOL.

EXAMPLES:

C*ABSTRACT : THIS MODULE CALCULATES THE TARGETING
C* DELAY INTERVAL BY DETERMINING THE
C* DISTANCE FROM THE CURRENT POSITIONAL
C* VECTOR TO THE INPUT TARGET LOCATION,
C* AND DIVIDING BY THE CURRENT VELOCITY.

GLOSSARY:
Purpose: Functions, tasks, abstract, summary, etc.
Preface block: Separate set of contiguous comments which

precedes the main ,ody of the module (a similar block at any
other common module location would be satisfactory).

SPECIAL RESPONSE INSTRUCTIONS: If there is no preface
block answer D, E, or F on the basis of whether the module
purpose is clearly described at any other place in the module.
Since it is quite usual to include embedded comments which clear-
ly describe the module's purpose independent of whether a
preface block is present, it would be unusual to respond F to
this question statement even if there is no preface block.

If there is a description of the purpose in a preface block,
then keep in mind that the response anchors A and F are only
for extremely good or extremely poor descriptions, respectively.

S-17

Question Data Sheet

Question Number S-18

QUESTION: Modules which call this module are identified in a
preface block.

CHARACTERISTIC: Descriptiveness (Preface Block Descriptive-
ness).

EXPLANATIONS: Each module should have, within the preface
block, a list of modules which call it. It may be difficult to
verify the completeness of this list, but an attempt should be
made using the information available. This contributes to overall
understanding of the module by the maintainer. See S-15 for
COBOL.

EXAMPLE: C* MODULES CALLING: STAT, INIT1, EXEC

GLOSSARY:
Preface block: Separate set of contiguous comments which

precedes the main body of the module (a similar block at any
other common module location would be satisfactory).

SPECIAL RESPONSE INSTRUCTIONS: Again, if there is no
preface block, answer D, E, or F on the basis of whether the
modules which call this module are clearly described at any place
in the module.

S1

5-18

Question Data Sheet

Question Number S-19

QUESTION: Modules which are called by this moduie are identi-
fied in a preface block.

CHARACTERISTIC: Descriptiveness (Preface Block Descriptive-
ness).

EXPLANATIONS: Each module should have, within the preface
block, a list of modules which it calls. This list can be checked
using a scan of the source listing. This contributes to overall
understanding of the module by the maintainer. If there are no
called modules it should be obvious or so stated. See S-15 for
COBOL.

EXAMPLES:

C* MODULES CALLED: FPROB, NAV01, NAV02, ERROUT

GLOSSARY:
Preface block: Separate set of contiguous comments which

precedes the main body of the module (a similar block at any
other common module location would be satisfactory).

SPECIAL RESPONSE INSTRUCTIONS: It is possible to determine
which modules are called by the given module from a cursory look
at the source listing. If there is no preface block, then answer
D, E, or F on the basis of whether the modules which are called
are clearly identified at any other place in the module. If there
is a preface block and all the called modules are identified then
answer A.

p1

5-19

Question Data Sheet

Question Number S-20

QUESTION: Limitations (accuracy, timing, data I/O, etc.) are
described as appropriate in a preface block.

CHARACTERISTIC: Descriptiveness (Preface Block Descriptive-
ness).

EXPLANATIONS: Each module should have, within the preface
block, a description of any limitations to its use, such as accu-
racy and timing. This contributes to overall understanding of
the module by the maintainer. See S-15 for COBOL.

EXAMPLES: The following is an example of a description of

limitations:

C* LIMITATIONS: ACCURACY: LIMITED TO FIVE SIGNIFICANT
C* DIGITS.
C* TIMING: MODULE IS CALLED ONCE EVERY

C* 20 MS, REQUIRES 12 MS TO COMPLETE.

GLOSSARY:
Preface block: Separate set of contiguous comments which

precedes the main body of the module (a similar block at any
other common module location would be satisfactory).

SPECIAL RESPONSE INSTRUCTIONS: If there is no preface
block answer D, E, or F on the basis of whether the module
limitations are clearly described at any other place in the module.
Answer A if there is a preface block and it is either obvious or
so stated that there are no limitations which need a description
(check the code to verify).

If there is a description of limitations in a preface block,
then keep in mind that the response anchors of A and F are only
for extremely good or extremely poor descriptions, respectively.

S-20

I.

Question Data Sheet

Question Number 5-21

QUESTION: Any special processing (e.g., multiple entry/exit,
error handling, algorithm peculiarities, etc.) is described in the
preface block and understandable.

CHARACTERISTIC: Descriptiveness (Preface Block Descriptive-
ness).

EXPLANATIONS: Each module should have, within the preface
block, a description of any special processing required by the
module. This contributes to overall understanding of the module

by the maintainer. See S-15 for COBOL.

EXAMPLES:

C* ASSUMPTIONS: 1. FOR INPUT VALUES OF X SUCH THAT
C* .0 < ABS (x) < .01, MODULE RETURNS

C* X.
C* 2. FOR INPUT VALUES OF X SUCH THAT
C* .01 < ABS (x) < 1/2, MODULE CALCU-
C* LATES THE TRUNCATED SERIES 1/x +

C* 1/x2 + 1/x 3 .

C* 3. FOR INPUT VALUES OF X SUCH THAT
C* ABS (x) > 12, MODULE RETURNS WITH
C* ERROR FLAG SET, ERFL = 1.

4 GLOSSARY:
Preface block: Separate set of contiguous comments which

precedes the main body of the module (a similar block at any
other common location would be satisfactory if easily locatable).

SPECIAL RESPONSE INSTRUCTIONS: If there is no preface
block answer D, E, or F on the basis of whether the module
special processing is clearly described at any other place in the
module. Answer A if there is a preface block and it is either
obvious or so stated that there is no special processing which
needs a description (check the code to verify). If there is a
description of special processing in a preface block, then keep in
mind that the response anchors of A and F are only for extremely
good or extremely poor descriptions, respectively.

S-21

Question Data Sheet

Question Number S-22

QUESTION: Documentation information (module name, programmer,
algorithm references, revision data, etc.) is identified as appro-
Driate in a preface block.

CHARACTERISTIC: Descriptiveness (Preface Block Descriptive-
ness).

EXPLANATIONS: Each module should contain, within the preface
block, general information concerning the development and docu-
mentation of the module. Depending upon the application and the
program design, the documentation information might also include
the component of which the module is a part and the reference
sections for written documentation descriptions, flowcharts of the
module, etc. See S-15 for COBOL.

EXAMPLES:

C* TITLE : RELIABILITY.

C* MNEMONIC . RELIAB

C* REVISION DATE : 07/26/78.

C* ORIGINAL PROGRAMMER : T L PASCHICH, REL DIVISION

C* REVISION PROGRAMMER : N A WEBSTER, SP-48 GROUP

GLOSSARY:
Preface block: Separate set of contiguous comments which

precedes the main body of the module (a similar block at any
other readily locatable area would be satisfactory).

SPECIAL RESPONSE INSTRUCTIONS: If there is no preface
block, answer D, E, or F on the basis of whether module docu-
mentation information is clearly identified at any other place in
the module. If there is no preface block, it is highly unlikely
that the documentation information will be identified anywhere
else. If there is documentation information identified within a
preface block, then keep in mind that the anchor responses A
and F are only for extremely complete or extremely incomplete
identification, respectively.

S-22

.

Question Data Sheet

Question Number 5-23

QUESTION: The comments in this module contain useful informa-
tion.

CHARACTERISTIC: Descriptiveness (Imbedded Comments Descrip-
tiveness).

EXPLANATIONS: Comments should be used to describe functional
blocks of code, complex individual statements, specialized pro-
cessing, error conditions, limitations, etc.

EXAMPLES: Example of useless comments:

C* CALCULATE ITIME:

ITIME = ITIME + 3600

C* CALL SUBROUTINE LATLONG:

CALL LATLONG (ITIME, VEL, ACC, ERFL)

Example of more useful comments:

C* INCREMENT CURRENT TIME BY ONE HOUR:

ITIME = ITIME + 3600

C* DETERMINE POSITION AT NEW TIME:

CALL LATLONG (ITIME, VEL, ACC, ERFL)

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: An answer of A or F is not
likely. Keep in mind the anchor responses of A and F are for
extremely good (best possible) or extremely poor (worst possible)
comments.

S-23

Question Data Sheet

Question Number 5-24

QUESTION: The quantity of comments does not detract from the
legibility of the source listings.

CHARACTERISTIC: Descriptiveness (Imbedded Comments Descrip-
tiveness).

EXPLANATIONS: While too few comments may detract from the
descriptiveness and understandability of the source listing, too
many may also detract. Large modules or modules with complex
control strucures will suffer in legibility without at least blank
comments separating functional blocks or control structures.

EXAMPLES: The following is an acceptable example of the num-

ber of comments:

C* COMPUTE SSQ EQUATIONS.
C*

SST=V2-V1SSM=V4-V1

SSR=V3-V1

SSWM=V2-V4

SSE=SSWM-SSR.

