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INTRODUCTION -

RTINS EYP R

For the fundamental two-receiver passive location system {llustrated
in figure 1, the available time-delayed signals sre observed in the presence
of receiver noise and/or interference. By temporarily neglecting possible
doppler effects, the received signals can be expressed in the simple,

general form
l‘l(t) = §(t) + nl(t) 0 <=t <T (1)

T,(t) = A8t = 7)+ n,(t) T, St = T2+TO (2)

where 8(t) is an unknown signal, A 1is an unknown relative amplitude,
T = (Rz- Rl)/c {s an unknown relative time-delay, and the ni(t) are in-
dependent noise and/or interference present at each physically separate,

time-synchronous receiver, The complicating effects of signal doppler,

I eama Tas aa e I

which may or may not be present, are reviewed in a later section.

oy

This paper considers the case of bandpass signals with one-sided
gpectral bandwidths of W Hertz centered about the angular carrier frequency
w radians/sec, (Similar results can be obtained for lowpaas signals. )
Consequently, the observed signals can alternatively be expressed in terms

of their complex (phasor) amplitude as

3 [ 'x‘-‘\-"-_'w WY AT i

-

IA
-
A
-3

T =8M+R =10+ R W) 0 . (3)
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‘;2“) =A8t-7) 9j¢+52(t)=12(t) + R, T, StsTy+vr  (4)

where the overbars denote complex variables; ew = e"j “o" s an unknown,
ambiguous relative phase distributed uniformly over [0,2r]) radians; and

T the Ii(t) and Qi(t) are the complex quadrature components observed at
each receiver,

Since digital methods of transferring and processing the received

signals are of interest, discrete-time samples of the form

=- =- +- = + =
1,1 " Rlat =8+ =L Ry 1=1,2,...,N

p+m 2,p I2.p 2,p
(6)

i where ’1‘1 = NIAt and T2 = N2At are assumed, As long as At = 1/W,
! the sampling theorem for time-limited, bandpass signals { 1] indicates that

all the information observed at the recelvers can be specified by the com-

plex sample sequences

AL vy e gy e
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where the underbars denote vector variables., As a simplifying assumption,

it 1s assumed in equation 6 that the unknown offset lead (negative lag) index

m=('ro—r)/At=-(r-1'o)/At ™

is an integer. This assumption keeps the analysis simple and general and
can be properly accounted for by a statistical processing loss after a specific
receiver bandpass characteristic and a specific sampling interval, At, have
been chosen. For Nyquist sampling rates, At = 1/W, this loss will be on

the order of 1 6B [2]. If desired the loss can be reduced as low as desired
by oversampling or can be eliminated by interpolative processing since the

two complex sample sequences specify all the observed information,
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OPTIMAL WHITE, GAUSSIAN SYSTEM

If the signal and noises are stationary, white, zero-mean, Gaussian
stochastic processes, the optimal likelihood ratio statistic to detect the
presence of a correlated signal (hypothesis 2; -'I‘1 sT-T < Tz) versus the
absence of a signal (hypothesis 0; s(t) = 0) or the presence of an uncorre-
lated signal (hypothesis 1; r - T, < --T1 or T-7, > T2) is [3) the magni-
tude (envelope) of the normalized sample cross-correlation function between
the two separately observed complex sequences, lR-l- (m)|. The

normelized sample cross~-correlation function for a ca.néidat,e lag, k, is

( N(k)+k

© 2

i=k+1

4

[}
o~

ﬁ";(k)
172 N )

where

NK) = §
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is the number of overlapping complex samples in the sequences for a lag of
k and the asterisk denotes complex conjugation, Note that the maximum
value of N(k) i{s min (Nl’Nz-) and {s maintained over an interval of length
([Nl- N2| +1)At. The optimal two-receiver statistic,

R- - ® = Rx) ,
1Ty

can test for the presence of signals with time~delays in the {nterval

[-T1 =T-T S T2] and is strictly optimal only when N(k), the number

of independent complex terms in the cross-correlation sum, is large in the
law of large numbers sense, Not only does the cross-correlation statistic
lose its condition of optimality near the interval's edges, but {ts performance
degrades unacceptably since the cross-correlator output signal-to-noise

ratio, I', for each candidate lag of k {8 [3]

E[}E“HZ/Hz] Ty Ty
Ik) = — -1=T® W|{TTF TT (10)
E[ | R(x) /H1] 1 2
where T(k) = N(K) At is the overlap time for the leg of k and
elsf0)]  E[l507]
1"1 - 7 = ~ 5 (11)
elnfe] E[15,007
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are the input signal-to-noise ratios at receiver 1 and receiver 2, The
probability of detection and the probability of false alarm are interrelated
as (3]

(12)

P, =Q }/;ot . 2 [p ] ; 13)

where Q(«a,p8) 18 Marcum's Q Function [4].

