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ABSTRACT

The statistical theory of radio direction finding as it applies to three-dimensional geometrics is :

presented in this report. This theory is an extension of the two-dimensional theory presented by R. G.

Stansfield in 1947. The theory has application in situations where airborne targets are maneuvering in

4 ! three dimensions at high speed; and, especially when the platforms with the direciion finding equip-

3 * ment are also aircraft.
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SECTION |

INTRODUCTION

b i<

{t is the primary objective of this report to present the principal features and results of a statistical
theory descriptive of the process of radio direction finding. The theory presented here is based upon
that developed by R.G. Stansfield as documented in his paper of 1947 (Reference 1). The unique
feature of the theory presented herein is its applicability to three-dimensional geometries. as opposed to
the two-dimensional nature of the Stansfield theory; in this sense, then, the radio direction finding
theory presented within this report is an extension of Stansfield’s theory.

SSLb s ian i ca th

Interest in pursuing an extension of Stansfield’s iheory to three dimensions was aroused as the
resuft of a discussion with a colleague regarding the problem of passively determining the position of a
moving, radiating target. It became obvious that it would, in general, be niecessary o employ several
dispersed direction finding sites capable of simultaneous bearing-line measurements.

TRWTRE WAFSe T T

Conceptually, this circumstance leads to no difficulties until one bsgins to consider applying
Stansfield’s theory to provide analytical characterization of such a direction finding scheme. Indeed, if
one conlemplates ihe situation wherein the target is a maneuvering, high-speed aircraft, and the direc-
tion finding sites consist of several "picket” or early warming aircraft with direction finding equipment
onboard, 1t would be very difficult if not impossible to control the picket aircraft so that they and the
target aircraft stayed in the same geometric plare during the period of encounter. This would never be
done operativnally; but one would have to assume this geometry (o apply Stansfield’s theory directly to
any analytical evaluation of the encounter. This is not meant to suggest that Stansfield’s theory has no
useful applications: it has. in fact, been the cornerstone of direction finding analysis for the last 23
years. In each instance where it has been applicable, however, the physical circumstance under investi-
gation has allowed valid application of the two-dimensiona: theory (e.g.. see References 2 and 3). Itis
still true today that the bulk of the hardware devoted exclusively to radio direction finding applications
can measure bearing lines in a single plane only. The point 10 be made here is that there are a number
of cirrumstances in which the ability to perform three-dimensional direcuion finding measurements
would be extiemely useful, and, to that end, a thrce-dimensional exiension of Stansfield’s two-
dimensional direction finding theory is necessary in order to provide a suitable analyticai tooi for
evaluaung the effectiveness of current or prospective three-dimensional direction finding systems.
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Circumspect review of this document by persons cognizant of or interested in direction finding
applications and procedures is deemed essential and is heartily inrvited. Commenis, suggestions, and
criticisoy are cncouraged not only to support the evolution of a more intelligible, useful report, but also
10 help in assessing the basic werth of and/or need for what 1s presented here. Indeed, there is some
doubt as to the uniqueness of this material, i.e., even though a limited review of some current litera-
ture {e.g., see Reference 4) has failed to uncover or suggest any other three-dimensional extension of
Stansfield's direction finding theory, one cannot help but feel that this should have (and certainly could
have) been accomplished prior to this date.

3 - The remainder of this memorandum wiil present first a brief discussion of Stanstield’s two-
dimensional radio direction finding theory. and then present « discussion of the three- dimensional radio
direction finding theory. A precedent discussion of Stansfield’s theory will obviate, at least iritially. the
acquisition o1 Stansfield’s oniginal paper by the reader and will provide a convenient point of departure

. from which to imtate a discussion of the three-dimensional theoiy. Of even more imporiance. how-
3 ever, is the sense of correspondence and/or distinction to be gained by the reader when comparing
3 Stansfield’s two-dimensional results with those of the thice-dimensional theory, e.g.. as a minimum
l requirement for credibility, cne would expect the results of the thice-dimensional theory 10 coincide

with those of Stansfield’s theory for planar geometries with null elevation error. and to appreciate such

coincidence, the reader must de acquainted with Stansfield's theory.

] In what follows, the terms "direction finding.” or "direction finder” will be abbreviated as "DF."
where the meaning should be clear from the context in which the abbreviation is used. Likewisc "BL"

and "BA" will be used to represent the words "bearing line"” and "bearing angle,” respectively.
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SECTION 2

STANSFIELD'S THEORY :
2.1 THE TwO-DIMENSIONAL DF ENCOUNTER g

Ve
e Va2 pan e i

R

Figure 2-1 illustrates the general distribution of the participants and identifies the parameters used
to characterize the two-dimensional DF encounter. The target transmitter whose location is to be
determined and all of the DF sites attempting to measure the angles of BLs to the transmitter are cun-
sidered to be in the same geometrical plane. Points in this "encounter plane" are labeied via a fixed
cartesian coordinate system with an origin O at the position of the target transmitter.

As mentioned, each DF site employs some form of directional antenna system in order to derive
the angle of a BL from the DF site toward the transmitter location. The situation for the j"th DF site is
shown in detail in Figure 2-1. The BL to the actual transmitter location is the line /O with a BA of 4,

and length D,._However, due to instrumental, propagational, and operator errors, the measured BL is
along the line JPwith a BA of 8, + &,. where ¢, is the BA error.

T ST 7T

oy TRy QAT TR P SRR I S TR

AT e

PO A AL

Transmitter
Location
¢ 1st DF Site

o 2nd DF Site

e nth DF Site

jth DF Site P0.75

Figure 2-1 Two-Dimensional Radio DF Geometry and Parameters

A fundamental assumption made by Stansficld is that the BA error &, is the value of a normally distri-
buted random variable ¥, where

.

—t 2
P, <V, <y, +db)=ply)db, =~ ! exp l v ]a}];l (1)

o,Q2u): 1 20,2

‘
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A similar assumpton will be made for the azimuth and clevation BA errors when three-dimensional
geometries are considered.

[ZRE7Y

Rather than use ¢, as the basic indication of the amount by which the j'th DF .ite’s BL measure-
ment is in error, the length p, of the lire PO is used. The_line PO is constructed from the
transmitter location O perpendicular to the measu:2d BL along JP. The length p, ts called the bearing
error. Another fundamental assumption made by Stansfield is that the standard deviation of (hc BA
1 errors o, is so small that the region of uncerwinty determined by the entire set of measured BLs is
. small in comparison with the distances D,. In this case. p, is related to &, by the approximate relation

PRRTINU A NP SYER )

y, = Dby, (2)

This means that p, is the value of a random variable £, where

' P p,  dP

3 PI’,SP,S/)/+tIp,'=P[BI—gq,'<_D_/+_l_)_ll_

Y l .

3 = )())1 = ———— X /’ (3)
3 Pipap, ,(-"”) p [20_/ ap

and where

T oy=u,D, (4)

One of the n DF sites of Figure 2-1 is also a DF operations center to which all of the other DF
sites send reports giving their measured BAs to the target transmitter. Having received the complete
set of BA data, the personnel of the DF operations center must somehow use that data to generate an
estimate of the locadon (the coordinates) of the transmitter. Suppose that the operations center per-
sonnel hypothesize the transmitter’s jocation to be at the point S. Relative to the fixed reference sys-
tem with origin at O, the line OS defines a position vector 7 = xiI, + yii,, so that the coordinates of the
point S reiative to the reference system are (x,1). It must be emphasized here that the DF operations
center personnel have no knowledge of the voordinates (x.)) of the point Srelative o the reference
system at O, for if they did, they could maneuver their hypothetical point 3 sc as to diminish x and 3
and locate the iransmider with an arbitrarily small error. The coordinate reference system at O exists
for analytical convenience and is not intended 1o represent any operational system of measurement.