C* COMPUTE DEGREES OF

C- FREEDOM AND MSQ EQUATIONS.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: An answer of A or F is not
likely. Keeping in mind that the anchor responses of A and F
are for the best possible quantity of comments or the worse
possible quantity of comments, respectively, it is probable that
"no comments" deserves an F response, at least for large or
complex modules.

S-24

i

Question Data Sheet

Question Number 5-25

QUESTION: Transfers of control and destinations are clearly
explained.

CHARACTERISTIC: Descriptiveness (Imbedded Comments Des-
criptiveness).

EXPLANATIONS: It is not necessary that each control branch
and destination be commented, but it should be clearly understood
what conditions cause a transfer of control and to where control
is transferred. The control structure syntax and control
parameter name may in itself clearly explain a given transfer of
control and its destination without further comment.

EXAMPLES: The following is an acceptable example of explain-

ing transfers of control:

C* ERROR CONDITIONS

C* IF MSR=0 SET REL = -1.

C* IF MSE > MSR SET REL = -2.

C* IF EITHER OF THE ABOVE, SKIP

C* OVER NORMAL CALCULATION OF REL

IF (MSR.NE.0) GO TO 1900

REL = -1.

GO TO 2000

1900 IF (MSE.LE.MSR) GO TO 2000

REL = -2.

2000 CONTINUE

GLOSSARY:
Transfers of control: Sequential processing and branching

performed in the execution within a module. Examples of transfer
of control statements in a high level language are: GO TO,
CASE, WHILE, and IF THEN ELSE.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if all trans-
fers of control and destinations are clearly explained.

5-25

Question Data Sheet

Question Number S-26

QUESTION: Machine-dependencies are clearly commented.

CHARACTERISTIC: Descriptiveness (Imbedded Comments Des-
criptiveness).

EXPLANATIONS: Often during the life-cycle of a piece of soft-
ware, the software must ba converted to run on an architecturally
different or modified processor. To facilitate that conversion,
any code that depends on the architecture of the original machine
for correct operation should be clearly identified.

EXAMPLES: Code is often dependent on machine word size. If
the word size on a specific machine affects the accuracy or pre-
cision of a calculation, it should be commented upon.

GLOSSARY:
Machine dependencies: Coding techniques which are unique

to the particular computer on which the code is to execute, e.g.,
certain word size dependencies like FORTRAN I/O formats and
shift functions.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if it is clear that
there are no machine dependencies in this module. It is unlikely
that any module incorporating assembly language code could have
a response other than F.

S-26

-- i , ili II I.. . aii i 4

Question Data Sheet

Question Number S-27

QUESTION: Imbedded comments lescribe each function (block of
code) within this module.

CHARACTERISTIC: Descriptiveness (Imbedded Comments Des-
criptiveness).

EXPLANATIONS: The understandability of module functions is
greatly aided by the inclusion of concise, descriptive comments
preceding each function. Note that a module's preface block
serves as such a descriptive comment for the overall function of
the module. If the module performs only one function, then by
default this question statement concerns the function description
within the preface block (if it exists).

EXAMPLES:

GLOSSARY:
Function: A block of statements which perform some basic

computational or logical part of the module's algorithm.

SPECIAL RESPONSE INSTRUCTIONS: It is unlikely that this
' ,i statement should get either of the anchor responses A or

F.

S

~S-27

/

Question Data Sheet

Question Number S-28

QUESTION: Attributes of each variable used in this module are
described by comments and/or source language declarations.

CHARACTERISTIC: Descriptiveness (Imbedded Comments Descrip-
tiveness).

EXPLANATIONS: Typically all global data and module arguments
are described in the preface block. Local variables are generally
described in a special "declaration" section of the module. De-
pending upon the source language, the declaration statements may
intrinsically describe some or all of a data item's attributes.
Description of all attributes of each variable tends to improve
maintainability. Variables and parameters with constant values
should both be described. Note that in COBOL, the PICTURE
phrase contains some of the desired attribute information.

EXAMPLES: The following is an acceptable example of describ-
ing variable attributes:

C* REAL VARIABLES

REAL ALPHA, DFE, DFM, DFR, DFT, ACC, POS, VEL

C* INTEGER VARIABLES

INTEGER M, R, INA (M, R)

C* -VARIABLE - DESCRIPTION - TYPE - UNITS - RANGE
C* POS POSITION VECTOR REAL METERS POS > 0.
C* VEL VELOCITY VECTOR REAL M/SEC -500 < VEL

GLOSSARY:
Attributes: Type, units, range, description, etc. as appro-

priate.
Variable: The name or address of data to be used.

SPECIAL RESPONSE INSTRUCTONS: Answer A only if all appro-
priate attributes for each variable are described in a superior
manner. If none of the variables, constants, data used in this
module are described, then answer F.

S-28

Question Data Sheet

Question Number S-29

QUESTION: Error processing/exits are clearly identified and
explained.

CHARACTERISTIC: Descriptiveness (Imbedded Comments Descrip-
tiveness).

EXPLANATIONS:

EXAMPLES: The following identifies an error exit:

C* NEGATIVE VALUES OF REL INDICATE ERROR CONDITIONS.

C* IF MSR = 0 SET REL = -1

C* IF MSE > MSR SET REL = -2

C* IF EITHER OF THE ABOVE, SKIP CALCULATION OF REL.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if all error
processing/exits are clearly identified or if there are none to be
identified.

2

S-29

(

Question Data Sheet

Question Number S-30

QUESTION: It appears that a standard for module organization
has been followed within this module.

CHARACTERISTIC: Descriptiveness (implementation Descriptive-
ness.

EXPLANATION: Application of standards to module organization
format insures that the coding will be more readily understandable
by anyone referencing the module.

EXAMPLES:

GLOSSARY:
Module organization: Placement of preface block, declara-

tions, error exits, etc. and general format considerations such as
imbedded comment format, indentations, etc.

SPECIAL RESPONSE INSTRUCTIONS' Due to the broad nature of
this question, a response of A or F is not likely.

S-30

Question Data Sheet

Question Number S-31

QUESTION: Variables are declared in a specification/declaration
section.

CHARACTERISTIC: Descriptiveness (implementation Descriptive-
ness).

EXPLANATIONS: Data whose attributes have been explicitly
defined to the compiler are less likely to be used erroneously
because the compiler (and hopefully the programmer) can catch
any mixed usuages of type, unit, etc.

EXAMPLES: Example of an acceptable declaration of variables:

C* REAL VARIABLES.

REAL ALPHA, DFE, DFM, UFM, DFT, ACC, POS, VEL

C* INTEGER VARIABLES

INTEGER M, R, INA (M, R)

GLOSSARY:
Declared: Type (integer, real, array, etc), units, size,

etc., is identified.
Specification/declaration section: This may be a formal data

declaration section or a section set up by convention for the
purpose of declaring variables and other access restrictions, e.g.,
Data Division in COBOL.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if all vari-
ables used in the module are declared, e.g., as in COBOL. (If
assembly language is used in the module, it is unlikely that this
response would be other than D, E, or F.)

5-31

Question Data Sheet

Question Number S-32

QUESTION: Variable names are descriptive of their functional
use.

CHARACTERISTIC: Descriptiveness (implementation Descriptive-
ness).

EXPLANATION: This question is highly subjective. However,
when variables are named descriptively, then the time it takes to
understand a module is decreased. The naming conventions which
have grown out of particular applications (e.g., avionics) will
also influence how functionally descriptive particular names are.

EXAMPLES:

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:

iS

S -32

A!.

Question Data Sheet

Question Number S-33

QUESTION: The module code is indented within control structures
to show control flow.

CHARACTERISTIC: Descriptiveness (Implementation Descriptive-
ness).

EXPLANATIONS: Indentation of control structures enhances the
descriptiveness of the module by making the control flow obvious
to the maintainer.

EXAMPLES:

TEMP = 0

DO 1400 J = 1, R

DO 1300 T = 1, M

TEMP = TEMP + INA(1, J1*INA(1, J))

1300 CONTINUE

1400 CONTINUE

GLOSSARY:
Control structure: The basic control structures are

SEQUENCE of operations (assignment, add, etc.), decision (IF
THEN ELSE - conditional branch to one of two operations and
return), and iteration (DO WHILE - operation repeated while a
condition is true).

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if all control
structures are indented in a manner which clearly shows the
control flow or if there are no control structures other than
SEQUENTIAL.

S-33

Question Data Sheet

Question Number 5-34

QUESTION: Statement labels have been named in a manner which
facilitates locating a label in the source listing.

CHARACTERISTIC: Descriptiveness (Implementation Descriptive-
ness).

EXPLANATIONS: The typical method of naming statement labels
to facilitate their location is by some kind of ordering. For
example, FORTRAN labels are one to five digit numbers and a
typical naming scheme is to keep the labels in ascending order
from beginning to end of the module. (See example.) Address
labels in assembly language are typically alphanumeric names
which can be assigned alphabetically from beginning to end of the
module.

