AD-AL04 111

UNCLASSIFIED

CALIFORNIA UNIV BERKELEY OPERATIONS KESEARCH CENIER Fs/6 1271 -
MINIMIZING EXPECTED MAKESPAN IN STUCHASTIC OPEN SHUPS, (U)

JUL 81 M L PINEDOr $ M ROSS AFUSR=81~-U122
ORC=81=18

* ORC 81-18 %
- JULY 1981

ADA104111
MININIZING EXPECTED MAKESPAN IN STOCHASTIC OPEN SHOPS @ |

by

MICHAEL L. PINEDO
and

SHELDON M. ROSS

P 2 FURN

..

e

X
S .

1
[
g .

||| Il OPERATIONS

P RESEARCH “BISTATBUFION STATISERT K|

| CENTER | e

UNIVERSITY OF CALIFORNIA - BERKELEY
U . _...819 11 056

I

‘_,_f
NS T

MINIMIZING EXPECTED MAKESPAN IN STOCHASTIC OPEN SHOPS
by

Michael L. Pinedo+
School of Industrial and

Systems Engineering (:
Georgia Institute of Technology D ‘ \

Atlanta, Georgia CTE

\ W !
and QESEP A 4\98\ |
tt X

Sheldon M. Ross 'y .
Department of Industrial Engineering (\,.' L
and Operations Research
University of California, Berkeley

JULY 1981 ORC 81-18

"Partially supported by the Office of Naval Research with the Center
for Production and Distribution of Research, Georgia Institute of
Technology.

fTPartially supported by the Air Force Office of Scientific Research
(AFSC), USAF, under Grant AFOSR-81-0122 with the University of
California. Reproduction in whole or in part is permitted for any
purpose of the United States Government. D e .
~ UTION STATEMINT X
ppz;::‘;f for public roloase;
e 22NUON Uy limiteq
““‘\

pw -y . e’ P TN S i Dy 3

.

Unclassified

SECUNTY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE

ORC-81-18

Ad-aLg¥

2. GOVT ACZESSION NO.

3. RECIPIE.’IT'S CATALOG NUMBER

4. TITLE (and Subtitie)

{7 MINIMIZING EXPECTED MAKESPAN IN STOCHASTIC
- © QPEN SHOPS. ' ’

4

#/' Research !(ecp /

!. TYPE OF REPORT & PERIOD COVERED

/

8. PERFORMING ORG. REPORT NUMBER

7. AYTHOR(s)
/4 i
“} Michael Lu/kinedo and Sheldon M)/koss ! ‘/

8. CONTRACT OR GRANT NUMBER(as)

v AFOSR~81-0122 .,

IS N

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Operations Research Center
University of California
Berkeley, California 94720

10. PROGRAM !:E:Ezsrd? PROJECT, TASK

AREA & WORK 1T NUMBERS

/. 2304/A5 "

——i -

'1. CONTROLLING OFF|CE NAME AND ADDRESS

13- AEPOAY 0TS

7 -
/ -

United States Air Force _ //. July 1981/
Air Force Office of Scientific Research S V3. NUMBER AGES
Bolling Air Force Base, D.C. 20332 24
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 1S. SECURITY CL ASS. (of thie report)
Unclassified

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

*

. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

3

. DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, if different from Report)

SUPPLEMENTARY NOTES

Open Shop
Makespan
Two dachines

19. KEY WORDS rContinue on reverse side if necessary and identity by block number)

20. ABSTRACT (Continue on reverse side If neceasary and identify by dlock number)

(SEE ABSTRACT)

DD, on's; 1473 eoimion or 1 Nov 8813 oesoLETE
SN 0102-LF-014.6401

Unclassified

Vi

T N AN AR A 4, TP o i S

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

4

4 -

ABSTRACT)

