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ABSTRACT

Petri nets are presented as a tecanique for representing
computer systems having asynchronous, concurrent operations.
Tne structure of the nets are analyzed as a means of
demonstratineg the correctness of the modeled system. The
execution of the petri net is considered as a stochastic
process, allowing analysis of tae model as a queueing
network system by transforming the opetri net i{into its
stochastic equivalent net. It is shaown tmnat product form
solutions for the state probadilities exist for the class of
state mackine decomposable nets but not for tne more general
class of consistent petri nets. Solutions for the
corresponding open systems are derived by extending tae

petri net model to include arbdbitrary sources and sinks.
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I. INTRODUCTION

With the explosion ip numbers and types of computer
hardware components witnessed in the past few years,
conputer system design has become an extremely complex task.
Cox has observed [1]:

"Poday’s computers are among the most complex man made
systems in existence today. The development of such
systems Trepresents a sigmiticant commitment of physical
and mental resources. This cost can only be justified if
these computing devices serve their intended purpose -—-

the efficient processine of data in response to specific
aeeds.

If we are to make effective use of these development
resources, 1t is necessary to provide the system designer
with tools which allow bim or her to create and analyze
sophisticated system designs.

Several trends have emerged which have accelerated the
search for new and better design tools. The low cost of LSI
and VLSI hardware compomnents coupled with technological
advances 1in digital communications nas led to the evolution
of a wvide variety of multiprocessor systems, distributed
computing applications, and computer networks. As early as
1976, Anderson amd Jemson [2] 1identified 27 different
networking schemes being used in prototype or actual
systems, When one considers the numder of communication

protocols and transmission media which have bdeen proposed or




implemented, the number of variabdbles involved in the
hardware desien process becomes truly awesome.

Lixkevise, innovations in system software nave givem rise
t0 such concepts as distributed operating systems, on-line
data bases, and 1interactive programming, ¢to name a few.
Kobayasnl and Lonneim {3] nave noted that:

"With the increasing complexity and sophistication of
computer communication systems, a

a

izslggllnn (empnasis tneir’s] are becoming critical

ssues in the design and operation of such systems. It
is apparent that for a cost-effective design we must be
equipped with systematic methods of predicting
quantitative relations betveen system resource
parameters, system workloads, and measures of system
performance,

Several characteristics of these systems may be
ldentified which determine what types of models are
appropriate for performance evaluation. A central concept is
that of concurrent or parallel processing. Each node in a
netwvork, or processor in a multiprocessing system, 1is
capable of independent computation. At the same time, system
or global Tresources such as memory and communication links
must be shared dy the various processing elements. This
results in enforced cooperation between otherwise
independent processes.

Since most resources in computing systems tend to be
scarce in relation to the demands on them, contention exists
betweer resource users vwhich must be arditrated. This
problem is complicated by the observation that demands in

computer systems are not constant. For example, in computer
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communication networks empirical evidence snows that demands
tead to dbe Ddbursty and sporadic. AS a result, resource
demands must bde viewed as stochastic in nmature and system
models must be capable of expressing the probabilistic
elements of the modeled system.

The uncertainty {an resource demand results in two
phenomena which must be considered in pertormance modeline.
The first 1s the creation of queues of users which require
service bdut must wait for resource availability. The second,
and interrelated, phenomenon is thae delay which users
experience while wvaiting for resources amnd while being
served. The field of queueing theory has attempted to answer
these gquestions and others concerning the oprobdabilistic
properties of systems imn both analytic and simulation
models.

One purpose of performance prediction modeling 1is to
analyze system desiens in terms of performance measures or
indices. Ferrari [4] has identified three performance index
classes: productivity, responsiveness, and utilization. A
numder of specific measurements may be computed from the
model to express taese indices -- throughput, waiting time,
and utilization for example.

A second purpose of performance modeling 1is to verify
proper sSystem operation. It is important to ensure that the

underlying system is deadlock-free, or at least to predict

the circumstances under whicn deadlock could occur. In
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addition, it may be necessary to demonstrate that the system
enforces syncaronization or mutual exclusion among elements
of the system.

It i1s not sufficient for a model to be capable of
providing ansvers to these questions. The model must also be
amenable to validation; that is, the determination of how
accurately the predicted results conform to the modeled
system. This may be particularly difficult to accomplish
vhen the actual system does not exist or 1s otherwise not
avalilable, Finally, it is desirable tamat the model be robust
in order that its domain of validity extend over as large &
range of systems as possible.

Performance models can be divided 1into two separate
types -= simulation and analytical. A simulation may take
various forms; nRowever, the form most often associated with
performance modeline is computer based, discrete event
simulation. This model comnsists of a program which describes
the state of the modeled system in terms of system entities
and their attributes at each point im time, Attributes are
varied as a result of the iastantaneous occurrence of events
i the system. The model tanen tracks the chanzes 1in
attributes over time to determine the required performance
measures. Simulations suffer from several shortcomings. To
accurately model the system, the programs must bde complex
resultine in a sienificant software engineering problem; the

model must be carefully designed and verified to emsure
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proper operation., Because of the probabilistic nature of the
system, it 1is necessary to operate the sSimulation for
numerous runs andl over a large span of simuation time to
ensure statistically meaningtul results. This can 1lead to
significant computing costs for the simulation. Finally, if
the system parameters are to be changed, or elements of tne
system altered, 1t is necessary to chanee the simulation and
rerun it. Once again, the costs of software modification and
model operation must be met. This can make it difticult to
generalize or abstract from the simulation.

An alternative to simulation modeling 1is analytic
modeling. In this method the system is expressed as a set of
mathematical equations. Determining the performance measures
for the system amounts to findins the appropriate solutions
to the system equations. Unfortunately, in many cases the
solutions are mathematically intractatle or computationally
inefficient ani require that simplifying assumptions be made
about the system. However, to quote from EKobayashi and
Konheim once again:

"Bven when a decision 1s made for simulation, an

analytic solustion, however crude it may de, can serve as
a guldeline in narrowinzg down a raage of system
configurations and parameters under which & simulation
runs. It also could save a considerable amount of
modeline efforts, by detectine possible errors
introduced in the design and implementation phnases of a
simulation.

This thesis investigateS an approach to the analytic

modeling of computer systems based on using a

et e e T




graph-theoretic technique - petri nets -- as a
representation for system elements and their {nteractions,
By analyzing the structure of a petri net model, it is
possible to answer a number of questions regarding the
operation of the modeled system, We saow that it is possidle
to model the stochnastic nature of computer systems by
extending the petri net model to allow nondeterminism in the
net to bde expressel in terms of probabllity distributions.
It 1s thea possidle to consider a petri net as an analoe to
a queneing network system and therefore it 1is possidle to
apply the knowvn methods of Markov analysis to the nets to
obtain analytic solutions for the system. The problem we
address in tnis taesis is tne evaluation of nondeterministic
and stochastic petri nets using queueineg theory techniques.
The solutions which result comdine tne structural properties
of petri nets with the capabdility tor performance

prediction.

A. PETRI NETS AS A PERFORMANCE MODEL

Consider a simple computer system consisting of two
cooperating, concurrent processes A and B running on
separate hardware., Process A is a producer, and process B is
a consumer of data. It 1s desired that & nandshake protocol
be implemented bdetween the two processes (see Figure 1.1).

How might this bde represented?

11




PROCESS A PROCESS B

DATA READY

DATA

DATA ACKNOVWLEDGE

guvtip Al SN

Fieure 1.1 Communicatingz Processes
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One possibility 1s to list the events which must occur
during the nandshake process. Using this event 1ist, we
could then determine what conditions must be satisfied for
each event to occur, and what changes in the system result
from that occurrence. This could be zraphically displayed in
the following manmner. Let the events be represented by a
bar, and tne conditions by circles., For each event, draw a
directed arc from each circle (condition) which must hold
for the event to occur to the bar (event). Next, draw a
directed arc from the bar to each circle {condition) whnich
holds as a result of the occurrence of the event. Finally,
determine tne initial state of the system by decliding which
corditions initially hold, and place a dot (token) in a
circle for each hnolding of that condition. The resulting
zraph is shown in Figure 1.2.

This graph is called the petri net model of the
communication protocol, after C. A. Petri who first studied
them in tne 1356°s ([5]. Note that each event may have one or
more input conditions, and one or more output conditions. In
the language of petri nets, the events are called
transitions anrd tne conditions are called places. The net
operates by moving tokens around the net in accordance with
the firing rule, which states that an event may occur when
each input place to the event has & token ,assigned to 1it.
The transition fires by removine a token from each input

place and depositing one in each output place. The state of

13
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PROCESS A

send to
output bduftfer

PROCESS B

ready to
recelive

4 L
data ready receive
buffer full message
] & data
ﬁ( process walt fror received
data acknowvledge
process
W data
ack
4<:><: sent
ack receive buffer send ack
received ack full
Figure 1.2 Petri net model of a communication protocol
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each place is dstermined by the number ot tokxens in it. The
system state, or marking, is then represented by a vectcr
whose elements are the state of each place in the net.

One feature of the petri net model is that the tokens
can represent either control flow or data flow; the
difference purely lies irn how the net is interpreted by the
designer, This nas 1led to some difficulty in modeling
data-dependent events. Several attempts have been made to
overcome this problem by extending the definition to incluie
specialized places such as conditional places, which cause
transitions to fire in different ways depending on whether
or not the condition place holds a token. In either case tne
token content of the conditional place 1s not changed by the
firing. An example of thic extension is tne Macro E-Net Noe

and Nutt have proposed (6]. In a sliehtly different

extension, inhibitor places were added to the net [7] which

prevent firine of a transition when the place nolds & token.