MR PRI T e Fe
o stuani ot d bburate $ 2 SR SALA S L300 KL 118 Lo d MLl TREWZ 4 AL NE LA o B 6 vt ta Wb Tt st e € B Rt e

Lk

Iowever, when the BL for any DF sight is plotted, the DF operations center personnel can meas-
ure the "perceived error.” In Figure 2-1, the measured BA of the j'th DF site yields a BL that lies E
along JQ, and the perceived error is the length of the perpendicular line SQ, written as g, The per-
ceived error g,, in contradistinction with the actual error p,, is the bearing error attributed to the j'th
DF site by the personnel of thc DF operations center 4s a result of their hypothesis that the transmitter
is at point S. Of course, ¢, and p, are further disungwshed by the fact that ¢, is a quantuty known to
the personnel of the DF operations center. while p, is not known to them. Indeed. the DF operations
center personnel can employ knowicdge of the set of perceived errors {¢}. A = 1.2, 3 .. n (one for
each DF site) 1o select a "best estimate” or "fix" for the hypothesized location S of the transmitter.

sample of n independent. ncrmally distributed random variables @y 0, .. 0,. In this case, the pivba-

}

H

s

H

The set of perceived errors {g;} accumulated at the DF operations center is considcied to be a i

A

H

bility of observing any specific set of perceived errors {g,} is given by: £

AR miad th A b et o A Lbady 2 A bRBAN S AL v

n (/lh
1

(5)

E K l P{qh =

[277] [HWA Dy ‘” D‘

~ e iRt
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The best estimate for the location of the transmitter is now taken 0 be the point S whose associated set
of perceived errors {¢;} has the highest likelihood of being observed. As mentioned by Stansfield, this
is an application of the statistical sampling principle known as the theorem of maximum likelihood.
The expression of equation (5) will be maximized by that set of perceived errors {g;} that minimizes
the argument A of the exponential, where

7

2

qx
4 = — 6
2 ((T*D‘)Z ( )

e R A Ay T o s R R N O 4 o

£t Sk e

BN

q . .. .
If we now define €, = l 2 (the vertical bars signify the absolute vatue of the ratio between them)

1« Dy
as the relative bearing error of the k’th DF site, the quantity A4 is seen to be the sum of the squares of
the relative bearing errors over all the DF sites. Stansfield’s maximum likelihood criterion for choosing
the fix point S of the transmitter is seen to be equivalent to selecting the point S whose associated per-
ceived errors {¢,] satisfy a ' least squares" criterion as applied to the relative errors €.

R S TAN

L i B it

A KT

In Figure 2-2, a unit vector ¢, (horizontal bars above single letters signify a vector quantity, and a
carat above a letter indicates that the quantity being described is a unit vector) is defined along the
direction of the line QS and is given approximately by

VT L P REES

Lt S 4t

: g, = sin 0,0, — cos 6,1, @) 3
;- —_— 3
E; and reference to the figure yields for ¢, (the length of QS) the expression

E q=p+7-§ (8) E
= 3

The "dot” between 7 and g, indicates a scalar product of these vectors. Employing equations (7) and
(8), equation {6) can be rewritten as

s b A

M LA B KL LA LA et ¥ A

)
ords ok Ry e

E

o———

Ll i b At St (RS L im0k €l 220 18 25 e trimrsA D 1

»

PO-75 hd

Figure 2-2 A Magnified View of the Coordinate Origin to Determine g,
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n
(p,+ xsin®, — ycos¥)?

9
((r,l),)2 )

A =

[he sum of the squares of the relative errors is now expressed 1n terms of the actual bearing errors p,
and the coordinates (x,3 ) of the hypothesized transmutter location S This is a critical result that
allowed Stansfie.d to find closed form expressions for the fix coordinates (a3 ) for any single attempt at
locating the transmitter when the actual bearing errors are given and to describe the statistical features
of the pair (A.v) when the actual bearing errors are characterized as random variables.

2.2 THE TWO-DIMENSIONAL DF ANALYTICAL RESULTS

« «

- . 94
- =—1, then the equations l,——
ox oy ' q {dx
constitute two equations in the two unknowns xand v which can be solved for x and 3 Solving these

equations one finds

If one uses equation (9) to evaluate and

—0and 1811 2
—Odnd(ayl 0

)
T O - ) ) ol cos s, —wsino) (10)
H !

1 2 P,
y=— ————(cos¥,—vsinég,) (1
T Qe =) lo,D)" o

where

DL (12)

(or,D)?
Z cos’ 8,
= _— (13)
# (o,D,)
V___Zsin 0, cos 8, (14)
(or,D)?

Although not represented explicitly, the summations are over the index jfor j=1, 2 ... n; i.e, the sum-
mations contain one term associated with each DF site

Equations (10) and (11) are Stansfield’s equations for the fix coordinates that would be deter-
mined by the personrel of the DF operations center for any single location attempt; wherein the actual
bearing errors are the set {p,},; = 1. 2 .. n. Other than the set of actual bearing errors, the values for
the fix coordinates depend upon the geometrical distribution of the DF sites relative to the actual
ransmiuer location (represented by the parameter sets {¢ ,i and ii),i) and the instrumental, propaga-
tional, and operator error characteristics (represented by the parameter set {o ,l).

Notice that if we do not wish to or cannot describe the distribution of the bearing errors as nor-
mally distributed about the actual target position, we can use a more general form of equation (6) given
by

A=Y 2 (15)

>
A <QA*\/

where | O, 3‘ is the mean squared value of the random variable @, which characterizes the bearing error
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of the k’th DF site. If (4 is other than ngrmally distributed about the actual target position, then, in
general, { Q% will not be equal to (akl)k'-. In this case, equations (10) through (14) are still useful

s
i
!
5
1
{
!
}
i
1
/
{
!
b
.
i
A PRGN RO V,m & A*i;:x N

when ( o, D))? is replaced by { O, ).
3 If one rewrites equations (10) and (11) as :
4 g
i 3
] cos 6, sin 9, $
; R W ) PLLELA) () DL LA (16) ;
g (Ap—v) (o,D) (o,D,)? 3
‘S
% ), COS 8, sin
v= NP IRL B ) WL LA (17
3 ()\p.—u) (o,D,)* (a,D) 3
E én
; :ﬁ
one sees that these equations take the form :
4 v m i
= u- t (18)
{ (A = v?) A — 9
A v
3 y = u - ! (]9)
: ’ (A = 2 (A = v%)
. where ;
4
P, os @ Y, ! 5
u= 2 (20) i
(0' D )2 %
- psind, '
; = 2 @n
i (o, D)2
Since p, is the value of a random variable P, it is clear that v and rare the values of random variables é
we will designate as Y and O, respectively, and thus x and y are the values of random values to be :
A designated as X and Y, respectively. Equations (18) and (19) mean that our random variables satisfy
similar equations; i.e.,
H
X= ~ Y- —E—0 (22)
(Ap — v?) (A — v?)
. A v
Y = Y - C] (23)
- A — ) (A — %)
E Recall that, consistent with Stansfield’s assumptions, the random variables { P, } are all distributed in a :
similar fashion with zero means. Thus, the central limit theorem can be invoked to contend that the .
A random variables Y and © are normally distributed with zero mecans (Reference 5). This being the 3
! case, we also know that X and Y are normally distributed (reference 6). B

: If Y and © are normally distributed, then their joint density will be given, in general, by (Refer-
k- ences 5, 6, and 7)

-6-
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exp —1 1 _ 2Rut + _,2_
t ( ) 2(1 - RZ) (fuz [¢ Lo (T}Z (24)
i) = , :

3 P 2z o, 0, (1 = R)*
f: where o, and o, are the standard deviations of Y and ©, respectively, and R is the correlation

coefficient of Y and 0. Evaluation of . o, and R give
7 =u" (25)
o, =\" (26)
F =Y _ 27) :
£ ()% .

If equations (18) and (19) are inverted, they yield

e irioe AN A B YA

U=puy—uvx (28)
=py — AX (29) P
and substitution of equations (25) through (29) into (24) gives

exp —;—()\x2 —2uxy + uy?)

plxy) = 2r(hu — p)” (30)

When changing coordinates from the (u,1) space to the (x,y) space, we have in general that

plxy) = p'(xp) Jut/xy) 31

TR

where J(u,t/x,y) is the Jacobian determinant for the transformation. In this case,

JCui/xy) = A — »° (32)

PRSET W PRI PLyopRe

so with (31) and (32), equation (30} becomes

ot Vhes v

plxy) = _(l:“"_"z)__

exp ——1—()\.\2 — 2uxv + pyd) (33)
2w 2

PIFTURETT SRR een B I YT

Following equations (i0) and (11), equation (33) constiiutes the second significant analytical
result of Stansfield’s two-dimensional radio DF theory. Equation (33) is the joint probability density of
the random variables X' and Y, the coordinates of the DF position fix for the target transmitter. When
multiplied hy ihe differential area of a neighborhood about the point (xy), it determines the likelihood
that ihe DF fix resulting from any given attempt to locate the target transmitter will lie within that
differential neighborhood of the point (x,y). The quadratic nature of the argument of the exponential
and the fact that A and u are greater than or equal to zero indicates that the contours of constant likeli-
hood are ellipses in the encounter plane centered on the actual target position (the point O in Figures
2-1 and 2-2). liis, of course, possible to specify a system of coordinates rotated about O by the angle
¢ relative to the system x in terms of which these elliptical contours can be expressed as a siruple
sum of squares of the coordinates (xq.)5). If in Figure 2-3 we suppose that the locus of points which

e

T 1».- N = - A T e
~ T K Sy e ST A e e T,
B e S e BT e - = A
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constitute a given elliptical contour of constant likelihood can be ¢xpressed in canonical form as

.\.02 ’,02
=2

a? b

(34)

where A’ is a positive constant, then use of the coordinate transformation between the xpyp and x y
coordinate systems with equation (34) yields an expression for the locus as expressed in the x y coordi-

nate system

Figure 2-3 The Coordinate System x;); Rotated About O Relative to the System xy

2 : 2
[coszdt + sm2¢
a b

3 . 1 1
X +2$m¢cosd)l-a—2—;2— Xy

<+

.2 2
sin cos®
Zd> + 241]",2 =2
a h

Comparison with the argument of the exponential in equation (33) yields

2 .2
A= cosz¢ + sm2¢
a b

- 1 _ 1
v s:nd)cosd;la2 b2]

. 2 2
sm<b+cosd>

= a? g

From equations (36) through (38) we find

PO-75

(35)

(36)

(37

(38)
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: . . 1 1
- =2r = sin 2¢} — — -~ (39)
9
] L
: A—u=cos?2 [——-—— (40)
E - i = COS ¢l“2 e
thus
tan 2¢ = —2¥ (41)
A—p

|
This is another of Stansfield’s results and allows one to determine the angle ¢ l - g— <£¢ < %- which

specifies the orientation of the xp3( axes relative to the xy axes.

