
Al 7 AARIF.1 CALIF EPC DMKSA N OR PNSOSA 1 ORNIA UNIV BERKELEY OPERATIONS H NESEARCH CEN ER F/ -121

JU M L INEDO ,S M RO SS AFOSH-81-0222

JFCASSFED DRC A
NLEmhhhh i7m

ORC 81-18k

LEVEVJULY 1981

AD A104111
MINIMIZING EXPECTED MAKESPAN IN STOCHASTIC OPEN SHOPS

by

MICHAEL L. PINEDO

and

SHELDON M. ROSS

.4

' -,

U
OPERATIONS

RESEARCH -- o,,.A-TI Appood for PuabIc re)S'3;CENTER _ _________, ID&Wli1ou_ Uz1mit~d

UNIVERSITY OF CALIFORNIA • BERKELEY

81 9 11 056

MINIMIZING EXPECTED MAKESPAN IN STOCHASTIC OPEN SHOPS

by

Michael L. Pinedo
t

School of Industrial and
Systems Engineering

Georgia Institute of Technology _

Atlanta, Georgia

and t
\t

Sheldon M. RossT
Department of Industrial Engineering j

and Operations Research
University of California, Berkeley

JULY 1981 ORC 81-18

Partially supported by the Office of Naval Research with the Center

for Production and Distribution of Research, Georgia Institute of

Technology.

1t Partially supported by the Air Force Office of Scientific Research

(AFSC), USAF, under Grant AFOSR-81-0122 with the University of

California. Reproduction in whole or in part is permitted for any

purpose of the United States Government. A

f pprovd for Puicj rejeg.

Unclassified
';ECU.%ITY CLASSIFICATION OF THIS PAGE twhen Data Entered)

READ INSTRUCTIONS' REPORT DOCUMENTATION PAGE __ e______S________OS
BEFORE COMPLETING FORM

111 2. GOVT ACCESSION NO. 3 RIEC PIE T'S CATALOG NUMBER

IORC-81-181 f41Y2
4. TITLE (led Subtttie) S. TYPE OF REPORT & PERIOD COVERED

MINIMIZINGEXPECTED MAKESPAN IN STOCHASTIC Research dejtv

OPEN SHOPS. . PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(a)

Michael L. inedo and Sheldon M Ross // y AFOSR-81-O122,

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ErE4gNT. PROJECT, TASK

Operations Research Center AREA II WORK INT NUMBERS

University of California /' 2304/A5'
Berkeley, California 94720

II. CONTROLLING OFFICE NAME AND ADDRESS 42. SPRO1a4 A.*

United States Air Force July]981

Air Force Office of Scientific Research " S. 14UMBER 6rW'A8ES

Bolling Air Force Base, D.C. 20332 24
14. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Office) IS. SECURITY CLASS. (of tis. report)

,, fUnclassified

IS&. DECLASSI FICATION/DOWNGRADING
-- SCHEDULE

16. DISTRIBUTION STATEMENT (of thin Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abettact entered in Block 20, It difofrent from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue an reverse side It neceeary end Identify by block number)

Open Shop
Makespan
Two Machines

20. ABSTRACT (Continue on reveree aide If neceaeery end Identify by block number)

(SEE ABSTRACT)

DO , jAN72 1473 EDI',TON OI NovO is OsSOlETE Unclassified
S,'N 0102-LF.014.6601 "" ,, "SECURITY CLASSIFICATION OF THIS PAGE (When Data anesnw)

/j/ 7C I

ABSTRACT

Suppose that two machines are available to process n tasks. Each

task has to be processed on both machines, the order in which this happens

is immaterial. Task j has to be processed on machine 1 (2) for random

time X (Y) with distribution F (Gj) • This kind of model is usually
i J iiJ

called an Open Shop. The time that it takes to process all tasks is

normally called the makespan. Every time a machine finishes processing

a task the decision-maker has to decide which task to process next.

Assuming that X and Y. have the same exponential distribution we

show that the optimal policy instructs the decision-maker, whenever a

machine is freed, to start processing the task with longest expected

processing time among the tasks still to be processed on both machines.