A second feature of petri nets is thnat the tiring of
transitions is inherently asyncaronous and concurreat -- for
example in Figure 1.2 the {process data> events for both
processes can fire 1independently of each other. When
necessary, the operation of concurrent processes can be
coordinated through the use of multiple imput places; the
{receive mnessage) evept 1is an example of this type of

interaction.
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The basic petri net, as depicted here, does not attempt

to model the time required for execution. Extensions to the

theory which account for execution times were investigated

by Ramchandani [8) and others. Tnis techniyue allows for
analysis of tne time-related operation of the net,
1, Apalysis of petri nets

- Petri npets may be analyzed in a number of ways. Much

! of the work, particularly at MIT, has been based on usiang

| techniques from automata theory and investigating the nets
as formal language generators [9, 10). Using this methodq,
Hack has proven a number of decidablility questions about the
possible configurations (system states) of the net. Other

; vork [11,12,13) has emphasized the graph theoretical
properties of the nets in analyzing their structure. This

methaodology nas 1led to the identification of several

subclasses of petr! nets based on speclal structural
characteristics.

Simulations bDased on petri net models Rhave teen widely
used in analyzing nardware designs of concurrent systems and
data flow computine. Typically, the system to be modeled 1is

reduced to its petri net equivalent which then serves as

input to the simulator. The simulator then executes the
A petri net in much the same manner as a conventional discrete

event simulation.




2, Uses and Limitations of the Petri Net ApDroach
Petri nets have been used to model a large number of

coacurrent software and hardware systems. In hardware
design, they nave been used as a basis for developing speed
indepeandent lozic ({14,15] by provinz the conditions for

which <circuits are free of races waen operating in

fundamental mode. More ambitious applications have involved
the analysis of multiprocessor systems such as the CDC 6698
(16,17), IBM 369/91 (i8], Amdanl 478 V/6 [17]), and US Navy
SEAFIRE weapons system [19). Most of these applications have
involved simulation modeling due to tne complexity of the
designs. A slightly difterent approach to hardware design
has deen the design by step~wise refinement metnod. Valette }
[28] nas shown that single transitions could be replaced by
more complex structures when certain conditions were met.
Using this method, each component of the systéem can be
separately analyzed and formed into an independent structure
he called a well-formed block. By substituting tanese blocks
for transitions in tne net, 1t 1s possible to retain the
properties of the original net. This hierarcnical structure

also simplifies thne problem of understanding the operation

of the net. Figure 1.3 shows how this might bde accomplished.

Petrl net models nave been used in the analysis of

softvare desiens as vell, For example, they have bdeen used

f, to verify tae correctness of communication protocols (21].

Operating system synchronization primatives such as P and V

g 17




(22] may be modeled using simple net structures. Figure 1.4

Zives an example of how mutual exclusion could be
represented. The coateats of place S is the semapnore value
for the oprotected resource (in this case 1). EBach process
wvhich requires exclusive use of the resource has an event
P(S) whicn may fire only if the semaphore is non-zero.
Firing of tne corresponding V(S) event returns the token to
the semaphore. The sieniticant advantage of usioe a petri
net {s that mutual exclusion can be proven by showing that
only one P(S) event can be fired until the corresponding
V(S) event occurs,

Lest the reader get the impression that petri aets are
the ultimate modeling tool, it should bde noted that petri
nets have limitations in their modeling abdvility. The lack of
a mechanism for handlineg data dependent events as described
earlier hnas made it difficult to model actual systems using
deterministic nets., A second related limitationm is the wuse
of deterministic transition firing times in the analysis cf
timed nets. In our opinion, the restriction of petri nets to
deterministic modeling has been responsible for the lack of
attention given to them in recent years.

Our view of petri nets emphasises the non-deterministic
modeling capabdilities of the nets. We consider the
transitions in the net to be Service centers which operate
according to some service time distripution. In this

approach, the places can represent queues of tokens awaiting

18




) Figure 1.3 fgierarcnical modeling in Petri Nets. Here,
tra?sition t3 is replaced by the supnet N (from Peterson
231).

19
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resource

Figure 1.& Petr
pijxstra’s P and

1 PROCESS 2

protected
resource

i net modeline ot mutual exclusion usine
v (from Peterson (23}).
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service. By regarding nets in this manner, the known results
of queueing netwvork theory may be applied to tne analysis
while maintaining the benefits of tne underlyime structure

of the nets. We feel that tnis will result in a4 better

modeline to0l for analyzine concurrent systems.

B. REVIEW OF RELATED WORK
The ©basls for coancurrent system modeling has largely
been derived fron two papers by Karp and Miller [24,25]).
These papers proposed several models for concurrent systems.
Computation grapns are simular to petri nets except that
places were modeled as directed arcs bdbetween events and
labeled with a four—~tuple defined as:
A -- tne initial number of words in a FIFO queue
U0 == the number of words added to the queue as a result
of the firing of tne input transition
W -- tae number of words removed from the queue as a
result of the tiring of the output transition
T -- a threshold number of words (pernaps greater than
W) required for the output transition to fire.
Karp and Miller established the requirements for several
important concepts includine liveness and boundedness waica
ve discuss in greater detail later.
Refter ([26] extended computation grapas by adding a
£iftk element tau to the directed arc ladeling which

represented the execution time required for the output




transition to process the W data words when firing. Relter
then determined a metnod for tfinding possibie sequences af
firings of transitions. For cyclic graphs, he tound a lower
bound for tne cycle periodiof tne grapa. Computation graphas
have been used in the pertormance analysis of data ¢tlow
processors [(27]}.

The second paper by Karp and Miller [25) investigated
parallel program schemata ana vector addition systems. A
parallel program scaoema modeled parallelism in programs by
estadlishing computation states and rules tor state
transitions. The concept of FORK and JOIN which have been
applied to data flow and other MIMD architectures was
developed to express the creation of concurrent processes
from a Ssequs=ntial process, abnd the combination of concurrent
processes into a sequential process. The equivalence of
petri nets, computation grapns, and parallel! program
schemata was shown by Miller ([28].

Most of the research on petri nets in tne United States
nas been conducted at MIT. Commoner and Holt (11,12] studied
a deterministic subclass of petri nets Known as marked
grapas and proved several theorems regarding thelr system
state spaces. A more general subclass of deterministic nets,
persistent nets, was studied by Landweber and Robdertson ([13])
who proved that the theorems rezarding marked graphs were
applicable to this class. A final deterministic subclass

referred to as state machine decomposadble was investigated

22
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by Ramchandani. In addition, Ramchaniani analyzed tals
subclass with deterministic <transition firing times to
derive expressions for the minimum net c¢ycle period in a
magner aralogous to that Reiter used for computdation grapns.

Other classes of petri nets have been defined which
inprove the tractability of tne problem of finding solutions
to performance measures whille retaining characteristics
which are desired in the modeled systems, In particular,
live, Dbourded, conservative, and consistent nets nave
received the most attention, The properties of tnese classes
will be examined in detail in the next section.

Our workx extends this previous work by focusineg on the
broader class of nondeterministic, consisteant petri nets

vhich appears to bdbe the most zeneral class ftor whick

solutions to performance gquestions may be found. While

nondeterminism {ncreases the difficulty of dealine with
petri nets analytically, much of the previous worz on petri
net structure remains pertinent to tnis class.
Nondeterminism allows the net to represent different types
of data, for example, by regarding the data type or
transition firing time as a random variable. To analyze the
perfornance of nomdeterministic petri nets, we consider taem
as analoes to queueing network models. The Dbasis for
analysls of these models is the classic work of Jackson (29]
for the case of open systems, and Gordon and Newell [38] for

closed systems. Both of these models relied upon poisson
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arrival processes, first come, first serve (FCFS) queueing
discipline, and exponential service departure processes to
ensure that the Markov property was met and allowed the
system state probabilities to be expressed as the product ot
the marginal state probabilities., This quality is Known as
the product form solution and is required for
computationally efficient solutions. Most of the recent work
in gqueuing network theory nas attempted to find product form
solutions for more general systems. Jackson [31] considered
systems wnere the arrival rates and service rates were
functions of the queue leangths (states) at the various
nodes. Baskxetrt &t al. [32]) extended this to open and closed
networks where customers were of different classes and the
queueing discipline was FCFS, no queueing, and last come,
first serve witn preemptive resume (LCFS-PR). All these
cases wers shown to have product form solutions. In
addition, they showed that a condition «&nown as 1local
balance was a necessary condition ¢tor product form
solutions.

Chandy et al. (33] constidered the gquestion of local
balance in more detail and developed the more general notion
of station bdalance which was also sShown to be necessary and
sufficient for product form solutions it non-exponential
differentiadle service distridutions were used, In addition
they proved that arbitrary service distridutions satisfied

station Dbalance if processor sharing (PS) or LCFS-FR
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disciplines wvere used, In the case of exponential service

time distributions for all service classes, they showed that
FCFS and priority disciplines resulted in station balance
being met. This result has been extended to 2any work
conserving discipline.

In summary, it has been shown that product ¢form
solutions exist for queueing networxs with tne following
properties:

1. Por exponential service, any work conserving queueing
discipline may be used.

2. For PS and LCYS-PR disciplines, any differentiabdle
service distridution may be used,.

3. The solutions do not depend on the routing used for

the customers.