Use of equations (39) and (40) also gives the result

v:
[;_2 - sl sa] (42)
and since
1 1
Atpu=—+ -b—, (43)
2 3
then fiom equations (42) and (43) we have
2 2 2|”
';2-=)\+;Li A=) +4v (44)
2 ) 2|
'b—2-=)\+p.i' A=) +40 45)

1

;,—l > 0, and the lower signs apply for H; -4

2

where the upper signs apply for 1—2 - < 0. The
a

sign option arises here because the form (35) results whether the semimajor axes of the ellipse lies
along the xy axes or the y, axes.

Using equations (36) through (38) once again, we find

— ) = _1_
(A — %) prs (46)

At A Y e LR AT e AR

so equation (33) can be rewritten for the xyy, coordinate system as

PR LRI PRI T, - R

i 1 1] x? »o?
p(xo.yp) = 5 ab expl s + = ” 47)

PP

emalfa,

This joint probability density function for the random variables Xy and Y;, when multiplied by a 3
differential area, determines the likelihood that the fix coordinates resulting from any given attempt to
locate the target transmitter will fall within a differential neighborhood of the point (xg.yp).
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3 k Notice that using equations (39) and (43) one can derive the ancillary results,
] I (A +p) v
3 LI — (48)
: | O+ o) v
3 = + (49)
A » 2 sin 2¢

These provide an additional and, perhaps. 4 more convenient way to calculate —]—, and % as compared

P 2
4 with equations (44) and (45). However, equations (48) and (49) are mentioned here primariiy as
’E replacements for Stansfield’s equations (15) and (16) which are in error [direct addition of Stansfield’s
3 equations (15) and (16) yields the result 7‘1_2_ + 7:— = 2(A + u). which is contrary to equation (43)}.
2

3 2
3

Consider nniow Figure 2-4 and the problem of determining the likelihood of the event (.\'0', yo" €A
that the coordinates l.\'o'._ro'] of a DF fix will fall within the shaded region A;. The locus of points
defining the bouadary of this elliptical region satisfy the equation

.2 L2 3
Y (50)

PR

saaneraliting

e

P

LA Bk i bt B A2 e

i ks bok 2 a A

e e T L TV

£0-75 :

Figure 2-4 A Contour of Equal Likelihood Bounding the Region A,
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‘ A famuly of concentric ellipses about the point O to which the ellipse of equation (50) belongs is
E ' detined by £
: i
3 .2 2
3 X
E L2+yL2=Kz_ 0< K <o (51)
3 a b
E The probability that the fix point ( xg.yo Iwill lie between the elliptical contours defined by K and K +
1 dK is, by using equation (47),
;E 2 £
: p(xo.v0) dxodyy = K[exp -=—|{4K (52). i
;: K.K+dK §
3 Thus, the desired probability can be evaluated by
3 s K?
E P [x(, b eA,\, -f« lexp[— - ]dK (53)
' :
3 :
é; S0 ‘
3
] A2
P [.\.-(; ¥ eA,\} =1~ |exp|-2 (54)
4 2
E:
E; Since the coordinates of the locus of points defining the boundary of the region A; satisfy equation
(50), equation (54) can be rewritten as
1]’ v’
P [-\'0.)’0 e.-l,\] =]~ {exp[—?[F + —le“ (55)
| Subtracting 1 from both sides and taking the natural logarithm (In) of both sides gives another of
- Stansfizld’s results
oy v 2
AN N m[l —P [.\'(',.y(; eAA]] (56)
a- b
Equation (56) expresses a convenient relationship between the locus of points bounding an elliptical
- region A; and the probability that the coordinates of a given DF fix will fall inside 4. It is often desir-
- able to specify a required value of P (xy'.vo'e 4;) and to use (56) to determine the resultant dimensions
. of the region A;. Indeed, the lengths of the semimajor and semiminor axes (or vice versa if b > a) j
4 are E
1 N ;
Xoml = dllnl ———— (57) 5
ol I—P(xo.50€A) 1
2% 3
|vom! = 8{in] ——— o (58) ;
]—P(.\'o,y()EAA) 3
g
- 11 - E
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and the a-ea (1, of the region 4; is

T AL PR LB 7

oy

2
1
= wab In| —————F——— (59)
sz ~1ra nl l—P(Xo,,VoEAA)]

¥

Shuklr $deh 2o 2 BAAESY

The final consideration we shall give to Stansfield’s two-dimensional, radio DF analysis is directed
toward reproduction of Stansfield’s expression for the root-mean-square error p; to be expected in the
DF position fixes in which the statistics are defined by equation (33) and, equivalently, (47). Given a
position fix specified by the coordinates (xp.)g). the absoiute positioning error is defined as

ey = (x? + )% (50)

The mean square error is then

S st T A AL A A B R A A SR AR 2

R o £l A L S L e G LA g i

P22 21rab] fff(xo + yoz){exp[—-— dx dy (¥
E Evaluation of the integral by expanding the integrand gives ;
% o ~
b 2 g2 3
g Pl = 8(a + &) f - f = gy (62) 5
- 4
Thus: %
py = (a? + B)" 63)
Use of equations (43) and (46) with equation (63) gives \
+ s t‘é
R (64)

A = p°
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SECTION 3

THE THREE-DIMENSIONAL EXTENSION OF STANSFIELD'S THEORY
3.1 THE THREE-DIMENSIONAL DF ENCOUNTER
311 INITIAL CONCEPTS

Figure 3-1 illustrates the general distributicn of the participants and identifics most of the param-
eters used to characterize the three-dimensional DF encounter. It should be understood that, in gen-
eral. the DF sites may be placed anywhere in the three-din:ensional space surrounding the actual warget
position at O.

P
-
=
b
K

OV T
»

TR NITR

As in the two-dimensional case, it is the objective of the network of DF sites 1o make BL meas-
urements and process ihese measurements in an operations center 1o determine a best estimate of the
location of the target transmitter. However, contrary to the approach employed in the two-dimensional
case, most of the fundamental quantities of interest will be represented as vectors.

This could have been done in the two-dimensional case, but it was desirable 1o follow Stansfield’s
procedure using scalar quantities only in order to facilitate comparison of Section 2 with Stansfield’s ori-
ginal paper. In addition to considering the three-dimensional theory, this section will present the most
important of Stansfield’s results as special cases of the three-dimensional theory applied to a planar
space. Where appropriate, these will be presuiited in vector notation.

Gy e Rt S R e

o5

ACAK O
"

The points cf the "encounter volume” throughout which the DF sites are distributed are labeled
via a fixed, right-handed Cartesian coordinate system whose origin is coincident with the actual position
of the target transmitier. It 1s assumed that_each DF site employs some form of directional antenna
system from which a unit "bearing vector” (B) along a line toward the target can be determined. The
situation for_the j"th DF site is shown in detail in Figure 3-1. The BL to the actual transmitter_location
is the line JO which is represented by the vector D,. The length of JO is the magnitude of D, and is
represented by the symbol D,. A similar convention will apply for all vector quantities: e.g., p, is the
magmitude of the vector p,, thus j, = p,p,.

As in the iwo-dimensional DF encounter, onc of the DF sites in the three-dimensional DF
encounter is considered to be an operations center at which the BL data from each DF site are gathered
- and processed in order to determine the best estimate for the location of the target transmitter. If the
point § with coordinates (x.),z ) n Figure 3-1 is hypothetically offered as the location of the target
: transmtter by ihe personnel of the DF operations center, then the perceived error associated with the
target transmitter bearing measurement B, from the j'th DF site is the vector ¢,. The actual bearing
error in the j"th DF siie’s measurement, which is unknown to the personnel of the DF operations
center. is the vector p,. The vector 7 is a position vector describing the point S relative to the fixed
coordinate system with its origin at O, i.e., the components of 7 are (x.3.2). Since it is not necessarily
clear from inspection of Figure 3-1. it will be cmphasized here that the vectors B,, D.. p,. q,, and 7

need not, in general, be coplanar.

