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A FAST WALSH TRANSFORM ELECTROCARDIOGRAM
DATA COMPRESSION ALGORITHM SUITABLE FOR

MICROPROCESSOR IMPLEMENTATION

INTRODUCTION

The advantages of digital transmission, storage, and processing of elec-
trocardiogram (ECG) data have been documented in many studies [1-3]. One
factor limiting a more widespread application of these techniques is the rela-
tively large number of bits required to adequately represent an ECG. Using
American Heart Association standards [4] of 500 samples/second with 9 bits per
sample, a three-lead vectorcardiogram represents a data rate of 13,500 bits
per second (BAUD) and requires approximately 18,000 8-bit words to store a
10-second data record.

One method of reducing these data transmission and storage requirements
is by utilizing a data compression algorithm. The operation of a data com-
pression algorithm is illustrated in Figure 1. The original signal Y(n), an N
element long sequence of M bit binary numbers, is operated on by Xo(n) pro-
ducing Yc(n), a compressed representation of Y(n). Yc(n) has NO ele-
ments with Mo bits/element where NOMo<NM. The original signal is recon-
structed from Yc(n) by the process X1 (n). This reconstructed output
sequence can be represented as the sum of the input sequence Y(n) and an error
sequence E(n).

T(n) = Y(n) + E(n) (1)

Typically the magnitude of this error sequence is proportional to the data
compression ratio NM/NoM o .

In developing the data compression algorithm presented in this report,
an additional constraint was considered--namely, eventual implementation of
the algorithm in real or pseudo-real time with a microprocessor. A survey of
previous work in ECG data compression suggested two possible techniques:
direct data compression [5-9] and transformation compression [9-12]. In
direct data compression techniques the compression algorithm, Xo(n), oper-
ates on the original data sequence, Y(n) , such that the compressed represen-
tation of the input sequence, Yc(n), is made up of the actual elements of
the input sequence, Y(n), or these values within a tolerance. Transformation
data compression techniques are those which apply a linear or nonlinear trans-
formation, X(n), to the input data sequence, Y(n), to produce the compressed
representation, Yc(n); the reconstruction Y(n) is obtained by applying the
inverse transformation X-1(n) to Yc(n). Examples of transforms used by
previous investigators are Fourier transform [9,10], Haar transform [10], and
the Karhunen Loeve transform [10-12].

Evaluation of the comparative performance of these two data compression
techniques revealed the transformation techniques to be superior in terms of
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the quality of the reconstructed signal and the direct data compression tech-
niques to be more suitable for microprocessor implementation. Utilizing these
facts the data compression technique studied here was a Walsh transform tech-
nique that combined the superior reconstruction characteristics of the trans-
formation data compression techniques with the computational advantages of the
direct data compression methods.

The performance of a Walsh transform data compression algorithm, imple-
rmented in Fortran on a PDP-11/70 computer, was evaluated using ECG data sam-
pled at 500 Hz using 9 bits/sample. From the limited number of ECG's tested
an acceptable reconstructed signal, using the diagnostic content of the signal
as an objective criterion, could be obtained at data compression ratios of
approximately 4:1. The mean square error between the original and recon-
structed signals at this compression ratio was approximately 1%.

OBJECTIVES

The main objective of this study was to investigate the operating charac-
teristics of a Fast Walsh transform (FWT) electrocardiogram (ECG) data
compression algorithm. Although certain aspects of this data compression
algorithm's behavior can only be determined from an actual microprocessor
implementation, its basic operational characteristics can be determined from
the Fortran minicomputer-based implementation of the algorithm developed in
this study. The specific objectives were:

(1) To aetermine the relationship between the faithfulness of a
reconstructed ECG signal and the number of Walsh functions used in the recon-
struction process.

(2) To determine the relationship between the faithfulness of a
reconstructed ECG signal and the number of bits used to represent the magni-
tude of the Walsh coefficients.

(3) To determine if filtering the reconstructed ECG signal can
improve its diagnostic utility.

FAST WALSH TRANSFORM ECG DATA COMPRESSION ALGORITHM

The method of data compression employed in this study was based on the
use of an orthogonal signal basis set, namely Walsh functions. To aid in
understanding the operation of this data compression technique, a brief review
of orthogonal functions, in general, and Walsh functions, in particular, along
with a description of the method used to compute a sequency-ordered FWT, will
be presented.

if Two functions, I (t) and *2 (t), are orthogonal over the interval [tI,t 2 1

t
2

Jl (t)2 (t)dt = 0 (2)
ti

4

.. . .. -



Becduse of this property it is generd1ly possible to represent a function,
f(t), over . certain interval by a linear combination of mutually orthogonal
functions. If the act of functions, ' is complete over the interval

t1 ,t 2 ] , then f(t) can be expressed as

N
fit) =  a aHlPn~t)( )

n=l

where 1n is the nth member of a set of mutually orthogonal basis
functions. To represent an arbitrary function, f(t), an infinite number of
basis functions, Cn(t), may be necessary. A data transmission system
utilizing this representation of a signal is shown in Figure 2. Given that
the basis functions are known at both the receiver and transmitter, the
transmitter computes from the signal the N an terms. These magnitudes are
transmitted and used by the receiver to reconstruct the original signal, f(t).