EXAMPLES: The following is an acceptable example of ascending

numerical statement labels:

DO 1600 J = 1,R

DC 1500 I = 1, M

TEMP = TEMP * INA (1,J)
1500 CONTINUE

T3 = T3 * TEMP*TEMP

1600 CONTINUE

V3 = T3/M

DO 1800 I = 1, M

DO 1700 J = 1, M

TEMP = TEMP* INA (1,J)

1700 CONTINUE

1800 CONTINUE

GLOSSARY:
Statement label: The address or location in the source

listing which is named; ordinarily the purpose of a statement label
is to provide a destination for a transfer of control.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there are
no statement labels.

S-34

Question Data Sheet

Question Number S-35

QUESTION: The machine cross reference listings appear to be
usefu,.

CHARACTERISTIC: Descriptiveness (Implementation Descriptive-
ness).

EXPLANATIONS: All labels and symbolic names and constants
should appear in a table generated by the assembler/compiler with
line number references to show where they are used in the
module. Additional enkries might call out external references,
entry points, and file names.

EXAMPLES:

GLOSSARY:
Machine cross reference listings: The normal compiler/

assembler generated cross reference information.

SPECIAL RESPONSE INSTRUCTIONS: Answer F only if no
machine cross reference listings are available.

S-35

Question Data Sheet

Question Number S-36

NOTE: External consistency questions (S-36 through S-43)
require the use of both the source listing and the documentation.

QUESTION: This module's flow chart represents the logic control

flow as shown in this module's source listing.

CHARACTERISTIC: Consistency (external consistency).

EXPLANATIONS: Flowcharts are often a great aid to a maintainer
who is learning/analyzing the software in order to later make a
change. To be of any use, the flowcharts must accurately repre-
sent the source code and they must be easy to comprehend. This
question is specifically aimed at flow of control.

-EXAMPLES:

GLOSSARY:
Flowchart (or equivalent): A logic flow diagram in which

symbols are used to represent operations, data, flow, equipment,
etc. Examples are: FORTRAN flowchart, Process Design
Language (PDL), Hierarchical Input-Processing-Output (HIPO)
chart, etc.

Control flow: Logical flow from one control structure to the
next control structure.

SPECIAL RESPONSE INSTRUCTIONS: Answer F only if there is
no module flowchart or equivalent in the documentation.

S-36

Question Data Sheet

Question Number S-37

(See NOTE on S-36)

QUESTION: This module's flow chart represents the data flow as
shown in this module's source listing.

CHARACTERISTIC: Consistency (external consistency).

EXPLANATIONS: Flowcharts are often a great aid to a maintainer
who is learning/analyzing the software in order to later make a
change. To be of any use, the flowcharts must accurately repre-
sent the source code and be easy to comprehend. This question
is specifically aimed at flow of data.

EXAMPLES:

GLOSSARY:
Data flow: Inputs and outputs to the module as well as any

significant intermediate transformations.

SPECIAL RESPONSE INSTRUCTIONS: Answer F only if there is
no module flowchart or equivalent in the documentation.

S-37

Question Data Sheet

Question Number S-38

(See NOTE on S-36)

QUESTION: The labels in this module's flow chart and the state-
ment labels in this module's source listing are in agreement.

CHARACTERISTIC: Consistency (External Consistency).

EXPLANATIONS: Flowcharts are often a great aid to a maintainer
who is learning/analyzing the software in order to later make a
change. To be of any use, the flowcharts must accurately repre-
sent the source code. This question is specifically aimed at flow
chart labelling conventions.

EXAMPLES: In after-the-fact flow charts, all or almost all, of
the program labels should appear in the flow charts. In the case
where the flow charts were generated before coding, this may not
be true.

GLOSSARY:
Label: The address or location which has a name; usually

labels are the destination of a transfer of control. The labels in
the documentation and source listings should agree in name and
sequential location.

SPECIAL RESPONSE INSTRUCTIONS: Answer F only if there is
no module flowchart or equivalent in the documentation. Answer
A if there are no labels in both the documentation and the source
listings. Note: general comments are not considered to be
labels.

S

S-38

Question Data Sheet

Question Number S-39

(See NOTE on S-36)

QUESTION: The inputs to this module as described in the docu-
mentation correspond to the inputs as shown in this module's
source listing.

CHARACTERISTIC: Consistency (External Consistency).

EXPLANATIONS: It is extremely important for each module and
its documentation to be in agreement with each other. Most
modules interface with other modules, but the maintainer doing
interface work usually views other modules mainly through the
documentation. This question specifically addresses agreement
between input parameters and related documentation.

EXAMPLES:

GLOSSARY:
Inputs: Global data and parameters passed in an argument

list which are used within the module.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there is
a clear one-to-one correspondence between the module's inputs as
described in the documentation and as shown in the source
listings. If there is no description of the module's inputs in the
documentation, then answer F. If the module has no inputs and
this is clear from the documentation and the source listings, then
answer A.

S-39

Question Data Sheet

Question Number 5-40

(See NOTE on S-36)

QUESTION: The outputs from this module as described in the
documentation correspond to the outputs as shown in the module's
source listing.

CHARACTERISTIC: Consistency (External Consistency).

EXPLANATIONS: It is extremely important for each module and
its documentation to be in agreement with each other. Most
modules interface with other modules, but the maintainer doing
interface work usually views other modules only through the
documentation. This question specifically addresses agreement
between output parameters and related documentation.

EXAMPLES:

GLOSSARY:
Outputs: Global data and parameters passed in an argument

list which are assigned a value within the module.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there is
a clear one-to-one correspondence between the module's outputs
as described in the documentation and as shown in the source
listings. If there is no description of the module's outputs in the
documentation, then answer F.

S-40

Question Data Sheet

Question Number S-41

(See NOTE on S-36)

QUESTION: The order of arguments for this module as described
in the documentation corresponds to the order of arguments as
shown in this module's source listing.

CHARACTERISTIC: Consistency (External Consistency).

EXPLANATIONS: It is extremely important for each module and
its documentation to be in agreement with each other. Each
module interfaces with other modules, but the maintainer doing
interface work usually views other modules only through the
documentation. This question specifically addresses agreement
between the source listing and the documentation.

EXAMPLES:

GLOSSARY:
Order of arguments: Specific arrangement of information

within a global data area, argument list, or other buffer area.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there is
a clear one-to-one correspondence between the order of arguments
as described in the documentation and as shown in the source
listings or if it is clear from both documentation and source
listings that there are no arguments. If there is no description
of the calling sequence in the documentation, then answer F.

S-41

.1:

Question Data Sheet

Question Number S-42

(See NOTE on S-36)

QUESTION: The module processing as described in the docu-
mentation corresponds to the implemented processing as shown in
this module's source listing.

CHARACTERISTIC: Consistency (External Consistency).

EXPLANATIONS: It is extremely important for each module and
its documentation to be in agreement with each other. Each
module will occasionally have new personnel assigned to maintain
it. Documentation is a necessary learning tool. Furthermore,
other persor'nel who desire to know how data is transformed
within the module rely heavily upon the documentation as an
accurate representation of the implemented processing.

EXAMPLES:

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Answer F if the module
processing is not described in the documentation.

9 S-42

'1]
- I

Question Data Sheet

Question Number 5-43

(See NOTE on 5-36)

QUESTION: The programming conventions established in the
documentation for source code development have been followed
within this module.

CHARACTERISTIC: Consistency (External Consistency).

EXPLANATIONS: Adherence to design standards insures that the
coding will be more readily understandable by anyone involved in
the project (who presumably knows the standards). It also helps
to insure that auditors, code checkers, and testing agencies have
done (will do) their jobs properly.

EXAMPLES:

GLOSSARY:
Programming conventions: Preface content, variable/module

names, source code and imbedded comment formats, I/O, error
handling, etc.

SPECIAL RESPONSE INSTRUCTIONS: Answer F if it is clear that
no programming conventions have been established.

S-43

Question Data Sheet

Question Number S-44

QUESTION: The delineation of comments is uniform within
sections of this module.

CHARACTERISTIC: Consistency (Internal Consistency).

EXPLANATIONS: The concept is that conventions should be
established which more or less give a template for source format.
Adherence to the convention can be either manual or automated.
This gives a uniformity to the body of the code as well as to the
placement, use of, and delineation of comments which clarify the
purpose of the code. It is very distracting from a consistency
viewpoint to have comments delineated in a variety of ways; e.g.,
some have spaces, some have asterisks, some comments are
imbedded, etc.

EXAMPLES:

GLOSSARY:
Delineation: Method of separating; highlighting, placement,

etc.

SPECIAL RESPONSE INSTRUCTIONS:

S-44

2i i .. .I I - - -

Question Data Sheet

Question Number S-45

QUESTION: Each variable in this module is considered to be of

one (and only one) data type for all occurrences.