3.1.2 THE CONSTRUCTION OF p, AND g,

We embark here upon a digression required in order to lend credence to concepts employed later

TGy,

X ATTRAT T

L

LA TR el 8] MR £ N N b I ALt SO AN L,

T in the fundamental statistical characterization of the three-dimensional DF encounter. As indicated in
Figures 3-1 and 3-2, we have thus far assumed the hnes OP and SQ to be constructed so that they are
N perpendicular to the line along JQ. i.e., the vectors p, and g, arc orthogonal to the vector B,. This

approach is consistent with the construction of analogous quantities in Stansfield’s two-dimensional DF
theory and is sensible when atiempting a logical extension of that theory to three dimensions. How-

! ever, the criterion of constructing p, and ¢, orthogonal to the vector B, is otherwise arbitrary. Indeed,

H it will soon be convenient to think of p, as being orthogonal to D, and §, as being orthogonal to D, + 7
as iftustrated in Figure 3-3. It is the objective of this subsection to demonstrate that the assumption
that the linear dimensions of the volume of unceitainty associated with the target transmitter’s location

] are small when compared with the distances D, (as per Stansfield’s assumption in two-dimensions)
leads to the same essential analytical conclusions whether we assume 7, and ¢, orthogonal to B, or that
F, is orthogonal to D, and g, is orthogonal to D, + 7.
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B
i

P0-75

Figure 3-3 A Magnified View of the Coordinate Origin to Determine g,
When , is Orthogonal to D,+7 and 7, is Orthogonal to D,

As in Stansfield’s two-dimensional DF theory, we will ultimately emplcy cxpressions for each perceived
bearing error ¢, in terms of its asscciated actual bearing error p, and the components of the vector T.
We shall find the appropriate expression by first expressing ¢, in terms of p, and 7.

First, consider Figure 3-2 and the case wherein p, and ¢, are orthogonal 10 B,. From the figure
one can see the relation

o1
(g +7—-p= [(é, +7) - B,]B, (65)
so that solving for g, one has

G=p~7+( BB (66)

Now, as per Stansfield’s as.umption, we shall stipulate that the BL errors will be sufficiently small so
that we may substitute D, for 5, in equation (66) without significantly altering g,. and thus we write

g =p—-7F+(-D)D, 67)

From this expression we find, upon taking the scalar product,

97 =4 8= G=p) - (F=p)~ (G- DY 68)
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. Now, let us attempt the same thing except let us begin by considering Figure 3-3 and the case where A
- is orthogonal to D, and ¢, is orthogonal to D, + 7. From the figure, we see that
5
] (i +q) — p, = aB, (69) E
Taking the scalar product with B, on both sides gives 3
& /
: .o
3 a= [(; +4,) - ;3,] - B, (70) ]
so eyuation (69) can be written in the symmetrical form 3
-, B)B=(-7-|6-7 5|5 (71
: Equation (71) has a solution of the form
4 - "
£ 4=p -1 *+kB, (72)
E where K, is an arbitrary constant. However, we also have the condition that §, is orthogonal to D, + F
9 expressed as F:
] (D, +7) -g,=0 (73) ~
; Using equation (72) in equation (73) leads to an expression for &, given by
F-(D,+7-5) 3
LA ) (74) ‘,
(DJ +7) - B_, %
Thus, the exact solution for g, is given by
e B+i-p)]-
qa p-r+ ——— B (75) 4
S [ (D,+n-B |’ .
Comparison of equation (75) with equation (67) gives the impression that the two are distinct i
which is the case in general. However, we may rewrite equation (74) as ;

=t

=)
k=7 D I+ DL] 4 (76)
D + LH-B, ! D,

and (b,zii,), we see that

so that when Er—« 1

!

P
3
i
£
K
3
A
3
4
2
3
¥
k!
2
ks
E

k=7 D, an

so that equation (75) becomes

- 16 -
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- 4,:,3,—7-+{7-i),][>, (78)
3 which is identical to equation (67).

‘ What we have demonstrated here is that when the linear dimensions of the voiume of uncertainty
. of the transmitter position fix are small relative to the distances D,, construction of the vectors p, and
: g, orthogonal to the vectors D, and D, + 7, respectively, yields the same approximate analytical rela-
3 tionship between g, and p, as when ), and ¢, are constructed orthogonal to B,.

Equation (68) plays the same important role in the three-dimensional DF theory as that played by
equation (8) in Stansfield’s two-dimensional theory. Although equation (78) is written as a function of
the vectors p,, 7, and D), it can also be expressed in terms of B,. D,, and 7, since p, is completely

LF T

: specified if B, and D, are known. Indeed, when p, is constructed orthogonal to B,, we have the rela- 3
£ tions g
E p-B=0 (79)
g (Bxp) - D,=0 (80)

;“g

% . A . N 1

(Bxp) - (DxB) = H(D,xB,) - (DxB)] |~ #, (81)

which when solved yield

—(1 - B)D, + (B.B,)D, + (B,B.) D,

P = (82)
7 H/
py = BuB) Dy~ (1 = z‘)ZD" + B D (83)
1
p = (B.B)D, + (B,:BJ‘H) D, - (1 - B.)D, 84) ;
/ 4
3 - where 3
:
:}‘f e | 3
2 H, = “(BJ' D, - B, DJ\)Z +(8,D, - BI:DI\)2 + (BJ\ D, - BI:DJ\‘)zl/ l (85) 3
B and (p,,,p,.p.) are the components of p, while (B,,,B,,B,) and (D,,D,,D,.) are the components of
3! B, and D, respectively. As before, the vertical bars around terms in equations (81) and (85) indicate

since the magnitude of p, is given by

p, = DH, (86)

' that the absolute value of each term is to be used. Thus p, is known when B, and D, are known and,
then the components of 7, = p, b, are

e e e PO
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?,
i
1
+
L
& terlan phoan kv euldRart 1R

(p).=-(U -8, DD, +(B,B,)D,D,+ (B,B,)D,.D, (87)
: (3), = (B,B,,D,D,— (1 - B,YD,D, + (B,B,)D,.D, (88) i
A ) 5
3 (5): = (B.B,) D, D, + (B.B,) D, D, — (1-B,2) DD, (89)
%@j Now, when j, is constructed orthogonal to D,, we have the relations a
E , - D, =0 (90)
%‘ (hxD) - B,=0 (91)
3 . . s If . . A oA 3
: (D) - (BxB) = |[(BxB) - BxB)||- 4, 92) :
Eﬁ ‘ which when solved yield the components of p, as q
oy = (1-D,)B, - ( D,hD,,.) B, - (D,D,)B, 93)
a J A
H i
4 2
b P, = —(D,D,) 8, + (I _HD/.I'Z) B, — (D,D,) B, (94) :
, %
pe = _(DI:DI\)BJX - (D/:%v)ij + (- D/:Z)Bl: (95) %

)

where, as before, H, is given by equation (85). The components of p, are therefore given by [since
equation (86) is still applicable]

(5) = (1 = D) B.D, - (LyD,)B, D, ~ (D,.D,.) B.D, (96)
(7)/)) = —(DI\ D,/V) B/\ Dl + (1 - Djx 2) le D/ - (Djl Dj:) B/:D, (97) %
(7). =—=(D.D,)BL,~ (D.D,)B, D, + (1-D.%) B..D, (98) i
7
- 18 - N
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J3.1.3 THE FUNDAMENTAL STATISTICAL CHARACTERIZATION OF THE THREE-DIMENSIONAL
DF THEORY

0 g aiuion oo St gl A

In Stansfield's two-dimensional DF theory, the actual bearing errors p, were assumed to be the
values of random variables P, that were normally distributed with zero mean. In the three-dimensional
case, our bearing errors are represented by the vectors p, which vary in some stochastic fashion from
nne DF location attempt to another. In contrast to the two-dimensional theory wherein only azimuthal
bearing errors were considered, we must consider both azimuthal and elevation bearing error com-
ponents in the three-dimensional theory. In order to facilitate the characterization of this slightly more
compiicated circumstance, we imagine the construction of a right-handed triad of orthogonai unit vec-
tors at the point O for each DF site. For each DF site. these unit vectors are labeled . 8, and ¥; and
the specific triad for the j'th DF site is thus composed of the vectors «,, B,, ¥,- These vectors define a

coordinate system (a,B,y), in terms of which the actual bearing error p, will be resolved for analytic
convenience.

O AT,

R e

U

Figure 3-4 is representation of the (ar.B,y) coordinate axes associated with the j’th DF site. The
vector a, is collinear with the vecior D, or (D,) but opposite in direction. The unit vectors 8, and Y,
are constructed so they lie in a plane perpendicular to the vector a, and such that B8, lies in the x-y

plane while the projection of ¥, onto #. is always greater than or equal to zero. Mathematically. these
conditions may be expressed by the equations

"

3

:

%, 5,=0 (99) 3

:

(&,X7,) - 8. =0 (100) 3

G, %3,) - (@&, xi) = lad + o] (101) :

Solving for ¥, from these in terms of &, and using [3, =(y,xa)and &, = - I:‘J, we have f%
= =D, - (D), - (D) i (102) ?