If all tasks have been processed at least once, it does not matter what

the decision-maker does, as long as he keeps the machine busy. We then

consider the case of n identical tasks and two machines with different

speeds. The time it takes machine 1 (2) to process a task has distribu-

tion F(G) . Both distributions F and G are assumed to be New Better

than Used (NBU) and we show that the decision-maker stochastically mini-

mizes the makespan when he always gives priority to those tasks which

have not yet received processing on either machin.'

M 0

I..r.

--... ... , -- -Y ' -_- -- '- -;w u , ' .

MINIMIZING EXPECTED MAKESPAN IN STOCHASTIC OPEN SHOPS

by

Michael L. Pinedo and Sheldon M. Ross

1. INTRODUCTION AND SUMMARY

Suppose that two machines are available to process n tasks. Each

task has to be processed on both machines, the order in which this happens

is immaterial. Task j has to be processed on machine 1 (2) for random

time X (Yj) with distribution F CGj) . This kind of model is usually

called an Open Shop. The time that it takes to process all tasks is

normally called the makespan. Every time a machine finishes processing a

task the decision-maker has to decide which task to process next. A policy

prescribes, as a function of the state of the system, the actions to take

at the various decision moments; of interest are the policies that minimize

the expected makespan.

Gonzalez and Sahni [1] considered the case where the processing times

are deterministic and presented an 0(n) algorithm to find an optimal

schedule. The case of stochastic processing times has, to our knowledge,

not yet been considered in the literature.

In the first section of this paper, we assume that Xj and Y have

the same exponential distribution with rate u • We show that the optimal

policy instructs the decision-maker, whenever a machine is freed, to start

processing the task with longest expected processing time among the tasks

still to be processed on both machines. If all tasks have been processed

at least once, it does not matter what the decision-maker does, as long as

he keeps the machine busy.

*,

-,

2

In the second section we consider the case of n identical tasks

and two machines with different speeds. The time it takes machine 1 (2)

to process a task has distribution F(G) . Both distributions F and

G are New Better than Used (NBU). We show that the decision-maker

stochastically minimizes the makespan when he always gives priority to

those tasks which have not yet received processing on either machine.

In the last section the case of n identical tasks and two identical

machines will be considered. The processing time of a task on a machine

has an exponential distribution with rate one. A closed form expression

for the expected makespan under the optimal policy is given.

:4

- ."~--

I |- -

3

2. THE CASE OF EXPONENTIAL PROCESSING TIMES

In this section we assume that X and Y have the same exponential

distribution with rate P.

Note that a policy only has to instruct the decision-maker what to

do as long as there are still tasks waiting for their first processing.

This is true for the following reason: when machine 1 (2) becomes free,

the decision-maker can otherwise choose only from tasks which have to be

processed on machine 1 (2) alone and the sequence in which these tasks

will be processed on machine 1 (2) will not affect the makespan.

If M denotes the makespan then clearly

The makespan may be strictly larger than the R.H.S. of (1) when one

machine is kept idle for some time in between the processing of two

tasks. A distinction will be made between two types of idle periods

(see Figure 1).

In an idle period of type II, a machine is kept idle for some time,

say J, ' then processes the last task, say task j , and finishes pro-

cessing task j while the other machine is still busy. It is clear that,

although a machine has been kept idle for some time, the makespan is never-

theless equal to the R.H.S. of (1). In an idle period of type I, a machine

is kept idle for some time, say Jl , then processes the last task, say

task j , and finishes processing this task some time, say J2 after the

other machine has finished processing its tasks. Now

n n
(2) M max xi' I Y + N

imi i-I

4

task J 2--

machine 1

machine 2

Idle Period of Type I

task j

machine 1

machine 2
ts

Idle Period of Type II

FIGURE 1

• • m 4V

5

where

N =min (J,J2)

It can be verified easily that only one task can cause an idle period

and an idle period has to be either of type I or type II. In the re-

maining part of the paper superscripts will consistently refer to policies,

0 0 0
e.g. M denotes the makespan under policy r , N denotes the second

term on the R.H.S. of (2) under n° , etc. Let p denote the probability

that task j causes an idle period of type I under policy or . Then,

after taking expectations on both sides of (2), we obtain

(3) E(M 0) E(max Xi x i 21 i)) + E(N0)

where

E(N0) P 0-

As the first term on the R.H.S. of (3) does not depend on the policy,

it suffices to find a policy which minimizes the second term on the

R.H.S. of (3).

