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ABSTRACT

An enterprise is owned jointly by m agents, the i-th agent's share

being éi > 0 where Z ei =1 . The enterprise is able to produce
some non-negative n-veztor x of goods where x 1lies in some convex
production set X . An operation consists of choosing a vector from X
and distributing it among the agents. The problem is to find an opera-
tion such that the value of the i-th agent's bundle measured in a given
price system is proportional to ‘ei and such that the operation is
(Pareto) optimal with respect to the agents' preferences. It is shown
under standard assumptions that operations which are both optimal and
proportional always exist. It is conjectured that if preferences are
given by separable concave utility functions then such operations are

unique. This is proved (a) when there are only two goods, (b) when X

is a simplex, (c) when X represents production of a single good over

n time period.




ON OPTIMAL OPERATION OF A JOINTLY OWNED ENTERPRISE

by

4 David Gale and Hilton Machado

< 1. INTRODUCTION

An enterprise such as a farm or a firm is owned jointly by m agents,

the share of agent i being ei » where I Gi =1 . The enterprise is

4 able to provide wvarious amounts of n goods, thus, a non-negative n-vector

from some production possibility set X (non-trivial) in R: . Each
agent has a preference ordering over R: . The problem is then to decide
which vector x in X should be produced and how this vector should be
"*i distributed among the owners of the enterprise. An obvious requirement for
any such scheme is that it should be (Pareto) optimal with respect to the

owners' preferences. A second requirement is that the distribution should

in some way reflect the shares of the different owners. 1In order to formu-
: 4
late the latter we will assume that there is some exogenously given set of

vu."

iy

prices for the various goods. A distribution will then be called proportional
if the values at these prices of the goods-vector distributed to each owner

.; is proportional to his share of the enterprise. Without loss of generality

N,

we may assume that all prices are equal to one (simply define the unit of

each good appropriately), so in a proportional distribution the total amount

of goods received by each agent is proportional to his share. A feastible ¢
i

operation of this model consists of a choice of a vector x from X and ;
nm B

a distribution x = (xl, ooy xm) in R+ such that I X, = x. ;

The purpose of this paper is to show (a) under the usual assumptions
of closedness and convexity of production and preferences there always !

exists an optimal, proportional operation. The proof is fairly standard

P T S



and is related to a much more detailed study of Balasko [ 2] waich however
does not include production. For the sake of completeness we include our
own short proof. Our main concern here is with uniqueness which we con-
jecture to be true if preferences are given by utility functions which are
increasing, strictly concave and separable. While this question is still
open for general production sets we show (b) that the optimal proportional
operation is unique in each of the following cases: (1) when there are
only two goods, (2) when the production set X 1is a simplex and (3) when
the model can be formulated in terms of time periods with reinvestment of
collective savings and distribution of profits among the agents along the
time.

We remark that this paper is a sequel to those of Gale and Sobel [ 3],
[ 4] and Sobel [ 7] concerned with the case in which the enterprise pro-
duced only one good the amount of which was a random variable over which
the owners had no control. We here eliminate the stochastic element but
allow the owners to determine the output vector as well as its distribution.
The interest in the present result like that of its predecessors lies in the
uniqueness theorem. We have here an instance, as with the Shapley value and
the Nash bargaining problem, where & natural bargaining-~type problem has
only one-solution satisfying certain natural requirements.

The condition of separable utility is, of course, a strong omne. It
is natural, however, for the special case (3) which was the original motiva-
tion for this study. Here the enterprise is to operate over n time periods
and the goods can be taken to be the profits of each period. These can be con-
trolled by the owners who must decide how much profit to distribute among

themselves in each period and how much to reinvest for the next period,

input and output being related via given production functions £, - Under




the usual assumption that each owner's utility of income is additive over

time, we have an example which satisfies the separability condition (b)

b above.

E ‘ An interesting but as yet unsettled question would involve incorporat-
ing a stochastic element in the dynamic model of the previous paragraph.

i Suppose the return on investment depends on a random element as well as

the amount invested. What are the appropriate investment and distribution
strategies for obtaining analogues of (b) above? - the existence problem (a)

J is settled under fairly general hypothesis in Machado [ 6].
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2. EXISTENCE

We assume each agent has a strictly increasing, strictly convex, closed
preference ordering on R: which can therefore be represented by (quasi-
concave) continuous utility functions. The production set is compact and
convex in R: .