. =D+ (D),
- 103)
(D, + D,H” (

3, = ~(D, D) = (D, DY + (D, *+D, iz (104)
(D,\~ + D/\ %

These expressions will be of value in later discussions.

Figure 3-S5 shows how the actual bearing error vector j, can be resolved in the (e, v), coordi-
nate system. Since we shall choose to construct j, orthogonal to the vector D,, p, lies in the plane of |
v, and B,. A fundamental assumption of the three-dimensional analysis pursued here is that the eleva-
tion and azimuth components of p,, (5),, and (). respectively, are the values of normally distrib-
uted random variables with zero means and equal variance; i.e., (P,), has the probability density

=(5),? 2
20'_/

[(p,),] i (105)

and (P4 has the probability density

-19 -
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Figure 3-4 The (a.B8,y), Coordinate Axes Relative to the (x,y,z) Coordinate Axes
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Figure 3-5 The Resolution 7, in the (83— ), Plane of the («.8,y), Coordinate System

P0-75

T

P

A e b




! THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAUREL, MARYLAND

1 —(p)?
: exp[_i_z_ﬁ
. [( " ) 2("_[
f ) = -
NG a,Q2m)Y
: where

——

Tk PO

o;=(0),D,=(c)sD =0,D,

1 Thus, the quantity p, which is the magnitude of the vector p, and is given by the expression

ki
g
P
3
3
:
3
:
1
:
i
El

%
b= ), + ()7 (108)

voba AN

oy

is the value of a random variable P, that is Rayieigh distributed (References 7 and 8 ); i.e., P, has the
probability density

~

2(/),)expl:2(p'),- ]

gy
2

AN o A SR

plp) = (109)

2(7'_/

Also. the angle ¢, is the value of a random variable ®, that is uniformly distributed; i.e., &, has the
probability density

-
p[(b,]—(?n] (110)

These results characterize the actual bearing error vector jj, = p,p, as being composed of two dis-
tinct stochastic factors, a magnitude p, that is Rayleigh distributed, and a unit vector j, which assumes
random orientations about the line along D, with uniform likelihood. We now have a statistical
representation of our actual bearing erro- p, analogous to the statistical characterization given to
Stansfield’s actual bearing error by equation (3).

Au this point it is possible to characterize the set of perceived bearing errors {g,} resulting from a
hypothesized target transmitter location S as a statistical sample whose likelihood of being witnessed is
maximum for the best estimate of the target transmitter’s location.

This is a procedure analogous to Stansfield’s approach for finding the best estimate of the target
transmitter’s location. However, we will circumvent this lengthier alternative and, instead, invoke the
least squares criterion directly. Thus, we shall stipulate that the personnel of the DF operations center
select as their DF fix the point which minimizes the sum of the squares of the relative errors, where
the relative error for the j°th DF site is given by

4,
2e,D,

a1

€,

analogous to the definition of relative error given for the two-dimensional case. The 2 in the denomi-
nator appears because @, will be Rayleigh distributed in the three-dimensional case as opposed to nor-
mally distributed in the two-dimensional case. The sum of the squares of the relative errors now has
the form

221 -
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(q,-q) 4,

_ (112
A 20 D3) )

analogous to that of equation (6).

Now, with the aid equaton (68), equation (112) can be written as

[(7-- p) (7= p)— (G- D)
l4=}2: - (113)
/ 2o, D))"

or

[p, + (2 + P+ - =2(xp, + 3y, + 2p) — (XD + yD, + zD,.)?
-2
2(o,D))?

(114)

Equation (114) is analogous to the result obtained by Stansfield as expressed in equation (9). Just as
equation (9) was crucial to Stansfield’s fu-ther development of the two-dimensional DF theory, so is
equation (114) crucial as a prerequisite to the development of the substantial analytical results of the
three-dimensional DF theory. Beginning with equation (114}, we will derive closed-form expressions
for the DF fix coordinates (x,p,z) for any single atternpt to locate the target transmitter, once the set of
actual bearing errors is known p,, and we will describe the statistical features of the triple {x.5,2z) when
the actual bearing errors are characterized as random variables.

3.2 THE THREE-DIMENSIONAL DF ANALYTICAL RESULTS
3.2.1 EXPRESSION FOR THE DF FIX COORDINATES

We will choose as the best estimate of the target transmitter’s location that point S with coordi-
nates (x.v,z) that minimizes 4 as given in equation (114). In order to find closed form expressions for

the coordinates of S, we evaluate %—':; %’: nd %ﬁ and set each to zero in order to produce three

equations in three unknowns x,); and = The three resultant equations are

(pr) | (1 - DY =(D,D,) —(D, D)
Z[(U,D,)Zl B - l (o,D)? Z (r,D)? 2 (o, D)2 (s
(pp,) -(D,D,) - D,?) (D, D, )
NALYLYLLan: Qi B . (
2, ('r,D,V] ‘2] T,D)7 +"Z (r,D,)? ] 2{ (o, D)’ Ho
(p,p:) -(D.D,) ~(D.D,) a-nDp.%
_ . Ab A 7
Z (D)} ] ‘}; (,D,)? +"Z (,D,)} ] Zl (o, D,)? am

Next we define a set of fundamental parameters as follows:
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S A ANPLLY Ve

(-0,

A= E = (118)
’ [ (0',1)/)2 ]
(1-D,)

= —L— (119)
21[ ((r,D,)2 ]

R S AL 10 923 W R B 85

, (1 - D)
4 = —_— 0
A !! ¢ 2/ .D)? (120)
* _ _(DJ\DI\)
: | =) oo (121) |
g } ' :
£
: ‘ _ —-(D,D,.)
:: ! n= 2 k ((}'ID’)z (122)
f -0y
3 = Z @D (123)
- Now. solving equations (115) through (117) for x, yand z gives
: o PP | PP |y - PP
e =1 E w,pyr| T ”‘C)Z @,pyr| T e mn ) (o,D,)?
= L (124)
[)\(;uf — ) +v(in — vé) + ol - 1;,11.)]
p[pj.l (plp/\ ﬂpl
- + 2 + -
&n "92[ (o, D)’ (= )2[ D)2 (v “)Z (o, D)7
P = (125)
[A(#é = &) +vn = v8) + g - n#)]
Py hn 1 1014
_ ) ai + _ 1y _ 2 11Xz
g = e Z[w oyr| wz((a pyrj t e )Z @ mZ]
z= {126)

[A(p..f ~ )+ v(in — vE) + ol - np.)]

Equations (124) through (126) are the coordinates of the best estimate of the location of the target
transmitter as determined by the personnel of the DF operations center for a given set of actual bearing
errors {p, = p.p. &1, + p,p,. & + p,p.i). These are analogous to Stansfield’s equations for the fix coor-
dinates given by equations (10) and (11). Indeed, if we apply these equations to the case where all of
the DF encounter participants lie in the x-y plane and we set the elevation error to zero., then
n ={ = p. =0, and equations (124) through (126) become

‘= 1 I
* g — v Z[ (o0,D,)?

{ep, — vo,l (127)