Before continuing with our analysis of the Open Shop model we will

consider a simpler scheduling model; a model where the tasks have to be

processed only once on either one of the two machines. This model has

been treated in the literature extensively for various objective functions,

see [2), [3], [4]. Assume that at decision moment t one machine is free

and the other one is busy processing task 0. A policy JlJ2 '
"' Jr

a permutation of 1,2, ... , r , prescribes that at time t task J, is

L_ ___ ___ _

6

put on the empty processor; the next time a processor is freed task j2

is started, etc. For this model we have

Lemma 1:

Let q1 (q2) , j - 0,1,2, r , denote the probability that the last

task to be finished under policy i = 1,2,3, ..., r-l,r (T 2 , 2,1,3,

... , r-l,r) is task j . When Pl = min (ulp29 ..., Ir) , then, for

any task 0, not necessarily exponentially distributed,

1 2qo . qo

1 2
q1 < q 1

1 2
qj >q j 2, r

and

r 1 r 2
q i ql

i=l i-1

Proof:

See Lemma 1 in Pinedo and Weiss [2].

Although Lemma 1 was originally set up to analyze a simpler model,

where tasks have to be processed only once on either one of the two

machines, it will play an important role in the analysis of the more com-

plicated Open Shop model we have under consideration in this paper. In

Theorem 1 the lemma will be used repeatedly, applied on a set of tasks

which after a specific time t have to undergo their first processing

on either one of the two machines. As long as there are tasks waiting

for their first processing no task will start its second processing.

I,-m

7

We will be interested in the probabilities of each task of this set being

the last one of the set to finish its first processing. These prob-

abilities are needed when computing the probability of a task causing

an idle period of type I, as for a task to cause a type I idle period

it must have been the last task to finish its first processing.

Theorem 1:

The policy that minimizes the expected makespan is the policy which,

whenever either of the two machines is free, instructs the decision-maker

(I) when there are still tasks which have not yet received process-

ing on either machine, to start among these the one with the

largest expected processing time and

(ii) when all tasks have been processed at least once, to start

any one of the tasks still to be processed on the machine

just freed.

Proof:

Assume at decision moment t one processor is idle and the second one
,

is processing task 0 with an arbitrary distribution. Let iT denote the

policy stated in the theorem. In order to prove that 7r is optimal it

suffices to show that using 7r from t onwards results in a smaller
,

expected makespan than acting differently at t and using iT from the

next decision-moment onwards. Two types of actions at t which are not

according to it have to be considered. Firstly, it is possible to start

a task which has not yet been processed on either machine, but which is

not the largest task among the tasks not been processed on either machine.

Secondly, it is possible to start a task which already has been processed

on the other machine.

8

The following notation will be used: (Ai denotes the set of tasks

that at t did not yet finish their first processing, while {BI denotes

the set of tasks that at t did not yet start their second processing.

Clearly (B} D A}.

Case 1:

Let i1 denote the policy which instructs the decision-maker at time

t to start task m with rate P , m E A , where m is not the largest
m*

task among tasks in {A} and to adopt policy 7 from the next decision

1
moment onwards. Let q (qj) , j E A , denote the probability that task

I *
j is the last task to finish its first processing under n (7) and

therefore be a candidate to cause an idle period. Suppose this task j

would be processed on machine 1--for it to cause a type I idle period it

also has to outlast all those tasks which still have to receive their

second processing on machine 2, and then, after task j finishes on

machine 1 and starts on machine 2, it has to outlast those tasks which

have yet to receive their second processing on machine 1. So

p• =* f i

iE{B-J} i + vj

and

iE{B-j} di +

Also

1 *
PO = PO

9

Observe that pj and pj do not depend on which machine task i (i 0 j)

has to be processed the second time. If task i would be processed the

second time on the same machine it was processed the first time, it would
,

affect neither pj nor pi . This fact will be used in Case 2. In
*

order to show that E(N) < E(N') we have to show that

(4) .qJ E. jl < l (i .~ -iu i(4) A-0} ic{B-}n J - q j IT"
j~AO _jB-1Wi+P JE{A-01 ie{B-J} i + j

As a prelude to showing the above, note that when wk < LA

(5 1 i 1 ___

(5) > . 1I

2uk iE{B-k} Wi + Wk - 2uZ iE{B-Z} 'i + 'Z

Suppose the sequence in which tasks (A} start their first processing

under z' is m,1,2, ..., m-l,m +l, ..., r where P

< < 1- ! m "'' Pr Performing a pairwise switch in this sequence

gives l,m,2, ..., m-l,m+l, ..., r . Let this new sequence correspond

to policy iT" Using the relationship between qi and qi'

j - 1, ..., n , (established by Lemma 1) and (5) we find that E(N'') < E(N')

After performing a series of similar adjacent pairwise interchanges, each

one involving task m and the task immediately following it, (4) follows.