To prove existence of optimal proportional operations, let X C rR™
be the set of all distributions x = (xl, ooy xm) of the model. Choose

utility functions u, such that ui(O) = 0 and define u : X » R: by

i
r(x) = (pl(xl), cees um(xm)) . If 2 is the set of all optimal operatioms,

it is well known that ﬁ = u(k) is homeomorphic to the unit simplex Zm-l

(see e.g. Arrow-Hahn { 1], pp. 111-112). Further, u restricted to X

is one-to-one because of the strict convexity of preferences so u is a

homeomorphism from U to X . Define the map E : X - {0} » g1 by

~

E(x) = (e~x1, cees e-xm)/(e°x) where e 1is the n-vector all of whose

coordinates are one and x = Z x, . Let ¢ = E °u_1 , then ¢ is well

i
defined because 0 €& X and continuous from U to Zm-l . Further, for

any SCcM= {1, ..., m} let Us ={u€evu s ouy o= 0 for i €S}, the

image of the corresponding face of the unit simplex. By monotonicity,

ui(xi) = 0 implies xi-=0 , hence e'x, = 0 so that ¢ maps every face

of U onto the corresponding face of Zm-l . The standard homotopy

result then implies that ¢ 1is subjective. Thus, for some optimal opera-

tion X and some positive number A , we have e'x, = Aei for all 1 ,

as desired.




3. THE CASE OF TWO GOODS

Assume now there are only two goods and the utility functions are

differentiable (for simplicity), strictly concave, increasing and separable,

2
i.e., ui(xi) = jzl ”ij(xij) where X, = (xil’xiZ) .

Lemma 1:

Let x = (xl,xz) and y = (yl,yz) be optimal productions where

xl > y1 and x2 < y2 . Then for each agent i with X1 > Yy 0 Ve must
have X9 z_yiz . Symmetrically, if X9 < Yio for some i , then
X131 Z¥40 ¢

O We prove the first assertion by contradiction. Assume X, 795

and xi2

- ' = ! =
(xl, cees Xy + 8(y=-%X), «v.y xm) where 0 <8 <1 . Since x T Xy

NRZVIE Define a new distribution x' = (xi, ey x;) =

z X, + §(y-x) = 6x+ (1-8§)y, we have that x' € X by convexity. Further,
since X, > 0 , we see that xil >0 for § sufficiently small so that
the new distribution is feasible. Now defining ¢(§) = ui(xi + 8(y~x)) ,
we have ¢(8) < O by optimality of (xl, ceey xm) . Differentiating

using the chain rule gives

v = 1! -
¢'(0) = ui(x,)(y-x) <0 .
Symmetrically since we assumed X9 < Yip » we get

ui(yi)(x-y) <0.

Now adding inequalities and using separability of My o




(x-y)(ui(xi) - ui(yi)) =

1 2
=y Gl G ] G0+ 6=y ], ) —ul (v 00 20,

but notice that both of the summands above are negative, giving the

desired contradiction. O

Uniqueness:

Suppose that X and y are distinct optimal operations and say

xl > yl .  Then x2 < y2 , otherwise y would not be efficient. It

follows that X412 Yi1 for some i and X0 < Yo for some k . But

then by Lemma 1 we would have Xg 3_yi and x < This means that

k =7k °
ex; > ey, and e'x, < ey, so (e-xi)/(e-xk) > (e-yi)/(e-yk) and

therefore one of the two operations is not proportional.




4. SIMPLICIAL PRODUCTION SET

We now prove uniqueness of optimal productional operations for

simplicial sets X . We assume that X = {x S R: ; a*x i_l} for some

i
each i . The j=~th partial differentiation will be indicated by aj .

positive vector a = (al, ceey an) and that u is differentiable for

Lemma 2:

If x = (xl, ceay xm) is an optimal operation, there exists a

positive vector a = (ul, caes um) such that

1) aiajui(xi

2) aiajui(xi) = aj whenever x.,, > 0 .

) f_aj for all i and j ,

ij

[ pefine @, = min (aj/ajui(xi)) . For a given i say a, = al/alui(xi).
Then (1) 1is satisfied by definition. To prove (2) suppose, say Xip > 0.

Given § > 0, consider the new operation X' = (xi, ey xé) where x3 = xj

X, ) . For small

-Gal, xi3, sees X

. > L -
for j #i and X3 (xil + Saz > Xy
values of § , x' 1is a feasible operation. Let ¢i(6) = ui(xi) . By

' = -
optimality of X ,we have 0 i-¢i(0) azalui(xi) alazui(xi) . It follows

that az/azui(xi) Sy hence az/azui(ci) =a, as desired. O

Assuming now separability, let X and y be two optimal operations
and a and B be the corresponding positive vectors given by Lemma 2.
In the same spirit as for the two-good model, we will prove that X and vy

must coincide by direct use of the following result.