In cases where the signal f(t) exists only at discrete time intervals, as
occurs with the sampled ECG signals we are dealing with here, the number of
terms in the orthogonal representation of the signal is finite. A compression
of the data can therefore be effected in either of two ways: first by trans-
mitting less than the entire N an terms, or by using fewer bits to represent
the an terms than were used to represent the original signal. In both cases
an error signal will be introduced to the reconstructed signal. By varying
both the number of terms and the number of bits used to represent the magni-
tude of these terms, a limit was obtained as to the extent the data can be
compressed and still be of diagnostic use when reconstructed.

In dddition to having the properties other orthogonal functions possess,
Walsh functions [13-17] hdve another property; namtely, only addition and sub-
traction of the original signal sample values from each other, in a particular
sequence, are necessary to compute a Walsh transform representation of the
signal. by employing an FWT algorithm L15-17J that requires nlogn operations
to compute a transform, as compared to n2 operations using a direct method,
the computations necessary to generate a Walsh transform in real time can be
performed on most 8-bit microprocessors without requiring a hardware floating
point capability.

The FWT algorithm used in this study I17] is as follows. The Walsh-
Fourier transform F(m) of an N point sampled signal F(n) is defined as

N
F(w) : f(n) Wal(m,n) for m = 0,1,2,...,N-1 (4)

n=1
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with the associated inverse transform

I N-i
f(n) = N F(m) Wal(n,m) for n =1,2,...N

m=O

The discrete Walsh functions are sampled versions of the continuous set.
In Figure 3, the first four continuous Walsh functions are shown. In this
figure the index n is used to order these functions by sequency, that is the
number of zero crossings in the interval 0,1. In the discrete form of these
functions the second index denotes the sample number. For purposes of the
FWT development the Walsh functions are assumed to be periodic with period N
where N is an integer power of 2. These discrete Walsh functions can be
defined as follows:

Wal(o,n) = I for n = ,2,3,...,N (5)

I = for n = 1,2,...,N/2
Wal(1,n) =1

-I for n N/2 + 1, N/2 + 2,...,N (6)

In general,

Wal(m,n) = Wal ([m/2],2n) • Wal(m-2[m/2],n) (7)

where [m/2] is the integer part of m/2.

Using these definitions, the FWT algorithm can be summarized as

F (n,o) = f(n) for 1<n<N (8)

[(J+1)/2]
Fi(K,J) = Fi(2K-l ,[J/2])+(- l) Fi(2K,[J/2]) (9)

for
i = 0,1,2,..., P-1;P = Log 2 N
J =0,1,2,...,2 2i+I -1

K = 1,2,3 .... N

2i+1
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These functions can be related to the Walsh function presented in equa-
tion 4 as

F(j) = Fp(i,j) (10)

A Fortran implementation of this FWT algorithm was incorporated in the
data compression algorithm used in this study.

METHODS AND RESULTS

The ECG data used to study the FWT data compression algorithm had been
sampled at 500 Hz with 12 bits used to represent each sample. So that the
results obtained here could be compared with previous work in ECG data com-
pression, the data was initially requantized to 9 bits/sample. There were 11
channels of data available: the standard lead I and the lead II data, the 6
precordial leads, and the 3 vector leads. Although the algorithm was tested
using all 11 channels, only the lead II data was used for the detailed results
presented here. Data from three different patients, all lead II, was pro-
cessed as follows.

The 12-bit sample 500 sample/second data was requantized to 9 bits/sample
and segmented into 512 sample, 1.024 second, records. These records were op-
erated on by the FWT algorithm that produced the 512 Walsh coefficients. The
data, represented by these 512 Walsh coefficients, was compressed by the two
following methods.

