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1. INTRODUCTION

I This Quarterly Technical Report, Number 6, describes aspects

of our work performed under Contract No. F08606-75-C-0032 during

, the second quarter of 1976. The first four reports in this

series dealt largely with work quite closely related to the

development, maintenance, and operation of the ARPANET, e.g., the

IMPs and TIPs of the ARPANET and the Satellite IMPs and PLIs

connected to the ARPANET. However, beginning with last quarter

and continuing this quarter, our work with the ARPANET has been

funded under a contract from the Defense Communications Agency

and our work with Satellite IMPs, PLIs, etc. is being reported

elsew'lere. The only significant body of work still funded under

this contract is a study of the feasibility of using the Pluribus

computer as the basis of a large, secure message system. In

fact, even this body of work will be complete very early in the

third quarter. Thus, the remainder of this document describes

our study of a Pluribus Message System (PMS) and is a final

report on this work, in accordance with Contract Line Item

000 1AC[l1.

I

S(1] Quarterly Technical Report 5 in this series presented an
interim report on this work.

i
1 - 1-
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II

11.1 Overview of the Study

Message handling systems have been developed on several

hosts on the ARPANET and have received widespread use. We have

studied an extension of this message technology based on the

Pluribus computer line, contemplating a system which will provide

a message handling service of high capacity and high reliability

while meeting necessary security requirements.

In many areas, the natural advantages of the Pluribus make

it extremely attractive as the base of a message system.

Because the Pluribus has a highly modular architecture, it

has the flexibility to handle a wide range of

configurations.

- Because the Pluribus is a multiprocessor, it has the

processing capacity to handle very large systems.

These first two features make the Pluribus one of the most

flexible computer systems available today. This is important,

since a message switching system should be matched to its user

jbase and should be able to expand gracefully as the user base

grows.

I
I
1 -2 -

I



Report No. 3339 Bolt Beranek and Newman Inc.

I - The Pluribus offers high system availability.

Message systems, particularly large ones with many users, are

distinguished by their need for high system availability. The

Pluribus is particularly appropriate because it meets this need

at a low cost. Reliability is achieved by providing at least one

spare copy of every system resource. For example, if a Pluribus

with 10 processors is required to serve a given application, an

eleventh processor would be added to take over should any one

processor fail. This is much less expensive than duplicating the

entire system. This same philosophy is applied to all levels of

the system, i.e., memory and I/O as well as processors.

- The novel Pluribus architecture is available off the shelf.

Several Pluribus systems have already been delivered and are

presently providing their users with reliability and flexibility.

The advantages outlined above make the Pluribus highly

attractive as a message system. However, the Pluribus is a

novel machine which was developed for a specific application; as

a result, it lacks some of the features provided with most large

mainframes (e.g., mass storage, software for a file system, an

operating system, etc.) These features are not technically

difficult to provide on the Pluribus -- they were simply not

-3-
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Irequired for previous applications and thus were never developed.

We have investigated how best to add such features to the

Pluribus and have described our findings in this report. We

j believe that the effort and cost of augmenting the Pluribus in

these ways is more than offset by the advantages of flexibility,

reliability, and available computing power.

In studying the design of a Pluribus-based message handling

system, we considered the developmental effort required in the

following five areas: 1) Mass Storage devices (Disks); 2) file

system; 3) message system recovery techniques; 4) security

techniques; and 5) high order language compilers. These five

developmental areas are introduced, in turn, in the following

five paragraphs.

The disk which is currently supported on the Pluribus is not

large enough to meet the storage requirements of a message

system. Section 2.4 of this report describes how IBM-3330

compatible disk units can readily be used to supply the necessary

mass storage capability. In addition to disk units, electronic

beam addressable memories (EBAMs) seem to be very attractive for

a large message system application because of their short access

time, e.g., for swapping memory.

I-
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A file system which stores messages and keeps track of them

is described in section 3.1. It makes efficient use of the disk

space by storing only one copy of each message on the disk,

regardless of the number of "owners" or "copies" of the message.

It manipulates messages oy maintaining lists of pointers to them

instead of actually moving the messages. This both saves

processing time and reduces the required disk space by almost a

factor of three. The remainder of Section 3 discusses other

software issues related to the design of a Pluribus message

system.

Pluribus software has been implemented which automatically

restores system operation when some hardware element breaks. The

current Pluribus recovery techniques and new techniques for

achieving even higher availability through distributed processing

are described in Section 4. New software must be written to

restore the state of the disk and the file system t.o the point

before the failure. The recovery techniques use "checkpoints"

and "before images" to restore the state of the disk efficiently,

and full and incremental dumps are used to recover from gross

disk system failures. These techniques are also described in

Section 4.
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Two other requirements of a message system are privacy and,

in some environments, security. Once again, the Pluribus was not

designed with security in mind (few computer systems are).

However, as presented in detail in Section 5 of this report, we

have designed techniques which will enable us to ensure secureI
operation of a Pluribus message system. These techniques are a

novel development of this study, and we believe represent a

particularly noteworthy achievement. They permit secure

operation at a reasonable cost even in the face of hardware

failures. The techniques we recommend are physical separation of

the primary message processing functions from the security kernel

functions, redundant execution of the security kernel functions

in physically separate machines, and checksums and access lists

on every important data element in the primary machine. These

combine to detect a hardware failure anywhere in the system and

thereby assure secure operation. Although these techniques are

not themselves new, what is novel is the way we have combined

them in a cost-effective manner so as to achieve the requisite

level of security.

J As a final requirement, there is currently no compiler which

generates code for the Pluribus. With such a compiler the

j software for a Pluribus message system could be written in a High

I

1 -6-
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Order Language (HOL), making the program easier to write, to

change, to maintain over its life cycle, and to certify for

secure operation. Section 6 discusses the issues involved in

choosing among the potentially available HOLs (BCPL, BLISS, and

PASCAL and its derivative EUCLID seem to be the best candidates).

If we had to choose among them now, we would select BCPL.

However, EUCLID is still changing, and it may well become more

attractive with time and should be considered carefully before an

implementation starts.

Prior to the detailed discussions of the five development

areas in Sections 2.14, 3, 4, 5, and 6, the structural

alternatives which help "drive" the message system design are

discussed in Sections 2.1 to 2.3. The Pluribus configurations we

have arrived at are summarized in the section immediately below,

Section 1.2. Following the detailed discussions of the

development areas in Sections 2.4, 3, 4, 5, and 6, some example

systems are sized in Section 7. Two appendices support the main

body of the report. In particular, if the reader is not already

familiar with the basic Pluribus architecture, Appendix B should

be read before reading of the main body of the report.

-7-
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j1.2 Pluribus Message System (PMS) Description

I We now describe a Pluribus configuration capable of

supporting 1000 active users, a configuration based on detailed

calculations presented in Section 7. This configuration provides

all the services presented in the body of this report, i.e., it

uniformly opts for user service or convenience without excessive

regard for cost. (The report makes clear that a rich selection

of less potent systems could be selected at lower cost.) The

Pluribus hardware required for this system is:

- 17 Processors

- 10 Processor Busses

- 2 300-megabyte Disk Drives

- 2 Tape Drives

- 400,000 Words of Memory

- 3 Memory I/O Busses

- Doubled Interfaces to the Disks, Tapes and Network

- 1 4-megaword EBAM

1. As shown in Figure 1, this version of the Pluribus Message System

* has a number of functional units which are integrated to form the
I

total system. For convenience we have named the major parts of

the system with the colors orange, blue and green. The main

1 - 8-
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system is denoted as "orange" and contains an executive which

manages all the, computer resources and controls the other

processes. There is a user interface module and a message

handling module which deal with user commands and responses and

with message storage and retrieval respectively. The latter

calls on the file system and backup system routines for accessing

the disks and for archiving all files on tape in case of disk

failure. Finally, there are swapping routines which decide which

programs are in primary memory and which are in secondary memory

at any given time. The smaller "blue" and "green" systems each

run critical security code in physically separate small Pluribus

computers[2].

ARPA may feel that the proper approach would be to build a

smaller, cheaper prototype first. A reasonable configuration for

a prototype system would be:

- 7 Processors

- 5 Processor Busses

- 100 megabytes of Disk Memory

- 1 Multi-Line Controller

- 1 Tape Drive

[2] This will be elaborated upon in Section 5.

-10-
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- 250,000 Words of Memory

- 2 Memory I/0 Busses

- Doubled Interface to the Network

- Doubled Interface to the Tapes and Disk

This configuration would support 100 users, would have the full

functionality of larger system, and would not require an EBAM,

the only bit of currently unproven technology in the larger

system. Were security required, 3 processors would have to be

added. Again, the detailed calculations resulting in these

configurations are given in Section 7.

1.3 Conclusions of the Study

As we discuss in the body of this report, we have found that

a Pluribus message system is feasible. A message system can be

built which is capable of secure operation even in the event of

hardware or software failures. Furthermore, this protection will

be operational when any module of the system is out of service.

We have the following conclusions to report about the Pluribus

message system:

-It is responsive. As configured and with 1000 active

users, it has adequate capacity to give quick response to

user requests for service.

-1i
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-It is secure. No single hardware failure or software

f error can result in any message or message fragment being

made available to any user other than one who is entitled

to see it.

-It is reliable. If a component such as a processor or a

memory unit or an I/0 interface fails, the software will

detect the failure and reconfigure so as to operate

without the defective component, without human

intervention and in a few tens of seconds.