C. OUTLINE OF SUCCEEDING SECTIONS

In Section II, we present the tormal detinitions ot
petri nets and derive several us2ful properties. The state
space == the set of system states the net may occupy -- is
determined by constructing the reachability set of the petri
net. The conditions under which the state space is finite
and recurrent are then considered. It is shown that nets
vith certain structural characteristics give rise to tnese
restricted state spaces. In particular, the classes ot

marked grapns, state machiapes, and consistent a1nets are

considered because of thelr relation to realizable systems.




In Section III we turn to nets witan timed events. The
case of deterministic routing and tramsition time 1is tirst
considered, Next, tne (probabllistic) class of state
machines with nondeterministic routine and exponential
transition times is examined. It is shown that for the class
of state machine decomposable nets it is possible to
transform tahe net into a stochastic equivalent net which 1is
analogous to a closed gueueing network. For this class of
gets a product form solution tor the State probabilities |is
derived.

Next, petr!i nets which allow external sinks and sources
are defined. Again, it is snown that tae stocnastic
equivalent nets may be analyzed as queueing networks; in
this case an open system,

Finally, the <class of consistent petri nets with

exponential <firing times i1s considered and it is shown that

product form does not exist tor this class of nets.




! II. PETRI NET THEORY

In tnis section the relevant petri net theory s
presented. Much of the wvork follows that of Commoner and
Holt (11]), Kraft and Miller [25), and Ramchandani (E}. The
notation used i1s primarily tnat of Peterson [23].

The petri net was defined informally in the precedinz
section as a means for representing related events and tneir
conditions in systems. We now formalize this notion by
defining the petri net N and its directed grapn

representation.

Definition 2.1 N = <P,T7,1,0>
vhere
P= {p! p; 1s a place in tne net}

T= {y;1 vy is a Iapsition in tne net}
(PXT) -=>N suca tnat if p, 1s ar input place

L)
L]

to t; , I(p;st;) 2 1 and @ otnervise
1. 0 (PXT) —->N sucn that tf P; 1is an output place

tot; , O(p;jst;) 2 1 and ¢ otherwvise

vita the requirement that Vt; € T Bpj Dy €P !
I(p;jet;) # @ AO(peot;) @ and Ve €P
I(pj.tg) >89 == O(pj ') =0

We further define tne following sets:

! ot; = {pJ | I(pj vt) D> 8}
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we = {p; | 0(p; ,t;) > 0} wnere 1y €T Ap;€ P
and likewise:

*p; = {t; 1 O(p; ,t;) > 0}

pje. = 1t 1 Ip; vt;) > @} wnere t; € T A p; €°P

These sets are referred to as the input and output sets,
respectively. Note that the detinitions of the functions I
anpd O require that:
Vi, € 7, ot FP Awe #0 A ot Ure =9
The sSet of places represents tae conditions in our informal
model, ard the set of transitions represents the events. Tne
input and output functions specify the preconditions tor an
event to occur and the results of the event occurrence.-
Corresponding to each petri net we define a bdipartite,
directed grapn as follows:
Vp; p; € P draw a circle representine a place
\fn;tg €T draw a vertical bar representing a transition
Vt.; Pj ir p; € ot; draw a directed arc from p; to t;
Vt; 'Pj it pjetp draw a directed arc from t; to Py
We will use the notioms of petri net and petri net graph

interchangibly (since tney are egquivalent).

Example 1.
Consider the following petri net N = <P,7,1,0> with
P=1{ D+ Pgv Pgs Py» Dys B » P, }
T={t, tgy gy %y, ts }

let n = lﬂ and m = 'Tr « Then I and 0 may bde
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represented by the n X m incidence matrices:

110060 D 8aovee
2100080 G o10oe
QI = |9 011280 Co = 900061
e oe 00 li1ee¢
ol eowd 01080089
28000 0061080
e eo01 eee1e

wvaere Cr ¢y; = I(p;yt;)

and CO &'vj = 0(p£9tj)

The corresponding petri net grapa is shown in Figure 2.1.
It we associate with each place in a petri net N a
non-negative integer marking function (L , we have the

following definition of a marked petri net M:

Definttion 2.2 A parkeq petri negt M = <P,T,I,0, >

wvaere P,T,I1,0 are defined as before and

JL: P -—>N

Each function Mg defines a marking of the net. In graph
notation the petri net eraph is extended to @ marked petri
net graph by adding tokens to places as follows:

Vr. € P, 1f . {p;) = n tnen place n tozens (dots) on

place p/.

Figure 2,2 shows a possible marking for the petri net of
Example 1. Clearly a (countadbly) infinite number of possible
markings exist for any petri net. Thls marking represents

the (possibly multiple) noldines of conditions at
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Figure 2.1, Petri net grapan



Figure 2.2, Marked Petri net grapa
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sone instant of execution and may be viewed as a description

of the state of the net.

Definition 2.3 A transition t s enabled iff

Ve, pj €ty ==> plp;) 2 Lpj,t;)

For eacn marking (L, ve can define tne enabling set 5, as

tollows:

Definition 2.4 Tne emabling set S, & T = {t;} t; is
enabled by marxinz;LK}.

In our grapn notation, a transition is enadled if each arc
directed 4nto the transition has a token in its originating
place. Referring to Figure 2.2, it will be seen that t,, t,,
and t, are enabled and therefore S, = {y,, ty,t, }.
Transition tg is not enabled since there i1s no token in
place Ps corresponding to the arc pg ==> ta.

An enabied transition may fire to create a new markiae,

Tnat is, we define a function:

Definition 2.5 A firing ftunction tor a marked net M 1s
Fi: XS -=> L sucn tnat P(pLfp;),t;) = pylpj) -
I(p;otg) + O(pjoty) = Mwa
waere p; €P A 1 €S,

F is defined for all markings for which the set Sy is

non-empty. Continuing with the vector notation 1introduced

earlier for tne functions I and O, we may denote each
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marking fLn 35S an n-element vector Uy where n = \P‘ and
Ue(1) = by (p;) fort =1,2,...,n . Tnen F may be expressed

as:
F(Upst¢) = Ug = Cg¢ + Cos where Cgi and Cocl are the ith
columns of the imput and output incidence matrices

respectively.

Definition 2.6 Markine ;_|.x is directly reacnabie from;Lkif
t.
(t; €5,) A F(u,t;) =fly and 1is denoted as: (L, #DpL,.

Returning to our earlier example, transition tp may be fired
(recall tnat tne enabling set S, = {t,, t5, t¢ } ). By

inspection of Figure 2.2, we specify tne vector for marking

UK'

VRSN

The resulting marking [Li, =

Uk = O = Cpa + Cpa=

SRSV N
|
SsST/ -
+
SRS
L
LR NN ol ol N o

In grapn notation, one token is removed from each place
having an arc directed ianto the firing transition, and one

token is added to each place having an arc directed from the
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Figure 2.3. Petri net grapn after firing transition t2
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firineg transition. The resultine markine is shown in Figure
2.3.
Next we consider sequences of transition firings. Assume
the following firings exist for some marked ner M:
Mo L,
F'-ug>l-‘z !
Thea we denote
| i, Bpe or pdu,
where tne firing sequence (Fis some sequence of transition

rirings (t, ,tg,...,t,).

Definition 2.7 Marxing is reachabje from mar!riug,__l,,L ire
¢

s €.
’ “-ug;}"'x <=>30~!FL,‘;>'.L‘W :‘sl‘-‘-mz = . Dy

vphere O.’ (t‘ 'tz'o-o.‘n)

I we ¢form the reflexive, transitive closure of the

transition firing relation we nave tne following definition:

Definition 2.8 Given a marxed net M, the reachability set

L

Q(M) 1s defined inductively as:

basis: L, € Q
t;
induction: (L, € OA Jt. € T | M =D, ==> My, €0

T UA™

We are interested in determinine the elements ot the set
0(M). To do so, we must first formalize tne previously

. introduced vector notation as a vector addition system,




L.

TN

A. VECTOR ADDITION SYSTEMS

The concept of vector addition systems was first
explored by farp and Miller [25). This section is largely
derived from their work.

A vector addition system is defined as a pair V = (4,W)
vhere d is an r-dimensiomal vector with 3,€ N and ¥ 1is a
finite set of r-dimensional vectors w,, wa, ..., W, Wilth
v,;(1) €1. The reacnability set R(V) for a vector addition
system 1s the set of vectors composed by adding elements of
the set ¥ to d. Tnat is

R(V) = {x 1 x =4 + (w, + wy + ... ¢+ w, T Axi)2e ).
In addition, the following terminology is used:

The relation = 1is definped as

TSy <= fori =1,2,...,r x(1) S y(1)

The symbol (s 1s defined such that if n is any interer,

W > o and n + ) =W.
The reachadbility set R(V) can be determined dy constructine
the corresponding reacnability tree T(V). Nodes in tne tree
consist of" r-dimensional vectors XeY129000 vith
x(1)EN (Aeot, for 1 = 1,2,...,r . The relation «& is defined
as xo y <=> a directed path exists from x to y in T(Vv). Let
d be the rTo0ot of the tree. Descendants are constructed
recursively as follows:

1. If xo y and x =y, y 1s a leaf node.

2. Otpnervise, coastruct successor nodes to y witn

vectors y + ¥, , Yy * V¥a, ... , Yy + v, £ vhere for i =
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‘ 1,2,.00,7 y(1) + wj(1)==0. In addition, if tnere exists
a node z such that z~« y and zy + w, and z(j) <
y(J) + w;(3)) for some 3, tnen y(j3) + w:(J) =C0.