- Suppose that two machines are available to process n tasks. Each

task has to be processed on both machines, the order in which this happens
is immaterial. Task 3} has to be processed on machine 1 (2) for random
time Xj(Yj) with distribution Fj(GjS . This kind of model is usually
called an Open Shop. The time that it takes to process all tasks is
normally called the makespan. Every time a machine finishes processing
a task the decision-maker has to decide which task to process next.
Assuming that Xj aﬂa Yj have the same exponential distribution we
show that the optimal policy instructs the decision-maker, whenever a
machine is freed, to start processing the task with longest expected
processing time among the tasks still to be processed on both machines.
If all tasks have been processed at least once, it does not matter what
the decision-maker does, as long as he keeps the machine busy. We then
consider the case of n identical tasks and two machines with different
speeds. The time it takes machine 1 (2) to process a task has distribu-
tion F(G) . Both distributions F and G are assumed to be New Better
than Used (NBU) and we show that the decision-maker stochastically mini-

mizes the makespan when he always gives priority to those tasks which

have not yet received processing on either machinag.

t .
) " w
| S i
‘ 1 I .
| [
MR
- e
L R NN
o N oo >
[Y LS D - Y
5 T e peeoee T3
oo oo ! ST I
c) S oA
LodLE T b e
t e [« © Ga [—t L -
v oo e~
QG Ty ey - O
L e oy | ® > .
P 1, P < e
PV L o0 ;‘

P

i
ff
|
|

ek

MINIMIZING EXPECTED MAKESPAN IN STOCHASTIC OPEN SHOPS
by

Michael L. Pinedo and Sheldon M. Ross

1. INTRODUCTION AND SUMMARY

Suppose that two machines are available to process n tasks. Each
task has to be processed on both machines, the order in which this happens
is immaterial. Task j has to be processed on machine 1 (2) for random
time Xj(Yj) with distribution Fj(Gj) . This kind of model is usually
called an Open Shop. The time that it takes to process all tasks is
normally called the makespan. Every time a machine finishes processing a
task the decision-maker has to decide which task to process next. A policy
prescribes, as a function of the state of the system, the actions to take
at the various decision moments; of interest are the policies that minimize
the expected makespan.

Gonzalez and Sahni [1] considered the case where the processing times
are deterministic and presented an 0O(n) algorithm to find an optimal
schedule. The case of stochastic processing times has, to our knowledge,
not yet been considered in the literature.

In the first section of this paper, we assume that Xj and Y, have

3

the same exponential distribution with rate yu, . We show that the optimal

3

policy instructs the decision-maker, whenever a machine is freed, to start

1
processing the task with longest expected processing time among the tasks é
still to be processed on both machines. If all tasks have been processed ;
at least once, it does not matter what the decision-maker does, as long as ;
he keeps the machine busy. s
v
M
S

In the second section we consider the case of n identical tasks

and two machines with different speeds. The time it takes machine 1 (2)

to process a task has distribution F(G)

Both distributions F and

G are New Better than Used (NBU). We show that the decision-maker

stochastically minimizes the makespan when he always gives priority to

those tasks which have not yet received processing on either machine.

In the last section the case of n identical tasks and two identical
machines will be considered.

The processing time of a task on a machine

has an exponential distribution with rate one. A closed form expression

for the expected makespan under the optimal policy is given.

ok Sk 7

i

2. THE CASE OF EXPONENTIAL PROCESSING TIMES

In this section we assume that X, and Y, have the same exponential

] h|
distribution with rate u

]

Note that a policy only has to instruct the decision-maker what to
do as long as there are still taskswaiting for their first processing.
This is true for the following reason: when machine 1 (2) becomes free,
the decision-maker can otherwise choose only from tasks which have to be
processed on machine 1 (2) alone and the sequence in which these tasks

will be processed on machine 1 (2) will not affect the makespan.

If M denotes the makespan then clearly

n n
X» 1Yy

(1) M > max () .
i=]l i=1

The makespan may be strictly larger than the R.H.S. of (1) when one
machine is kept idle for some time in between the processing of two
tasks. A distinction will be made between two types of idle periods
(see Figure 1).