CHARACTERISTIC: Consistency (Internal Consistency).

EXPLANATIONS: Consistent programming practices lead to more
maintainable code. Use of a storage location for more than one
data type can lead to confusion as to what is contained in the
location, how to interpret it, how to process it, etc.

EXAMPLES: 1. The use of a variable defined as integer in bit
manipulation operations is an example of a variable being used as
a type (bit string) other than its defined type.

2. A variable described as an alphanumeric char-
acter (PIC XX) should not be used both as an integer (e.g., in
an addition or as a counter) and as an alpha character.

GLOSSARY:
Data type: A set of attributes used to define a class of

data; e.g., INTEGER, REAL, BOOLEAN, CHARACTER, ARRAY
OF INTEGER, etc.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if each
variable has only one associated data type.

S-45

46 Question Data Sheet

Question Number S-46

QUESTION: Each variable in this module has only one function.

CHARACTERISTIC: Consistency (Internal Consistency).

EXPLANATIONS: Multiple use of a storage location can lead to
confusion.

EXAMPLES: Temporary local variables are frequently used for
more than one purpose, in order to conserve storage; or the use
of a variable may depend on certain control parameters, hence
giving rise to multiple uses; or storage allocated in assembly and
referenced by an address name (variable) may be partitioned and
used in a variety of ways.

In COBOL, consider RENAME areas and variables in any
Data Division.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if each
variable used in the module has only one functional use.

S-46

Question Data Sheet

Question Number S-47

QUESTION: Global variables are distinguishable from local vari-
ables by a naming convention.

CHARACTERISTIC: Consistency (Internal Consistency).

EXPLANATIONS: Uniform adherence to global variable naming
standards helps the maintainer to easily discriminate between local
and non-local variables. The non-local variables require extra
care due to interface requirements.

EXAMPLES: Each global variable has a six character name, each
local variable has a less-than-six character name; or, all global
variables begin with the letter G, all local variables begin with
the letter L.

GLOSSARY:
Global variables: Variables that can be accessed by more

than one module.

SPECIAL RESPONSE INSTRUCTIONS: Answer F if there is no
naming convention for global and local variables. Even if there is
a naming convention, however, it may not be one which allows for
clear distinction between global and local variables (i.e., the
answer may not be A). If there are no global variables, answer
A.

S-47

Question Data Sheet

Question Number S-48

QUESTION: The use of indentation is uniform within this module.

CHARACTERISTIC: Consistency (Internal Consistency).

EXPLANATIONS: Indentation can be helpful in identifying control
structures, highlighting peculiar code, etc. However, for inden-
tation to be useful, it must be used in the same way throughout
the code.

GLOSSARY:
Indentation: The use of non-essential blank characters in

any source line statement (usually associated with the first part
of a line with executable statements).

SPECIAL RESPONSE INSTRUCTIONS:

S

5-48

Question Data Sheet

Question Number 5-49

QUESTION: The information in the preface block is consistent
with the associated source code.

CHARACTERISTIC: Consistency (Internal Consistency).

EXPLANATIONS: Preface blocks are extremely helpful to the
maintainer in understanding the code, but to be helpful, they
must be accurate.

EXAMPLES: Inputs explained agree with inputs as coded.
Outputs explained agree with outputs as coded.
Processes explained agree with processes as coded.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: If there is no preface
block, then answer "F".

S-49

QUESTION DATA SHEET

Question Number S-50

QUESTION: The source language for this module is a high
order language (HOL).

CHARACTERISTIC: Simplicity (General coding simplicity).

EXPLANTATION:

EXAMPLES:

GLOSSARY:
High Order Language: A programming language that does

not reflect the structure of any one given computer or any class
of computers; other than assembly, machine, micro code, etc.;
e.g., FORTRAN, PL/1, Pascal, Ada, JOVIAL

SPECIAL RESPONSE INSTRUCTIONS:
Answer A if the source language is 100% HOL.
Answer F if the source language is 0% HOL.
Answer B-E otherwise.

S-50

QUESTION DATA SHEET

Question Number S-51

QUESTION: The control flow of this module is essentially from
top to bottom.

CHARACTERISTIC: Simplicity (General Coding Simplicity)

EXPLANATIONS: Logical flow which is not top to bottom is
usually because of the use of unstructured control (e.g., urcon-
ditional branches and other forms of GOTO's) paths. Use of an
iteration control structure is not considered to be a deviation
from top to bottom control flow.

EXAMPLES: The following code segment illustrates a top to
bottom control flow.

DO 20 I = 1,10
IF (Q) GO TO 10
B=I
GO TO 20

10 CONTINUE
I=1+1

20 CONTINUE

The following code segment illustrates a deviation from top to
bottom control flow (as well as other bad coding practices).

5 CONTINUE
C=C+B
DO 10 I = 1,10
B = I
IF (Q) GO TO 5
I=1+1

10 CONTINUE

GLOSSARY:
SControl f low: Logical flow from one control structure to the

next control structure.
Control structure: The basic control structures are SE-

QUENCE of operations (assignment, add, etc.), decision (IF
THEN ELSE - conditional branch), and iteration (DO WHILE -

operation repeated while a condition is true).

SPECIAL RESPONSE INSTRUCTIONS:
It can be very time consuming to scan source listings and

clearly determine that the control flow is top to bottom (in fact,
control structures may not be easy to determine). Hence, it is
unlikely to expect an answer of A.

Likewise, control does eventually get from top to bottom in
most modules and usually can't be considered to be in the worst-
possible-case class of examples (answer of F).

S-51

QUESTION DATA SHEET

Question Number S-52

QUESTION: This module contains very little extraneous code.

CHARACTERISTIC: Simplicity (General Coding Simplicity)

EXPLANATIONS- Coding that serves no use causes confusion and
makes the program logic more difficult to understand.

EXAMPLES:

GLOSSARY:
Extraneous code: Dead code or blatantly inefficient code.

SPECIAL RESPONSE INSTRUCTIONS:
Answer A only if there is no extraneous code.

S-52

QUESTION DATA SHEET

Question Number S-53

QUESTION: There is minimal use of specialized coding techniques
is this module.

CHARACTERISTIC: Simplicity (General coding simplicity).

EXPLANATIONS: Specialized coding techniques require a more
in-depth knowledge of the internal workings of the machine and
language, and therefore increase the difficulty of maintaining the
system.

EXAMPLES:

GLOSSARY:
Specialized coding: Masking, bit manipulation, machine de-

pendencies, imbedded assembly code, etc.

SPECIAL RESPONSE INSTRUCTIONS
Answer A only if there are no specialized coding techniques

used in the module. For assembly language programming it is
unlikely that the response would be other than F.

S-53

QUESTION DATA SHEET

Question Number S-54

QUESTION: Esoteric (clever) programming is avoided in this
module.

CHARACTERISTIC: Simplicity (General coding simplicity).

EXPLANATIONS: Esoteric programming techiques increase the
workload on the maintainers by requiring more time to try and
figure out what the originator of the code was trying to do.

EXAMPLES: The following example of clever FORTRAN pro-
gramming is illustrative of an unfortunately large set of possible
examples.

DO 10 1=1, N
DO 10 J=1, N

10 A(I,J) = (I/J)*(J/1)

In this example a matrix is being initialized. However, when
I>J then J/1 = 0 due to intrinsic FORTRAN integer division rules
and likewise, when J>J then l/J = 0. The net result is that all
diagonal elements, A(l,l), of the matrix are assigned the value
1.0 and all other elements are assigned the value 0.0 Clever,
but a more understandable and more efficient version is given
below.

DO 20 1=1, N
DO 10 J=1, N

10 A(I,J) = 0.0
20 A(I,l) = 1.0

GLOSSARY:
Esoteric: Overly clever or tricky.

SPECIAL RESPONSE INSTRUCTION: It is unlikely that the
evaluator would be able to determine except through a detailed
study of the source listings whether clever programming tech-
niques were completely avoided or whether the module deserves to
rank with the worst in this respect. Hence, responses at the
anchor points A or F are fairly unlikely.

S-54

QUESTION DATA SHEET

Question Number S-55

QUESTION: GO TO-like branch statements in this module are
used only where essential.

CHARACTERISTIC: Simplicity (General coding simplicity).

EXPLANATIONS: GO TO statements increase the number of label-
ed statements (which may be in another portion of the program)
thereby increasing the difficulty of following the program logic.
They tend to defeat the purpose of structured programming.

EXAMPLES: The use of a computed GO TO to construct a Case
construct and the use of a GO TO as an escape are illustrated
below. Similar constructs can be generated in assembly language.