- Its file system is reliable. All information placed into

the system is backed up onto magnetic tape. Even a

catastrophic failure of the disk can be recovered from

without significant loss of information. Lesser failures

will be recovered from more rapidly and with no loss of

data.

- It is available. The system's ability to operate with

pieces having failed or removed for repair means it is not

likely to be unavailable for use when needed.

- It is modular. Should the loading on the system increase,

either because of more users or because of a change in the

habits of its users, it is easy to add more processors

-12-
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Iand/or more memory. Further, at worst only trivial

software modifications are required to support such

increased hardware.

I - It is flexible. Since the system is to be programmed in a

High Order Language, it will be easy to modify in order to

meet new or changing needs of the users.

We recommend that ARPA seriously consider supporting the

development of the Pluribus message handling system we have

designed: it has a unique set of benefits and advantages.

11
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2. OVERALL SYSTEM DESIGN

Certain basic questions must be answered before design can

start on a Pluribus message system (PMS).

- How will users gain access to the PMS? That is, will they

come through a network (such as the ARPANET) or be

connected directly to the PMS?

- To what extent will users be able to specify the

characteristics of the user interface?

- How (if at all) will the PMS be interfaced to a network?

- What form of mass storage will be used?

These questions are addressed in the following sections.

2.1 Terminal Access

jAn important question to be answered concerns the way that

the users of the PMS obtain access to ths system. Four possible

{answers to this question are illustrated in Figure 2. The first

and simplest, from the point of view of a PMS, is to configure

the message system without any local users at all and to rely on

*some network or other external entity to provide the support for

the terminals. This is attractive in that it keeps the message

I - 14-
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NUSERS ON TIPS
OR HOSTS

REMOTE
PMS NETWORK USERS

LOCAL USERS
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PMS PLURIBUS NETWORREMOTE

HOST TIP USERS
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Figure 2 Terminal Access
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j system simple and permits the users of the message system to be

dispersed geographically. The disadvantages of this approach are

that: 1) it does not provide access ports for local users who

would have to access the message system through the network; 2)

it is somewhat inefficient in the way that it handles local users

since they must make use of a perhaps unnecessary layer of

network protocols; and 3) there are significant problems

(discussed in Section 5) if the PMS is to be secure but the

network is not.

The second approach is to support local terminals directly

on the PMS. In the figure the PMS is also connected to a

network, although it is quite possible that in some applications

all of the users would be local and the network connection would

be omitted. The disadvantage of this approach is that combining

the message system functions and the terminal support functions

in one logical and physical machine significantly increases the

complexity of the system.

The third approach is to configure the PMS as a host without

terminals as in the first solution described above, but to

support the local users on a front end which is physically

located close to the PMS host. A natural front end for this

- 16 -
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purpose is a Pluribus TIP[3] which can support many local users

Jand has the advantages of flexibility and reliability provided by

the Pluribus architecture. The network connection in this figure

is once again optional.

The fourth solution is to integrate the PMS host and the

Pluribus TIP into one physical machine while retaining a logical

separation between them. This is a reasonable extension to the

previous approach, since it permits somewhat more efficient

utilization of the resources (such as the Pluribus hardware) and

it eliminates the external communications link between the two

machines. While the physical configuration would be integrated,

it is useful to think of the functions as segregated as they were

in the previous configuration and to restrict the communications

between the two portions of the machine to a nearly standard host

interface. This approach has worked well with the IMP and TIP

code in the system described in [3].

Of these four solutions, the first and the fourth are most

attractive. The separate message system which supports no

terminals but provides a service to a network is the simplest to

[3] W. F. Mann, S. M. Ornstein, M. F. Kraley, "A network-oriented
multiprocessor front-end handling many hosts and hundreds of
terminals", AFIPS Conference Proceedings 45, June 1976, pp.
533-540.

- 17 -
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I implement and is quite attractive in its own right. The fourth

solution, which adds a Pluribus TIP as a front end to the message

system, all combined in one machine, is also quite attractive,

particularly in a secure environment.

For convenience, in the rest of this report we consider the

PMS as a host which does not support terminals directly. When we

refer to local terminals, we assume that they are connected to a

Pluribus TIP front end which is physically integrated with the

PMS but which is logically independent. We make this assumption

for two reasons: First, it is a convenient way to build the PMS,

a way which we recommend. Second, most of the design issues

addressed in this report are independent of the choice made for

terminal access method, since we recommend keeping the message

system logically independent of the terminal front end, even if

they are in the same physical machine.

2.2 User Programming

Current mail systems within the ARPA community are

1 implemented as subsystems (and perhaps occasionally as pieces of

I the executive) operating on time-shared computers. This approach

provides flexibility in that several message systems are

available to the users of the facility; indeed, a user can even

I -18-
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j write his own version of a message switching system if he

chooses. The next overall design question is therefore: Should

or should not a PMS host be user programmable? Presumably if the

PMS were user programmable, methods for establishing user

processes would be necessary, as well as protection mechanisms in

the system to prevent undesirable interactions between user

processes. On the other hand, if the PMS is not user

programmable, these extremely complex mechanisms are unnecessary.

We believe that the PMS should not be user programmable.

This decision simplifies the implementation, permits greater

computational efficiency, and eliminates many of the serious

security problems encountered in general purpose computer

operating systems. This design decision is reflected in the rest

of the system description in this report. If further userV control of the user interface is a requirement for a particular

application, then we recommend an interpretive approach such as

that used in flerrnos[43.

i

I
June 3, 1976.

1 - 19-
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12.3 Network Interface

j Some environments in which a PMS might be used require no

network interface because all of the users are local, while in

I others a connection to a network is undesirable for reasons of

security. Yet in many applications, connection to a

communications network expands dramatically the usefulness of the

PMS by increasing the number of users who can communicate through

the system. Because of this flexibility, the message system

design we recommend in this report includes a connection to a

packet-switching network such as the ARPANET. Such a connection

raises several questions. One is what type of host-to-host

protocol the PMS should support. Another is how to achieve

secure communication across the network to other secure

installations, as well as how to achieve safe communications

with unclassified users and hosts on the network.

Taking the ARPANET as an example, the host-host protocol on

that network is probably not well suited to message switching

functions. The NCP used in the ARPANET is oriented towards

establishing and maintaining connections between communicating

processes in hosts on the network. For the PMS application,

g connections are unnecessary and result in excessive inefficiency

in the host as well as the network. A special protocol designed

!

1 - 20-
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for message switching such as[5] may be desirable. On the other

hand, the standard ARPA protocols[6] are in widespread use and it

seems essential that they be supported on the PMS if convenient

communication from the PMS to the many existing ARPANET hosts is

to be permitted. Fortunately, the network interface (ignoring

for the moment its security impact) is one of' the more modular

pieces of the messages system. Thus, while it seems proper to us

to assume the ARPANET protocols, it would be possible to

substitute another (or to run parallel) if that later seemed

better. We have already mentioned the suitability of [5] as one

alternative. X.25[71, TCP[8], and the AUTODIN II protocols are

other possible alternatives.

The second issue in the network interface is related to

secure operation across the network. A PMS could presumably be

connected (with proper safeguards) to the unsecure network-,

provided that all of the messages going to or from users on the

[5] "MSG: The Interprocess Comrunication Facility for the
National Software Works," BBN Report No. 3237, January 1976.
[6] "ARPA Network Current Network Protocols," Stanford Research
Institute, December 1, 1974.
[7] A. Rybczynski, B. Wessler, R. Despr<-, and J. Wedlake, "A new
communication protocol for accessing data networks--The
international packet-mode interface," AFIPS Conferenc(
Proceedings 45, June 1976, pp. 4 77 -4 82 .

i [8] V.G. Cerf, R.E. Kahn, "A protocol for packet network
intercommunication", IEEE Transactions on Communications, Vol.
COM-22 5, May 1974, pp. 637-648.

I
I- 21 -
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network were unclassified. This in itself may be quite valuable;

for example, if such a PMS were installed on the ARPANET, all of

the secure users could have dedicated and encrypted lines

directly to the PMS, and unclassified users could access the PMS

through the network or through local connections to the PMS. By

doing this, the secure users would have one point of contact with

their network mail for both secure and unclassified

communications. Clearly this requires communications security

(KGs, etc.) for the secure access lines and multi-level security

to permit both unclassified and classified users to use the PMS,

both of which the PMS will accommodate.

An extension of this concept to permit secure communications

across the network would require some form of encryption for

secure traffic. This could be provided by installing a secure

PLI[9] between the PMS and the network. A natural implementation

in this case would be several PMS sites throughout the country.

11 At each site most of the communications would be between the

local users at that site; however, occasionally there would be

communications between the sites. If this is combined with an

f unclassified port to the network, then the users on any PMS would

1[9] "Specifications for the Interconnection of a Host and an
IMP," BBN Report No. 1822, January 1976, Appendix H.

t
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be able to communicate with any classified or unclassified user

on the network. As another option, secure terminal concentrators

(perhaps secure PTIPs)[1O] could be developed; such a device

could access the PMS across the network. This is clearly the

most flexible and powerful approach and is the one that we

recommend as the long-term configuration. However, the

availability of a suitable secure PLI is necessary before this

can be implemented.

These issues are discussed further in Section 5.

2.4 Mass Storage

The Pluribus currently supports only core memory and one

type of small disk. Although the memory address space

accommodates a half million 16-bit words of memory, for many

applications, including that of the PMS, this is not adequate.