In an idle period of type II, a machine is kept idle for some time,
say J1 , then processes the last task, say task j , and finishes pro-
cessing tagsk j while the other machine is still busy. It is clear that,
although a machine has been kept idle for some time, the makespan is never-
theless equal to the R.H.S. of (1). In an idle period of type I, a machine
is kept idle for some time, say J1 , then processes the last task, say
task j , and finishes processing this task some time, say J2 , after the

other machine has finished processing its tasks. Now

n n
(2) M-mx(zxi, ZY1)+N

SRRy ACS. { SRR TSP IE E STORPR PRE ~ T SR T W PR PR R L RN

machine 1 11

machine 2 1
Idle Period of Type I
task j
machine 1 | 1
task j
machine 2 | 1 |]
“TJ a

Idle Period of Type II

FIGURE 1

Y

where

N = min (Jl,Jz) .

It can be verified easily that only one task can cause an idle period
and an idle period has to be either of type I or type II. In the re-
maining part of the paper superscripts will consistently refer to policies,
e.g. o° denotes the makespan under policy ° , N° denotes the second
term on the R.H.S. of (2) under n° , etec. Let p; denote the probability

that task j causes an idle period of type I under policy x° . Then,

after taking expectations on both sides of (2), we obtain

n n
(3) EMO) = E(max (y X, y Y.)) + E(N®)
i=1 i=1

where

n
EN’) =) p? °§%— .
i=1 3
As the first term on the R.H.S. of (3) does not depend on the policy,
it suffices to find a policy which minimizes the second term on the
R.H.S. of (3).

Before continuing with our analysis of the Open Shop model we will
consider a simpler scheduling model; a model where the tasks have to be
processed only once on either one of the two machines. This model has
been treated in the literature extensively for various objective functions,
see [2], [3], [4]. Assume that at decision moment t one machine is free
and the other one is_busy processing task 0. A policy jl,jz, ey jr ,

a permutation of 1,2, ..., r , prescribes that at time t task jl is

<= e AN AT B ORNOIME. TR = < 8 e WA TR B e
. ~

snsesssstetenatel

put on the empty processor; the next time a processor is freed task jz

is started, etc. For this model we have

Lemma 1:

Let q} (qi) ,» § =0,1,2, ..., r , denote the probability that the last
task to be finished under policy ﬂl =1,2,3, ..., T=1,r (n2 = 2,1,3,

eeey, r=1,r) 1is task j . When u., = min (ul,uz, ceey ur) , then, for

1

any task 0, not necessarily exponentially distributed,

1 _ 2
99 = 4
Qi <49
1 2
qj 3_qj j=2, ..., T
and
T 1§ 2
Loag= 1 qf-
i=] i=]1
Proof:

See Lemma 1 in Pinedo and Weiss [2].8

Although Lemma 1 was originally set up to analyze a simpler model,
where tasks have to be processed only once on either one of the two
machines, it will play an important role in the analysis of the more com-
plicated Open Shop model we have under consideration in this paper. In
Theorem 1 the lemma will be used repeatedly, applied on a set of tasks
which after a specific time t have to undergo their first processing
on either one of the two machines. As long as there are tasks waiting

for their first processing no task will start its second processing.

- e I e L W e P e e W

4

We will be interested in the probabilities of each task of this set being
the last one of the set to finish its first processing. These prob-
abilities are needed when computing the probability of a task causing

an idle period of type I, as for a task to cause a type I idle period

it must have been the last task to finish its first processing.

Theorem 1:

The policy that minimizes the expected makespan is the policy which,

whenever either of the two machines is free, instructs the decision-maker

(1) when there are still tasks which have not yet received process-
ing on either machine, to start among these the one with the
largest expected processing time and

(i1) when all tasks have been processed at least once, to start

any one of the tasks still to be processed on the machine

just freed.

Proof:

Assume at decision moment t one processor is idle and the second one
is processing task 0 with an arbitrary distribution. Let ﬂ* denote the
policy stated in the theorem. In order to prove that w* is optimal it
suffices to show that using w* from t onwards results in a smaller
expected makespan than acting differently at ¢t and using n* from the
next decision-moment onwards. Two types of actions at t which are not
according to w* have to be considered. Firstly, it is possible to start
a task which has not yet been processed on either machine, but which is
not the largest task among the tasks not been processed on either machine.