Case 2:

Let n"' denote the policy which instructs the decision-maker at time
,

t to start task h with rate Ph , h E {B - A} , and to adopt policy 7r

from the next decision moment onwards. Let q'" , j E A , denote the

probability that task j is the last one of tasks in (Al to finish its

first processing and also finishes after task h finishes under 7'"

10

Let q''' denote the probability that task h finishes after all tasks

of {A} finish their first processing under ''' . Assume in the re-

maining part of the proof that when using r from t onwards we may,

after having started all tasks of {A} , start task h on the machine

that comes free first (we have seen under Case 1 that the probability of

task j causing a type I idle period does not depend on which machine

processes task h for the second time). Let qj now denote the

probability that task j is the last one to finish its first processing

among tasks {A} and also finishes after task h finishes. Let q

denote the probability that task h finishes after all tasks of {A!

have finished their first processing. So now

* * i1

p= q • + J E A
iE{B-J-h} i + ij

and

p ' ' q ' • I + j E A

iG{B-j-h} 'i jGA

Again

'I!

PO PO"

In order to show that E(N) < E(N''') we have to show that

2iE{B-J-h} "i + uj J -GA0} 2p iG{B-J-h} "i + "J

From Lemma 1 follows that qh > q'' and q < q' i EA . From (5)

follows then that E(N) < E(N''') .E

m

11

3. IDENTICAL TASKS ON TWO MACHINES WITH DIFFERENT SPEEDS

In this section we assume that X and Yj j ... , n ,have

distributions F and G respectively. Both distributions F and G

are New Better than Used (NBU), i.e.,

F(x + y)/F(x) _ F(Y) x > 0 , y > 0

and

G(x + y)/G(x) ± G(y) x > 0 , y > 0

Consider decision moment t when one machine has become idle and the

other is busy processing a task. Let n12 denote the number of tasks

that have not yet received processing on either machine and let nI(n2)

denote the number of tasks that are waiting for processing only on

machine 1 (2). When the task that is being processed at t on the busy

machine, say machine 1 (2), is not required to be processed afterwards

on the other machine, it will be called a task of type 1 (2); if after

having finished its current processing on machine 1 (2), it is required

to be processed afterwards on machine 2 (1) it will be called a task of

type 12 (21). The type of this task will be designated by r . Let z

denote the amount of processing this task has already received at time t

on machine 1 (2). The state S of the process at time t is then com-

pletely specified by the quintuple (n12,,n 2,T,z) . The random variable

M°(S) will denote the remaining time to finish all tasks, starting in

state S and using policy io . In the subsequent lemma and theorem,

the remaining time to finish all tasks, departing from two different states,

say S1 and S2 , while using the same policy or using two different

1 2
policies, say r and iT , while departing from the same state will be

12

1compared repeatedly. However, whenever M (S will be compared with

1
MIs2) the amount of processing already done on the task in the busy

machine will be identical in states SI and S2 (the types of these

tasks may however differ).

The following notation will be used: A D B denotes that the

random variable A is stochastically larger than random variable B

i.e.,

P(A > x) > P(B > x) Vx

Lemma 2:

Under the optimal policy r

M (k+1,Z-1,n-1,TZ) DM (k,ZmTZ)

Proof:

The distributions of the amount of processing still to be done on

either machine are the same in the two states. In state (k+l,k-l,m-l,T,z)

there is an additional constraint in the form of an extra task which has

to be processed on both machines. So starting from state (k,z,mr,z) the

decision-maker can do at least as well as when starting from state

(k+l,Z- l,m- l,T,z) if he acts optimally in the two cases.M

In the next theorem we will use repeatedly the following approach when

comparing S(S1) with M1(S2) or M1(S1) with M2(SI) . The time the

busy machine needs to finish the task started before t will have the

same distribution in the two states which are being compared. We condition

them on which machine finishes first and compare M1(S1) with M (S2)

(or with M 2(S 1) under the condition that a particular machine finishes

first.

ii

-

13

We are now ready for the main result of this section.