Case: IF ((M.LT.1) .OR. (M.GT.4)) GO TO 50
GO TO (10,20,30,40), M

10 A = A+1.
GO TO 50

20 B = B+1.
GO TO 50

30 C = C+1.
GO TO 50

40 D = D+1.
50 CONTINUE

DO 20 I = 1,1000
DO 10 J = 1,1000

A = A+1.
10 IF (A) GO TO 30
20 CONTINUE
30 CONTINUE

GLOSSARY:
GO TO-like branch statements: Control structures with

conditional or unconditional branching.

SPECIAL RESPONSE INSTRUCTIONS:
Answer A only if there are no GO TO like branch statements.

i

S-5

! QUESTION DATA SHEET

i Question Numbers 5-56

QUESTION: There is reasonable use of statement labels in this
module.

CHARACTERISTIC: Simplicity (General coding simplicity).

EXPLANATIONS: Statement labels referenced may or may not be
in the section of code under consideration by the maintenance
programmer and, if not, increase the workload on the maintainer
by requiring "hunting". Reasonable use of statement labels will

allow a maintenance programmer to follow control flow with
minimum effort.

EXAMPLES:

GLOSSARY:
Statement label: Address or location to which control can be

transferred within a module.
Use: Number of statement labels as well as the number of

times the labels serve as the destination of a transfer of control.

SPECIAL RESPONSE INSTRUCTIONS:
If there are no statement labels, then answer A.

S-56

QUESTION DATA SHEET

Question Number S-57

QUESTION: A knowledge of mathematics beyond basic algebra is
not required to understand the mathematical functions performed
by this module.

CHARACTERISTIC: Simplicity (General coding simplicity).

EXPLANATIONS: Higher level mathematical functions require the
maintainer to be educated to that level and increase the training
levels required of the programmers.

EXAMPLES:

GLOSSARY:
Basic algebra: Functions (including trigonometric and ex-

ponential functions), equations, polynomials (including series),
graphing of functions, basic manipulations, etc. ; excludes
calculus, Fourier transformt , statistical algorithms, etc.

SPECIAL RESPONSE INSTRUCTIONS:

S-57

QUESTION DATA SHEET

Question Number 5-58

QUESTION: This module contains a minimal number of compound
data structures.

CHARACTERISTIC: Simplicity (Singular coding simplicity)

EXPLANATIONS: Data structures are either primitive data types
(e.g., INTEGER, REAL, BOOLEAN, CHAR, etc.) or are struc-
tures with components. A component's type may be primitive or
may itself be a structure. The concept is that reasonable use of
a small number of primitive structures is simple and that devia-
tions (whether because of necessity or other reasons) such as the
use of the nested or compound structures tends to reflect more
complexity. Of course, this concept can be carried to extremes.
If the software developer has done a reasonable design, then the
type of data structures used should reflect the functional use of
the data and hence the complexity of the programming task.

EXAMPLES: Compound structures could be arrays, arrays of
arrays, records, FORTRAN COMMON (with more than one primi-
tive component), etc. In assembly language the use of a block of
storage as an array (e.g., via manual index computations) would
constitute a compound data structure. However, for the most
part, assembly language modules will show a response closer to
A.

Note that the use of fields (e.g., bit strings) within a computer
word is considered to be a compound data structure.

GLOSSARY:
Compound: nested or non-singular; any non-primitive data

type.

Data Structure: Group of data elements; e.g., array, record,
file, etc.

SPECIAL RESEPONSE INSTRUCTIONS: Consider A only if there
is no use of compound data structures.

S-5

QUESTION DATA SHEET

Question Number S-59

QUESTION: This module contains a minimal number of compound
control structures.

CHARACTERISTIC: Simplicity (singular coding simplicity).

EXPLANATIONS: The fewer number of compound control struc-
tures a module has, the easier the logic is to understand and
maintain.

EXAMPLES: The following illustrates one compound structure,
namely the nesting of an iteration block (level 2) within a de-
cision block (level 1):

IF(Q) GOTO 20 ------------ - ---
DO 10 1=1,10 1

A=A+l level 2 level 1
10 CONTINUE j 1
20 CONTINUE ---------- -- - ---

In COBOL, examples are nested PERFORMs and nested IFs.

GLOSSARY:
Compound: Contains more than one of the primitive control

structures e.g., SEQUENCE, DECISION, or ITERATION), often
by nesting or imbedding one control structure within another.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there are
no compound control structures. An answer of F should reflect
an extremely poor control structure organization. It is not pos-
sible to specify precise guidelines for the anchor F response.
However, the greater number of nested control structures and/or
the greater the level of nesting for any individual nest should be
reflected through a lower response (A highest, F lowest).

S

S-59

QUESTION DATA SHEET

Question Number S-60

QUESTION: Each physical source line in this module contains at
most one executable source statement.

CHARACTERISTIC: Simplicity (singular coding simplicity).

EXPLANATIONS: Source lines containing more than one execut-
able statement increases the probability of missing or wrongly
interpreting the program logic.

EXAMPLES: In COBOL: MOVE X TO Y COMPUTE X=Y+I. (bad)
MOVE X TO Y
COMPUTE X = Y+1. (good)

GLOSSARY:
Executable statement: As defined by the language; for our

purposes this excludes comments, data declarations, and variable/
constant declarations.

SPECIAL RESPONSE INSTRUCTIONS:
The response should be based on a relative average of the

number of source lines which contain only one executable state-
ment to the total number of source lines with at least one exe-
cutable statement.

A - 0% no source line has more than one executable state-
ment.

B - 0% to 10%
C - 10% to 40%
D - 40% to 60%
E - 60% to 80%
F - Almost every source line has more than one executable

statement.

S-60

QUESTION DATA SHEET

Question Number S-61

QUESTION: There is minimal use of compound Boolean expres-
sions in this module.

CHARACTERISTIC: Simplicity (singlular coding simplicity).

EXPLANATIONS: Compound Boolean expressions are primarily
used in high order languages where Boolean operators such as
AND and OR are available.

EXAMPLES: Examples of compound Boolean expressions are illus-
trated below:

(A.AND.B).OR. (C.AND. D)
(A.AND.B.AND.C)

A typical use might be as follows:
IF(I.GT.1).AND.(J.LT.10.OR.J.GE.K)) GOTO 20

GLOSSARY:
Boolean: Logical combinatorial system that symbolically

represents relationships between sets or propositions; usually
using the operators AND, OR and NOT.

Compound Boolean expressions: Linking or nesting involving
more than one Boolean operator.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there are
no compound Boolean expressions.

S-61

.1

QUESTION DATA SHEET

Question Number S-62

QUESTION: The numoer of expressions used to control branch-
ing in this module is manageable.

CHARACTERISTIC: Simplicity (size simplicity).

EXPLANATIONS: The count of control expressions is closely
related to the number of independent cycles in a module. The
more control expressions there are, the more complex the control
logic tends to be. An actual count of the number of control
expressions in the module may be obtained as shown in the
example.

EXAMPLES: The following examples indicate how to count the
control expressions:

CONTROL STRUCTURE STATEMENT CONTROL EXPRESSION COUNT

Decision IF (A.OR.B) GOTO 10 A;B 2
IF (A.AND.B) GOTO 10 A;B 2
IF (C.GT.D) GOTO 10 C.GT.D 1
IF (A.AND.B).OR.(C.GT.D))

GOTO 10 A;B;C.GT.D 3
CASE (I) OF (alternatives) (number of

1: A alternatives
2: B less one)
3: C

END CASE

Iteration DO 10 I=1,10 I.LT.1 2
IF (A.GT.I) GOTO 20 I.GT.1O

10 CONTINUE A.GT.I 10 (repetition)
20 CONTINUE

GLOSSARY:
Control expression: IF, CASE, or other decision control

expression. DO, DO-WHILE, or other iterative control expres-
sion.

SPECIAL RESPONSE INSRUCTIONS: The following guidelines will
anchor the A and F responses, but are fairly subjective (espe-
cially the F anchor). The guidelines for the A response is sug-
gested from other independent research. Remember to count all
repetitions of the same control expression also.

Answer A if count < 10.
Answer F if count > 50.

S-62

QUESTION DATA SHEET

Question Number 5-63

QUESTION: The number of unique operators in this module is
manageable.

CHARACTERISTIC: Simplicity (size simplicity).

EXPLANATIONS: The concept is that the more distinct or unique
operators there are, the more discriminations one must make in
order to understand the module's function. Again, a count is to
be made, but keep in mind that it is the total number of unique
operators which are to be counted, not the total number of opera-
tors (which would include the repetitious use of each operator).
It is not intended that the evaluator spend a great amount of time
counting operators. In a period of a few minutes using the
guidelines below, it should be possible to obtain a reasonable
estimate of the number of unique operators.

EXAMPLE: The minimal number of operators for any algorithm is
2 (one operator is the transfer of control to the algorithm being
invoked and the other is an assignment or grouping symbol for
transfer of the result; e.g., Y = RANDOM or CALL RANDOM
(Y)).