Secondly, it is possible to start a task which already has been processed

on the other machine.

W v KPR TP N L e YT WP SerWal gl ey - b

.

—— e
—

The following notation will be used: {A} denotes the set of tasks
that at t did not yet finish their first processing, while {B} denotes
the set of tasks that at t did not yet start their second processing.

Clearly {B} D A}

Case 1:

Let vl denote the policy which instructs the decision-maker at time
t to start task m with rate My o @ € A, where m is not the largest
task among tasks in {A} and to adopt policy n* from the next decision
moment onwards. Let q? (q;) » J €A, denote the probability that task
j 1is the last task to finish its first processing under nl (w*) and
therefore be a candidate to cause an idle period. Suppose this task j
would be processed on machine l--for it to cause a type 1 idle period it
also has to outlast all those tasks which still have to receive their
second processing on machine 2, and then, after task j finishes on

machine 1 and starts on machine 2, it has to outlast those tasks which

have yet to receive their second processing on machine 1. So

u

* I i
p - q - e ————
and
pi=ar - T .
I ge(peyr Mt Yy
Also
1 *
Pop = Pg -

EE ST VAT T D E T - PURTNGTN PP

BN Y

*
Observe that pj and pl do not depend on which machine task 1 (i # j)

3

has to be processed the second time. If task 1 would be processed the

second time on the same machine it was processed the first time, it would
*

affect neither pj nor p& . This fact will be used in Case 2. 1In

*
order to show that E(N) < E(N') we have to show that

([.) z (—L—.q*n n —.—u—i——_)< (.—l—cq . 1 —L.l_i—.).
jeta-o\?"y 3 see-g) P Ty Tyetdcor V¥ Y qeeegr M Y Y

As a prelude to showing the above, note that when uk <wu

u u
(%) 2111 ’ I u -0-1 b = Zt) Lo u 4'i u, °
k i€{B-k} 1 k 2 ie{B-1} i '3

Suppose the sequence in which tasks {A} start their first processing

under ' is wo,1,2, ..., m-1l,m+1, ..., r where M)y Sy £eee £

Mooy SHp SMog Soeee S Performing a pairwise switch in this sequence

gives 1,m,2, ..., m-1l,m+1, ..., r . Let this new sequence correspond

1 .
3
j=1, ..., n, (established by Lemma 1) and (5) we find that E(N'') < E(N')

to policy = . Using the relationship between q5 and q

After performing a series of similar adjacent pairwise interchanges, each

one involving task m and the task immediately following it, (4) follows.

Case 2:

Let n''' denote the policy which instructs the decision-maker at time

*
t to start task h with rate h € {B - A} , and to adopt policy

Uh N

from the next decision moment onwards. Let q'!'' , j € A, denote the

]
probability that task j is the last one of tasks in {A} to finish its

first processing and also finishes after task h finishes under n'''

bl NPT, W T daraad. 1 T PN g e N L St e

Let qa" denote the probability that task h finishes after all tasks
of {A} finish their first processing under =''' . Assume in the re-
maining part of the proof that when using n* from t onwards we may,
after having started all tasks of {A} , start task h on the machine
that comes free first (we have seen under Case 1 that the probability of
task j causing a type I idle period does not depend on which machine
processes task h for the second time). Let q; now denote the
probability that task j is the last one to finish its first processing
among tasks {A} and also finishes after task h finishes. Let q:
denote the probability that task h finishes after all tasks of {A}

have finished their first processing. So now

*aqh it jEA
P, = q, °
I3 ie(Bag-nr H1 T Yy
and
Hy
p''t =g . n . jea
3 3 1€(B-§-h} "1 * ¥
Again
%
e =
po Po *

*
In order to show that E(N) < E(N''') we have to show that

10

(_]'_.q*. n .__Ei__)< (.._..ql!v. z _ui_)
jeta-0 \ 2%y 3 ie(B-3-nr M1 T ¥y) T yela-0r\ZHy 3 1€(B=3-n} "1 * ¥y

11y

* *
From Lemma 1 follows that 9 2 9 and qy g_qi" » 1€A . From (5)

*
follows then that E(N) < E(N''') .8

T iy T ot O 5 Sitinis | = LB s,

D

11

3. IDENTICAL TASKS ON TWO MACHINES WITH DIFFERENT SPEEDS

In this section we assume that Xj and Yj s J =1, ..., n, have
distributions F and G respectively. Both distributions F and G

are New Better than Used (NBU), i.e.,

Fx + y)/F(x) < F(y) x>20,y2>20
and

G(x + y)/G(x) < G(y) x>0 ,y>0.