)
3
H
i
i
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i‘ 1 2 bl J (128)
:: ;o= A R U
: ¥ g — v J (GJD/)Z Py I
n
S
=0 :
Now, as per Stansfield’s theory, the vector p, is given by p, = p,p,, where p, is the value of a normally :
4 distributed random variable P, of zero mean (thus it can assume positive and negative values with
5 equal likelihood) and j, is a fixed unit vector very nearly orthogonal 10 D,; i.e., (see, for instance, Fig- 3
1 ure 2-1) ¢
“ p, = —sin 9,01, + cos 4,11, (129) ;
: Equations (127) and (128) can now be written as :
L'% 1 p,cosd, 2 iy sind, ;
1 ) Y= — (130) E
(=) || b (a7, D) ‘ (,D)? ]
1 p,cos 8, psin g, :
= ——{X - -v, —_— a3n 3
d A ~ ¥ - (o,D) - (o,D,)? 3
L £
where v,= — v.
Equations (130) and (131) are Stansfield’s equations (16) and (17) determined directly from the ;
three-dimensional fix equations (124) through (126). Using equations (93) through (95) for the case
when B, = D, =0, we can express Stansfield’s equations entirely in terms of the set of D, and the
components of B, and D,, 3
(B,D, - B,D,)(uD, +vD,)
x=—t Z - »0,) D, * vD, (132)
(A — 0D a,’D, (D" + D9 E
(B,D, — B,D,)(wD, +\D,)
y= 1 2 2 17 — ,\2 - 7l : (133) 1
(A —v%) a,’D, (D\?+ D, :
which can be expressed in vector notation as 1
A (AR
1 2 1 11(BxD) - it [ . on . oa ¢
X = ——— —_ —— (1“[))"" u D)] (]34 -
(}‘l‘ — V2) a, x Dj pl, ! V( X 1 ) ;:
:
1 2 1 (DxB) - i [ . . oA g
S — =—\w(@t, - D) + rli -D)] (135) i3
V) o.il D D, b ' v ;
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3.2.2 DF FIX COORDINATE STATISTICS ¥
3
Let us define the variables ry, ry, and r; by the equations 3
3
p/p/l ;
r =2 — (136) 7
. ~| (o, D,)’ 3
PP N
1, = —_tre (137) i
: : 2 (o,D)? '
I [
: ) P (138)
:_ - (o,D) . i
3 s
= We have changed the subscripts xto 1, yto 2, and x to 3 for computational and notational conveni- o
: ence; e, P = Pi. P = P P = Py o
Since p,, p1. P, and p3 are all the values of random variables, where P, is Rayleigh distributed : ’
as per equation (109) and p,;, p,5. and p,; are all distributed alike (we will see exactly how they are dis- i
tributed later), then the quantities r;. ry, and r; are the values of random variables we will denote as i
R;, Ry, and R;. Note that the random variables V= P,P,, V, = P,P;, and V5= PP are all simi-
larly distributed. Inspection of equations (124) through (126) reveals that the fix coordinates x, v, and
2, are linear functions of r|, rp, and r; and thus the values of random variables we will denote as X, I, ¢
and Z It is our objective in this section to determine the joint probability density for the random vari- 3
ables X, Y, and Z whose values are the fix coordinates for any given attempt to locate the target 3
transmitter. £

We will begin by assuming that the rumber of DF sites n is large enough that, by virwue of the
central limit theorem (Reference 5). the randoin variables R;, R,, and R; are normally distributed. :
The joint probability density for Ry, R,, and R; is then given by (References 6 and 9)

- FALK

) exp[—;—[mmwum]]

plryr.r) =

(139)

IR ARS T PPN

Qm)¥2(Det [C)*

where [C] is the covariance matrix, {C'] the inverse of the covariance matrix, [R] is the deviation
matrix, and [R is the transpose of the matrix [R]. The determinant of the matrix [C] is written as
1 Det [C].

;. + The elements of [C} are given by

3
*
3

3

3

S
;

2

L
O,

(‘/nu = Cov (Rn'Rm) (140)

hidhk

wheren=1,2, or3and m =1, 2, or 3; i.c., C,, is in the mth row and nth column of the 3-by-3
matrix [C). The matrix [R] is a column vector given by

'y

WO L rt

3 r —<Rl>
[Rl1=1}n ~/Ry (141)
' r —\ng

where { R}, {Ry), and {Rs) are the mean values of the random variables R,, Ry, and Rz, -.p - tively,
To determine the explicit form of the joint density of equation (139), one must find [ R, /i, and
(R) and the covariance elements C,,, n=1,2,3and m=1, 2, 3.

From the definitions of the mean and covariance

csss amu TR
*
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/I) P \
—\—’—’—’—] . =123 (142)

(or,D)?

"= D
/

- and

9 [(PJFk m Pkn/ /'D P/n/\ PA Pkn/]
3 C, = . nand m=1,2,3 (143)
" p [0‘,0’/‘ D, D,(]

1t now becomes apparent that we must know the probability density for each of the random variables in
equations (142) and (143). We already know that P, is Rayleigh distributed as per equation (109), and
we will now determine the probability density for each random variable P,,, n = 1, Z, 3. whose values
¢ are the components of the unit vector p,. Before proceeding, however, we shall impose the assumption
that P, and P,,, n = 1, 2, 3, are statistically independent quantities; i.e., we suppose that the magnitude
of p, and its direction are independent. We further suppose that the measurements at one DF site are
independent of those at another DF site. Equations (142) and (143) can now be written as

E

R AR §

3 [PYP,
g (R,,>=2 s_ﬂ_/_zl . nand m=1,2,3 (144) -
X , (O',D,) j@
: 1
.
;i [/PZ\/pp\ 2/P>/ ’l ;f
o N " n " L
3 Com 2 ’ = 3 A g and m=1,2.3 (145)
(e,D) ]
3 Now, notice from Figure 3-5 that j, can be written as
I
p,=cos &8, +sin ¢y, (146) A
and, since [%, and vy, are given by equations (103) and (104) respectively, equation (146) can be written {-;
as 3
i
- 1 R }.
P, = W:W[(D,g COS d),_ D,]D,_‘, m d),) 1] g

= (D cos b, + DDy sin &) + (Dy? + D) sin 6, ) (147)
from which we see
A (Djycosd, — DD sing))
e = = .' (148)
L P (D14 DY)
3 ~ D,y cos &, + D,;D,;sin b))
= — (149)
P (D, I+ D)%

pay= (D, + DY) sin o, (150)
Each of the components of p, varies in a random manner because the angle ¢, is the value of a
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,' uniformly distributed random variable &, [see equation (110)1. The statistical nature of the random

iy l variables ;. P, and P is more readily recognized if equations (148) and (149) are written as ?3

% 24D, " 3
3 =~ gin (¢, + 8)) (151)

g: fn Di12 + D/22 g ! 3

E D/l2 + DIZZDHZ ’ : 152 '

P = CRETR sin [¢,+8,] (152)

3 ) where

" (=D, D)

3 8¢ = tan~!| —A22 (153) :

. D/2

: D.D

8; = tan~![22 (154)

D, N

Thus, the random variables P,, n = 1, 2, 3, have probability densities of the form (References 7 and

8)

rlp,) = ——Tl———— (155)

w(F,? = p,)* ;

where F,, is the coefﬁcnem of the sme factor of p,, in the forms of equations (150) through (152); e.g., i

D,?

+ DyiD,;2
for . [:jl_[ 12 12 3

. Thus, {p,| < F, . With equaion (155) we are able to evaluate

24 D2
\ m\/; ie.,
I-”I I‘
AP,
{Pup = fpm/’[/’/n]‘//’m = ;_f p“—-II:“ =0 (136
& >,

"

a result that follows from the fact that the integrand in the second integrai is an odd function of p,.,.
Equations (144) and (145) now reduce 1o

(R)=0 (157)

(P2 (PP
- Com = 2 e (158
' (o,D) )

3 1 From equation (109) it follows that

2 {P,2)=2(o',0, 2 (159)

g l thus we are left with evaluating \P,,, P,,,,) In order to do this, we first express p,, as

' Py =a,cosd,+ b, sine, (160)
|

a simplified representation of equations (148) through (150), where
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DIZ
o D2 (161)
, o (Dy? + DY
: /| (162)
; o (D)2 + D%
: a3 =0 (163) :
: ~D,D
b 13 :
3 by = ‘—_. (164) E
] "D T+ DY 3
_D.D .
E by = (D—Zﬂiﬁ (165) :
E e+ DIZ )
E{ e
- b,3 = (D”Z + Dlzz)‘/) (166) ?
3
In general, then,
g PPy = @@y cos’ ¢, + (a,b,, + a,,b,) cos ¢, sin b, + b,b,, sin? ¢ ) (167) J
thus use of equation (110) gives ;
% 1 2
§ < mn jm fp/n((b )p/nl(¢ )p[¢J] d(bj 7T {pjn((b_[)pjln((bj) d¢/ (168) "
3 Therefore, use of equation (167) in equation (168) yields ._e
3
. 2 2 2
. <Pjanx> = ET' am”/u:{ cos? ¢, d¢/+(am buta,, b/n)j‘ cos ¢, sin @, d¢/+b1nb1m_{ sin’ ¢, dé, (169) ;
or ;
+ b,b
/\ Pm /)””‘/\ - (1/11 m mYun (170\ :

2

Now, substitution of equations (159) and (170) into equation (158) gives

{(g,a, +b,b,)
C"" = 2 s L ( l 7 l )
' / (o,D,)?