When the presence of a time~delayed signal is indicated, the maximum
likelihood estimate of the time-delay corresponds to the lag, k, at which
the interpolated magnitude of the normalized sample cross-correlation func-
tion {8 maximum and is obtained from { 3]

- mAt (14)

3>
1]
-

When the output signal-to-noise ratio is large, the time-delay estimation
error is asymptotically unbiased, Gaussian, and efficient with a variance
of (3]

2 1

Ta =

- (15)
T Tm)g

where g {8 the rms bandwidth of the receivers (about the carrier) {n

radians/second,

11
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Figures 2 and 3 {llustrate the optimal two~receiver coherent passive ';

location system as developed above. Because of the unknown signal and i

noise/interference levels, an adaptive threshold, TO, must be generated ,7,‘

for each candidate lag k as {llustrated in figure 3. Note that, as shown by ¥

equations 10, 13, and 15, the detection and time-delay estimation perform- i

ance of the optimal system at each possible lag, k, is completely character- - ,
ized by the output signal-to-noise ratio, I'(k), which increases linearly with ; _

the overlap time-bandwidth product. Equation 10 indicates that the output
signal-to-n-~ise ratio observed at the cross~correlator will always be less
than the overlap time~bandwidth product,
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GENERAL OPTIMALITY

If the signal and/or noise statistics are non-Gaussian but stationary
and N(x) is large, the normalized sample cross-correletion function, R(k),
will remain optimal in a least mean square sense and will attain the perform-
ance of the optimal Gaussian case, If, in addition, the signal and/or noise
statistics are not stationary (e. g. , pulsed or otherwise deterministically
amplitude or phase modulated), the normalized sample cross-correlation
function will still remsain optimal in a least mean square sense and will still
attain the performance of the optimal Gaussian, stationary case if the
overlap time, T(k) = N(k)At, {8 sufficiently long so the mean square sample
statistics of the signal and noises,

and




are essentially stationary (Independent of the interval length; i, e, , constant)
and the sample cross~correlations between the signal and noises are

essentially gero,

The previous discuasion indicates that a coherent passive location
system that cross-oorrelates signal segments observed at physically sepa-
rate receivera is inherently robust (e, g., will perform well against e{ther
pulsed or continucus signals which may be either random or deterministic)
and makes optimal use of the available information as long as the observa-
tion intervals and cross-correlation intervals are statistically long, To
obtain this optimal performance and versatility, the two-receiver system
can be implemented with either collocated or remote processing as shown
{n figures 4 and 5.

18
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DOPPLER COMPENSATION

The previous analysis assumes that doppler effects, due to relative
motions between the signal source and either or hoth receivers, are

negligible, Doppler effects can be accounted for by modification of
equations 4 and 6 to

_ _ jw (t-7)  _

T = As(t-T) oo ¢ +1,() (16)
jw , (prm)At

- _ 1o d -

1'2'p = )'Sp+m e e +n2'p (17)

where the relative (differential) doppler frequency between the two time-
delayed signals in radians/second is

a p =Wy Wy (18)

This simple formulation assumes that the signal bandwidth W 18 large

compared to each received doppler frequency, w d and w and that
1 2
signal compression/expansion effects and effects due to higher-order

motion terms (e, g., acceleration) are negligible over the prospective
cross-correlation overlap times,

When no signal is present (hypothesis 0) or when the observed signals
are uncorrelated (hypothesis 1), the linearly increasing doppler phase

18
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introduced into the normalized sample cross-correlation function statistic,
R() (see equations 5, 8, and 17), will not cause a change in the crogs-cor-
relator output signal-to-noise ratio (equation 10) since the pheses are already

random, For the ocorrelated signal case (hypothests 2) the loss in cross-
correlator output signal-to-noise ratio for a particular doppler frequency, w

dl
and a prospective time-delay lag, k, can, by a modification of equation 10,
be expressed as
- 2 -
£ [ (Rl */my, 0, |- £ [1R001 2m, ]
Ly (K wy)= ——— (19)