To 1{llustrate the construction of this tree consider the

following example from (25):

Example 2.
| Let ¥ = (d,¥) wnere ’
i = [1,0,0,0,8)
¥ ={ (~1,1,0,0,0) , [-1,¢,0,1,08} , [0,-1,2,0,0] ,

[0.1.‘1.0'91 ’ [ﬂogvao-lozl ’ [50095010-1] }

The resulting reacnabllity tree 1s shown in Figure 2.4.

The followine tneorems from [25] allow us to answer
decidability questions about vector addition systems by é'

inspecting the reachadbility tree, 1

Theorem 2.1
Vidy | v €RIDA (xSy)<=> z |z €TV A(x=12)

The proof, while straizht toward, is rather lenethy and Sso

is ot included aere, but may be found in [25].'

f Theorem 2.2 For any vector addition system V, T(V) is

! finite.

) We first shov the following tvo lemmas:
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Reachabdbility tree for Example 2.

Pigure 2.4.
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Lemma 2.2.1

Let D, sPa+Pgs ec+2Pps ..« De an infinite sequence of
elements of (N (Jitd) . Then tnere exists an intinite

subsequence Pa *PasPgooccessPapecs such that

PaS UK DS o DKoo -

Proof. Construct &n infinite subsequence by selecting

elements with tirst entries nondecreasiag. From this
sequence, construct an infinite subsequence with second

entries nondecreasing, and so on.

Lemma 2.2.2 (Xdnie Intinity Lemma) Let T be a tree such

that each vertex has a finite number of successors and
there exists no infinite directed path from the root.

Then T 1s finite.

Proof. Since eacn vertex nas a finite number of

successors, let n be the maximum number of successors
for any node, Then there are at most n paths of lengtn 1
from the root, and if p is some node in the tree, there
are at most n paths of length 1 1n the subtree having p
as its root. Since no infinite path exists by
assumption, let m be tne maximum path length. Then the

maximum numbder of nodes is nm and T 1s finite,

Proof of theoram 2.2.

Assume there exists an infinite directed path from the

root of T(V) with node sequence D, ,PgsPgrsecsD veee -
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Then by lemma 2.2.1, there exists a subsequence
» D, +Dy*Pes seeePgs ose With p S PSS PSS ove DS oee o« By
definition, 1if p,=p, thems p, is a leaf node and
therefore the inequality is strict and
Py <Py €Pe++<py $oeo . Again by definition, since
P. <P+ P, Must have one more entry equal to {Jthan p,.
Since tae number of entries 1is ¢finite, tais is
impossible and tnerefore no suck infinite directed patn

exists. By lemma 2.2.2, T(V) is finite.

Using these theorems, it is possible to prove tne following

decidability theorems about the reachability set R(V):

Theorem 2.3 Given some finite n€ N ,

Ve x € R(V) A (x(1) 1) is dectdabdle.

Proof. Construct T(V). By tneorem 2.2 T(V) 1is finite.

Therefore Vy y € T(V) A(y(1)Sn) s decidabdle. By theorem

2.1 then, the question is decidable for R(V).
<

- e .

Tneorem 2.4 Given some subset of tae entries for thne

r- dimensional vector addition system€9§;{1.2....r}.

VereN Fry €M AN 1€,

y(1) 2x(1) ts decidabdle.

Proof. By the definition of T(V), this property holds iff

N there exists a leaf node z such that Vi 1€0 2(1) =¢v .




Theorem 2.5 Given a vector addition system R(V), it 1is

decidable wnetner R(V) 1s finite.
This result follows directly from tneorem 2.4.

Theorem 2.5 Given two vector addition systems V and V',

R(V)S R(V’) 1s uniecidable.

Rabin’s proof for tnis result appears in Baker [34]).

It saculd de noted that the general reachnability problem
t.2., glven xé)J’is x €R(V), 1s not determined by the
reachability tree, BHowever, an algoritnam for solving the
reachadbility problem has been found [35). Therefore, the
reachadility prodlem is decidabdle (although  the
computational complexity is mot known).

This completes our study of vector addition systems. We
next demonstrate the correspondence between vector addition
systems and marked petri nets. Let M = <P,T,I,0,0 ©Ve an
arbitrary marked petri net. The corresponding vector
addition system V(d,¥) may then bde constructed i{in the
following manner:

let the dimension r = lP‘

let d =fL, vaeref(, is an initial marking for M

let ¥ = {w,| t;€T,p;€ P w.(J) = 0(p;t;) - Ilp;,t;) }
Note that [v[ = lT[ and that elements of ¥ reflect the net

change in marking resulting from the firine of a transition
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in M. This leads to the following theorem relating the

reachability sets of M and V:
Theorem 2.7 Q(M) = R(V)

Proof. 1). Q(M)2R(V). Let x €R(M). Then
¢, ¢ e, 4
pg=>ph4>u,f>...=>x . By definition of L
F(fLst;) =pb+ v, and substitutine for t,, tzs tys ooy
| | t, in the firing sequence [L+ w, *+ wy *+ ... W, =X .,
Since ply= 4 by definition, x € R(V) .
11). QM&R(V). Let x €R(V). Then
x=d +v, +¥; + ...V, . By the same reasoning as case

1.}L:§>LL;;> .o 25 X .

Using theorem 2.7 and the results for vector daddition

systems we state the follewing:

Theorem 2.8 Given a marxked petri net M with initial
martingp”, it is decidable if the reachadility set Q(M)

] is finite.

Theorem 2.9 Given a marked petri net M with 1niltial
marking fL, , 1t is decidable if tnere exists x€j, such
that for all elements of the reachability set Q(M),

each entry (L(1)Sk.

Defrinition 2.9 A marked petri net M is k-bounded iff

e IV peatm) ==> pu(1)Sk .
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Definition 2.1¢ A marked petri net M is safe iff it s

k-dbounded with k = 1 .,

¥e complete this section by once again considering Example
1. Define tae corresponding vector addition system:
V= (a,V) witn ¢ = [2,1,1,0,0,P,8) as indicated by
Fieure 2.2,
v={ (-1,0,0,1,0,0,0] , {~1,~1,0,1,1,0,0] ,
(¢,14-1,0,-1,1,0} , (0,06,~1,0,0,0,1] ,
(0,0,1,0,08,8,-1] }
Next, construct the corresponding reachadility tree T(V).
The tree 1s sphown 1in Figure 2.5. By inspection, the
reachadility set R(V) is determined to be:
{ [2,1,1,0,0,0,0) , [1,1,1,1,08,0,0] , (1,0,1,1,1,0,0)] ,
(2,1,¢,0,0,0,1] , (0,1,1,2,0,0,0] , {2,0,1,2,1,4,0) ,
{1,1,0,1,0,0,1) , [1,1,0,1,0,1,0} , [1,0,0,1,1,0,1] ,
(e,2,02,2,0,0,1) , [0,0,€6,2,1,02,1) , [@,1,0,2,€,1,¢]) ,
{0,0,0,2,1,1,0] }
This (frinite) set is also Q(M) and theretore M is Kk=-bounded

vith k = 2,

B. SUBCLASSES OF MARKED PETRI NETS

The nets investigated in the preceding parts of this
section are more properly referred to as generalized petrt
nets. Analysis of generalized nets has proved to de somewhat
intractable. As a result, several properties of petril nets

have been studied which define subclasses of the generalized
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Figure 2.6 Nondetermintistic zet -- both tl and t2 are enabled.
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nets. These restrictions appear to be justified in that many

(1f not most) actual systems may bde modeled by the

restricted nets.

Definition 2.11 A transition @ T 1s }live for marking pL,
ire

VurDu =3o, p.g;u. A € sy

vhere 5, 1is the enadbling set forfL,.

i
L | If a transition is live, a firing sequence may always bve

found which will allow it to be fired indefinitely often.

Definition 2.12 A marked petri net M is live iff
Vt teT ==> 1 is live for marking U,

4 In systems, liveness is often associated with the problem of

deadlock. Hack [36] has shown that liveness is equivaleant to

the reachabdility problem; therefore, it is decidabdle.

Definition 2.13 A place p.€P is conflict free iff
V},thl' tz' RN tﬁep('.At;esK ==>
~3‘j 3 #1-/\t1'65,<

Yor any marking, a conflict free place may not enabdle more

than one transition. In Figure 2.6, place p, is not coanflict

free since doth t, and t, are enabled.

Definition 2.14 A petri net M is conflict free iff
Ve p €P ==> p is conflict free.
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A stronzer Sstatement concerninz places is the following:

Definition 2.15 A place p 1is decision free 1iff

lop‘_-[ = lp,;-l =1,

Definition 2.15 A marked petri net M is a marked graph iff
' V$ p €P ==> p is decision free.

A final property of petri nets may bde defined:

Definition 2.17 A markine (L, is persisteng 1ff
X
Vp. t€s A (W3K,) ==> t€s, V e

A persistent marking is one in which an enabled transition

remains epabled until it is fired.

Definition 2.18 4 petri net M is persistent iff

Ve t €7 ==> ¢t s persistent forgl, .

The question of persistence is important in the analysis of
petri nets ani therefore we present a decidability theorem
for these nets:

Theorem 2.12 Given a k-bounded, marxed petri net M, it is

P e e ke s

decidable whetner M is persistent.