For the purposes of the PMS, it is clear that effective mass

storage is required. We have investigated two ways this

capability can be obtained: disks and electronic beam

addressable memories (EBAMs).

[101 Mann et al, op cit.
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The disk which is currently interfaced to the Lockheed SUE

(the processor used in the Pluribus) is unsuitable for the PMS

because of its small size (two megabytes) and its inadequate

interface, which is not well matched to the Pluribus since it

uses conventional interrupts and 16-bit memory addresses, both of

which are incompatible with the Pluribus environment.

Fortunately, the peripherals industry now seems to have

reached a consensus on a range of disk sizes. Several

manufacturers are supporting a line of disk drives (similar to

the IBM 3330) with compatible interfaces. These disks range in

size from 40 megabytes to 300 megabytes. In many cases the

drives themselves are upward compatible and can be field changed

to higher capacities as required. By virtue of the popularity of

these devices and the vendors' commitment to this wide range of

machines, it seems likely that they will be around for some time

and that as new advances in technology occur, they will be

included in compatible ways. Examples of these disk drives

(besides the IBM 3330) are Calcomp Trident, Control Data Storage

Modules, Ampex 900 and 9000 series, Diablo 410 series, and

Memorex 670 series.

Several commercially available universal controllcrs have

also evolved, such as the Telefile DC16C, which (by changing a

- 24 -
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single card) can interface to any of several disk drives while

presenting the same interface to the computer. The controller

takes care of such issues as disk addressing, formatting, address

verification, defective track relocation, error correction and

detection, data rate buffering, and diagnostics. It remains only

to develop and construct an interface from this controller to the

Pluribus. Such an interface would map the various status bits

and control words into a standard Pluribus 8-word device control

block[11]. It would contain the necessary logic for full 20-bit

system addresses so that data to and from the disk could be

written to any area in common memory. The interface would also

contain provisions for connection to more than one I/O bus so

that even in case of bus failure, the disk would still be

available.

The mass storage requirement for a PMS is on the order of

150 million characters. This value is based on an assumption of

15,000 messages per day from 2000 users with 1000 characters per

message and disk storage for 10 days. Details that lead to these

numbers are presented in Section 7. The characteristics of a

disk which would support these requirements are:

1 [111 Pluribus Document 2, "System Handbook," BBN Report 2930, p.
37 ff.
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* capacity - 300 million characters

peak transfer rate - 1.2 megabytes per second

access time - 10-55 milliseconds, 30 average

rotation time - 16.66 milliseconds

cost - .01 to .02 cents per character

Although such a disk is a cost effective means of mass

storage, it requires a relatively long time to access records.

This is a serious problem should it be necessary to use such a

device for temporary data storage or swapping. A promising

technology for mass memory which has recently emerged is EBAM

memory, in which the bits are stored in a MOS structure that is

addressed by an electron beam. This approach has the potential

for very high capacity with costs similar to those of a small

disk but with access times comparable to core memories. There

are at least two vendors: Microbit in Lexington, Mass.[12] and

General Electric[13]

The Microbit memory module las 4 million 16-bit words

(actually there are 6 extra bits per word for error correction).

[12] D.E. Speliots, "Bridging the Memory Access Gap", AFIPS
Conference Proceedings 44, May 1975, pp. 501-508.
[13] General Electric, "BEAMOS (BEam-Addressed Metal Oxide
Semiconduction)," undated G.E. internal non-proprietary
memorandum.
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I The controller can handle up to 8 such modules. Within each

module, data is stored in blocks with 1024 words to a block. It

takes 20 microseconds to access a block, and the peak data rate

is then about 4 megabytes per second. Writing is four times

slower. In addition, there is a 10% overhead for refreshing

since the memory gradually decays while used if not occasionally

refreshed. When the memory is not being used, no refresh is

needed. Even with the power off, data will be valid for several

weeks. The overall error rate after all internal corrections is

on the order of 10**-11 to 10**-12114]

The manufacturer-provided controllers for these devices

would havc to be interfaced to the Pluribus. From the Pluribus

side, this interface would look just like a fast disk, except

that seeks are 3 orders of magnitude faster. The controller

performs all addressing, refreshing, and error correction

functions, and also provides a buffer for data rate matching.

1
Mass storage is required in the PMS application primarily

for two purposes: swapping working storage, and short and medium

term file storage. There may also be some ancillary functions

I such as program storage. In a small PMS, economics probably

1 [14] In this report we use a double asterisk to denote

exponentiation.

!
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Idictates that we use a disk to provide all of these functions.

As the systems become larger and the demands on the swapping

channel become more intense, it may make sense to substitute for

the disk a EBAM memory with its much lower seek times for

swapping from a disk. As the system grows even larger, the

relatively limited capacity of the EBAM memory may prove to be a

hindrance in the storage of large files, and we would then

recommend a system which has both EBAM memory and disks. The

disks would be used primarily for file storage where the longer

access times are acceptable, and the EBAM memory could then

support swapping at very high rates.

We recommend that the prototype PMS be based on swapping

from a disk, to eliminate the uncertainties associated with the

still developing EBAM technology. At the same time, progress in

j this technology should be monitored closely so that a proper

decision can be made about using it when the time comes to build

J large systems.

4
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3. THE SOFTWARE FOR THE PLURIBUS MESSAGE SWITCH

The software in the PMS defines the interface seen by the

system's users, provides medium- and long-term storage of

messages for its users, transmits messages between users both at

the local site and at other sites, and provides various other

services. This section discusses those aspects of the PMS

software that present new challanges, ignoring areas that are

well understood generally. We deliberately omit discussion of

one very important part of the design of any message system: the

details of the interface that it presents to its users, i.e.,

does it look like MSG, Hermes, RD, or some other message system.

There are two reasons for this omission:

(1) There are ARPA-sponsored studies currently underway

both at BBN and elsewhere to determine the nature of this

interface, studies which we did not attempt to duplicate.

(2) We have had no difficulty proceeding with this design

study without knowing the details of the user interface.

(Incidentally, if we had to choose one existing message

system to rfcommend for implementation on the Pluribus, we

would choose MSG because of its reasonably small size and

because it is reasonably powerful.)

-29-
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What we have done is to make some assumptions about the overall

g properties of the user interface, assumptions which we know to be

valid for all existing message systems that we are familiar with.

(These include Hermes[15], MSG[16], and SNDMSG/Readmail[17).)

These are the properties which we have assumed:I
- There is a facility for constructing messages. It can be

used to prepare the various header fields ("To:",

"From:", "Cc:", etc.) and to compose and edit the body

of the message.

A message once composed may then be transmitted, both to

other users and to the files of the originator.

Received messages may be filed, with a structuring

imposed by the user.

There is a facility for forwarding and answering a

received message to another person, perhaps accompanied

by annotations.

[15] T. H. Myer, C. D. Mooers, op. cit.
[161 J. Vittal, USC Information Sciences Institute, MSG on-line
documentation.
[17] 1TENEX User's Guide," Jerry D. Burchfiel, et al, Bolt
Beranek and Newman Inc., Cambridge, MA, January 1975 revision, p.
137 and pp. 165-170.
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-There is a facility for examining files of messages. it

provides both for reading newly received messages and for

looking at previously filed messages. It can process

requests like, "Show me all messages from Jones about

UFOs."1 (Presumably such a request would be expressed in

a less English-like form.)

-There will be various housekeeping- facilities. For

example, there may be an archival store, a place to store

older material for which economy of storage cost is more

important than immediate access, and commands are needed

to control this feature.

One other point is relevant. Frequently for expository

convenience or to aid our thinking it has been useful to consider

a specific message system. In all such eases we have considered

Hermes, checking carefully to insure that we were not thereby

precluding any other system. We have so used Hermes both because

it is convenient, being an in-house development with all the

needed expertise nearby, and also because it is possibly the most

sophisticated of the currently proposed systems. Since our

design will support Hermes, it will surely support simpler

systems.
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The remainder of Section 3 presents, in turn, the file

system that will support the PMS, the swapping system, protocols

and formats, and certain housekeeping issues of interest. As

mentioned above, these are areas in which we think that we have

something novel to contribute.

3.1 The File System

The file system in the P14S performs the same task as does

the file system in a time-sharing system, i.e., it provides for

medium term storage of named data in a manner that insulates the

user from the problems of hardware addressing. Whereas a

conventional file system provides for storage of arbitrary binary

data whose structure is of no concern to the file system, the

special requiremrents of the PMS make it appropriate to construct

a file system especially for the purpose. By tailoring the file

system to the job, we expect both a more efficient product and

significant economy in the implementation, in each case because

we would be building a special purpose tool rather than one with

funneeded generality. Thus the file system knows about messages

and includes special facilities for dealing with them. We feel

that the limited and specialized requirements justify designing a

file system tailored to the PMS application.

-32-
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The basic organization is conventional. Associated with

each user is a directory (DIR) holding all information possesed

by the PMS about that user. The DIR provides a mapping of names

chosen by the user onto data stored in the file system. The

names must be unique for a given user, although there is no

problem if several users use the same name for an object.

The principal purpose of the file system is to store

messages, including those that the user has received as well as

file copies of messages that he has sent. It is not adequate

just to store all of these messages -- the user must be able to

impose his own structuring on them. This structure is provided

by association lists (ALs), each of which is a named entity (an

entry in a DIR like a file in a time-sharing system) which is an

ordered collection of messages. For example, a user might have

an AL named "FRO 1-JONES" to hold all messages from Jones.