Consider decision moment t when one machine has become idle and the
other is busy processing a task. Let n,, denote the number of tasks
that have not yet received processing on either machine and let nl(nz)
denote the number of tasks that are waiting for processing only on

machine 1 (2). When the task that is being processed at t on the busy
machine, say machine 1 (2), 1is not required to be processed afterwards

on the other machine, it will be called a task of type 1 (2); if after
having finished its current processing on machine 1 (2), it is required

to be processed afterwards on machine 2 (1) it will be called a task of
type 12 (21)., The type of this task will be designated by 1t . Let z
denote the amount of processing this task has already received at time ¢t
on machine 1 (2). The state S of the process at time t 1is then com-
pletely specified by the quintuple (nlz,nl,nz,r,z) . The random variable
MO(S) will denote the remaining time to finish all tasks, starting in
state S and using policy 7° . In the subsequent lemma and theorem,

the remaining time to finish all tasks, departing from two different states,
say S1 and 52 , while using the same policy or using two different

policies, say nl and wz , while departing from the same state will be

12

compared repeatedly. However, whenever Ml(Sl) will be compared with
Ml(Sz) the amount of processing already done on the task in the busy
machine will be identical in states Sl and 82 (the types of these
tasks may however differ).

The following notation will be used: A D B denotes that the

random variable A 1is stochastically larger than random variable B ,

i.e.,

P(A > x) > P(B > x) vx .

Lemma 2:

*
Under the optimal policy

* *
M (k+1l,2~1,n-1,1,2) DM (k,2,m,T,2) .

Proof:

The distributions of the amount of processing still to be done on
either machine are the same in the two states. In state (k+1l,2-1,m-1,1,2)
there is an additional constraint in the form of an extra task which has
to be processed on both machines. So starting from state (k,%,m,t,z) the
decision-maker can do at least as well as when starting from state

(k+1,2~1,m-1,7,2) if he acts optimally in the two cases.

In the next theorem we will use repeatedly the following approach when

comparing Ml(Sl) with Ml(Sz) or Ml(Sl) with MZ(S The time the

1) '
busy machine needs to finish the task started before t will have the

same distribution in the two states which are being compared. We condition
them on which machine finishes first and compare Ml(Sl) with Ml(SZ)

(or with Mz(sl)) under the condition that a particular machine finishes

first.

PP PRy

it — i

13

We are now ready for the main result of this section.

Theorem 2:

The makespan is stochastically minimized if the decision-maker whenever

a machine is freed starts, when possible, a task which has not yet been

processed on either machine.

Proof:

Let n* denote the policy which always gives priority to the tasks
which have not yet been processed on either machine. It suffices to show
that at any decision moment in any state it is better to use policy n*
than to take an action not prescribed by ﬂ* (i.e., starting a task of
either type 1 or type 2 depending upon which machine is idle) and use w*
from the next decision moment onwards. Call this last policy ' .

So we have to show that for any S

*
M (S) CM'(S) .

In all inequalities to be shown the time the busy machine has been process-
ing its task (z) is the same in the two states being compared; a state
will therefore be denoted by (k,%,m,T) .