GLOSSARY: The following are guidelines as to what constitutes
an operator. Some examples are also provided. The list below
should be considered representative and not complete:

1. All typical language verbs are operators;
e.g., unary op: negation (-), set complement (')

binary op: addition (+) subtraction (-)
mulitplication (*) division (/)
exponentiation (**) assignment (=)

relation op: less than (LT, <)
greater than (GT, >)
equal (EQ, =)
not Lqual (NE, =)
less than or equal (LE, <)
greater than or equal (GE, >)

logical op: AND
OR
NOT

control op: decision (IF THEN ELSE,
FORTRAN
logical/arithmetic,
assembly, branch, CASE)

iterative (DO loop, DOWHILE,
DOUNTIL, etc.)

sequential grouping (BEGINEND,
DO)

S-63

QUESTION DATA SHEET

Question Number S-63 (cont'd)

GOTO (each distinct GOTO label
is a unique operator)

2. There are various groupings of terms, each of which is an

operator.
grouping: expression

argument list

3. Each reference call is an operator.
external: module/function call (each unique coe

is counted).
intrinsic function call (MOD, MAX,

ABS, SHILFT,
etc.)

external function call (SIN, COSINE,
LOG, EXP, SQR,
etc.)

SPECIAL RESPONSE INSTRUCTIONS: The anchors below for A

and F responses are not sacred, but are reasonable.
Answer A if count < 10.
Answer F if count 7 50.

S-63A

QUESTION DATA SHEET

Question Number S-64

QUESTION: The number of unique operands in this module is
manageable.

CHARACTERISTIC: Simplicity (size simplicity)

EXPLANATIONS: The concept is that the more operands there
are, the more discriminations one must make in order to under-
stand the module's function. It is not intended that the evaluator
spend a great amount of time counting operands. In a period of
a few minutes it should be possible to obtain a reasonable estimate
of the number of unique operands.

EXAMPLES: An array (name) is considered a single operand.

GLOSSARY:
Operands: Variables and constants.

SPECIAL RESPONSE INSTRUCTIONS: The anchors below for A
and F responses are not sacred, but are reasonable.

Answer A if count < 40.
Answer F if count >-240.

S-64

QUESTION DATA SHEET

Question Number S-65

QUESTION: The number of executable statements in this module
is manageable.

CHARACTERISTIC: Simplicity (size simplicity).

EXPLANATIONS: The fewer lines of code in a particular module,
the easier it is to understand and maintain.

EXAMPLES:

GLOSSARY:
Executable statements: As defined by the language; for our

purposes this excludes comments, data declarations, and variable/
constant declarations.

SPECIAL RESPONSE INSTRUCTIONS: The following guidelines
for anchor responses are not sacred, but are reasonable.

Answer A if count < 50.
Answer F if count > 300.

S6

S-65

S '

QUESTION DATA SHEET

Question Number S-66

QUESTION: There is a minimal mixing of I/O functions and other
application functions in this module.

CHARACTERISTIC: Expandability (general expandability).

EXPLANATIONS: The concept is that mixing of I/O code and
other operational computations makes it difficult to modify either
the I/0 or the operational computations which probably are bound
to the I/0 in some manner. By keeping the mix to a minimum it
is easier to maintain.

EXAMPLES: Separate modules that perform output functions for
the program.

GLOSSARY:
Functions: Tasks performed by submodules, groups of relat-

ed statements, etc., as appropriate.
I/O functions: Actual external device interfaces; e.g.,

FORTRAN read and write, operating system file management calls,
hardware controller interface calls, etc.

Application functions: Any functions which provide specific
operational computations.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there is
no mix (i.e., the functions are either entirely I/O or entirely
non- I/0).

S-66

QUESTION DATA SHEET

Question Number S-67

QUESTION: There is minimal mixing of machine dependent
functions and other application functions in this module.

CHARACTERISTIC: Expandability (general expandability).

EXPLANATIONS: The concept is that mixing of machine depen-
dent functions with other operational functions makes it difficult
to modify either the machine dependent code or the operational
computations.

EXAMPLES: In-line assembly code, special instructions to address
extended memory, etc. within the module.

GLOSSARY:
Functions: Tasks performed by submodules, groups of relat-

ed statements, etc., as appropriate.
Machine dependent functions: Functions which are particular

to the host computer; e.g., architectural peculiarities.
Application functions: Any functions which provide specific

operational computations.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there is
no mix (i.e, the functions of this module are either entirely
machine-dependent or non-machine-dependent).

S-67

iAl

QUESTION DATA SHEET

Question Number S-68

QUESTION: Constants used more than once in this module are
parameterized.

CHARACTERISTIC: Expandability (general expandability).

EXPLANATIONS: It is easier and less error-prone to change a
constant in one place rather than every place that it is used.

EXAMPLES:

GLOSSARY:
Parameterized: Referenced by name, not by the actual

constant value; e.g., PI instead of 3.1415926.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if all con-
stants used more than once have been parameterized, or if no
such conditions occur.

S-68

QUESTION DATA SHEET

Question Number S-69

QUESTION: There is minimal use of processing-dependent code
(e.g., relative addressing, self-modifying code, etc.) in this
module.

CHARACTERISTIC: Expandability (general expandability).

EXPLANATIONS: The concept is that code should not have
built-in processing dependencies which make code modification
difficult. These processing dependencies may be internal module
dependencies, may be code which generates dependencies in other
modules, or may be code which depends upon some external
processing state for its functional effect.

EXAMPLES: Example of processing dependence is a module whose
effect is dependent upon the number of times it has been exe-
cuted. Frequently a module performs only certain processing
functions the first time or the Nth time it is executed. Another
example would be relative addressing, as a "jmp + 5" instruction
which might catch a maintenance programmer making changes
within those next five instructions.

GLOSSARY:
Self-modifying code: Code which changes the actual code

instructions of some other part of the module or of some other
module depending upon the current processing state; dynamic
code generation.

Relative addressing: Code designed to use the location of
the current instruction as a basis for referencing other locations.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there is
no processing-dependent code.

S-69

QUESTION DATA SHEET

Question Number 5-70

QUESTION: The size of any data structure which affects the
processing logic of this module is parameterized.

CHARACTERISTIC: Expandability (processing expandability).

EXPLANATIONS: Since it may be necessary to modify the size of
a given data structure, it is very helpful not to have to be con-
cerned with catching all the implicit references to the structure
size within the algorithm code which uses the data structure.

EXAMPLES: Some examples would be the use of an array size to
control the number of iterations, or to control indexing into the
array or other storage locations.

GLOSSARY:
Parameterized: Referenced by name, not by actual constant

value.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there is
no use of data structure size information (implicit or explicit)
within the processing logic of the module except where the size
has been parameterized.

S-70

QUESTION DATA SHEET

Question Number S-71

QUESTION: Any constants (e.g., accuracy, convergence,
timing which affect processing in this module are parameterized.

CHARACTERISTIC: Expandability (processing expandability).

EXPLANATIONS: The concept is that any metric constant (or
specific requirement) which in some manner controls the process-
ing logic of the module should not be used as a literal constant,
but should be parameterized to allow for modification ease should
the necessity arise.

EXAMPLES:

GLOSSARY:
Parameterized: Referenced by name, not by actual constant

value.

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if all con-
stants which affect processing are parameterized either locally or
globally, or if there are no such constants.

5-71

QUESTION DATA SHEET

Question Number S-72

QUESTION: The contribution of this module to the consumption
of frame time can be determined.

CHARACTERISTIC: Expandability (processing expandability).

EXPLANATIONS: In many applications, timing considerations are
of paramount importance. Time consumption is often the single
constraint on processing expandability. Therefore, the module
should contain some mechanism with which time consumption can
be measured.

EXAMPLES: Conditional compilation statements which are used for
determination of time consumption may be included in the code.
Breakpoints used for determination of time consumption may have
been included in the code. Comments may describe present
execution time and/or how to determine execution time should the
module be modified.
GLOSSARY:

Frame: a predetermined period of time in which the system
must perform specific functions.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if there are no
critical time constraints in the system (e.g., non-real-time). If
the contribution can be estimated, rather than determined, ac-
curately enough to satisfy the requirements of system software
maintenance, answer A.

S-72

QUESTION DATA SHEET

Question Number S-73

QUESTION: The volume of data which this module can process
does not appear to be limited.

CHARACTERISTIC: Expandability (processing expandability).

EXPLANATIONS: The concept is that it would be best if a module
does not have to be modified simply because more data is to beprocessed.

EXAMPLES: 1. A sort algorithm may well be volume bound or

may not be, depending upon how the processing algorithm is set
up to handle the input and output of the data.

2. A read until end-of-file into an array implies
limitation.

3. An example of an unlimited process would be a
program that produces an 80-80 listing.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:

S-73

'11

QUESTION DATA SHEET

Question Number S-74

QUESTION: It appears that functional parts could be easily
inserted, deleted, or replaced within this module.

CHARACTERISTIC: Expandability (proessing expandability).