Presumably the messages would be in chronological order, although

the user has complete freedom in this matter. A user can have

many ALs, and a given message might appear in several of them

(although as explained below only one copy of each message

actually exists in the file system). Every DIR holds an AL named

INBOX, the repository into which incoming messages are placed,

like an IN-basket on one's desk. Reading new messages is merely

the process of examining the contents of the AL named INBOX.

33 -
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The file system also deals with owned objects (Os). An 00

is any piece of data (other than a complete me.sage) which a user

wishes to store. It might be a piece of te.t he plans to include

in several messages, it might be a pre-stcr,-d address list for a

"To:" field, etc. Alternatively, it miLrht be information

associated with control of the PIMS, such as the filters and

templates of Hermes. Some 0Os, for example the address list for

a project, may be shared among several users. Associated ;:ith

each 00, although invisible to the user, is a list of all users

entitled to access it.

Finally, associated with each user and stored in his DII are

certain user data. Section 3.1.4 contains further details.

There are two key aspects of the storage of messages in the

file system:

- There is only one copy of each message at each site, no

matter how many ALs the message appears on. This is true

even if the ALs belong to different users.

- A message once created is never changed. This is almost

implied by the first point, since all "owners" of the

message share the sam,, copy.

I
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Implications of these points permeate much of the following

discussion. Consider a message composed and sent to three users

all at the same site as the sender, with a file copy retained by

the originator. The process of sending the message after it is

composed involves merely placing pointers to it in four ALs

(three INBOXes and the AL for the file copy). If an addressee is

located at another site, then a copy of the message must te sent

to that site. However, only one copy need be sent to that site

even if there are multiple addresses there.

The directory structure is suggested by Figure 3. This

shows a master direostory with entries for three users, Smith,

Jones and Brown. Parts of each of these uset .' DIRs are also

shown. Each has an AL named INBOX, as well as some other AL: as

shown. (No 0Os are shown in this diagram.) Each AL is shcwn as

an ordered list of pointers, letters being used to represent

pointers to the labelled messages shown at the bottom of the

figure. Note message A, to Brown from Jones with a copy to

Smith, on the subject of UFOs. The originator Jones has saved a

copy in the ALs UFO-STUFF and COPIES, the latter holding copies

of all messages he ha: sent. Brown has filed the message under

FROM-JONES and under UFOs. Smith merely lets all of his messages

collect in his INBOX.
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I MASTER DIR.

SMITH

I JONES
BROWN

(BROWN) (OE)(SMITH)

IBXINBOX INBOX

-FROM-JONES UOSUF D

A:TO:SIT BRWC:OOPIESC T:MTHD O:RW

SUUFOs

I ____

A: TO: BROWN F: TO: SNROWN C: TO: JONES H: TO: JRON

FROM: JONES FROM: JONES FROM: DROWN FROM: BRMITH

Cc: SMITH SUB: UFOs SUB:X UFBC: SIT

SUB: Y SUB: UFOs

1i g u r 3 Directory ,trueturo
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I

Although the provision of security in the PMS is discussed

in detail in Section 5 of this report, certain points are best

made here. Each message and each 00 is stored with a

checksum[18]. As mentioned previously, each 00 has associated

with it an access list indicating which users may access it, and

this access list field is also part of the checksumned data. Two

points are important: First, each object stored in the file

system includes as part of it a list of all users who are

entitled to see that object. For a message it is all users named

in the address fields, and for an 00 it is those listed in the

access list. The second key point is the checksum, the

correctness of which guarantees the integrity of all the bits of

the object, including in particular those bits that indicate who

may have access to it. These points provide the requisite handle

to permit the security system to guarantee that no data is given

out except to a user entitled to it.

13.1.1 Association Lists (ALs)

I The user thinks of an AL as an ordered set of messages,

although it is implemented as an ordered set of pointers to

[18] The implementation we propose in order to achieve security
requires two checksums on each message. This fact is ignored in
the rest of this section.

3
1 -37 -

I



I
Report No. 3339 Bolt Beranek and lewman Inc.

messages. An AL belongs to only one user, and it has a name

which is an entry in the user's DIR.

An AL named INBOX appears in every user's DIR. This is his

"IN-basket", and messages addressed to him are deposited there.

The user may create other ALs and name them as he chooses. For

example, if he has one AL for all messages from Jones and another

for all messages about the UFO project, he might file a message

from Jones about UFOs in both ALs. (Of course, there is only one

copy of the message and it is pointers to it that are placed in

the ALs.) After doing so, he might then delete the message from

INBOX. (That is, the pointer to the message is deleted from that

AL.)

3.1.2 Owned Objects (OOs)

An 00 is a named object belonging to a user, its name

appearing as an entry in the user's DIR. An 00 can hold any

piece of data, other than a complete message which is afforded

special treatment, that a user may want to store in the file

system. Possible kinds of information that might appear in an 00

include the following:

- pre-stored data for an address field. This might be a

long address list for a project. It could be included in

- 38 -



Report No. 3339 Bolt Beranek and Newman Inc.

the "To:" field of a message being composed with a

facility similar to the CTL-B feature of Hermes or

SNDMSG.

a long piece of text to be included in the body of

several messages.

- save status while editing.

- housekeeping items appropriate to the user interface,

such as the templates and filters of Hermes.

Each 00 has a name which must be distinct from the name of any

other 00 or any AL in the user's DIR. The entry in the DIR for

that name contains a pointer to the place where the 00 is stored

in the file system. For redundancy as well as for the benefit of

the security system, each 00 has stored with it (although

invisible to the user) the names of those entitled to access it.

3.1.3 The Message

A message is a complete communication from a user to one or

more recipients. It is a self-contained object, in which the

originator and all addressees are given explicitly. Thus it is

possible by examination of a message to determine with confidence

which users are entitled to access it.

- 39 -
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Each message is pointed to by one or more entries in ALs.

The disk address for a message that appears in an AL is the

address of a record such as the one shown in Figure )4. What is

pointed to is a record holding the various header fields and

pointers to the records holding the text. The first few words

hold a flag indicating that this record is a message header, a

checksum, and other data. The next words are pointers, one for

each header field. The datum is the offset fromf the beginning of

the record where the field is stored. All header fields are

stored fin the header record itself. (There will be provision for

multiple header records where necessary.) For the text part of

the message, though, the header record contains not the t -xt

itself but disk addresses where the text is stored. The flag "11"

indicates such a disk address, and 1011 indicates the end of t,,e

list of addresses. This method of storing messages makes context

searches on header fields particularly easy, since there is ready

access to each field without text scanning. We see in section

3.3 that this format matches well the format used for

transmission of messages over a network.

A forwarded message requires special treatment. Message

forwarding involves sending a copy of a message to another user,

jperhaps accompanied by comments or other annotations. In many
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I applications the usual mode of operation involves frequent

forwarding of messages. For example, in the military it is often

standard operating procedure that all messages to a facility be

addressed to the commanding officer. Each received message is

then forwarded down through the chain of command to the action

recipient, frequently with copies to various information

recipients. Since this is anticipated to be a common occurrence

in the Use of the PMS, it is important that our implementation

handle it efficiently.

The simplest 'day conceptually to handle a forwarded message

is to include a complete copy of it in the text field of the new

rnessa, e. Thus Smith, having received a message which he wants to

forward to Jones, com.,poses a new message addressed to Jones which

includes in its body all the headers and text of the original

message. The obvious problem, particularly in an environment in

which frequent forwarding is the way of life, is the space

required in the file system for multiple copies of a message. it

therefore seems appropriate to provide for forwarding as a

I special case. Rather than include all of the original message in

the forwarded messaje, we merely include a pointer to the
original. Note now Figure 5, which shows the structure of a

forwarded message. This differs from the structure of a simnple

14
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<MESSAGE>

$ CHECKSUM
<OTHER DATA>

TO:A

<OTHER FIELDS>

TEXT

REORRHLENETN

HEADE OFFRWREDMSSG

PRECORD HOLDING TEXT

2 HEDRO0OWRE ESG
II

I F'igure 53 A Forwarded Message
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I message as shown in Figure )4 only in that one of the text

pointers points to a message rather than to a record holding

text. In particular, note the second disk address in the text

I field (marked with a pointer to it). This has a flag of "12"

rather than 1", indicating that it is a pointer to an entire

message rather than to a text block. This implementation makes

annotation of a forwarded message convenient, since the

annotation can be a record of text that precedes the forwarded

message. In the forwarded message in the figure, therc is

apparently annotation both before and after the forwarded

message.

This implementation has an implication for security. Recall

Smith, who wishes to forward a message to Jones. The original

message was not addressed to Jones and so does not show him as an

addressee. Our earlier discussion (see page 37) suggests a

scheme that releases an object to a user only if he is entitled

j to it. This mechanism must therefore be cognizant of forwarded

messages, so that releasing the message from Smith to Jones

I includes releasing the forwarded message it points to. There is

no particular difficulty with this, but it must be built in as a

special case.

I4
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There is an implementation problem with any pointer

structure such as the one just described: the possibility of

circular list structures. In the present scheme, it is

inherently true that such circular structures cannot be created,

since a message can point only to an already existing message and

no message once created can be altered. Regardless of the

unquestioned truth of this claim, for adequate robustness it is

necessary that the code be prepared to deal with a circular

structure should one come into existence by some means. This

point is addressed further in Section 3.4.