: Explicit substitution of the a’s and b's from equations (161) through (166) gives for the covariance ele-
: . ments (upon changing back to the subscripts x.v,z for 1, 2, 3, respectively)

Ca 2[( D’)‘;' (172)
a
2[“(;0) ] (173)
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G = Z -(%;_/Il)—)’)—l’ (174)
Co=Ci= 2 %ﬁ—)] (175)
C.=Co= 2 :%5,07/7)’ (176)
C.=C, = 2 -—-(%—Dl[))’l] (177)

Comparison of the covariance matrix elements with equations (118) through (123) shows that the
coefficients of the fix coordinates (x,»,z) in equations (115) through (117) are, in fact, these same
covariance elements. Also, equation (157) means that the deviation matrix of equation (151) reduces
to

r\
(R] = |r, (178)
I
Thus, if we define the column vector [X] as
X
[X] =]y (179)

then equations (115) through (117) can be expressed by the matrix equation

[R] = [ClX] (180)
This important result provides us with the capability to use equation (139).for 1he joint probability den-
sity of the random variables R,, R,, and R. in order to derive the joint probability density for the DF
fix random variables X Y, Z. Indeed, since r,, r,, and r. are each functions of the fix coordinates
(x,y,2) as expressed by (180), then the joint probability density for the fix coordinates is given by

plxn2) = lp(rlxyzlrlxyz)rlxg, 2D HI G n roxop) ) (181)

where J (r.,r,,r; x.v,2) is the Jacobian determinant for the transformation from the coordinates
(r..r,,r.) to the coordinates (x,y,z). Use of equations (115) through (117) yields

J(r, r, r.x3,2) = Det[C] (182)

From equations (139) and (180) we have

exp[—;—[XT][CT][C"][C][X]

plrbenal elnad nlindl] = —— e

or, since [C'1CYX] = [X] and the symmetry of [C} gives [CT) = [C], then
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expl-;—[X’][C][X]}

A
plnlxyzlnlopzlrlapzl) = G Bet (D (184)

3 Use of the parameter definitions in equations (118) through (123) and substitution of equations (182)
E, and (184) into equation (181) gives the three-dimensional joint probability density for the DF fix coor-
3 dinates as
E
E“ E
- v
3 ( ) [)\(p.§ - + vty — vE) + nlog - nu.)] :
4 p{xyz) = , ]
é Qn)? 7
3 k

[exp[ - ;—()\xz +u? +E2 + oxy + 2xz + 2§yz)]} (185) g

LR e e PAET
s

After the expressions given for the fix coordinates in equations (124) through (126), equation
(185) is the second significant analytical result of the three-dimensional DF theory. When multiplied 3
by the differential volume of the neighborhood about a point (x,y,2), the joint density of equation 3
(185) gives the probability that the DF fix resulting from any single attempt to locate the target 3
transmitter will fall within that neighborhood of the point (x,y,z). The quadratic nature of the argu-
ment of the exponential and the fact that A, u, and £ are all greater than or equal to zero indicates that
the surfaces of constant likelihood are ellipsoids centered on the actual target position (the point O in
Figure 3-1).

Equation (185) is, of course, analogous to that of Stansfield’s two-dimensional theory as given by
equation (33). Indeed, if one applies the statistical analysis procedure employed to generate cquation
(185) to the case where all the participants of the DF encounter lie in the x-y plane and the elevation
error p.. = 0 for each DF site, then the matrix [R] becomes reduced to

ARG L

yib

JONELIPE PO PR APL Y

[R] = [f] (186) ;

! :
where r, and r, are given by equations (136) and (137). One also considers that the entire random i
variation of the bearing errors is embodied in normally varying random magnitudes P, the unit vector .
components p,, being deterministically rclated to the vectors D,. The random variables R, and R, are §
still normally varying, so the joint probability density for the random variables R, and R, is given by a i
modification of equation (139) for the two-dimensional case; i.e.,
expl = ([RTHC'IRD] §

plr,n) = p ,/ 7 (187)
(2m)%4(Det [CD*

The covariance matrix is now a 2-by-2 matrix whose elements are given by equations (172), (173), and
(175), where it must be understood that the vector D, has only the components D, and D, in this
two-dimensional case. We see then that if we now define

(X] = [ﬁ] (188)

RIS NE AL A arE NLALR £ 825 ke AP 0 AN

then we have an analogous result in two-dimensions to that given by equation (180) for three-
dimensional; i.e.,

[R] = [C1[x] (189)
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Substitution of equation (189) into equation (187), use of the parameter definitions from equations
(118), (119), and {121}, and muitiplication of the result by the Jacobian determinant for the variable
change from the (r,,r,) space to the (x,3) space gives

ot (e b <

plyy) = {%V—.)—:—”expl—;—()\.\*’ + vy + py?)

] (190) :

This is, of course, Stansfield’s result and is identical to equation (33) [recall that v as defined by equa-
tion (121) is opposite in sign to Stansfield’s v as defined by equation (14)].

ARy

o,

B 3.2.3 FURTHER CONSIDERATIONS OF THE JOINT DENSITY OF THE DF FIX COORDINATES

Now that it has beer shown that the surfaces of constant likelihood for the DF fix of a three-
dimenstonal DF encounter are ellipsoids centered on the actual target transmutter location, it is useful
to dettve ancillary results which allow us to describe the dimensions and orientation of these ellipsoids
relative to our reference coordinate system as well as to compute the probability that a DF fix will fall
within the region bounded by these surfaces.

From equations (181), (182), and (184) we have

vay 25813 U YA Ol o

Dt

Jadaik

Foowd,

{Det[c'n%exp{—;—[x'ncnxn

EPYE (191)

plxyz) =

»

which is an alternate form of equation (185) for the joint probability density of the DF fix coordinates.
The scalar quantity

TR VT T TR
A

0= {X"][Cllx] (192)

which apart from a factor of (— %) is the argument of the exponential in equation (191), is a quadratic ;
form because of the fact that {C] is a symmetric matrix. Since [C] is also real, it can be diagonalized ;
(Reference [10]) by an appropriate transformation. In particular, there is an orthogonal transformation
matrix [4] which transforms the coordinates (x,).2) of a point Pin the encounter space relative to our
reference coordinate system to the coordinates (xy,3n.2) of the same point P relative to a coordinate
frame whose origin is still at the actual target position but whose axes are, in general, rotated relative to
the axes of the reference system. Thus, there is a matrix [ 4] such that

e R AN et A

£5

(X! = [4]1X] (193)

where

Gt b e o ey

Xo

[X()] =1V (194)
<0

s

Since the transpose of an orthogonal transformation matrix {A4] is also its inverse, then equation (193)
implies the results

(X7} = [0X) "HA4), [X] = (4711, (195)

so equation (192) becomes

)

0 = [(X) THANCI AT X,)

IIT T RN DTty T R, IR T

5
[
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where we require
(414l = [D} (197)

where [D] is a diagonal matrix. [f we denote the matrix element in the j’th row and k’th column as
(D] . then equation (191) becomes

Det [C1}J(x.3.2:X0. Yo, 20)
p(xo0.¥0.20) = (Det }(2:;/2 o.to % exp {""?12"['\'02[D]H+.V02[D]22+302[D]33I] (198)

since
J(xyoix0. 90, %) = 1 (199)

for orthogonal transformations to rotated coordinate systems (with no inversion), then we may write
equation (198) as

7 L2 2 2 2
plxo.¥0.20) = {_Qé:)c;/]z} exp {_é—l% + VTOZ- + (02 ” (200)

where to allow comparison with Stansfield’s results we have defined

az = [D]“ (201)
'blz— = [D;zz (202)
1? = [D]33 (203)

Using the definitions in equations (201) through (203) and taking the determinant of both sides of
equation (197) gives

Det[C]l = | —— 204
et [a Ip2 2 (
so equation (200) becomes

1 xp?
i -5-3)

Qm)¥*(abc)

p{xo.50.29) =

The result of equation (2035) is analogous to that of equation (47) from Stansfield’s two-dimensional
theory. The joint probability density p{xq.yp.29) for the random variables Xj, Yy.Z, determines, when
multiplied by a differential volurae, the likelihood that the DF fix coordinates resulting from any single
attempt to locate the target transmitte: will fall within a differential neighborhood of the point
(x5.50.20). Thus, it is possible to find a coordinate system with the actual target location at its origin
and relative to which the surfaces of constant likelihood are ellipsoids expressed in canonica! form,; i.e.,
each of the locus of points for which the argument of the exponential in equation (205) is a constant
value k? satisfies the equation

-32-
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R S S
— + - + — = A" (206)
a- b -

T

Equation (206) 1s analogous to equation (34) discussed 1n association with Stansfield’s elliptic con-
tours of equal likelihood. It was subsequentiy shown in equations (44) and (45) that the quantities —],
&

and ‘blT could be defined in terms of the fundamental parameters A, u. and v. In order to accomplish

a similar sort of result for the three-dimensional theory. the following identity was considered:
(A1CHAT) = [A)r(1)[A7) = (D] = r[1] (207)

where [1) is the identity matrix. The validity of equation (207) follows from equation (197) Using
the distributive property of matrix multiplication over addition, equation (207) can be writien as

(AMLCY = rIIATY = [D) = 1 11) (208)

and taking determinants on both sides gives

Dellc] - rliT} = TD),- (209)

=1

Equation (209) is the equation for the three-dimensional theory that is analogous to equations (44) and
(45) from the two-dimensicnal theory. Equation (209) shows that the diagonal elements of [ D] are the
roots of the third-degree polynomial in r on the left-hand side of the equation. Once the elements

[D],.j=1, 2,3, are found. then equations (201) through (203) yield —17 -[%,—, znd —lj-. Indeed,
a B [4

when set equal to zero, the left-hand side of equation (209) is the characteristic polynomial of the prob-
lem and is expressed in terms of the fundamental parameters of equations (118) through (123) as

Pl +a+8r =0+ +2—pE—uh—Ar

~Mupé =) +v(n = v8) + 9l =) =0 (210)

As mentioned, each of the matrix elements [D},, is set equal to one of the roots of the characteristic
polynomial in equation (210}, one root is associated with only one matrix element at a time. However,
when there are distinct roots, there are six unique ways in which the matrix eiements [D],, can be
assigned values. This circumstance merely reflects the fact that there are six unique ways in which the
axes of the reference coordinate system can be rotated and aligned with the principal axes of an equal
likelihood ellipsoid so as to vield a reference system relative to which the equation of the locus of the
ellipsoid in canonical form. For most applications, the ambiguity 1n the assignment of values to the ele-
ments [D] , will be of no consequence, although it is important for the analyst 10 understand how his
assignment of these values affects the characterization of his particular problem.