EXPLANATIONS: The concept is that the module or its functional
parts should be modifiable on a functional insert/delete/replace
basis. The functional parts of a module should be designed such
that their strengths are maximized and their interconnectedness is
minimized.

EXAMPLES: A trigonometric function is easily replaceable.
Numerical labels in the module might be incremented by 10 or
even 100 to allow for insertions at a later date.

GLOSSARY:
Functional part: Submodule, task, contiguous statements

performing a basic computational step.

SPECIAL RESPONSE INSTRUCTIONS:

S-74

QUESTION DATA SHEET

Question Number 5-75

QUESTION: This module contains checks for possible out-of-
bound array subscripts.

CHARACTERISTICS: Instrumentation (processing instrumenta-
tion).

EXPLANATIONS: Miscalculating values for variables used as
array subscripts is a source of error during array processing.
Values that are negative or that exceed the declared dimension of
an array will cause unpredictable results. The program, either
through the compiler or through actual programming considera-
tion, should contain adequate tests wherever variables are used
as subscripts to insure that the variables have reasonable values.

EXAMPLES:

GLOSSARY:
Array: Either an explicitly declared array or a storage area

(e.g., in assembly) which is effectively used as an array.

SPECIAL RESPONSE INSTRUCTIONS: If the module does not use
arrays or some other type of indexing which could exceed the
actual maximum size, then answer A. Also answer A if it is clear
that none of the array subscripts can go out of bounds.

S-75

O a

QUESTION DATA SHEET

Question Number S-76

QUESTION: This module contains checks to detect possible un-
defined operations.

CHARACTERISTIC: Instrumentation (processing instrumentation).

EXPLANATIONS:

EXAMPLES: Divide by zero check:
IF (A.NE.O)

THEN X = B/(2*A)

GLOSSARY:
Undefined operation: Divide by zero, square root of nega-

tive number, singular matrix operation, numerical divergence,
etc.

SPECIAL RESPONSE INSTRUCTIONS: If the module does not
contain any operations which could give an undefined result, then
answer A.

I

S -76

QUESTION DATA SHEET

Question Number 5-77

QUESTION: This module contains a minimal amount of code which
would require lower-level detailed testing.

CHARACTERISTIC: Instrumentation (processing instrumentation).

EXPLANATIONS: The concept is that a module that contains a
minimal number of complex functional parts (e.g., numerical
algorithms, interface coordination, timing schemes, etc.) is easier
to maintain because less lower-level testing is required.

EXAMPLES:
A module which contains its own trigonometric function

algorithm, rather than using the operating system's library rou-
tine, would require additional testing to insure that the algorithm
is (and remains) operationally sound.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Answer A only if there is
no code in the module which would require detailed testing.

S-77 [
IL

QUESTION DATA SHEET

Question Number S-78

QUESTION: Source listing comments suggest or reference input

data and associated output results for use in testing this module.

CHARACTERISTIC: Instrumentation (control of instrumentation).

EXPLANATIONS:

EXAMPLES:

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS:
If there are no procedures (let alone comments for proce-

dures) for testing this module, answer F.

S-78

QUESTION DATA SHEET

Question Number S-79

QUESTION: Diagnostic messages/error codes are output when an
illegal input to this module is encountered.

CHARACTERISTIC: Instrumentation (control of instrumentation).

EXPLANATIONS: The basic question is whether all input data is
checked as appropriate for format, range, or any other attribute
which might make the data invalid. It is especially important to
validate input data which is a logic control parameter (e.g.,
decision parameter, loop index). The validation process should
include the appropriate diagnostic messages and/or error codes.

EXAMPLES:

GLOSSARY:
Input: Includes data passed to the module both at entry to

the module and from externally referenced modules.

SPECIAL RESPONSE INSTRUCTIONS: It may be that all data
which is input to this module either does not require validation or
is validated in some other (perhaps one module for that purpose)
place; if it is clear from the comments in the source listings that
this is the case, then answer A.

S-79

QUESTION DATA SHEET

Question Number S-80

QUESTION: Diagnostic messages/error codes are output wherever
an internal module failure could occur.

CHARACTERISTIC: Instrumentation (control of instrumentation).

EXPLANATIONS: Internal module failure consists of algorithm
failures due to error conditions which are recognized within the
module; these error conditions may be due to out-of-bound array
subscript, undefined operations, algorithm inadequacy, etc. This
failure is not due to error conditions from input data checks, but
may be based upon perfectly valid input data.

EXAMPLES: IF ((A*A - B*B + C*C).EQ.O.O) GOTO 200
XALRT = (A*A + B*B)/(A*A - B*B + C*C)
IF (OVRFL) GOTO 99
200 CONTINUE

(In the above example, a standard divide by zero check has
been performed; however, internal module failure could still occur
if an indefinite value of XALRT were to be used - thus the
overflow check.)

GLOSSARY:
Algorithm: A prescribed set of well-defined rules or pro-

cesses for the solution of a problem in a finite number of steps.
Internal Module Failure: Unacceptable interruption of pro-

cessing within the module.

SPECIAL RESPONSE INSTRUCTIONS: Answer A if no internal
module failures are possible.

S-80

QUESTION DATA SHEET

Question Number S-81

QUESTION: Intermediate results within this module can be select-
ively collected for display.

CHARACTERISTIC: Instrumentation (control of instrumentation).

EXPLANATIONS:

EXAMPLES:

GLOSSARY:
Intermediate results: Input data is transformed to output

data through a series of intermediate steps; at each step data, or
intermediate results, may be useful in determining where pro-
cessing correctness begins and ends.

Display: print, hard copy, video, etc.

SPECIAL RESPONSE INSTRUCTIONS: If a module has no signif-
icant intermediate results (perhaps because of its inherent sim-
plicity) which would be useful to know in order to test/retest the
module, then answer A.

S

S-81

QUESTION DATA SHEET

Question Number S-B2

QUESTION: Aids exist in or can be easily inserted into the
module's source code for the purpose of tracing the logical flow of
control.

CHARACTERISTIC: Instrumentation (control of instrumentation).

EXPLANATIONS: Language features such as conditional compila-
tion can greatly influence the capability for a design to include
good instrumentation aids for the purpose of collecting trace
information or intermediate data results.

EXAMPLES: Event trace performance information is automatically
collected and monitored by a separate program task.

GLOSSARY:
Aids: test probes, performance probes, etc. which may be

in the form of language processor generated code, program diag-
nostic modules designed specifically for that purpose, or actual
inline code which can be selectively activated by the user.

SPECIAL RESPONSE INSTRUCTIONS:

S-82

QUESTION DATA SHEET

Question Number S-83

QUESTION: Modularity as reflected in this module's source
listing contributes to the maintainability of this module.

CHARACTERISTIC: General Questions.

EXPLANATIONS: Software possesses the characteristics of modu-
larity to the extent a logical partitioning of software into parts,
components, modules has occurred.

EXAMPLES: The software has been partitioned into easily com-
prehendable "sections". Each "section" is independent from every
other "section" as much as is reasonable; i.e., to understand any
given "section", requisite knowledge of other "sections" has been
kept to a minimum.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Please give your general
feeling about the modularity of the module source listing.

S-83

QUESTION DATA SHEET

Question Number S-84

QUESTION: Descriptiveness as reflected in this module's source
listing contributes to the maintainability of this module.

CHARACTERISTIC: General questions.

EXPLANATIONS: Software possesses the characteristics of
descriptiveness to the extent that is contains information regarding
its objectives, assumptions, inputs, processing, outputs, com-
ponents, revision status, etc.

EXAMPLES: Program objectives are explained, subprogram objec-
tives are explained, communication links are specifically explain-
ed. Revision status of the documentation is clear, source listing
revision status is clear.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Please give your general
feeling about the descriptiveness of the module source listing.

S-84

QUESTION DATA SHEET

Question Number S-85

QUESTION: Consistency as reflected in this module's source
listing and between the source listing and documentation contrib-
utes to the maintainability of this module.

CHARACTERISTIC: General questions.

EXPLANATIONS: Software possesses the characteristics of consis-
tency to the extent the software products correlate and contain
uniform notation, terminology and symbology.

EXAMPLES: Things are done similarly in different parts of the
source listing. Once an individual learns how the source listings
are organized, he can turn to any part of the listings and see
exactly what he expects to see. A set of coding standards ap-
peart. to have been set up and followed.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Please give your general
feelings about the consistency of the module source listing.

S-85

QUESTION DATA SHEET

Question Number 5-86

QUESTION: Simplicity as reflected in this module's source listing
contributes to the maintainability of this module.

CHARACTERISTIC: General questions.

EXPLANATIONS: Software possesses the characteristics of sim-
plicity to the extent that it lacks complexity in organization, lan-
guage, and implementation techniques and reflects the use of
singularity concepts and fundamental structures.

EXAMPLES: The organization of the source listings is logical.
Uncomplicated, descriptive terminology is used throughout. Each
section or part of the source code addresses a single subject and
is minimally dependent upon other parts for a full understanding.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Please give your general
impression about the simplicity of the module source listings.