3.1.4 User Data

Certain data are stored in the file system for each user as

system data, in addition to the user data such as ALs, messages

and OOs. The system data may be stored either directly in the

DIR or in a record pointed to by a word in the DIR, depending on

how much of it there is. Such data items include the following:

classification level. In the simplest case this is the

highest classification level the user is cleared to. If

Ia need-to-know scheme is implemented, the relevant data

are stored here.

4
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I - name association data. The user may specify how he wants

to refer to certain individuals. For example, he may

want to say just whom he means when he addresses a

j message to Smith. Such data are stored here.

- sending restrictions. For security or other

administrative reasons, it may be desirable to restrict

the set of users to whom a given user may send messages.

3.1.5 The Backup System

It is of great importance in an application such as the PMS

to minimize the impact of any system failure, either hardware or

software. The file system is implemented as storage of data on

some physical device, and that device might fail catastrophically

(for example, by physical destruction of a recording surface by a

recording head). The backup system is provided to minimize the

I iimpact of such a catastrophe. This is in addition to the
Pluribus philosophy of robustness that ensures quick recovery

from small failures. Our plans for backup are discussed in

Section 4.2.
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I 3.2 The Swapping System

I It is unlikely that the main memory available in the PMS

will be adequately large to hold simultaneously all of the

program as well as all data needed for all active users. It is

therefore necessary that some needed information be stored in a

larger but slower memory device while it is not in active use,

being fetched to main memory when needed. This device may be the

same disk used for the file system, but in a many-user

application the high bandwidth required for swapping may

necessitate a faster device.

While it is possible to swap either program or data or both,

in the PMS we intend to keep all of the program in memory at all

times and to swap only data. This approach provides significant

conceptual simplifications in the system design, since the

program knows when it is about to access new data and can make

J explicit arrangements to get it into core. Use of the alternate

approach of' permitting parts of the program to be out of core

j gets one involved in the complexities and costs associated with

demand paging.

We will perform swapping in the following way: When a

I program reaches a point where it needs user data, it first checks

I4
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to see if the data are in core. If not, it places on a queue a

request that the data be fetched and terminates its execution,

first insuring that it will run again when the data are

available. Further, when a program is done with a data block, it

so indicates by putting a write-out request on a queue. Of

course, if a program needs data that are still in core waiting

for a write-out request to be processed, then that write-out

request is canceled. This scheme is simple and workable and

should be easy to program and debug, in contrast to demand paging

which is quite complex. In return, of course, we put the burden

on the application programmer, a burden that demand paging frees

him from. This seems to us to be the proper decision in a large

single-application program such as this one.

3.3 Protocols and Formats

There are two different kinds of communication over theInetwork, using different protocols. One is complete messages

moving over the network from one PMS site to another; the second

is character data representing user 1/O to and from the PMS.

Both will be transmitted using packet switching technology as

developed for the ARPANET.
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In a dedicated message system such as this one, it seems

desirable that the format used for transmission of messages over

the network be similar to that used for storing a message in the

file system, both for conceptual clarity and so as to minimize

the processing required to send or receive a message. The format

used in the present ARPANET is pure text, a format that has the

disadvantage that locating a particular field requires textual

scanning. Figure 6 shows the format which we intend to use for a

message transmitted between sites. It is quite similar to the

format of a message in the file system, as shown in Figure 4.

However, the pointer indicated by E points to the text itself,

which is the rest of the message. Note that the length of a

transmitted message is arbitrary and is not restricted to the

length of a disk record. (It is a simple task to convert

messages into and out of the conventional ARPANET textual format

when it is necessary to communicate with existing mail systems.

Of course, implementing the FTP protocol required for

conventional message delivery is less easy.)

If the message being transmitted contains a pointer to a

forwarded message, then the latter must be sent too so that the

receiving site can make all of the pointers correct. If a copy

of the forwarded message already happens to exist at the
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<MESSAGE>
I CHECKSUM

TO: A
FROM:B

SUBJECT:C

FCC:

<OTHER FIELDS >

TEXT

ASMITH

JONES

BROWN

B GREEN

C PROBLEMS WITH
THE XYZ

SYSTEM

D XYZ

<THE TEXT>

IFigure 6 Message Format for Sending
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!

receiving site, there is the possibility that two copies will

then exist. Although this can be avoided with care, doing so is

probably not worth the extra trouble.

IThe other protocol of interest is for transmission of

j terminal I/O. Although the Telnet protocol used on the ARPANET

might be used, this is inefficient in use of network bandwidth

and processing bandwidth in certain applications. Alternatively,

one might use a protocol similar to that used by the PTIP for

communication with TENEX. The problem with the Telnet protocol

is that only a few characters of data are accompanied by many

bits of address and header information. Without going into

details that are not relevant here, the PTIP collects in a buffer

characters for many users on each host and transmits all of them

together, either when the buffer becomes full or periodically.

Thus, the addressing and header overhead cost is distributed

among many characters, as is the processing bandwidth, rather

jthan being imposed on only a few characters. The Telnet approach

is an appropriate one if the originating site is sending

Icharacters to a few users on each of many other hosts, while the

PTIP protocol comes into its own if the originating site is

sending characters to many users on only a few hosts. We suspect

the situation in the PMS application will probably involve a

5
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I comparatively small number of sites, and thus the PTIP protocol

should be used. In any case, the Telnet protocol will have to be
supported for communication with the large numbers of terminals

which already exist in the ARPANET, for instance.

3.41 Housekeeping Issues

Two non-trivial problems in the PMS are deletion and

archiving of messages. A user may delete a message from an AL,

or he may indicate that a given message need not be kept in the

file system but may be moved to the archival store. Because

messages are shared, the processing of these requests requires

care.

In any system such as the file system in the PXS that

involves objects and pointers, it is necessary to retain any

object that is pointed to. In other words, any message that is

pointed to by at least one AL or a forwarded message pointer must

not be deleted from the system. Thus a deletion request must not

cause the actual removal of a message until the message has been

deleted from all places that once pointed to it. There are

J various ways to implement this, one of the simpler being a

reference count scheme. Fortunately, this simple scheme is

adequate for the PMS application. It works as follows. Part of
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Ieach message (stored in a field in the message header) is a

reference count which holds the number of pointers to the nessage

that exist. The number is incremented by one each time the

message is added to a new AL or each time the message is

forwarded. The number is decremented by one each time the

message is deleted from an AL or a forwarded message containing a

pointer to it is deleted. When the number reaches zero, it is

safe to delete the message. Care must be taken in coding the

algorithm so that it is fail safe, in the sense that a system

stoppage during its execution will not leave the data in a

dangerous state. For example, the pointers to a message must be

removed before the reference count is decremented.

The usual hazard with a reference count scheme is circular

lists. However, the nature of the application is such that

I circularities are not possible. A message never points to an AL,

so the only possibile problem is a circle of forwarded messages.

I But this cannot happen, since a forwarded message can point only

to an already existing message, and no message once created can

U be changed. Even if a bug permits a circle to be created, the

I only harm will be that a message cannot be deleted and the space

it occupies is lost temporarily.
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IArchiving is a rela ted problem. A user may indicate that a

1 given message may be moved to the archival store, but actual

moving can take place only after all users concerned with that

I message no longer want it. Thus an archive pending flag must

also be maintained for each message, the flag indicating that at

least one archive request is pending. The transfer to archive

storage takes place when the reference count reaches zero and the

archive pending flag is on. Again, care is necessary. For

instance, consider a message appearing on two ALs. User 1

requests that it be archived, and then user 2 says to delete it.

We must be sure that the deletion request causes archiving and

not deletion.

It is possible that messages and other records on the disk

can get lost, so that they appear in no part of the file system

and are not on the free list. Although this is a benign sort of

failure that does not hurt performance much or compromise

I security, it is important that such lost space be eventually

recovered. This is consistent with the usual Pluribus philosophy

I of checking for things that "can't possibly happen", and fixing

1them if they do. The method is conceptually simple but

organizationally complex. The idea is to find any disk record

that is not pointed to by anything and is not on the list of free
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records. First one makes a pass through the disk, setting a flag

bit in every record to OFF. Then one looks at every DIR, at

every AL and every 00 in each DIR, at every message in each AL,

and at every forwarded message pointed to. Further, every disk

record on the free list is looked at. Every disk record looked

at in this process has the flag turned ON. Finally, a complete

pass is made through every disk record. Each one with the flag

OFF has become lost somehow, and it is placed back on the free

list.

Various improvements can be made on this scheme, but they

are not worth going into here. For example, the reference counts

should all be recomputed during the process. The hard problem is

that the system does not hold still while this process is goin~g

on but is processing traffic the whole time. Thus considerable

complexity is added to the problem. The needed algorithm is

similar conceptually to that part of IMP reliability code that

finds lost buffers, an algorithm which we developed and

understand.

Note that our approach here is consistent with the usual

approach taken in Pluribus software. We design the system as

best we can so that it will not fail, and then we check for

failures anyway and fix their bad effects. It is this philosophy
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I that enables us to produce systems that keep running in spite of

random failures that cannot be predicted.