The first method of compressing the data was to quantize the Walsh coef-
ficients to between 11 and 3 bits/coefficient. The upper limit of 11 bits was
necessary to reconstruct the ECG signal and not introduce any error. The sec-
ond method of compressing the data was by using only a fraction of the Walsh
coefficients to reconstruct the ECG signal. This fraction was varied from I
to 1/16; that is, ECG signals were reconstructed using, at one extreme, all
512 Walsh coefficients and, at the other extreme, only 512/16 of the coeffi-
cients. The fraction of Walsh coefficients retained was always that fraction
having the greatest magnitude. For example, at 512/4 the 128 Walsh coeffi-
cients having the largest magnitude were retained. The remaining coefficients
were set to zero and the ECG signal reconstructed using the inverse FWT algo-
rithm. The normalized mean square error between the original and reconstruct-
ed ECG signals was computed using the following relationship

512 2
Z (Y(n) - Y(n))

MSE - n=l
512 )2

(Y(n)
n= 1 i7



Plots of the reconstructed ECG signals, lead II, for one patient are seen
in Figures 4-8. Each of the five sets of five figures show the reconstructed
ECG at a constant coefficient reduction ratio with the number of bits used to
represent each coefficient varied from 11 to 3 bits from bottom to top. For
example, Figure 6 shows the reconsLructed lead 11 ECG's for patient one where
the 128 largest magnitude Walsh coefficients were used in the reconstruction
and these coefficients were represented as 11 through 3 bit binary numbers.
One can note the degradation of the reconstructed signal as both the number of
bits/coefficient and percentage of coefficients retained are reduced.

Figure 9 is a set of contour plots of the normalized mean square error
for the set of data presented in Figures 4-8. It shows the mean square error
versus the number of bits/coefficient and the ratio of coefficients retained/
coefficients zeroed in the reconstruction for patient one, which corresponds
to the time waveforms in Figures 4-8.

Figures 10 through 14 show the effects of utilizing a digital 9th-order
finite-impulse response low-pass filter on the reconstructed data from patient
three. The zero locations of this filter along with H(z), its transfer func-
tion, can be found in Figure 15. Note the removal of the 60-Hz noise signal
from the ECG. The large mean square error is caused by a phase shift (delay)
introduced by the filter, not a change in the waveshape.

DISCUSSION AND RECOMMENDATIONS

The results obtained in this study demonstrate the utility of a data com-
pression technique based on an FWT algorithm. The relationship between mean
square error and both the number of Walsh coefficients used in the ECG recon-
struction and the number of bits used to represent each coefficient was a
monotonically increasing function of both parameters. This relationship,
which held for all three sets of ECG data, can clearly be seen in the contour
plots in Figure 9. The trade-off between these two parameters in terms of
mean square errors seems to be unimportant; that is, it seems that using half
the coefficients or half as many bits to represent all the coefficients has
the same effect on the resulting reconstructed ECG in a mean square error
sense.

The more important point is: what validity does the mean square error
have in terms of being a useful measure of the diagnostic content of the
reconstructed ECG waveform? From contacts with Air Force and other cardiol-
ogists it was apparent that two reconstructions of an ECG signal with the same
mean square error resulted in different diagnoses. A more meaningful cri-
terion for evaluating the utility of a reconstructed ECG waveform should be
established. This criterion should be based on the measures used by cardiolo-
gists in their evaluation of actual ECG data.

The second area that has to be addressed to complete evaluation of this
algorithm would be a microprocessor implementation, so that the real-time
operating characteristics can be determined. Once the overall performance of
this data compression algorithm has been determined, it can be used as a
benchmark against which other data compression algorithms can be compared.

The use of a simple low-pass 9th-order finite impulse response digital
filter seemed to improve the diagnostic utility of the reconstructed ECG sig-
nal. The use of other filters such as Wiener filters, for example, may

8



improve the utility of tnese reconstructed vC(;s. A study of the noise intro-
duced by the recunstruction process when using a reduced number of coeffi-
cients or a reduced number of hits/coefficients should he undertdken and this
information used to determine an Optimdl filter for this problem.

To suivnari ze these recommenddt ions

1. Determine the maximun data compression that can he obtained with the
?WT algorithm and still yield clinically useful informdLion. This will be
done using cardiologists' diagnosis of the reconstructed [CG's. Signals over
a wide range of heart rates and from patients with a wide range of conditions
should be used.

A. Implement the FWT algorithm through a microprocessor. This will
allow the real-time operating characteristics of the algorithm to he deter-
mined. These performance characteristics can be used as a benchmark against
which other data compression algorithms can he compared.

3. Study the noise characteristics of the reconstructed ECG signals and
use this information to develop a filter to optimize the diagnostic utility of
these reconstructed ECG signals.
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Figure 7. Lead II reconstruction--8:1 coefficient reduction.
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Figure 8. Lead II reconstruction--16:1 coefficient reduction.
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Figure 10. Filtered lead 11 reconstruction--1:1 coefficient reduction.
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Figure 11. Filtered lead II reconstruction--2:1 coefficient reduction.
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Figure 12. Filtered lead II reconstruction--4:1 coefficient rduction.
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Figure 13. Filtered lead II reconstruction--8:1 coefficient reduction.
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Figure 14. Filtered lead II reconstruction--16:1 coefficient reduction.
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Figure 15. Filter transfer function--zero locations.
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