Lemma 3:

If x for some agent 1 and some good j , then Xi9 3-Yiz

13 7 71
for all goods £ .

;
S
§
3
b

N




D . . [] =
By Lemma 2 and strict concavity of “ij , we have that aiuij(xij)

\ 1
aj > B.u..(yij) > Biui

) , hence a, > 8, which means that x
— "1i7ij i i

3344 TIRRAT)

for all & for if X2 < Yia for some 2% , then the argument above would

prove 8. >a, .0
i i

Uniqueness now follows at once for we see that for each i either

X, > y; or X i.yi , but as in the previous section we cannot have Xy z_yi

(xi i_yi) for all i with strict inequality for some i for this would
i

contradict efficiency, and we cannot have Xy ; Vi o0 X ; Y for this would

contradict proportionality.
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5. THE MULTIPERIOD PRODUCTION MODEL

Here a single good is produced in each of T consecutive periods and

agent i owns ei shares of the enterprise, Bi a (positive) fraction

of the initial input x, = 1 . The production output or profit associated

with input x at the beginning of period t is y = ft(xt-l) . The

t-1

production functions ft have positive non-increasing derivatives and
ft(O) =0 .

The output of period t 1s split into individual consumption Cie

by the different agents 1 and savings X input for the next period.
Now uit(c) measures the utility to agent i of consumption or income ¢

in period t and it is assumed that u has positive strictly decreasing

it

derivative on R+ . We are also given a price sequence p = (pl, ey pT) >0,
where P, stands for the unit price of the commodity in period t , but
appropriate scaling of production and utility functions allows for the
usual simplification, Py = 1 for all t , which is assumed here.

A feagible operation is now a matrix s = (cl’ cens cm,x) where

c, = (cil’ ceey C,m) and x = (xl, ey xT) satisfy the following condi-

i iT

tions

(1) e, 20, x, >0 forall 1,t, x, =0

it T

(2) % ¢, X, = f,(x _)) forall t>1.
For short, we will write s = (c,x) where c¢ 1is the m x T consumption

matrix (c,,) and x is the savings-vector; we occasionally refer simply

it
to ¢ rather than to s .

As before, agent i judges a given operation or scheme s on the

i

basis of two quantities, Ui(s) = E uit(cit) and Vi(s) = @*c, and the
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problem is to find in the set S of all feasible operations one which
is Pareto optimal and proportional, i.e., the m-vector U(s) 1is a maxi-
mal element in the partial ordering of R: and V(s) 18 a positive
multiple of the share-vector 6 .

While here we use a different notation, better adapted to the model,
it is easy to verify that this is a particular case of the general problem
described in the Introduction. In particular, optimality of a scheme s

is equivalent to the following property

1

(3) for some o € il , S maximizes the function a<U(s) over

the set S .

Furthermore, the existence of optimal proportional schemes follows from

our result in Section 2 by taking for production set X = {ec ; (c,x) € S} .
To prove uniqueness we first establish some necessary conditions for

optimality. Roughly they say that an agent may decide to sacrifice part

of his present income for the sake of some agent's present, past or future

consumption but that no increase of the critical value a+U(s) will result

from this.

Lemma 4:

Let (c,x) be an optimal operation associated with the vector «

in Zm-l . If for some agent i and period t , Cie > 0, then the follow-

ing "backward inequality"

t

) n f'(x
vugtl viv-l

) > au (

#3848

(4) ogui ey, s

holds for every agent j and every period s < t (we convention the value

one for "empty" products). On the other hand, if ¢ s> 0,3j and s as

3
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before, then we have the "forward inequality"

t
L 1]
2oghyelegy) 0 £0(x

(3) vestl Y v-l)

%5418 (Cyq)

O We prove (4) when s < t , the other cases are simpler. Consider

the operation (c¢',x') obtained from (c,x) as follows

' =
(6) cjs cjs + As (As > 0)
x' =x -4
S S S
' = - = - !
Xobl T Kol T Boer Where Ay = fo(x) - £, (k)
! = - = - '
Xeal = ¥ee1 T Ber Beoy = Feog(xplp) = £y (i)
] = - = - L]
Cie T Cye T 4 A= £ G ) = £ (g )

(all other entries as before).