Proof. Since M is k-bounded, its reachabdility set Q(M) is

finite. For each pu, € Q construct the enabling set S,.
¢,

For eacn t; € S, determine S,, wnere L, =>kL,,, . If S5,

;28“ - {t;} ,» M is persistent.
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Note that all conflict free nets (and therefore all marked
graphs) are persistent. We next consider some aspects of the
petri net classes hnaving these properties,

1. Marked Graphs

Marxked graphs bnave been extensively studied oy
Commoner and Holt, among others {11,12]). Here we present
some pertinent results of their work,

Recall from eraph theory the following three

definitions:

Definition 2.19 Let D = <A,R> bde a digraph with nodes a

and b. A directed patn from @ to d is a finite sequence

of nodes P = (c,4C,y++.9Cc,) Such that c, = a, c, = b,
and for all c; with <1< cRe,, . Ifa=Dv, P is a

directed circuit.

Definition 2.20 A digraph D = <A,R> is strongly connected
if for every two nodes a,bgA, there is a directed path

from a to b and b to a. It tnere is an undirected path

from a to b, D is connected.

Definition 2.21 A component of a digraph D is a connected
subdigrapn of D which is not a proper subdigraph of any

connected subdigraph of D,

The constraint on the input and output transitions to a
place makes it possible to replace every place with a single

directed arc bdetween 1its input and output transitions. In
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this way the petri net reduces to a digraph simplifying
analysis. The marked graph may then be more simply defined

as:

Derinition 2.22 A marked grapn M° = <P°,B",\> 1s a
three—-tuple where
T’ =7
E° ¢ TXP --> {0,1}
11r Jdp o(p,t;) =1
vaere B(t‘-,tj) = /\I(p,t,’) =1
@ otherwise
oz E° ==>Nwvnere
K leg ) = pdp,)
vnere e,;€E A ep,, = {t;} A pne = {1t}
(Here we have synonymously detined the edge set

B’ = {e;;} wnere tne edge directed from node 1 to

node J e{J'EE' ire E'(t"tj) =1
Additionally define tne tokxken count N as:

Definition 2.23 The token count of a eraph is a function
N : P --DN wnere
11 P& E then N(P) = Mle;) for e €P

A Y]
Figure 2.7 saows the graphical representation of a marked
graph where the numder of tokens on an edge &(j corresponds
to p{(e.]). The following theorems and proofs appeared 1in

(11}
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Fieure 2.7 Marged graph. Note that tokens are placed on the arcs.,
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Theorem 2.11 A marking |L° 1is live 1ff the token count :

N > @ tfor every directed circuit in M,

Proof. 1). Assume fL° 1s 1live and N(B) = @ for some
] directed circuit B and e;j 1is an edge in that circuit.
By definition, a ssquence (C exists which enables t, .
After firing Ff(e;j) = 1 and therefore N(B) =1 in

contradiction with the assumption.

11). Assume N(B) > @ ana t; is a mnode im directed

circuit B, 1t L} is enabdled, t is live. Otnervise let

D I

t; be a node in B such that e;; is in B. If t; 1is
¢ J ¢

enabled, fire it resulting in t; being enabled. If not,
continue to backtrack. Since the path length of B must

be finite 1in the directed circuit beginning and ending

with tj. this procedure must halt and therefore t is

live.

This leads immediately to a corollary:

Corollary 2.11.1 A marking which 1s live remains live

arter firing.

LN

Theorem 2.12 A 1ive marking is safe iff every edge in the

graph is in a directed circuit with token count

N(P) = 1.

Proof. Clearly, tne token count of any directed circuit is

constant. If N(P) = 1 then, the edzes of the directed




circuit must vpe safe, If N(P) K > 1 , by the same
process as in tneorem 2.11 transitions 1in the circuit

may be fired untlil k tokens appear on tne same edge.

Theorem 2.13 For every finite, strongly connected grapa G

5 thers exists a live and safe marking for the

corresponding marked graph M°. :

‘ Proof. By definition, each edee in G must 1lie in a
directed circuit. Since G is finite, a finite numdber of
directed circuits exist. Therefore construct [° by
placing one token arditrarily on each directed circuit.
Tae conditions of tneorems 2.11 and 2.12 are met and M’

is live ani safe.

2. State Macaine Deconposable Nets.

: This class of petrli nets has Dbeen sStudied by

s Rancnandani [8}. A state machine is defined as:

Definition 2.24 A marked petri net M is a state machine

e e T 0
b

F ire
; Vi ter AlI(p;et) > 8] A (I(pj,t) > 0] ==> p, = p;
! Ve ter Al0(p:ht) > @) A [0(pj,t) > @) ==> p, = p;

That s, Vt|et| =te] = 1.

This restriction results 1in nets which are functional

equivalents of tinite state machines, hence the name state
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machine. Note that state macnines allow conflict {.e.,

nondeterminism.

Definition 2.25 A supbnet M; 1is a strongly connected

component of M,

Definition 2.25 A petri net M 1is state machine

decomposable iff

M } EQP‘- =p N\ (J)l'j =TA YM; M 1is a state macnine.
Several properties of state macaines may easily be snown.

Theorem 2.14 The token court N(M) is constant for a marked

state machine.

Proof. Assume N(M) = C and t;€T. By definitiorn
‘ot4 =Jte]= 1 . Let {p,} =et; and {py} =t witn
N(p,) = c, and N(p,) =c, . If t; does not fire, tne
tokem count of p, and p, are unaffected by t, . If t;
does fire, by definition N(p,) ¢,- 1 and N(py) = c,+ 1 .
Summing we have:

;;N(p) =c -1 +cy*l=c¢c,+cC,

and the token count does not chanee,

Corrolary 2.14.1 BEvery marked state macaine is dbounded.

Proef. Since the toker count N(M) is constant, the maximum

aumder of tokens at any place is N(M); therefore M 1is

dounded.




3. fConsistent Petrri Nets.

An additional class of petri nets are those for

wvhich there exist consistent current assignments.

Defipition 2.27 A petri net M 1{s consistent 1iff there
exists a tunction P: T -=> I sucn that
1. Veer Bly) =,
2. Ve 3 opx I(pry) = §¢x 0(pet;)

where in the summation n =rq .

The function cp is analogous to an electromagnetic flux and
the qp{; are referred to as the currents associated with
traasitions t¢ . Note that part 2 of tne definition is an
expression ot Kirkhoft’s Law. Part 2 requires solving tne

following set of linear equations:

cz,‘p.-.--...-.CII,n ¢, Ca:,l..........-...C°’m ¢'
. cole =] - el
" L] . * L] . L]
i
.-1. crnljoooooo.oooczn'. ¢h coh'looo-oooo--‘ooQCOAA ¢”

wvhere cr and co are the incidence matrices tor M.

I? a non—-zero solution exists, M is consistent.

Example 3. Consider tne net in Figure 2.8,

- 21100 106000
Construct Cp = g g z é g Co = g % ¢ o 8

: 19
190682090 20011
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Figure 2.8 C(Consistent Petri net
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P=2 Pa= Pa=Dy = Pe=1

Therefore M is consistent.

The signiticance of consistency is that a consistent system
will cycle == given an injitial marking LL,, there exists a
firing sequence such tnatjl, gg}L, An inconsistent system
will either consume tokens and halt or produce tokens and

become unbounded. These results are summarized 1in two

theorems by Ramchandani [8].

Theorem 2.15 A petri net M is consistent iff
dg o such that p.,g;p., is a cycle.

Proof. 1). Let <P.'¢,z---¢.. de the consistent currents of
the transitioms ot M. Let u(p,) = QP+ P+ =C wnere

¢,...¢. correspond to teeet,EDce . Then let
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O= {t,,ta...} wnere the multiplicity of t; inCT is
equal to its current giving ;LfQS;Lj. Since the sum of
tae currents into and out of a place 1is @,
pSApe) = pLj(pg) and p=pL; . Theretore O'is a cycle.
i1). Let FngLL.be a cycle. Then (i{p;) =DpL, (p;) . Let
E +KzeeeesK, De the multiplicity ot transitions
t,otzeeecot, €op, and I, ,1,4...,1, be the multiplicity cf
i transitions t, ,t,,...,% €D . JZ:::; =:.1J- . Then let
Plr;) = & 1f t;€ep, andPlt;) = 1; 1f t;ep,0 o ThiS 1S
a consistent curreant assignment and therefore M is

consistent.

Theorem 2.16 A petri net M with a 1live, bounded markine

i1s consistent.

Proof. Since M i3 bdbounded, its reachabdility =rapn Q(M) 1is

finite. Since M 1is 1live, tnere exists a strongly
connected subgzraph which contains (L . Tnerefore, tnere
exists a directed circuit 1n the subgraph tiring all
transitions. This 1s & cycle and tnerefore M is

consistent.

We conclude our description of petri net subdbclasses by

considerine the hierarchical relationsaips betveen classes.
; In the sections on marked graphs and state machaines, it has
been shown tnat botn are contained within tne class of

bounded petri nets. It is easy to snow that the containment
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Fizure 2.9 Bounded Petri net
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i
Figure 2.10 Unbounded, non-live, comsistent net ]
i |
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CONSISTENT

figure 2.11

Petri net hierarchy
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i1s proper. Figure 2.9 snows Q& n2t which 1is Dbounded bdut
nejither a marked graph nor a state machine. The intersection
of the class of marxked grapas and state machines are a
dezenerate class we call sequential processes. Theorem 2.16
showed that all 1ive, bounded marked nets are consistent.
Once again, the containment is proper -— Figure 2.1¢ 1s an
example of an unbounded non-live net which is consistent.
Finally note that all persistent or conflict free nets are
deterministic and therefore may bde reduced to decision free

nets i.e,, marxked graphs. Thnese relationsnips are summarized

in Pigure 2.11.
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I11. STOCHASTIC PETRI NETS

To this point we have analyzed petri nets or the basis
of their structural characteristics. To utilize petri nets
for computine pertrormance measures, it is necessary to
introduce tae concepts of time and nondeterminism to the
basic model. We turn first to the question of modeling time

in petri nets.