E [I§a=>12/H2. wy = 0] -E [i‘ﬁ(k)lzml]

By an examination of the components of equation 19, the doppler decorrelation

loss factor, 0 < Ld =< 1, where Ld =1 is the case of no loss, can be shown
to satiafy the bound

NK) L -jwdAti 2
E Z (sl( e
1=1
Ld(k"”d) = NK) 2
-2
E Z |8y
=1
NK) N
N seg
> 3 e[
q
1=1 q=1 .
Ng) NK) (#0)
2o 2 |12 1E)
®a
1=1 q=1

2
2 w
L PN | (N(k) -2—dAt)

“yq
i=1 N() sin (?At)

[y

loo 1 add w2
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where the last inequality holds for moderate or large N() and is proved !

in the appendix, This doppler decorrelation loss bound is 1llustrated in !

figure 8, Note that 3 dB of loss is obtained for
| “a| 0,443

£ P

al = |2r | “N@) at (21)

If expected doppler decorrelation losses are unacceptable, they can
be reduced as low as desired by a doppler compensation filter bank. Each

.

doppler filter bank section compensates for a prospective doppler, W and

implements a compensated normalized sample cross-correlation function

of the form
Nk)+k \ o atl

L Z T e © 0 =k = (N - 1)

Nk) 1,1 "2,1-k “\1
- i=k+1
R(k) = (22)

ﬁa(—) Z rl,irz,i-ke -(Nz-l) <k <0

| i=1

0

which is a Fourier Tranaform of the N(k) normalized cross-correlation

- -
product samples for a lag of k, T 4T ek and can be implemented for
1 ’

a discrete number of equally spaced compensated frequencies

CR AP TSSO TR TN (RITE SURAR I N S R T TR P LY TR P TTNE S Y T U R T T DS R RPN AL R T e A

27
wcnrAw=r<m> r=1,2,.,.., N (23) 3
where
N =min (N, N, (24)
21
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by two complex shift registers of length N, N complex multipliers, and
an N Point Discrete Fourler Transform as {llustrated in figure 7.

et g At g 1 T WG T < VA SR
.

Doppler compensation processing will reduce output signal-to-noise

ratio loss to Ld(‘k, Wy wc) where w, is the closest compensation

frequency to w d If the differentia! doppler is uniformly distributed over
the compensated frequency band, the average doppler decorrelation loss
factor for a lag of k will be bounded by

A A N

T w 2
| i
3 Nat Nat sm(N(k)—ngt)
Lyk) == f o] du, (25)
j : 0 N@) sin | - At
i
;
i
i
;
|
b
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: DATA TRANSFER REDUCTION BOUNDS

Direct implementation of the optimal two-receiver coherent passive
location system developed above v1ill require the transfer of one or both of
with a high degree of accuracy (large

the complex sequences, r, and 52,
number of bits representing each receiver sample). Since higher place bits
carry diminishing quantities of information, it is clear that truncation of
high place bits will reduce data transfer requirements without significantly
reducing system performance, Techniques for minimizing the data transfer
required to maintain reliable system performance are desired, The general

t one~channel data transfer reduction situation is illustrated in figure 8,

Rate distortion theory provides bounds on data transfer reduction for

particular types of information sources and distortion (error) measures.

———— =

The {nformation of a memoryless, Gaussian~distributed source with a power
of 02 can be transferred over a noiseless channel, as {lluetrated in figure 9,

with a mean square error between the input and output complex sequences of

I PP
D—E[|v1-u1| j] (26)

Ihdiatadle Dol Jos oo o SN -

by the use of an information rate, R, of (5]