By definition, s’ =(c',x') satisfies the feasibility conditiomn (2).
As Cip > 0 we have ft(xt-l) >0, so X1 0 and ft-l(xt-Z) >0 .
Recursively, x > 0 for all v in the interval s <v < t-1 . Con-
tinuity and monotonicity of the production functions now guarantee that,
for small values of Ay » we have x; >0 and c't > 0 so that condition

i
(1) also holds and s' € S . By optimality of s , we have

(1) 02 a(U(s") = U(e)) = oy (uy (e} ) = wy (e, ) +

oy Qugplegy) =y ley ) =

ajéujs(cjs H AS)As - aisuit(cit ; _At)At

where we use the standard notation

§F(x;z) = (F(x + 2) - F(x))/z .

On the other hand, with the same & notation,
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(8) A, = 8f,(xy g 5 =8, )8,
Bopr = SEgp1(%g 5 —85)44
so that, by multiplication,
t
(9 s, =| 1 8f (x,_; 5 -8, )))A,
s+l
Substituting this in (7), dividing by As > 0 and passing to the
limit as As + 0 (all Av + 0 , necessarily) we get (4), as wanted. O
Lemma 5:
Let (c,x) and (d,y) be optimal operations, a« >0 and B > O
the associated vectors in Zm-l ,1<i,j<m and 1 <s<t<T. If

we have

(10) (Cit-dit)(cjs-djs) <0 and

(11) (e, -d; I(x,-y)) 20 forall s<vs<it-lj
then

(12) (cit-dic)(ai/Bi-aj/Bj) >0 .

(0 Because of the symmetry we may as well assume that L > dit ,

\J
c >y, for all the v's and prove that a.i/Bi > aj/Bj .

is < djs » Xy 2

As e >0 and djs >0, Lemma 4 implies

t
uipgley ) I £0(x, 1) 1,uju38(cjs)

(13) a
i7it"1¢c s+l

e o sy




- Gt &, g} ': X .

t
(14) 8 u's(djs) 1Biu' (d; ) M £y

) .

373 it v ivy-1

s+l
Since utilities were assumed to be strictly concave, (13) gives

t
(15) aiuit(dit) 321 fv(yv-l) g ajujs(djs) )

Multiplying now (14) and (15) together, we get ai/Bi > aj/Bj as wanted. O

The proof of uniqueness relies essentially on the impossibility of
certain specific patterns in the order-relationship of two schemes, an
idea introduced in [ 7]. From now on we assume that (c,x) and (d,y)
are two given optimal proportional schemes with, say V(c) = 28 , V(d) = nb

where X >n >0, and a , B (necessarily positive) are the corresponding

vectors in Zm-l . Furthermore, we assume that the agents are so arranged
to make the quotient ai/Bi an increasing function of i . One immediate
consequence of this set-up is that, if e > dit and cjs < djs for 1 <

and some pair t , s then none of the following may occur

(16) t <s and x_ <y for t<v<s-1

(17) t>s and x>y for s <v < t-l.

(The proof is a straightforward application of Lemma 5.) Figure 1 indicates
sketchly the five impossibility situations. It is worth noticing the central

role played by Lemma 4 whose "give-away" technique goes back to { 3]. Case

(c) is explicit and basic in [ 7].

N . a
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¢,d relation >, . < > ..
é : e .. <
X,y relation < 2 <. < < <
. =
' (a) (b)
> < . > . . >
. < < .
222z - 22z
3 (c) (d) (e)
; FIGURE 1
Uniqueness:
DO Consider the smallest i such that ¢i¢ > 4y, for some t (if
' none exists, then c¢=d as remarked previously). Observe first that
L
b c <d for all <i and s so that A8, < n@, hence by the
. js = %s < PR LI y
; hypothesis on A and n , we have equality and cjs = djs for all such
N pairs.
,;g Assume first that f (x _,) < f.(y._y) - The impossibility case (c)
'7; described above applies to guarantee that cjt 3-djt for all j , hence
b

; § cjt > § djt and Xe < ¥y o+ Cases (a) and (b) now apply to force
"

j ye+1 2 Y4ea1

for all j > 1, hence for all j and )
3

< ft+1(yt) so that, as before, x

cjc+1 3-§ djt+l :

As x_ <y  we have f t+1 < Yeal *

t t 41 %)

-
g
. N

Recursion leads now to the conclusion that in the last period T , Sir 3-diT

for all 1 and fT(xT-l) < fT\yT_l) , a contradiction since there are no

. -
-

savings in period T (xT =Yr* 0 .

-

RS A

(W sl

4
T
.




If we assume instead that ft(xt-l) > ft(yt-l) , we can use impossi-

bility cases (d) and (c) in a backward step-by~step procedure similar to

the one above to conclude that, in period 1,

€1 Z-dil for all agents 1

and X >y, > 2 contradiction since the initial output is fixed (fl(l)) .0
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