!I
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I4. SYSTEM AVAILABILITY AND RELIABILITY

In this section we discuss the issues of message system

availability and reliability. First, however, we make clear what

we mean by these two terms. Availability is a measure of how

much of the system is available to be used when users want to use

it. Reliability is a measure of the accuracy of the system. For

instance, if there is a power failure and there is no backup

power or system, then the system is unavailable. If the system

is available and it miscalculates the result of a user request or

misfiles user data, then the system has made an error and is

unreliable to that extent. Of course, there are some obvious

couplings between reliability and availability. If the system

makes too many errors (i.e., is too unreliable) from the user's

point of view it might as well be unavailable. The important

point to be made is that many tecl-niques which improve

reliability do not necessarily also improve availability and vice

jversa. Note that we define security to be a separate problem

from reliability and availability; maintaining a high level of

1 reliability or availability does not ensure security. Of course,

J unreliability may impact security, so the security techniques

must guard against unreliability. (Security is discussed in

J Section 5.)
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In the rest of this section we discuss, in turn, standard

Pluribus techniques meant to insure availability, additional

techniques to attempt to provide complete system reliability,

distributed techniques to improve availability beyond what is

possible with a single system, and techniques to insure

user-level reliability.

4.1 Standard Pluribus System Availability Techniques[19]

Computer reliability is a common, serious, and difficult

problem which has been approached in many ways. For critical

applications (e.g., space exploration), large amounts of money

are spent to overcome such apparently trivial weaknesses as

problematical power supplies and connectors. Although a great

deal of attention is given to tailoring computers to particular

job environments, the commercial world of computer manufacturers

has provided no adequate answer to the reliability problem.

The notions of fault-tolerant and fail-soft systems have

been around for a number of years and because reliability is such

[19] Additional material on the topics discussed in this section
can be found in S.M. Ornstein, W.R. Crowther, M.F. Kraley, R.D.
Bressler, A. Michel, and F.E. Heart, "Pluribus -- A Reliable
Multiprocessor," AFIPS Conference Proceedings 44, May 1975, pp.
551-559. Also, see Appendix B for a summary of the basic
Pluribus structure.
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a crucial issue in a communications network, it was decided that

some of these ideas should be exploited in the design of the

Pluribus.

The availability goal of the Pluribus is not that the system

should never break, but rather that it should recuperate

automatically within seconds or minutes from most troubles and

that the probability of total failure should be dramatically

reduced over traditional machines. The system should survive not

only transient failures but also solid failures of any single

component. It is assumed that it is not necessary to operate

correctly all of the time so long as outages are infrequent, kept

brief, and fixed without human intervention.

41.1.1 Appropriate Hardware

The Pluribus structure provides hardware integrity through

the following principles. Not only are duplicate copies of a

particular resource provided, but it is also necessary to assure

that the copies are not dependent on any common resource. This
means in the Pluribus that in addition to providing multiple

memories, there are multiple busses on which the memories are

distributed. Furthermore, each bus is not only logically

independent, but also physically modular. The chassis, with its
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own power supply and cooling, is built into an integral unit

which may be powered down, disconnected, and removed from the

rack for servicing or replacement while the rest of the machine

continues to run.

All central system resources, such as the real time clock

and the PID, are duplicated on at least two separate I/0 busses.

All connections between bus pairs are provided by separate bus

couplers so that a coupler failure can disable at most the two

busses it is connecting; all other interconnections between

busses are unaffected.

When a particular communications circuit is deemed critical,

it is connected to two identical interface units (on separate I/0

busses), either of which may be selected for use by the program.

When the extra reliability is not worth the extra cost, the line

is only singly connected.

In order for the system to adapt to different hardware

configurations, facilities have been provided which make it

convenient for the software to search for and locate those

4 resources which are present and to determine the type and

parameters of those which are found,
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1 To allow for active failures, all bus couplers have a

program-controllable switch that inhibits transactions via that

coupler. Thus, a "malicious" bus may be effectively "amputated"

by turning off all couplers from that bus. These switches are

protected from capricious use by requiring a password.

Naturally, an amputated processor has no access to these

switches.

41.1.2 Software Survival

With the above features, the Pluribus hardware can

experience any single component failure and still present a

runnable system. One must assume that as a consequence of a

failure, the program may have been destroyed, the processors

halted, and the hardware put in some hung state needing to be

reset. Three broad strategies have guided the means used to

restore the algorithm to operation after a failure: keep it

simple, worry about redundancy, and use watchdog timers

throughout.

1 14.1.2.1 Simplicity

IFirst, all processors are identical and equal; they are

viewed only as resources used to advance the algorithm. Each is

4 able to do any system task; none is singled out (except
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momentarily) for a particular function. A consequence of this is

that the full power of the machine can be brought to bear on the

part of the algorithm which is busiest at a given time. A

further consequence is that should any processor fail, the rest

will continue to perform the necessary tasks, albeit at reduced

capacity.

A second system characteristic which arises from a desire to

keep things simple is passivity. The terms active and passive

describe communication between subsystems in which the receiver

is expected to put aside what it is doing and respond. Thc

quicker the required response, the more active the interaction.

In general, the more passive the communication, the simpler the

receiver can be, because it can wait until a convenient time to

process the communication. Neither the hardware interfaces nor

other processors tell a processor what to do; rather, tasks to be

done are posted in the PID and processors ask the PID what should

be done next.

There are some costs to such a passive system: First, the

resulting slower responsiveness has necessitated additional

buffering in some of the interfaces. (A side effect of this need

for buffering is that more efficient interface design is possible

because the buffering eases the timing constraints imposed on the
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I interface.) Second, the program must regularly break from tasks

being executed to check the PID for more important tasks. The
alternatives, however, are far worse. In a more active system,

for example one which uses classical priority interrupts, it is

difficult to decide which processor to switch to the new task.

The possibilities for deadlocks are frightening, and the general

mechanism to resolve them cumbersome.

As a third example of simplicity, the entire system is

broken into reliability subsystems which are parts of the overall

system that verify one another in an orderly fashion. The

subsystems are cleanly bounded with well-defined interfaces.

They are self-contained in that each includes a self-test

mechanism and a reset caprability. They are isolated in that all

communication between subsystems takes place passively via data

structures. Complete interlocking is provided at the boundary of

every subsystem so that the subsystems can operate asynchronously

j with respect to one another.

The monitoring of one subsystem by another is performed

using timer modules, as discussed below. These timer modules

Iguarantee that the self-test mechanism of each subsystem

operates, and this in turn guarantees that the entire subsystem

is operating properly.
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I 4.1.2.2 Redundancy

IRedundancy is simultaneously a blessing and a curse. it

occurs in the hardware and the software, and in both control and

data paths. We deliberately introduce redundancy in the hardware

to provide reliability and promote efficiency, and it frequently

occurs because it is a natural way to build things. On the other

hand the mere existence of redundancy implies a possible

*disagreement between the versions of the information. Such

* inconsistencies usually lead to erroneous behavior and can

persist for long periods.

There are several methods of dealing with redundancy. The

first and best is to refer always to a single copy of the

information. Otherwise, we must check the redundancy and

explicitly detect and correct any inconsistencies. What is

I important is to resolve the inconsistency and keep the algorithm

moving. Sometimes it is too difficult to test for inconsistency;

then timers are used as discussed below.

4.1.2.3 Timers

I There is a uniform structure for implementing a monitoring

function between reliability subsystems based on watchdog timers.

Consider a subsystem which is being monitored. Such a subsystem
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I is designed to cycle with a characteristic time constant, and a

complete self-consistency check is included within every cycle.

Regular passage through this cycle is therefore sufficient

indication of correct operation of the subsystem. If excessive

time' goes by without passage through the cycle, it implies that

the subsystem has had a failure from which it has not been able

to recover by itself. The mechanism for monitoring the cycle is

a timer which is reset by every passage through the cycle. (For

instance, in the IMP system, there are both hardware and software

timers ranging from five microseconds to two minutes in

duration.) Another subsystem monitors this timer and takes

corrective action if the timer ever runs out. To avoid the

necessity for subsystems to be aware of one another's internal

structure, each subsystem includes a reset mechanism which may be

externally activated. Thus, corrective action consists merely of

Iinvoking this reset. The reset algorithm is assumed to work

I although a particular incarnation in code may fail because it

gets damaged. In such a case another subsystem (the code

I checksummer) will shortly repair the damage.

j The entire system consists of a chain of subsystems in which

each subsystem monitors the next member of the chain[20]. Lower

1[20] See Appendix A for a specific example.
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II subsystems provide and certify some important environmental

jfeature used by higher level systems. For example, a low level

code tester checksums all code (including itself), insures that

all subsystems are receiving a share of the processors'

attention, and guarantees that locks do not hang up. It thus

guarantees the most basic features for all higher levels. These

will, in turn, provide further environmental features, such as a

list of working memory areas, I/O devices, etc., to still higher

levels.

Before they can work together to run the main system, a

common environment must be established for all processors. The

process of reaching an agreement about this environment is called

"forming a consensus", and the group of agreeing processors is

known as the Consensus. An example of a task requiring consensus

is the identification of usable common memory and the assignment

of functions (code, variables, buffers, etc.) to particular

i pages.

The Consensus maintains and counts down a timer for every

processor in the system in order to detect uncooperative or dead

I processors. This monitoring mechanism includes reloading the

jfailing processor's local memory and restarting it. Reliance on

the Consensus is vulnerable to simultaneous transient failure of

I
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Iall processors. For many cases (as for example when all of the

processors halt), a simple reset consisting of a one-second timer

on the bus and a 60 Hz interrupt routine suffices.

For more catastrophic failures the machine must be reset,

reloaded, and restarted using external means.

41.2 System Reliability Techniques

As discussed above, there are a number of techniques which

are used with any Pluribus system to insure availability.

However, as was also mentioned, no attempt is made with these

techniques to guarantee that the system never makes an error.