1 Yo e
e e ey

R = -log 2 0sDs 02 (27)
2 0_2

! where the rate 18 in bits per complex sample, This rate is also sufficient

for any non~-Gaussian source [5].
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For the one~channel data transfer reduction situation of figure 8 where
the data of receiver 2 is assumed to be quantized, the cross~correlator
output signal-to~-noise ratio (see equations 8 and 10) can be expressed in

the form

i NK) . . 2 7

EL Fz'?) 12=:1 T (;2,i-k+a2,1-k) sz
rk) = — i 31

E ﬁ(t—) Z ;1,1 <;;,1-k+a‘;,i—k) Hy

L i=1 J

where 52 b is the complex quantizing noise of the r sample. The

2,p
loss {n cross-correlator output signal-to-noise ratio, 0 s Lq < 1, for a

particular lag, k, can be shown to be of the form

L k)= (29)
q 1+ €2
where
- - - 2
€2=1-: [[q2 [ ]+2Re, E[qz’prz’a]‘ _ L[lqz’p‘ ]=2
- 2 - p) 2
E[“mp'] E[“ap'] v
(30)
with
- 2 ;
02=E |r2'p| ]=2E [}Asa-r){2]+2E[n2(t)] (31)

28

o L i a8 4 RUCHHTICS I IR

Lahiha b

o Chottiodd

JIXTRY N ST YFRy SRV

;
:
E
:




I it i U‘W

[Ty

Y

v marie

and D/cr2 is the ratio of mean quantizing nolse power to mean quantizer
input signal power. The inequality of equation 30 holds due to the known
nonpositive correlation between quantizer input signal and quantizing noise
when the quantizer bin outputs are chosen as the mean input values of each
bin (8] or when other more general conditions are satisfied, Thus, the
quantization loss factor has been shown to be bounded by

L = = = (82)
D 1+2

where the last inequality is obtained by the application of the bound of
equation 27. The rate distortion bound of equation 32, which holds for all
input signal-to-noise ratios, is shown in figure 10,

If the -eceived signals and noises are Gaussian, performance within
1/2 bit per complex sample of the rate distortion bound, as shown in
figure 10, can be obtained for all input signal-to-noise ratios by either [5]:

1, Optimal but complex entropy encoding combined with the
use of uniform I and Q quantization bins, or

2, Uncoded (direct) transfer combined with the use of optimal
minimum mean square Max [ 7] quantization bins,

Efther of these techniques would be moderately complex to implement and
both assume knowledge of the received signal and noise probability densities,
Performance would degrade significantly unless adaptive processing were
also provided to adjust for unknown amplitude and/or distribution,
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CANDIDATE DATA TRANSFER REDUCTION TECHNRUES

I W PRV

The performance of two simple, robust data transfer reduction
techniques was obtained by digital simulation for the one-channel situation

P P

of figure 8 with stationary, white, Gaussian signal and noise sequences,
Both techniques utilized direct decimal-to-binary encoding (uncoded transfer).

The first data transfer reduction technique transferied and cross-
correlated only the quantized phase of each complex sample of receiver 2,

b Lo

The simulated phase cross=-correlation was of the form

( NK)+k ~
j(o -6 )
1 1,1 2,i-k - )
e Z e O_ks(Nl 1)
i=k+1
R ~ k)=
6192 1 Nk) j(e -3 \
1 E 1,1 2,i-k/ . -
m e - <I\2- 1) sk <=0
| i=1

(33)

where the tilde denotes a quantized version of the corresponding received

phase samples

119 Q
6.  =tan L |-t and 6 =mn1—2-1-2.l . (84)
1,1 I 2,p I
1,1 zan

|
3
!
E
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Uniform phase quantization bins, as illustrated in figure 11, were utilized

with the center of each bin used as the quantizer output. Because of the

assumed uniformly distributed random receiver pnase, 6 2,p’ direct encoding
’

with uniform bins achieves the optimal rate distortion bound for Gaussian
2

1 D 2 T
sources of R = - 2 log2 <;§> where %G =3 - Thus, phase can be

transferred with minimal distortion by extremely simple quantization and
encoding techniques., Simulation resuits obtained for the case of 0 dB input
signal-to-noise ratio at each receiver are shown in the upper curve of
figure 10, Receiver 1 utilized 'full' phese data (10 bits per phase sample
were actually used). Receiver 2 utilized varying levels of bits per phase
sample as indicated by the abscissa of figure 10, The curve shows that,
for the 0 dB input conditions, as phase quantization increases data transfer
reduces faster than loss increases until 2 bits per sample {s reached. Note
that for phase-only cross-correlation processing the dropping of amplitude
information at both receivers results in & minimum loss of 2 dB for the