5-86

QUESTION DATA SHEET

Question Number S-87

QUESTION: Expandability as reflected in this module's source
listing contributes to the maintainability of this module.

CHARACTERISTIC: General questions.

EXPLANTIONS: Software possesses the characteristics of expand-
ability to the extent that a physical change to information,
computational functions, data storage or execution time can be
easily accomplished.

EXAMPLES: Array sizes are paramaterized. Sub-units of code
are modular such that they may be easily replaced or that new
sub-units may be easily added. The code does not use all avail-
able computer memory.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Please give your general
impression of the overall expandability of the module as reflected
in the module source listing.

S-87

QUESTION DATA SHEET

Question Number S-88

QUESTION: Instrumentation as reflected in this module's source
listing contributes to the maintainability of this module.

CHARACTERISTIC: General questions.

EXPLANATIONS: Software possesses the characteristics of in-
strumentation to the extent it contains aids which enhance
testing.

EXAMPLES: The listings contain comments about test cases.
Specialized code exists which can be invoked for testing pur-
poses. Comments exist which explain how to use DEBUG options.
Comments exist which point out potential problems.

GLOSSARY:
DEBUG: Removal of BUGS.
BUG(s): Latent errors.

SPECIAL RESPONSE INSTRUCTIONS: Please give your feelings
about the instrumentation of the software as reflected in the
module source listings.

S-88

QUESTION DATA SHEET

Question Number S-89

QUESTION: Overall it appears that the characteristics of this
module's source listing contribute to the maintainability of this
module.

CHARACTERISTIC: General questions.

EXPLANATIONS: Software maintainability is defined as those
characteristics of software which affect the ability of software
engineers to:

(1) Correct errors.
(2) Add system capabilities through software changes.
(3) Delete features.
(4) Modify software to be compatible with hardware

changes.

EXAMPLES: The module source listing is designed to aid you in
maintenance of the subject software.

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS: Please give your general
impression as to how much the documentation would aid you in
maintenance of the software under study.

S-89

PART III

SOFTWARE MAINTAINABILITY EVALUATOR'S HANDBOOK

CROSS REFERENCES

A. GENERAL.

The following section contains information which should help

the evaluator locate specific question subject matter and glossary

definitions. The Question Index and Cross Reference contains

question subjects listed alphabetically and cross-referenced to the

question (and page number) addressing that question. The Glos-

sary Index and Cross Reference lists all definitions in the hand-

book, arranged alphabetically and cross-referenced to the page

containing that definition.

B. EVALUATOR'S HANDBOOK CROSS REFERENCES.

25

Question Index and Cross Reference

Arguments S-41
Array subscripts S-75
Attributes S-28

Branch Statements S-55, --62

Coding Techniques S-53, S-54, S-60, S-61, S-69
Comments S-23, S-24, S-27, S-44, S-78
Consistency D-37 thru D-45, D-79, S-36 thru S-49, S-85
Constants S-68, S-71
Control Flow (calls) D-54, S-13, S-18, S-19, S-25, S-36, S-51, S-82
Control Structures S-59
Conventions S-43
Cross Referencing D-4, 0-49, S-35

Data Storage Locations 0-7, S-3
Sizes D-63, D-64, D-65

Data Structure D-6, S-58, S-1, S-70
Declaration of Variables S-31
Descriptiveness D-13 thru 0-36, D-78, S-15 thru S-35, S-84
Display Results S-81
Documentation Master List

Format, Standards Organization D-40, D-37, D-47, D-58, D-60, S-22

Master List 0-18

Entry Points S-5, S-9, S-11
Error Processing D-12, D-43, 0-76, S-29, S-76, S-79, S-80

Recovery D-29
Executable Statements S-65
Exit Points S-6, S-10, S-12
Expandability D-58 thru D-66, D-81, S-66 thru S-74, S-87
External Interface D-1
Extraneous Code S-52

Flow Chart 0-26, 0-38, S-36, S-37
Function, Program D-2, D-39

Module D-52, S-7, S-8, S-27, S-66, S-67
Mixing S-67

Global Data 0-3, S-4
Glossary 0-14

High Order Language D-50, S-50

26 I;

Indentation S-33, S-48
Index D-15
Initialization,

Program 0-9, 0-27
Inputs 0-22, S-15, S-39, S-78
Input/Output S-14

Program 0-11, 0-30, 0-42, 0-73
Instrumentation D-67, thru 0-76, D-82, S-75 thru S-82, S-88
Interfacing D-41
Interruption 0-56

Labels S-34, S-38, S-56
Limitations S-20, S-73
Locating Information 0-16

Machine Dependencies S-26
Mathematical Model D-35, D-36, D-57, S-57
Modularity 0-1 thru 0-12, D-77, 5-1 thru S-14, S-83

Naming Conventions D-44, D-45, S-32

Operands S-64
Operators S-63
Organization S-30
Outputs D-24, D-31, S-16, S-40, S-78

Preface Block S-15 thru S-22, S-49
Processing D-23, S-42

Special D-25, S-21
Program Control Flow D-8, D-32

Recursive/Reentrant Programming D-51
Resource Allocation D-19, 0-53

Separate Volumes, Pages 0-5, D-59
Test Plan D-67

Simplicity D-46 thru D-57, D-80, S-50 thru S-65, S-86
Single Idea D-48
Standards

Documentation D-37
Storage Requirements D-21
Structured Programming S-2

Table of Contents D-13
Termination

Program D-10, D-27
Terminology

27

Testing D-70, 0-71, 0-72, S-77Data 0-68, D-74
Support Tools D-69, D-75

Timing Requirements D-20, D-55, D-61, D-62, S-72

Undefined Operations S-76

Variables
Global D-33, D-34, D-45, S-47
Usage S-45, S-46

Version
Description D-17

28

Glossary Index and Cross Reference

Acronym D-14

Aids S-82
Algebra,

Basic D-57, S-57
Algorithm S-80 Allocation,

Dynamic D-19
Array S-75
Attributes S-28

Bug 0-82, S-88

Chart 0-32
Coding,

Specialized S-53
Compound S-58
Control,

Expression S-62
Structure S-33, -51
Structured programming S-2
Flow, S-36, -51
among modules D-54

Conventions D-41
Cross reference D-49

Data,
Elements S-1
Flow S-37
Global D-6
Type S-45
Structure, 0-65, S-1
Global D-6, S-4

Debug D-82, S-88
Decision block S-11, -12
Declared S-31
Delineation S-44
Display S-81
Distinct Purpose 0-5
Dynamic Allocation 0-19

Entry Point S-5, -9, -11
Error Condition,

Internal D-29
Error Processing D-12, 0-43
Escape S-55
Esoteric S-54
Executable Statement S-60, -65

29

AL

Exit Point S-6, -10
External Interfaces D-1
Extraneous Code S-52

Fixed D-53
Flexible D-61
Flowchart D-26, -38, S-36
Frame S-72
Function, D-52, S-27

Machine Dependent S-67
Major D-20, -21
Program D-62

Functional Task S-7, -8

Global Data, S-47
Base D-3

GOTO-like branch
Statements S-55

Graphic Materials D-59, -60

High order language D-50, S-50

Include D-75
Indentation S-48
Initialization 0-9, 0-27
Input S-14, -15, -39, -79
Interfacing of modules D-41
Internal error conditions 0-29
I/O D-11
Iteration Block S-9, -10
Intermediate results S-81
Internal module failure S-80
Interrupted D-56

Label, S-38
Statement S-56

Language,
High order D-50

Listing,
Cross reference machine S-35

Machine dependencies, S-26
Major Program Function D-2
Master list D-18
Mathematical model, D-35, -36

Complex

Nested S-59
Number scheme D-58, -60

30

Operands S-64
Order of arguments S-41
Organization of the,

Program D-40
Module S-30

Output S-14, -16, -40

Parameterized S-68, -70, -71
Part, D-1, -2, -3

Functional D-39, -66, S-74
Major D-4

Physically organized D-47
Preface block S-15 through S-22
Programming conventions D-47
Programming techniques,

Recursive D-51
Reentrant D-51

Purpose S-17

Recovery D-28
Relative addressing S-69
Repeatedly S-68
Resource allocation 0-53

Self-contained 0-4
Self-modifying code S-69
Specification/declaration section S-31
Statement label S-34
Standards D-37, -38
Storage Sizes,

Basic data 0-63
Support tools,

Program D-69

Termination 0-10, D-27
Terminology D-46
Test Data,

Sample D-68
Test plan,

Program D-67
Test probe 0-75
Time slice D-62
Timing scheme D-55, -61
Top Down

Hierarchal tree pattern D-8
Transfer of control S-25
Type D-7

31

Undefined Operation S-76
Unit 0-71
Use S-56

Variable, S-28
Global D-33, -34, -45

Version description document D-17

32