A. TIMED EVENTS IN PETRI NETS

An important concept in Section I! was the marking, or
system state, of the net, The marxking gives an instantaneous
description of the token content of each place in the net,.
The marking wvas changed as a4 result of tne firipg of a
transition. We defined a ririne sequence as an allowable
ordering of transition firings in accordance with the rules
for enabdline transitions. By controlline tne dynamics of tne
transition firing process, it 1s possible to analyze the
changes in system state as a function of time,

Several authors hRave addressed the question ot adding
tining considerations to petri nets. Two different
interpretations have resulted trrom tnis work. Sirakis [37]
has proposed that once enabled, transitions fire
instantaneously. A delay is then 1introduced before tokens
are availabdle at the output places for possible emadlings cf
otaer transitions. An alterpative viewv 1s tnat taken by

Ramchandani [2)} and Zuberek (38]. In their models, once
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enabled, transitions fire after a delay called the firing
time, After the firing time 1s completed, the net changes
state by moving the appropriate tokens. These two

interpretations appear to be equivalent. ¥e choose to use

the latter interpretation to contorm to the usual notion of
a queyeing service center.

We first consider the case where transition ftirines ;
pccur at discrete time epocas 'ﬁ.1},....1;.... wnere‘ﬁ, is !

the instant of the nth firing.

Definition 3.1 The system state of a marked petri net M 1is

a tfunction:

U:T >
vhere T = {1, TheecesThoest
U('r.) =M° ’

and O(T,) =i ==> T 106T,,) =i AR e

U is a step function with discontinuities at those 1instants

of time in which the system changes state,

Definition 3.2 The ¢firing time X of a petri net is a

function:
X:T-->p*
vuerth( €T I(t;) -’T" = x

By tnis definition, x; 1s the time required for a firing of

the transition t,.
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By specifying the firing time function X, it is possible
to descrivde U(f;). In this section we comsider the case where
the transition firing times x; are constant for all
transitions. This restriction makes it possidle to describpe
a total ordering of transition firings for persistent nets.
In the case of allowed conflict between transitions, 1t 1is
necessary to impose a priority scaeme on transition firines
to resolve tne conflict (that is, to make the firing
deterministic). This orderine amounts to a resiriction on
tne firing sequences wilch are allowed. Tnose sequences O
for which the ordering holds are termined teasibdle firing
schedules. Ramchandani has shown that for timed marked
grapans and live, safe, and persistent petri nets a periodic
feasible firine schedule exists. He additionally derived an
upper bound on tne computation rate (cycle period) for state
machine decomposable nets., Tne bound is given bdy:

pmax = nin[p‘.pz.an
where pn is the cycle time for eacn circuit 1in tae

corresponding net and is given by:

vhere N(C;) is tae tokem count for circuit C;, IXj 1s tae
sum of the firine times for the transitioms in C, and ¢P;is

the current assoclated with that circuit in a minimal

current asSienment. Ramchandani also argues that this

formula can serve as a first order approximation where tne
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mean firing times X; are substituted for the deterministic
firineg tine x; 13in the formula. A slightly different
derivation ot the same result was made by Ramamoortay and Ho

(39].

B. MARKOV ANALYSIS OF PETRI NETS

Researchn into the behavior of timed petri nets to date
nhas concentrated on deterministic nets with constant firing
times. As noted in Section I, this approach fails to account
for the raniomness and uncertainty wihicn cnaracterize actual
systems. We propose that  nondeterminism be modeled
prodadilistically in tne net. Our metnod difrfers from
previous work by emphasizine the stochastic nature of the
system state (marking). In this way, it is possible to apply
the known methods of queueine theory to analyze 1ine
probabilistic oproperties of these nets which we call
stocnastic petri nets. We 4introduce in tails section two
sources of nondeterminism which will be modeled by the
stochastic petrli nets --— random transition firing times and
the probabllistic firing of simultaneously enabled
transitions.

We first saow that if the firing time x for each
transitien is considered to be a random variabdle rather tpan

a deterministic one, it is possidle to analyze the token

content of the net as a stocaastic process.




Detinition 3.3 The ftirine <time X' is an independent,

identically distributed, random variabdvle such that

Vt,;e!' X, 15 the firing time for <the 1ath firing of i

transition t(.

The requirement taat X; is independent and 1identically
distribduted is necessary for our derivation of a Markov
cnain representation for tne net state space. In the case of
I computer networxs, Kleinrock (48] nas investipated tais
requirement which e has pamed the message 1independence

condition. This assumption 1s Ssomewnat artificial in that it

implies, for example, that the time required to process the

sane message at tvo nodes is independent. This difficulty
notwithstandine, results for aa analysis of the ARPA net
show some evidence for the validity of tais assumption ([«41}.

Applying the metnods of probability tReory, tne firing time

distridbution may bde defined as:

Definition 3.4 For all t;€T, i1f X; 1s tne tiring time for
T
s{(x) = P[;S 1]

In the usual way ve define the density function:

Pefimition 3.5 For all tramsitions t; € 7, the tirimg time

density functior is given by
’ sc(x) = 4/4x (S (x)]) = plX; = x]




Likewise define the moments:
Definition 3.6 The nth moment of the firineg time density
function i{s given bdy:

E[Xz}n = fx"si(x)dx

s

and in particular B[X;} ="X; = 1/, is the mean firing
(service) time®,

These definitions mage it possibple to model systems by
applyine the appropriate distributions to the tiring time
function. It is clear tnat tne feasible firing sequences G
for a petri net are no loneer deterministic. It is necessary
to consider now tnis nondeterminism can occur in the net.
Referring to Figure 3.1(a), it can be seen tnat transitions
ta and ty4 are both enabled. #ith random firing times, the
sequénces 1t,,l4 and tﬁ.tz are both possible. In tnis
instance the etfect of the nondeterminism is unimportant to
overall system operation since the 1two processés are
independent at this point. A more interesting situation 1is
depicted in Figure 3.1(b). The tramsitions t,, tg, and
are 1n conflict. To analyze tais type of nondeterminism it
1s necessary to specify the branching probatilities for each
of the possible paths, Tnere are several possidle ways this
may be accomplished. For example, each simultaneously

¥ The meaan service rate ¥ 5 1is an unfortunate conflict in
notation, Due to its long standiog use in the literature, ve
will use tais notation pointing out its meaning where
confusion might exist with the earlier definition cof
markine.
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Figure 3.1 Nondeterminism in petri nets. (a)
independent processes. (b) transitions with conflioct.
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enabled transition may begin firing at once witn the
transition whica completes firing first causing the markine
to change. The problem of deternining waica transitions are
simultaneously emabled is a sigmiricant one. We can simplity
the problem by restricting our analysis to free choice

Places.

Definition 3.7 A place p 1s free cnoice 1iff
o] = 1VVyE  gyeme = oy = ipy)

A free choice place 1s one which either nas a unique output
transition or is the only input place to each of its output
transitions. This restriction ensures that a marking ftor p
will either enabdle all of its output transitions
sinultaneously, or will enable none of them. With this
restriction, it is nowv possidle to define tane bdranching
probabilities for the output transitions of a free choice

place,

Definition 3.8 The bdranching probadbllity for a free choice
place p; wita pie = {t,,tp,...,t,} 15
b = P(tj vill fire { t‘.tz.....tj are emabled)
such taat:
? <p; S 1
and

ng;j- = 1 waere n -'p‘..l
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Ve make the assumption that these probabilities are
tunctions of the (ftirine distridbutions ftor tne output
transitions only and in particular, that they are constant
and independent of the marking.

By allowing tnese sources of nondeterminism, the system

state U may be expressed as & stochastic process.

Derinition 3.3 Let U(T), the system state of a petri net
M, be & random variable and a function of time where
U(T) = [u, (N,ug(Meeeern, (T)] such that u; (1) =4 (py).
U( ) 1s a discrete state, continuous time stochastic
process described by the probabdility distribution:

fu (1) = plO(T,) =pL,y U(T) =fly ..., 0(T,) =L, ]
M‘,“z,....HnGQ(M).

U(T) describdes the manner in which the system moves
between states in the reacnabdility set. It should be noted
that the distridution f. ((:T) is equivalent to expressing
the probability that some feasibdle firing sequence ¢y exists
such that p.,g;p. . Theretore, 1t is possible to extend tne

definition of liveness.

Defintition 3.1¢ A transition t €T is live for state U

11¢
Yo 3do; u; %o A pl(a,l>e ==>
dg, © gioKA plOLI>0 At; €5y




ur- A o— ~~«~-==_———1

Theorem 3.1 For a live stochastic petri net M with marking

and initial marking [, €Q(M),
p(U(T) =fL{] > 8

Proof. Assume p[U(T) =jL;] = 0. Then tne probabdility tinat ﬁ
a ririne sequence (J exists such that pL,gg}Lgis zero in
contradiction with the assumptions of Definition 3.10

and therefore M camsnot bde live.