0 dB input conditions,

The second data transfer reduction technique used half the available
bits per complex sample for the I component and the other half for the
Q component, Uniform quantization bins symmetrically spaced about 0 were
utilized with the center of each bin used as the quantizer output, To elimi-
nate the use of unneeded quantization bins and to provide adjustment for
unknown amplitudes, the maximum magnitudes of both the I and Q compo-~
nents of each receiver's complex sample sequences were determined before
quantization and the positive and negative quantization bin Umits of each
receiver were adaptively adjusted to the receiver's maximum component

magnitude, Results for the case of 0 dB input signal-to-noise at each

32
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receiver are shown in figure 10, Receiver 1 utilized "full' I and Q data

(6 bits per | sample and 5 bits per Q sample were actually used), For the
0 dB input conditions, data transfer reduces faster than loss increases
until 2 bits per complex sample (1 bitI and 1 bit Q) is reached, In general,
the I and Q technique performs better because it does nc* drop amplitude
information. However, for the 2-bit case, where minimal data transfer is
attained for a specified performance for the 0 dB inputs, essentially the
same data are tranaferred from receiver 2 for both techniques. The 0, 6 dB
performance improvement of the [ and Q technique is attributable to the use
of full I and Q data from receiver 1 instead of merely full-phase data,
Hybrid techniques that allocate part of the receiver 1 bits to phase and part
to amplitude would provide intermediate performance between the I and Q
and the phase-only curves (e.g., see (8], [9], and (10]}). This I and Q
technique was used because of its simplicity. It is not optimal. However,
as shown in figure 10, less than 1 dB could be gained for these conditions
by use of the more complex data transfer reduction techniques discussed

in the previous section, Note that since the I and & technique provides less
performance loss, a specified level of system performance would be pro-
vided by shorter observation intervals, Shorter intervals, in turn, would
reduce the doppler decorrelation loss,

34
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CONCLUSIONS

The optimal passive coherent location system for the discrete-time,
bandpass case and its performance characteristics, including the effects
of doppler, were presented for the fundamental two-receiver system,

These systems are robust and make optimal use of the observed information,

Since large quantities of data must be transferred to implement these sys-
tems, the performance losses incurred by two simple data transfer reduc-
tion techniques were compared to performsance loss bounds obtained from
rate distortion theory and to the losses of two of the best available, but
considerably more complex, data reduction techniques, I and Q quantization
with simple uniform, adaptive bins was shown to provide data transfer
reduction close to those attainable by the more complex techniques.

bl it b S g

N

Ll




Rl a L et S B

APPENDIX

The Fourier Transform of the discrete sequence of N uniformly

spaced, complex samples,

N
f e _ }
( f1 = flaat) | .
=1
is
N
F(w) = Z £ gmjwath (A-1)
=1

Assume the fi samples are taken from a bandlimited process of bandwidth
W Hertz and are taken at or above the Nyquist rate, At < 1/W. By intey-
changing frequency and time in the sampling theorem for bandlimited

signals (1], the bandlimited Fourier transform may be expanded in terms

of its frequency samples spaced at or above the equivalent Nyquist rate

Aw = 21/NAt, since the signal is time-limited. Thus, the Fourier transform
of equation A-1 can be expanded as

§ - t
; N-1 sin [N(‘ﬂ—ﬁ)] (A=2)
F(w) = F 2 N
; L N sin (%—ﬁ)
y i=0 2 N
37
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where

I“1 = Fllaw)

and

Lw = 2n/NAt

Consequently, the mean aquared magnitude of F(w) can be expressed as

2
et

(A-3)
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It is well know: that the Fourier frequency samples, F, = F(i 2r/NaAt), are
essentially uncorrelated and their correlation decreases to 0 at a rate of

at least 1/N as the number of samples, N, increases [11]. Cohsequently,
for moderate or large N, the second summation of equation A-3 will always

be larger than the third (double) summation, Thus, for moderate or
large N,

2 2
E[{F(w){z] >E [l Fo[2] s;n E:((é%] _E [l F0|2] ﬁl g:l luntl
(A-4)

The result of equation A-4 can be expressed, by the use of equation A-1, as

i i E fl "} o~ Jwatd -k) . 2 |
L * Z e-ijti ' '|
ryefg] |-

(A-5)
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