Theorem 2:

The makespan is stochastically minimized if the decision-maker whenever

a machine is freed starts, when possible, a task which has not yet been

processed on either machine.

Proof:

Let iT denote the policy which always gives priority to the tasks

which have not yet been processed on either machine. It suffices to show

that at any decision moment in any state it is better to use policy 7

than to take an action not prescribed by iT (i.e., starting a task of

either type 1 or type 2 depending upon which machine is idle) and use 7

from the next decision moment onwards. Call this last policy I' .

So we have to show that for any S

M (S) C M'(S)

In all inequalities to be shown the time the busy machine has been process-

ing its task (z) is the same in the two states being compared; a state

will therefore be denoted by (k,Z,m,T)

We will show by induction on k

A(k) : ((k-l,Z,m,12) C M (k,i-l,m,l)

H (k-l,,m,21) C M (k,i,m-l,2)

B(k) : M (k,X,m,l) C M'(k,k,m,l)

M (k,Z,m,2) C M'(k,Z,m,2)

C(k) : M (k-l,t+l,m,12) CM (k,.,m,l)

M (k-l,t,m+1,21) CM (k,i,m,2)

14

D(k) :M (k,k,m,12) C M'(k,Z,m,12)

M (k,Z,m,21) C M'(k,Z,m,21)

Showing B(k) and D(k) for every k , . and m proves the theorem.

At each step only the first of the two inequalities involved will be

shown as the proof of the second is identical.

Induction Base: k = 1

A(l):

On machine 1 a task of type 12 has been receiving service for time z

Let Z denote the random time needed to finish this task on machine 1.

As F is NBU

z x i .

It can be established easily that

M (O,Z,m,12) = max X+ m Yi ' Z + Y)

where the first (second) term between the parentheses on the R.H.S. repre-

sents the total amount of work still to be done on machine 1 (2) and the

third term represents the time needed to finish the task of type 12.

The third term is the largest iff the task of type 12 causes an idle

period of type I. On the other hand

M (i,Z-l1,m,1) = max Xt + Z, Yt X 1 Y 1)isl A icl

so A(1) clearly holds.

. -, -T [S g ,

A

15

B(1):

It was shown before that

* i~lm+l
M (1,Z,m,l) = max X, + Z , Y, X 1 + Y1

il i-i

Under policy 7' the task which has to be processed on both machines

will not be started immediately. But starting this task later is equiva-

lent with a larger third term on the R.H.S. Clearly B(l) holds.

This case is identical to A(l)

D(I_:

It can be shown easily that

* ~r +l m+2
M (1,Z,m,12) = max IX + Z Yi X 1 + Y1 Z + Y2

\ i=l 11 , 1 y

where the third and fourth term represent the times needed to finish the

two tisks which still have to receive processing on both machines. Under

r' the only remaining task waiting for both machines will not be started

immediately. But starting this task later is equivalent with a larger

third term on the R.H.S. So D(l) holds.

General k

To prove A(k), ..., D(k) for arbitrary k , assume A(k-1), D(k -1)

to hold. We will show A(k), ... , D(k) by induction on Z + m

1am- 1I_ _j

16

Induction Base Z. + m1

A(k)

To show

M (k -1,1,0,12) C M*(k,O,O,l)

If machine 1 finishes first it suffices to show

M (k- 2,1,1,21) C M (k -1,0,0,21)

This holds because of Lemma 2. If machine 1 finishes first it suffices

to show

M (k -2,2,0,21) C M (k -1,1,0,1)

This holds because of A(k -1)

B(k)

To show

M(k,1,0,1) C M'(k,l,O,l)

and

M (k,0,1,1) C M(k,O,l,l)

In state (k,,,) both Tr and 7r' have to take the same action so

it suffices to consider state (k,0,1,1) . The case of machine 1 finish-

ing first holds because of A~k) for X. + m - 1 .In case machine 2

finishes first the next state will be under both ~r and Tr'

(k-1,,1,1

C (k)

To show

* *

() M (k-l,l,l,12) C M (k,0,1,1)