We are interested in determining the conditions for wnich 0
is a Markov chain, that is, when
plO(T,, ) =y, | UCTR) =y O(Thy ) =Hopy vees
JO(T, ) =fh,] = plO(T,, ) =jkay | U(T,) =M,
In addition, we are interested in determining the
stationary (time independent) state probabilities 1if they
exist. We £irst consider ¢the case of state machine

decomposable petri nets.

C. CLOSED PETRI NET SYSTEMS

To express tne system state transitions as a Markov
process it is first necessary to derive expressions tor the
arrival and departure processes for tae places in the net.

This may be accomplished by considerinz the net as a

collection of nodes, each of which has a well-defined
dbemavior, and 1im particular, for whica tne arrival and

r' departure processes may be expressed analytically.




" A node in a petri net is defined as:

Definition 3.11 A node r in a petri net is a subset of the

set {P{JT} suca tnat ]
Vi€t 1t €n <==>
Vej pj€et; <==> p; €n

Theorem 3.2 Tne node set (n)] = n,, ng,...,0, 1is a

partitioning of a petri net M,

K Proof. i.) Qn,; s{PU'r}. By definition, every transition t
is trivially an element of some node n, . Assume taere
| exists a place p; such that pjg?(n,. Dgyee.sn,). By the
: definition of a petri net, pj has (at least) one input
transition t /. Since t; 1s an element of some node, by

Definition 3.11 p; i1s an element of that node.
11.) Vn..n,, €(a] na =13, vy o, (] 8p =¢. Assume there
‘? exists some transition tie{n.r]nb}. let pj be an 1input
j place to t; and an element of n,. Tnen by Definition
5.11 p; 1s also an element of np. Now let t, be an
output transiticn to Pj and an element of n,. Azain bdy
definitien t, is also an element of =n, and therefore

Ay = By.

Likewise, assume | there exists some place
- Pj €{n,ng}. By the same reasonine n, = n,. Therefore,

the set of nodes defines a partitioning of M. QED.
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Fieure 3.2 Queueing nodes in petri nets. (a) partitioning of an
arditrary net. (b) single place/transition node.
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Figure 3.2(a) shows the node partitioning of an
arvitrary petri net. Now consider the single
place/transition nede n,. Figure 3.2(b) is tnis noae witn an
arbitrary margine. Since we have assumed that the transition
in tnis node 1is firing wnenever enabled, we Dnave the
impertaat result that this mrode is equivalent to 3 singele
server queueing system.

The markine for p, which ve have defined as tne state
element u, includes the tokens being fired or waiting to
fire. Two features of tnis representation saould bde noted.
First, all tokens are identical; no token classes exist.
Second, no queueing disciplinme 1is modeled in the system.
This places a restriction on the ability to derive analytic
selutions for the system.

To descride the operation of tne node, tmRat 1is,
determine the local state prooabilities P{U(T) = u}, 1t s
BREcCessary to characterize the arrival and departure
processes, It 1is well Known that the exponential
distridbution 1is tne only continuous distribution for which
the Markov property holds. In addition, it has bdeen sShown
(33] that ardbitrary werk conserving queueing disciplines
result in equilidrium product torm state probability
solutions for exponential firipgs. Therefore ve assume the

firing time distridbution S(x) to bde:
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| Definition 3.12 The firine time distripbution tor

| transition t; 1s given by
S¢(x) =1 - exp(-pux)

vhere the mean firing race 15;L£.

The regquirement that tne queueing discipline be work
conserving means that no knowledge of tane firing time

requiremenats {s used in selecting tokens for firing. It is

| clear from tne indeterminate nature of the tokens in petri
nets that this s 1{indeed the case and therefore we are

Justified in asserting that the Markov property holds.

Finally, it 1s necessary to determine the arrival
process for the node. In tne case of closed networks (and
! the petri nets wve nave considered thus far), the arrivals

are made up of departures from other nodes in the net, It is

assumed that upon completion of ¢firing, the tokens

inmediately enter their associated output places. Tnerefore,

the arrival process may be characterized as:

F
Pefinition 3.13 Tne arrival rate [\, for a nplace p; 1is
given bdy:
~
[i=2 [vic
where [? is the arrival rate for node n;, bj 1s the %

; brancning probadility tnat a departure from node n

arrives at node n;, and m is the rank of [n].




Note that we nave not specified tne arrival distrioution
itself. It nas been shown by Burke’s theorem (42] and
several exteansions (for example (3)), tnat in many cases the
arrival process i{s asymptotically Poisson.

To summarize, we have made the following assumptions
concerning the petri net state transition process:

1. Firing times are independent.

2. Firine times are coantinuous and exponentially
distribdbuted.

3. The queueing discipline is work comserving.

4. Nondeterministic transitions between nodes are
determined by constant bdranchins probabilities. |

5. There 1s 1no overhead in transition rirings;
transitions fire whenever enabled.

In Section 1I we considered the class of state machine
decomposable nets and state macnines. Figure 3.3 is an

example of such a net with its assoclated nodes.

Theorem 3.3 Each node in a state machine contains exactly

one place.

Proof. By definition, esach transition has a single 1input
place. Trivially them, there must be at least one place
in each node. Without loss of generality, assume tnere

exists a node with tvo places p, and Dg vitn t; € P By

implication, t; ¢ pe and theretore pyfet, 1n

ot o




contradiction with tane definition of a node. Thnerefore,

there is at most one place in each node. QED.

The next result follows immediately:

Corollary 3.3.1 The places im a state machine are

free-~choice,

Since tne places are free—choice, it is possible to
assign the brancning probabilities to the output
transitions. These transitions are not multiple servers;
rather, they represent the possibility for tokens whicn must
be handled differently. It is necessary therefore, to create
composite places to deal with thils requirement. The
resulting net we call the stochastic equivalent petrl net

(SBN).

Definition 3.14 The stochastic equivalent net for a petrt

net M is constructed as follows:

For every place »p in P, assign a set {1n¢ﬂh....;n;}
where n =|p¢.| » Vig€r I(mpt,) = I(p;et)), and  if
Pi* = {t,stareeert,}

0(ps.,) J=x

o(m:,t) =
"R # otherwise

In the associated graph, each edge from a transition in ep;
to the set {15;n;.....7;} is joined by an arc and labdeled

with tae appropriate bdrancning probabpility.

(a4

W T e M U A LT | ta o

o







The SEN for the petri ret in Figure 3,3 is depicted in
Figure 3.4, Each node in tne SEN consists of a single nplace
and transition, with the branchine probabdilities occurrine
at tae output from the transitions. It &s cliear from the
definition that the SEN has the same properties of

boundedness, liveness, and consistency as the associated

petri net.
It is now possible to obtain the amalytic solution for ’

the petri net by treating is as a closed queueing network.

Theorem 3.4 The SEN for a state machine with a 1live

marking i{s ergodic.

Proof. By theorem 2.12, a state machine is bdounded and

therefore tne state space (reachadility set) is finite.
Lien has shown [43, thm 11] that the state space for
this class 1s strongly connected. Therefore, the state
space is irreducibdle, Since it 1s finite, tne
probability ot reaching some state, P[U;], 1s ereater
than :zero. Taerefore tne state space is recurrent and
roa-null. By defiaition therefore, the state space 1{s

ergodic and likewlise the SEN is ergodic.

Taus, equilibrium state probadilities exist for the system)
that 1is,
P(0)] = Lim P(U,T)
fwoo
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Figure 3.4 Stochastic equivalent net for the petri net
in Figure 3.3.
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This type of system was solved by Sordon and Newell [32). At
equiiitriun, tne derivative d/dT(P{U,T}) must vanisn for
each state 1in the state space. This allows the zlobal
balance equations for tne system 10 be written. For sonme
state U;, the rate of chanse of probabiliity is determined by
the rate of flow of probabdility 1into the state due to
arrivals and the rate of tYlow of probability from the state

due to departures. This may be written as:

4/4T (PLUM)] = P[(u, sugeeeeruy]) o Slug o -

Z Z” 6(“;)FL"D,_'J'0?[(\1,.\12....,uj—l.....u‘:*l....,un)]

(3] P

= @
vhere S(u") i1s the unit step function 2iven by

@ {f u;, = @
Stu;) = ¢

1 otherwise
These equations may de solved directly to within a coastant
which may be determined by addine the requirement that
n
2 P(U;) =1
()
The product frorm solution to tmese equations is (3¢}
n -
P(OJ = P{(u, uzgeeeeon,)) = 11/G(K)} JT 2%

&8t
wvaere K = N(U) and the x; are solutions to equations

MieXo =2 Mpxivi (1=1,2,...,2).

Q]
The normalization constant G(K) is given by

G(K) = 3 fi b

[V XY
Algoritams aave deen found for computing G(K) and the X

[42]).




D. OPEN PETRI NBT SYSTEMS

Since tane SEN for a State machine has been shown to be
equivalent to closed netvorks ot queues, tne question arises
as to whether petri nets can be defined which are analogous
t0 open networks., Such @ system may model tne occurrence of
external events such 4as the arrival of interrupts.
Alterpnatively, tne model may vrepresent a communications
system where messages enter and are removed from the system
at various poimts. To incorporate tnese external events,

Definition 2.1 may be extended as ftollows:

Definition 3.15 An open marked petri net OM 1is a marked
petri net whaere
Vtgé T et; =@ <=> t; 1s a source
tie =@ <=> t; is a sink

It 1is assumed thnat these -transitions may source or sink an
infinite numbder of tokens. The firing rates [L; are defined
as before except tnat‘)q =L 15 the mean arrival rate for
source tf.