Once the matrix [D] is known, one can also specifv the unit vectors that define the axes of the
{(x0.v0,20) coordinate system and thereby determine the orientation of a given family of ellipsoids of
constant likelihood. Starting with equation (197), we find

(CHAT] = [47]ID] (211)

If, for a given squarz matrix {M], we let [M]¢ denote a column vector formed from the j’th column of
[M]. then from equation (211) we have
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llaim], = [icitany], = tan, o, (212)
Now, since
(47, = [y, 213)
then equation (213) becomes
[tcrtarny], = 1oy, [mear, (214)
of
[Cs147)s = (D1, (11 A] ¢ @15)
and thus
[tc1-to1,jtans = 0 (216)

Equation (216) is a matrix representation of three equations for the three unknown [47);,, [47],, and
[47]; ,» The equation will have a nontrivial solution only if

Det[1C1-1D1,111] = 0 @17
Starting again with (197) one can show that
(A1[(C)—(D1,,(1)]147) = (DI=1D1,, (1 18)
where [D] — [D],, [1] is a diagonal matrix for which
[to1 - to1,1m1] =0 (219)

so that taking determinants on both sides of equation (218) yields (217). Thus, non-trival solutions of
equation (216) are assured.

We now have a way of finding each of the columns of the matrix [47), and thus we have [47]
and the orthogonal transformation matrix [4] (which is the transpose of [47]). Notice from equation
(195) that

[X] = AT} X,) (220)

A unit vector along the xp axis can be written in the (xg.y0.%) system as
R 1
i, = 0 (221)
0

so the coordinates of this vector in the (x,v,z) system are given by substitution of equation (221) into
equation (220). A similar procedure is used to express &, , and z‘l;o, yielding

i, = [47)4 (222)
i, = (A4 (223)
-34 -
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i =[A4"l; (224)

Thus, the axes of the (xy,19.20) coordinate system are known, and, because these are along the princi-
pal axes of the cllipsoids of constant likelthood, we know the orientation of these principal axes relative
to the axes of the (x,),z) coordinate system. Indeed, to specify the orientation of any given ellipsoid of
constant likelihood we now need only to determine the points at which the ellipsoid intersects each of
the principal axes, and this is easily done with the use of equation (206) since each of the matrix ele-
ments [D],, is associated witi: one column vector [AT]; and is related to the coefficients of equation
(206) via equations (201) through (203).

We are now in a position to consider the problem of determining the probability of the event
(xq'.ve',29) € ¥, that the coordinates of a DF fix (xy,vy',29") will fall within the region ¥, enclosed by
the ellipsoid of constant likelihood whose locus is given by

LR M S (225)
a2 b2 (.2

A family of ellipsuids concentric about the point O of the actual target position is given by the equation

2

Xo -‘.02 .'.'()2 2
e+ o+ S = K2 0<K<eo (226)
a b I

The ellipsoid of equation (225) is one member of this family. The probability that the fix point
(xo' 3o »2o) lies between the ellipsoidal suffaces defined by, K and K + dKis, using equation (205),

L3 2 2
P(Xo Yo .'.'()) dX()(!_V()dZO = '2— Kzexp "'—I'(_ dK (227
KX+ak ™ 2
Thus, the desired probability can be evaluated by
4 A7)
Plxg' y' zp'e Vi) = o J wexpl—u?] du (228)
or
k 2| K
P(xy vy ,zo'e V) = erf ['(2—),,-] - l;] k exp[— 7‘] (229)

Equation (229) is analogous to equation (54), derived for the two-dimensional DF encounter. We
cannot solve equation (229) explicitly for & in terms of P(xy, vy .20'e ¥,) as was possible for equation
(54) in o dimensions. However, we can still derive resuits in the three-dimensional case that are
equivalent to equations (57) and (58) which give the principal axes intercepts in the two-dimensional
case. Indeed, if one plots the function P(xy'.yy',50'e Vi) as given by equation (229) on "probability
paper" (see Figure 3-6), then one can graphically invert the equation to solve for A given a desired
value of P(xy'.yy',zp'e ¥;). Thus, if one wishes to determine the principal axis intercepts of an ellipsoid
within which the DF fix point has a probability y of falling, one enters the axis of P(xy' .y’ .20 ¥3) at y
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and traces back to find the associated value of &, ,. This procedure is iliustrated in Figure 3-6. The
principal axes intercepts of the ellipsoid within which the DF fix has probability y of falling are then

Xow = kK, a (230)
Yom == X /\'7 b (231)

o = i'k.yt' (232)
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One can, in fact, reduce computation time for two-dimensional DF problems by graphical inversion of £
1 equation (54) instead of using cquations (37) and (58) directly. 3
> ‘ Of course, in light of equations (230) through (232), the volume €13 of the region |, contained E
within the ellipsoid is :
: Q; = 4—:-(1[)('/\.,3 (233) 4
E If, when given a DF fix specified by the coordinates (xg,1y.2). we define the absolute positioning
k error as :
;?:: Cy = (.\'()2 + )'02 + .'.'02). (234) ':
: then the mean square error is given by g
:
o oo o
3 ) J f f ( 2422 w2’ ( :
3 ‘= Xt + + zp9dex + — + —|tdxydvyd: 235) :
; P3 A (zﬂ),/zab‘ JJJ () Jo -0 Pl— (12 bz ('2 [IRAEEY)
3 Evaluation of this integral by expanding the integrand gives
2 . \
2 3/2 3 ;
£ = —112bd | exp(=nd) i} {|292a° | wlexp(—u?) du -
] P (21r)3pab(ll j P ‘z P 3
g 3

3 2 w
+ Za('[fexp(—u*’) du] ][23’26‘1 wlexp(—u”) dun
0 0

This is, of course, the three-dimensional analog of equation (63). Using equations (201) through (203)
we see that equation (237) can be written as

+ 2ablfexP(—- u-l)dui ”23/2(.3f wlexp(—w) di 1 (236)

o «

and thus
P} = (“2 + h:: + (2)'/‘ (237) .

;

I 1 i
- + =~ + , (238)
{D]u‘ [Dlzz' [[)]33“

p:=

The methods of this section can be applied to the two-dimensional DF encounter as well. In the
two-dimensional case the matrix [C] is a 2-by-2 matrix whose elements are given by equations (172),
(173), and (175), where the vector D, has only the components D,, and D,. The characteristic equa-
tion of equation (209) then becomes a second-degree polynomial given by

w%“&“«“ JORTTEr RIS

' A-A+pwr+Qu-v)=0 {239

from which we derive
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v
{0l = —12— = 1-{()\ +u) [(x -+ 4u2] ] (240)
a 2
1 | % 4
[Dly = i 5{()\4';4) + [(A -~ )+ 4u2] ] (241) 2

Equations (240) and (241) reproduce the results of equations (44) and (45) as derived by Stansfield.

The upper signs in equations (240) and (241) set the unit vector fz\“ along the semiminor axes and the ;
unit vector 1“1‘0 along the semimajor axes of the given ellipse of constant likelihood. The lower signs 3
place 1‘4\” along the semimajor axes and f{,,u along the semiminor axes of the ellipse of constant likeli- .fa
hood. Indeed, using equations (240) and (241) to solve equation (216). and then using equations E:
(222) through (224) gives the unit vectors of the axes of the rotated refereace system (relative to :
which the equations for the ellipses of constant likelihood are in canonical form) as 3

%[()\ —p) (()\ — u)? +4v2]]%
AR NG (242)
{['2'[(" o E (0\ - )+ 4.,2] ]! )

—vii, +

—t)

- v, +

-12—[()\ —u * (()\ —u)?+ 41/2]'/) lfl‘

2 Y
+ uz}

~

A -1—[0\ ) - 2"
{[2 —w) = (A —p) +4u]]

(243)

where the choice of signs has the same effect described for equations (240) and (241).
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