Rather, an attempt is made to minimize errors and to recover from

errors, but not necessarily without the loss of any data. Thus,

there may be times when the Pluribus-based message system will

cough and sputter and soon recover (in the sense that the

hardware and software are ready to continue running the program),

Ibut without additional mechanisms, some data may be lost. For

1 instance, if a memory failed, the entire contents of that memory

could be lost although the system would adjust and return to

j operation using the remaining inemory banks.

If the use of the Pluribus-based message system is to be

like that of most existing message systems of which we know, the
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users will require that the system not lose data (or at least

minimize data loss) even through system failure and recovery.

There are a number of more or less traditional techniques to

guarantee system reliability, and these are applicable to the

Pluribus-based message system as well as any other system. In

the remainder of this section we discuss some of these techniques

[21] .

The problem of system reliability can be divided into two

convenient categories: the problem of recovering from a disk

(presumably the medium for the file system) crash and recovering

from a CPU crash or program error. The following makes the dual

assumptions (valid we think) that a disk crash is much less

likely than a CPU crash or program bug, and that most program

bugs will not hurt the file system.

Suppose the message system has been processing user

transactions all day and then there is a failure which results in

the state of the message system and its file system being

uncertain. Uncertainty is worse than certain knowledge that a

particular file was destroyed. If it was known for certain that

[21] The techniques in this section are for the most part proven
techniques which are a part of the folk-lore of computer
technology. The write-up here is, to our knowledge, a first. We
wish we had had it when we began researching this area.
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a particular file was destroyed and no other, then all but the

user of the destroyed file could continue work. However, when

the damage is uncertain, no user can continue work. Thus,

something must be done to return the system to a known state.

Actually, systems are frequently continued from the point of

failure on the hope that not too much damage was done, and the

thought that if any user (someday) detects that some of his data

was lost, he may somehow be able to recover on his own. Such

systems usually do dump the entire disk once in a while so that

if it is completely apparent that the file system is lost, it can

be restored to the point of the last dump, and the users only

have to redo all their work from this point.

However, for our purposes a method which has less

uncertainty and which puts less burden on the user is clearly

required. The uncertainty can be removed by returning to the

state of the system at the point of the last dump, each time

there is a failure. (We will return shortly to the issue of

lessening the burden on the user.) Checkpointing is the

conventional name given to the process of taking a periodic dump

of the system as mentioned above, i.e., periodically saving

sufficient information to permit the system to be restarted at

4 the previous point at which information was saved. The points
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are called checkpoints[22].

There is an interesting theoretical issue (with much

practical import) about checkpointing, namely the optimum

checkpoint interval. The loss due to failure can be reduced by

checkpointing often. However, it is expensive to save the state

of the system too often. This problem of finding the optimum

checkpoint interval has been studied previously[23].

We now address the problem of lessening the burden on the

user. If, in addition to making periodic checkpoints, the system

writes every transaction coming into the system onto a magnetic

tape (the most sensible medium for this sort of job), then after

a failure and backup to the checkpoint, the transactions which

were processed after the checkpoint can automatically be replayed

through the system for the users, thus relieving them of the

burden of recreating their work themselves. This "log" of

transactions is frequently called an audit trail (and can also be

used for audit, accounting and other purposes). Clearly, a

[22] IBM Corporation, OS Advanced Checkpoint/Restart, Release
21.7, IBM Manual GC28-6708-5.
[23] Chandy, K.M. and Ramamoorthy, C.V., "Rollback and Recovery
Strategies for Computer Programs", IEEE Transactions on
Computers, Vol. C-21, No. 6, June 1972, pp. 546-556.
Young, John W., "A First Order Approximation to the Optimum
Checkpoint Interval", Communications of the ACM, Vol. 17, No. 9,
September 1974, pp. 530-531.
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tradeoff similar to that mentioned above exists for a system

which uses periodic checkpoints and an audit trail to minimize

loss in the event of failure and to automate recovery.

Checkpointing too often is wasteful but minimizes the cost of

replaying transactions from the point of the last checkpoint.

Checkpointing too seldom does not increase cost in and of itself,

but results in having to play back too many transactions in the

case of failure. This tradeoff is illustrated in Figure 7

(adapted from[24]). The curve on the figure labeled "overhead to

checkpoint" indicates that if checkpoints are made very

frequently, there is great overhead. As the inter-checkpoint

interval increases, the overhead due to checkpointing decreases

rapidly. On the other hand, there is little overhead due to

having to replay transactions if checkpointing is done

frequently; but this increases linearly (given a few reasonable

assumptions) with the increase in the inter-checkpoint interval.

Summing the two curves to find the total overhead for varying

values of the inter-checkpoint interval, one sees that there is

an optimum (i.e., point of minimum overhead). This point is the

optimum inter-checkpoint interval.

[241 Chandy, K.M. et al., "Analytic Models for Rollback and

Recovery Strategies in Data Base Systems", IEEE Transactions on
Software Engineering, Vol. SE-I, No. 1, March 1975, pp. 100-110.
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Notice that while there is an optimum checkpoint interval,

the simple approach of periodic checkpoints and replaying the

audit trail is possibly still quite expensive. Each time the

full disk is dumped, for instance, a great cost is incurred

(e.g., half an hour for typically sized disks with typically fast

tape drives); further, to reload the disk from the checkpoint is

equally expensive. However, there is a technique for eliminating

much of this overhead, at least in many cases. This technique

involves keeping a log of before images. Assume for the moment

that the disk is functioning well, but the CPU fails or the

program fails because of a bug. Presumably, before the CPU or

program failure, the disk was correct. After the failure,

however, one is not sure of its state; it may not have been

updated correctly to account properly for the transactions being

processed at the time of the failure. Suppose in addition to

checkpointing the entire disk each day (say) and keeping an audit

trail of all incoming transactions, the following steps are

taken:

a. All transactions into the system are logged as part of

the audit trail.

b. Before any record is changed or deleted on the disk,

the before image (the value of the record before the
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I change or deletion) is written on the (logically

separate) checkpoint tape.

C. Periodically (and often, e.g., every five minutes) a

I modified checkpoint is written on the checkpoint tape.

I This modified checkpoint does not include the complete

state of the disk, but rather includes only the

complete state of the program (e.g., registers,

buffers, swapping memory) and a pointer to the current

I position of the audit trail tape.

d. In the event of the failure mentioned above, the

checkpoint tape is played backwards from the end[25],

restoring disk records changed or deleted since the

last checkpoint to their before images.

Ie. When the most recent checkpoint is reached, the state

of the system is restored and the audit trail tape is

j rewound to the point at which it was at the last

checkpoint. The system is now completely restored to

I its condition at the the time of the last checkpoint,

3including the state of the disk.

*[253 Finding the end of the tape can be an interesting practical
1problem; typically one fills the blank tape with end-of-file

marks to facilitate tnis.
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If. Now the audit trail tape may be read forward,

reprocessing transactions which arrived since the last

checkpoint.

Thus, the addition of before images provides a capability to

restore the state of the disk with very little overhead as

compared to a total disk reload. Further, because the modified

checkpoint is so small compared to a full disk dump, one can

afford to checkpoint often. The result is low system cost for

recovery and high user convenience.

There is a potential problem with the above system, the

problem of order-dependent outputs. Suppose, for instance, in a

banking transaction system, there are two parallel processes, one

processing deposits and one processing withdrawals. Further

suppose that for a given customer a withdrawal is processed which

results in an overdraft situation and a nasty letter to the

customer. Next the deposit process runs, and a deposit is

processed for the customer which erases the overdraft situation.

Then the system crashes and recovery is initiated. During

jrecovery, because of process overlay considerations (for

instance), the customer's withdrawal and deposit are processed in

I the reverse order and this order is written in the bank's

records. When the user calls to ask about his overdraft, the

I -75-



Report No. 3339 Bolt Beranek and Newman Inc.

bank will have no record of it. In this particular case, there

are constraints one could have placed on the way the system

operates to eliminate the problem; however, in general, if one

permits parallel- or multi-processing, there is no way to avoid

such problems. One must either ask the users to insure that such

problems cannot happen or can be corrected at user level, or one

must forbid multi-processing (at a potentially great decrease in

system efficiency).

This brings up the related "problem" of duplicate responses.

Since one goes back in time during recovery and reprocesses

inputs, outputs already sent to the user can result. It is best

to declare such duplicate outputs to be a system feature,

assuring the user that his transactions were, in fact-, processed.

Some systems attempt to avoid such duplicates by writing system

outputs on the audit trail (along with inputs) and then matching

outputs resulting from reprocessing against outputs on the audit

trail and suppressing outputs whfich have already been sent to the

user once. One can alternately use time stamps on the outputs to

eliminate those already sent to the user before the system crash.

There are two problems with trying to eliminate duplicate

outputs: 1) one can never be completely sure all duplicates are

eliminated; and 2) writing outputs on the audit trail can be
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very expensive if the users require prolific output. Of course,

it may be desirable to record outputs for other reasons, such as

for accounting or statistics, or simply for the purpose of

maintaining a complete output log.

In the above discussion we implied two separate tapes, one

for the audit trail tape and one for the checkpoint tape. In

fact, it is possible to use the same physical tape drive for both

these functions, and it is conceptually quite straightforward to

do so. One first works one's way backwards down the tape,

restoring the disk from the before images until one reaches the

last checkpoint which is used to complete restoration of the

system to a known state. Then one reads forward on the tape,

replaying the transactions. Using the same tape does slightly

complicate the recovery software which must separate the two

logical tapes, but this is certainly worth doing when compared to

the cost of requiring two physical tape drives always

operational.