The possidility of external arrivals requires a

modirication of the earlier arrival process definition.

Definition 3.16 The arrival rate 11 for a node is siven by
P‘-’y‘l ’J;‘ Pj bj‘

It can bde seen that Derinition 3.13 is a special case

lﬂere ')’['0 fOl' 1 = 1,2..0-,11.
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Several observations can bde madé concerning the ways 1in
which the properties 3 ¢ liveness, boundedness, and
consistency are affected by the addition of sources and
sinks. First, consider tne case of marked graphs. Recall
that tor a marked eraph, each place is conflict free. Figure
3.5(a) shows part of a marked graph. To meet the conflict
free requirement, source and sink transitions can be added
to the net only at existing transitions (with 1intervening
places being added). In Figure 3.5(b), a source transition
stl has been added at transition ty; and in Fieure 3.5(c), a

sink transition st2 has been addea at transition t4.

Theorem 3.5 Liveness in marxed graphs is unaffected by tne

addition of source or sink transitions.

Proof. By definition, a source transition is live, and
theretore liveness is unatfected dy the addition of a
source. Now consider a transition in the net t' with a
sink tramsition/place pair added to the output. It t is
live, 1t can be fired by some sequence which will then
enable the sink transition; therefore, the sink

transition is 1live and liveness 1s conserved.

Theorem 3.6 A marked graph remains dounded after addition
of source and sink transitions except in the places

associated with those transitions.
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a)

Figure 3.5 Addition of source and sink transitions to petri nets.
(a) marked zraph. (b) marked eraph with source stl. (c) marked
grapa vith sinxk st2. (d) state machine net with sources and sinks.
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This result is clearly true by the definition of transition
firing. It snould bde noted that the general results of
queueins theory require that the places associated witnh the
source and sink transitions be undounded (if exponential
arrivals and departures are assumed).

In terms of the dynamic operation of marxed eraphs, it
can be seen from Figure 3.5 that the existence of sink
transitions has no eftsct. The source transitions operate by
controlling tae enabling of the net transitions to which
they are connected; tney set an upper bound on the firing
rate of the transition.

In tne case of state macaines, the source and sink
traasitions are added to existinz places in the net (see
Fiegure .5(d)). Tne nondeterministic nature of state
michines results in changes to the properties ot the net
after tae addition of tne sources and sinks. For example, if
2 sinx tranmsitior is aided to a live state machine, tne net
cruld eventually terminate since the sink must eventually
decome erab. x4 resuiting in the loss of a token to the
system, W¥»sn sources are added, the net will become bdbecome
untounded., Since tne source can be fired arbitrarily often,
the token count of tae 2utput place to the source can become
ardit artiy larze,

By generalizine the clesed networkx gqueueing model
developed in tne previous section, the solution for state

machines with sources and sinks may be odtained. Once azain,
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the net 1is transformed 1into 1its stochastic equivalent. A
sink is added to a node J Dby adjusting the brancning.
probadilities of tae transitions in 3§ So that the
prodbabdility of departure from the system at node Jj, P[d },
obeys:

P(a) =1 ~ gg bj; vaere n is |tL4.
A source 1is added to node J dy inserting an edee directed
into the place in 3} and labeled with the mean arrival rate.

Since it 1is possible for the net to becoOme umbounded
after adding sources and sinks, it is necessary to require
that I} < jL; for every node in the SEN to ensure that the
net remains ergodic.

Once again, the solution involves writing the global
balamce equations for the system, 1.e.:

VU; gP[U,;J (rate of flow from U, into U;)

= P[U;] (rate of flow out of U;)

Basket [32) nas shown that the general product form solution
for this system is of the form

P(0] = ca(o)f, (u)r (uz). et (u))

vaere C 1s the normalization constant needed to ensure

S op(o;) =1,

sl
d(0) 1s an expression for the exogenous arrival

rate,

n
a(o) -ggcﬂ for Poisson arrivals at comstant ratey;,




and £:(u;) is a function of the queue discipline.

, e

For FCFS, f.(u;) = 1/, ﬁ r =(..£v.)
I 4 .
3

E. CONSISTENT PETRI NET SISTEMS

The most general petri net class we consider is tnat of
live, Dbdounded, and consistent nets. The solution to this
class proceeds identically to that used earlier. Tne net 1is
first transtormed into its stochastic equivalent net rorm by
the metaod of Definition 3.13. Figure 3.6(a) snows how an
arbditrary node in the petri net is transformed. Note that in
the resulting node i2, two places are required as imput to
transition t4 anpd tnerefore tnls node do0es not model tne
simple queue/server pair waich was seen earlier ftor state
macaines., Another possibility for a SEN node is tnat tae
transition has multiple outputs with branching probabilities
bij all equal to 1. Tnese two situations are shown in Figure
3.6(b). It nas been snown {44]) that these types of nodes
(also referred to as Jjoin and fork nodes) 4o not satisfy
local balance and thnerefore product form solutions do not
exist for tnils class of nets. However, since the net {s
bounded, by the results of Cnapter II the reachability set
{and state space) i1s finite and therefore the zlobal state
equations can dbe solved numerically [45).

In the case of consistent nets with sources aad sinks,
it 1s possidle for the net to become undounded since the

sources may fire arbitrarily often and therefore finding the
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Figure 3.6 Transformation of petri nets with forks and
joins into SEN, (a) Arbitrary node transform.
(d) Join and fork nodes.
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solution to the global balance equations becomes
intractable., In this case, approximation tecanigues such as
aggregation or the diffusion approximation [46] must be
resorted to, The applicability of these techniques to petri
nets 1s an opem question, but one which has the potential ts

extend the modelingz power of petri nets to more interesting

systems.




TN

IV. CONCLUSIONS

Tais tnesis nas addressed the probiem of computer system
performance analysis through the use of the petri net model.
The model nas wide applicabdility to tne anmalysis of both
Rardware and software Systems, particularly those which
exnidit concurrency or asynchronous operation. Due to the
pover of the petri met approdch, it is necessary to restrict
the structure of the nets resulting in a nierarcihical class
relatioaskip between petrl net types.

The classes of ereatest interest in system modeling are
marked grapas, state macaines, and consisteat nets. All
three of these classes vere shown to have the preperties of
boundedness, liveness, and consistency which are useful {n
the verification of computer system correctness. Of tae
three classes, the class of consistent nets 1s the most
useful 1in modelipg 1in tnat it can represent the greatest
range of possible systemS == and is also the most difficult
to analyze mataematically.

It was seer that the general problem ot reachability,
and the set of states 1n which a marked petri net could
enter, wvas a primary consideration in the analysis of tne
nets. In particular, an algorithm was presented for

determining the state space for the class of bounded petri

nets.




3 n
— bt o

By definine the tiring times tor the transitions in the
net, it was possible to extend the analysis of petri nets to
their dynamic execution. Random firing times allowed tne
nets te mode)l data depandent events. This concept led to the
identification of nondeterminism in the petrl net execution.

Petri nets witk random firing times were shown t0 ©be
analogous to closed queueing networks. A major difficulty in
this appreach is the inability to model queueing disciplines
in the places. Hewever, if exponential firing is assumed,
the analysis can be conducted without devailed knowledge of
the structure of tae queue. In this context, the stochastic
equivalent net vas introduced as a method for demonstrating
the correspondence between petri mets aed queueins networks.
Tnis permitted tae state probdabllities to be determined
through the known techniques of queueing theory.

The definition of petri nets was extended to allow for
events which take place external to tne system itself.
Again, the resulting stochastic equivalent net corresponds
to a queueing network -- in tnis case the open network
model.

It appears that this approacn to petri net modeling can
utilize more of the receat results of queueing network
taeory. For example, solutions nave been found for state
dependent routine (branching) probabilities, and state
dependent arrival and departure rates. Additional worgk 1is

reguired to determine 1f the use of petri net based
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& stochastic models simplifies the problem of reducing system

: | desiazn criteria and parameters to & form which permits tne

applicatior of queuneing network tecanigues.
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APPENDIX A

LIST OF NOTATION
»; . probability that transition j will tire eiven
that place 1 enables transitions t, ,lp,...,%,
Cr input incidence matrix for a petri net

Co output incidence matrix for a petri net

E(t;st;) the set of edres in a marked eraph between
transitions 1 and }
D(e) a current assignment for a transition in a

consistent net .

F(o,t) the firing function for a transition t and

state 0 in a retri net .

f& the total mean arrival rate at node 1
I(p,t) the input function for place p and tranmsition t
M a marked petri net <P,T,I,0,0

?i M’ a marked graph <?’,E’,>

:} pip) tne marking function tor a marked petri netg

X

(section 2)

L the mean firing rate for transition i (sec 3)

N a petri net <P,T,I1,0> ;

N(P) the token count for a set of places P z
’ o(p,t) the output function forl place p and transition t ;
- P the set of places in a petri net }&
' vis a composite place in a stochastic equivalent net
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Q(M)

R(V)

q o

s(x)

s(x)

the

the

the

reacnability set (space state) for
petri net M

reachabllity set for a vector addition
system ¥

computation rate for a discrete time petri net

a firing sequence {(t,,tsc0ertp)

tne

the
tae
the

the

a vector addition system <d,w> ;

the vecter set imn a vector addition system !

enabiing set {t,,t,,..4,t,} enadbled by

marking pL,
transition tiring time distribution

transition firing time density fuction

set of transitions in a petri net
state of a petri netv (u, 6 ,u,,...,u,) with

marking fL,;
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