The case of machine 1 finishing first holds because of Lemma 2. The

case of machine 2 finishing first holds because of C(k-1)

(ii) M (k-1,2,0,12) C M (k,l,0,1)

The case of machine 1 finishing first holds because of Lemma 2 and the

case of machine 2 coming free first holds because of C(k-1)

D(k):

To show

M (k,l,0,12) C M'(k,1,0,12)

and

M (k,0,1,12) C M'(k,O,l,12)

As in state (k,l,O,12) both 7 and 7' have to take the same action,

it suffices to show only the second inequality. The case of machine 1

coming free first holds because of C(k) for Z + m - I . The case of

machine 2 coming free first holds because of Lemma 2.

General L + m

Assume Ak), ... , D(k) to hold for X + m-

A(k)

To show

,I

18

M (k-l,Z,m,12) C M (k,t -1,m,l)

The case of machine 1 coming free first can again be handled through

Lemma 2. The case of machine 2 finishing first holds because of A(k - 1)

B(k)

To show

M (k,t,m,l) C M'(k,Z,m,l)

The case of machine 1 coming free first holds because of A(k) The

case of machine 2 finishing first holds because of Lemma 2.

C(k)

To show

M (k-l,+l,m,12) C M (k,Z,m,l)

The case of machine 1 coming free first holds because of Lemma 2. The

case of machine 2 finishing first holds because of C(k-1)

D(k):

To show

*

M (k,.,m,12) C M'(k,x,m,2)

The case of machine 1 coming free first holds because of C(k) The

case of machine 2 finishing first holds because of Lemma 2.E

A

%4

I, I.

19

4. IDENTICAL TASKS WITH EXPONENTIAL PROCESSING TIMES ON IDENTICAL MACHINES

In this section we consider the case where both Xi and Y, 9

i - i, ..., n , are exponentially distributed with mean one. We present

a closed form solution for the expected makespan under the optimal policy.

From Section 1 we have

(6) E(M) = IX n

E imx i j=l *1=
1=11

Consider the first term on the R.H.S. of (6). Clearly

(7) ~ in Xi Eini \ii ~,ij

(7) E [ax :2n- E in Xi2n Yi

In order to compute the second term on the R.H.S. of (7) suppose we have

a stockpile of n type I and n type 2 components, each of which function

for an exponential time with mean 1. Suppose further that for the "system"

to work there must always be both a single type 1 and type 2 in service.

If T represents the system lifetime then E[T] is the desired expectation.

Letting N be the number of components that fail we obtain

E[T] - E[N] - k2 k

or

r~I n- 2nI k-Tt .E~m~V X~ ~ J ku

__

20

n ,
To compute Y P assume, without loss of generality, that the order-

i-i

ing 1,2, ..., n is used (the ordering, of course, being irrelevant since

a rw () n-2
all rates are equal). Now p j for i -i or 2 for in either

case n -1 services midst finish before j and when j then switches

machines once again n -i services must finish before it. For j > 2

suppose at the moment the j element is first serviced by a machine there

have been a total of i completions on that machine and j - 2 - i on the

other. The probability that j would cause a type 1 idle period in this

case would thus be

As the above does not depend on i we see that

P (l)2n-2 0 p (L)2n-i , j > 2

and so

1 n (.1)2n-1+ (L)n _ (L)2n-1 = (L)n

implying that

M] 2n- k 1)()k+()n

k-n

"PAW

21

REFERENCES

[1] Gonzalez, T. and S. Sahni, "Open Shop Scheduling to Minimize Finish

Time," Journal of Computing Machinery, Vol. 23, pp. 165-679
(1976).

(2] Pinedo, M. and G. Weiss, "Scheduling Stochastic Tasks on Two Parallel
Processors," Naval Research Logistic Quarterly, Vol. 26,
pp. 527-535 (1979).

[3] Weber, R., "Scheduling Jobs with Stochastic Processing Requirements
on Parallel Machines to Minimize Makespan or Flow Time,"
to appear in Journal of Applied Probability (1981).

[4] Weiss, G. and M. Pinedo, "Scheduling Tasks with Exponential Service
Times on Nonidentical Processors to Minimize Various Cost
Functions," Journal of Applied Probability, Vol. 17, pp. 187-202
(1980).

FILE

OU T I