We will show by induction on k

* *
A(k) : M (k-1,2,m,12) CM (k,2-1,m,1)

* *
M(k-1,2,m,21) CM (k,2,m-1,2)

B(k) : M*(k,l,m,l) c M (k,%,m,1)

*
M (k,%,m,2) SM'(k’2,m92)

* *
C(k) : M (k-1,2+41,m,12) CM (k,%,m,1)

*
M (k-1,2,m+1,21) CM (k,2,m,2)

o ST ST N = metn OPRI IAMIIE oP r 353 00

PP O S

[A

14

*
D(k) : M (k,2,m,12) C M'(k,2,m,12)

*
M (k,2,m,21) C M'(k,2%,m,21)

Showing B(k) and D(k) for every k , ¢ and m proves the theorem.
At each step only the first of the two inequalities involved will be

shown as the proof of the second is identical.

Induction Base: k =1

A(l):

On machine 1 a task of type 12 has been receiving service for time =z .
Let Z denote the random time needed to finish this task on machine 1.

As F 1is NBU

It can be established easily that

* % w+l

M (0,2,m,12) =max |] X +2Z,) Y,z Yl)
i=1 i=1

where the first (second) term between the parentheses on the R.H.S. repre-

sents the total amount of work still to be done on machine 1 (2) and the

third term represents the time needed to finish the task of type 12.

The third term is the largest 1iff the task of type 12 causes an idle

period of type I. On the other hand

i

% L m+l
M(l,z-l.m,l)-max(z X, +2,) Yi,x1+yl)
i=1 i=1

so A(l) clearly holds.

YR 1 S AT

15

B(1):

It was shown before that

. zgl mgl
M (1,%¢,m,]1) = max (X, +2, Y, , X, +Y)
{=1 i 121 i 1 1

Under policy w' the task which has to be processed on both machines

will not be started immediately. But starting this task later is equiva-

lent with a larger third term on the R.H.S. Clearly B(l) holds.

C

Can)

1):

|

This case is identical to A(1l)

o
I~
[
e

|

It can be shown easily that

. 241 m+2
M (1,2,m,12) = max (121 X, +z, 121 Yo, X vY L, 2+ Y2)

where the third and fourth term represent the times needed to finish the

two tasks which still have to receive processing on both machines. Under

m' the only remaining task waiting for both machines will not be started

immediately. But starting this task later is equivalent with a larger

third term on the R.H.S. So D(1) holds.

General k :

To prove A(k), ..., D(k) for arbitrary k , assume A(k-1), ..., D(k-1)

to hold. We will show A(k), ..., D(k) by inductionon £ + m .

16

Induction Base 2 + m = 1 :

Adk)

To show
* *
M(k-1,1,0,12) C M (k,0,0,1)

If machine 1 finishes first it suffices to show

* *
M (k-2,1,1,21) CM (k-1,0,0,21)

This holds because of Lemma 2. If machine 1 finishes first it suffices

to show
* *
M (k-2,2,0,21) CM (k-1,1,0,1)
‘ This holds because of A(k-1) .

B(k)

To show

M (k,1,0,1) C M'(k,1,0,1)

and
*
M (k,0,1,1) C M'(k,0,1,1)

In state (k,1,0,1) both ﬂ* and 7' have to take the same action so
it suffices to consider state (k,0,1,1) . The case of machine 1 finish~
ing first holds because of A(k) for & +m=1 . In case machine 2
finishes first the next state will be under both ™ and 7'

(k-1,1,1,1)

P

A

"4:".;“_&1.‘,'4.3,!.» PRI

———————

C(k) :

To show
* *
1) M (k-1,1,1,12) C M (k,0,1,1)

The case of machine 1 finishing first holds because of Lemma 2. The

case of machine 2 finishing first holds because of C(k-1)
* *
(i1) M (k-1,2,0,12) C M (k,1,0,1)

The case of machine 1 finishing first holds because of Lemma 2 and the

case of machine 2 coming free first holds because of C(k-1)

D(k)

To show
M (k,1,0,12) C M'(k,1,0,12)
and
M (k,0,1,12) C M'(k,0,1,12)

*

As in state (k,1,0,12) both 7 and 7' have to take the same action,
it suffices to show only the second inequality. The case of machine 1
coming free first holds because of C(k) for 2 +m =1 . The case of

machine 2 coming free first holds because of Lemma 2.

General L + m :

Assume A(k), ..., D(k) to hold for ¢ +m-1.

AK) :

To show

B T R e - gpe. pro AL o

A

it Y Lan N

B

- — —

-

——

Yrkatn

18
* *
M(k-1,2,m,12) CM (k,L-1,m,1) .

The case of machine 1 coming free first can again be handled through

Lemma 2. The case of machine 2 finishing first holds because of A(k-1)
B(k) :
To show
*
M (k,%2,m,1) CM'(k,2,m,1)

The case of machine 1 coming free first holds because of A(k) . The

case of machine 2 finishing first holds because of Lemma 2.

Ck)

To show
* *
M(k-1,2+1,m,12) C¥M (k,%,m,1)

The case of machine 1 coming free first holds because of Lemma 2. The

case of machine 2 finishing first holds because of C(k-~1)

D)

To show
*
M (k,%,m,12) C M'(k,2,m,2)

The case of machine 1 coming free first holds because of C(k) . The

case of machine 2 finishing first holds because of Lemma 2.8

RATET YR S Y e RN . -

andimr o

by A IS A G T A A I 2 ST AN oS i,

LY

T i
vaidy e AY

e
e

19

4. IDENTICAL TASKS WITH EXPONENTIAL PROCESSING TIMES ON IDENTICAL MACHINES

In this section we consider the case where both Xi and Yi ,
i=1, ..., n, are exponentially distributed with mean one. We present
a closed form solution for the expected makespan under the optimal policy.

From Section 1 we have
* n n n *
(6) EM) =Efmax |] X,] Y +Zp.l.
i i j= j 2

Consider the first term on the R.H.S. of (6). Clearly

@ EEnax (iil Xi’ itgl Yi)] T E[min (iifl xi, itil Yi)])

In order to compute the second term on the R.H.S. of (7) suppose we have
a stockpile of n type 1 and n type 2 components, each of which function
for an exponential time with mean 1. Suppose further that for the "system"

to work there must always be both a single type 1 and type 2 in service.

If T represents the system lifetime then E[T] 1is the desired expectation.

Letting N be the number of components that fail we obtain

R A o i
=0

or

= e . . B Tl P L SR S tnalianad2aci L LVWSEE NE Y. WERTAE A X

-4

To compute assume, without

[Naaar =]

P*
je1 3

is used (the ordering,
l)Zn—Z

ing 1,2, ..., n

2

services mst finish before

all rates are equal). Now p; = (
case n-1
machines once again n-1 services must
suppose at the moment the jth element is
have been a total of i
other. The probability that

case would thus be

2

completions on that machine and j-2-1

20

loss of generality, that the order-

of course, being irrelevant since
for j =1 or 2 for in either
j and when j then switches
finish before it. For j > 2
first serviced by a machine there

on the

j would cause a type 1 idle period in this

(%)n-l-(j-Z—i)(l)n-l-i . (%._)Zn-j

As the above does not depend on 1 we see that

L (l)Zn—Z *
Py *\3 » Py

and so

implying that

2n-1
EM] =~ 2n- | k(
k=n

k-1
n-1

B

RV

-

(1]

(2]

(3]

(4]

21

REFERENCES

Gonzalez, T. and S. Sahni, "Open Shop Scheduling to Minimize Finish
Time," Journal of Computing Machinery, Vol. 23, pp. 165-679
(1976).

Pinedo, M. and G. Weiss, "Scheduling Stochastic Tasks on Two Parallel
Processors,’ Naval Research Logistic Quarterly, Vol. 26,
PP. 527-535 (1979).

Weber, R., "Scheduling Jobs with Stochastic Processing Requirements
on Parallel Machines to Minimize Makespan or Flow Time,"
to appear in Journal of Applied Probability (1981).

Weiss, G. and M. Pinedo, "Scheduling Tasks with Exponential Service
Times on Nonidentical Processors to Minimize Various Cost
Functions," Journal of Applied Probability, Vol. 17, pp. 187-202
(1980).

S RS R L Wl S Y L Fa AT il ot N e TN e Foeel s D N

END

DATE
FILMED

10%81 |

@ DTlC