With each record on the disk, one can maintain a field

stating th. ite and time the record was last written (as will be

shown below, this field is convenient to have for other purposes

;~1o). Just before a given record is to be changed on the disk,

reo-rd must be read into memory prepatory to writing the
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I before image on the checkpoint tape. By looking at the time the

record was last written, one can determine whether a before image

has already been written for this record since the last

I checkpoint (i.e., if the record has been written since the last

checkpoint, then a before image has been written since the last

checkpoint). If a before image for this record has already been

written since the last checkpoint, there is no need to write

another before image for the record, even though the record may

have been updated several more times since the before image was

originally written since the checkpoint. The additional before

0 images for the same record need not be written since steps d. and

e. above have the effect of restoring the disk to its state

before the first time the record was updated since the

checkpoint. Since it seems likely that a given record would be

subject to repeated updates, closely spaced in time, this trick

can result in considerable savings in not having to write

redundant before images.

Now, suppose the disk itself crashes. With the techniques

1 we have discussed so far, there is no alternative but to go back

j to the last complete disk dump, to reload, and to replay all the

transactions since the complete dump.
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Actually, some systems have used after images to attempt to

minimize the expense of the recovery process in the case when the

disk has crashed. After images is the name given to copies of

disk records written to the checkpoint tape after the records

have been updated (rather than before as with before images).

When the disk crashes and one has after images available, after

the disk has been completely reloaded from the point of the last

disk dump, the disk can then be more quickly restored by simply

updating disk records from the after images (in the order

written) until the point of the last checkpoint is reached. From

this point one may read the audit trail tape forward as in point

f. above and finish restoring the state of the system. However,

after images have several problems: 1) there are a lot of them

since one must be written every time a record is written even if

the same record is written many times; 2) they are written on the

tape in the wrong order for convenient reloading (that is, they

should be sorted to eliminate duplicates and to reduce disk seek

time during reload); and 3) their being written takes processing

time which increases proportional to system activity rather than

being schedulable for some period off prime time.
J I

A good alternative to after images for minimizing the cost

f of recovering from a disk failure is the incremental dump. With
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I the incremental dump, one periodically scans the entire disk

looking for records which have been changed since the last

incremental dump and dumps them. The same field in the records

j can be used to decide whether or not a record should be included

in the incremental dump as is used to keep track of the date and

I time that records were last written, to reduce the number of

before images written. In some cases it is more practical to

keep a (sorted) list of updated records in core, or (in even

fewer cases) to keep a chain of updated records on the disk.

As with the after images, a full dump must be made once in a

while to serve as a base upon which to load the incremental dumps

(or the after images in the previous case). When the disk fails,

one first reloads the disk from the last complete dump. Then one

reloads the incremental dumps since the last complete dump. Then

one replays the audit trail tape from the point of the last

incremental dump.

The incremental dump has several possible advantages over

I the method of after images: 1) the incremental dump can be done

J at a convenient time off prime shift; 2) the incremental dump

includes at most one copy of a given record for each period

j between incremental dumps; 3) since one usually simply scans
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completely across the disk to detect which records should be

included in the incremental dump, an incremental dump tape can be

reloaded without excessive movement of disk heads and is thus

much faster. There is also an indirect benefit of having to scan

the entire disk periodically for the purpose of the incremental

dump: during the scan one may detect problem areas on the disk.

If one goes too long between complete scans of the disk, a

portion of the disk may develop unrecoverable trouble before one

detects that there is trouble. Once per day is a natural and

often-used frequency for incremental dumps. However, if one

wants to save the complete scan, especially if the portion of the

disk updated in the period between incremental dumps is a small

fraction of the total size of the disk, one may keep a table of

the records changed and use this table to select the records to

be incrementally dumped. Even with this table, one can still

I dump the records in a convenient order to reload.

3In addition to saving reprocessing of transactions,

incremental dumps (and to a lesser extent after images) permit

Ione to lengthen the time between full dumps. This can be a

Isignificant saving. If there are many incremental dumps to be
reloaded after a failure, one might think of using read/merge

K techniques.
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I In some applications one can not afford the down time to

reload the complete dump and the incremental dumps. In such

instances, one must have two parallel disks, each of which is

updated identically and in parallel. Then if a disk fails, one

simply plays back through the before images and the last

checkpoint and back forward through the transactions to get the

system back to the point of the failure and continues using one

disk. Of course, a second disk also means the elimination of the

down time which would otherwise result while the broken disk is

repaired.

In all of the above techniques, care must be taken to

properly interlock checkpointing, dumping, the arrival of

transactions, and the recovery process. For instance, while the

system is recovering, new incoming transactions must be held off,

a either by forbidding them completely, or by recording them for

later processing once the system has recovered. Traditionally,

I while a system is dumping, new transactions have also been held

off. Actually, it is possible to avoid the loss of system

I availability during dumps. First, one arranges that the dump

1 time correspond with the time of a checkpoint (which is necessary

in any case). Then during the period of the dump, the before

3 image for any record updated is written on the dump tape as well
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I as on the checkpoint tape. If the system later has to be

restarted or the disk restored, all the information needed for

this to occur using the standard recovery techniques is already

on the dump and checkpoint tapes.

4.3 Availability through Distributed Computation

In a network environment, such as that in which a PMS might

reside, it becomes possible to consider enhancing the

availability of the system through distributed computation

techniques. For instance, when there are several PMSs attached

to the same network, if a particular one goes down, its users

might temporarily use another on the network, even though their

own message system will soon recover and recover reliably.

Admittedly, this is a simple form of distributed computation.

There are several areas in which distributed computation

might help the PMS application. These are discussed in the

following four subsections.

1 4.3.1 Simple Complete Backup

This is essentially the technique mentioned in the previous

paragraph. When a user's own PMS goes down, he explicitly and

I manually begins to use an alternate PMS. The PMSs are

8
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independent and no attempt is made to automatically take work

begun on one system and continue it on the other system. This is

analogous to the computer user who has two computers available

and is running a time-consuming Fortran program on one of them.

When that first system halts, on a breakpoint for instance,

rather than going out for coffee, the user might do a little

Cobol work on the other computer, with the hope that the first

computer will eventually recover and continue his Fortran job

from where he left off.

Owners of independent PMSs might make arrangements with each

other to provide each other with backup service for high priority

users.

Obviously, if complete backup is a good idea, partial backup

is also useful where possible. For instance, if the PMS consists

1 of two parts, the handling portion and the terminal handler, it

might be possible to backup the terminal handler with another

terminal concentrator also on the network.

I ~ 4.3.2 Use of Selected Network Resources

* Aside from providing a backup capability for increased

availability of all or part of the PMS, a network also offers the
possibility for use of certain selected resources not otherwise
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Iavailable or which the PMS would otherwise have to provide

itself. For instance, a PMS on the ARPANET might make use of the

DataComputer rather than supplying that much rapid access

archival storage at the PMS itself. It is easy to envision ways

to take convenient advantage of a DataComputer-like device on the

same network as a PMS. For instance, the complete dumps of the

disk might be made to the DataComputer, although unless the

network were extremely fast, the process of dumping and reloading

would be very slow. More likely, one could simplify the

construction of the PMS by supplying a relatively modest message

storage space for each user. Then either the system

(automatically) or the user (explicitly) could archive a given

set of messages on the DataComputer. Then when the user wanted

the messages back, they would be retrieved from the DataComputer

and restored to the user's message storage space local to the

I PMS. One might ask, why not just archive to magnetic tape. The

answer is that for limited size transactions, e.g., a file of

messages on a particular topic, the retrieval time from the

DataComputer is likely to be less than the time required to mount

and scan the tape. This is in contrast to the case where a3

relatively large amount of data is to be retrieved, when it would

3 be faster to find the tape, mount it, and read all the data from

that tape rather than incurring the relatively slow transfer of
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I all that data across the network. Obviously the tradeoff is

transfer rate vs. seek time and the correct solution is a

function of the frequency of seeks.

Another example of selected use of network resources would

be to not have a terminal handler on the PMS at all but to assume

that all terminal handling is provided elsewhere in the network.

4.3.3 Distributed Data BasesII26]

If one attempts to provide availability through use of

distributed computation and to provide it reliably (e.g.

transparent to the user and without errors), one is faced with

the problem of maintaining distributed data-bases. A distributed

data base might also have advantages in the areas of increased

responsiveness and load sharing potential. For instance, data

base queries initiated at sites where the-data is stored can be

satisfied directly without incurring the delay due to

transmission of the queries and responses throughout the network,

and those initiated from sites "near" the data base's sites can

be satisfied with less delay than those further from the data

base sites; with regard to load sharing, the computational load

4 (26] R. H. Thomas, "A Solution to the Update Problem for Multiple
Copy Data Bases", submitted for publication.
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of responding to data base queries can be distributed among a

number of data base sites rather than centralized at a single

site.

These and other benefits of replicating data must be

balanced against the additional cost and problems introduced in

doing so. There is, of course, the cost of the extra storage

required for the redundant copies. There is the problem of

maintaining synchronization of multiple copy data bases in the

presence of update activity. Other problems are determining for

a given application or subapplication the number of copies to

maintain and the sites at which to maintain them, selecting a

data base site to satisfy a query request when it is initiated,

etc.

The inherent communication delay between sites that maintain

copies of a data base makes it impossible to insure that all

copies remain identical at all times when update requests are

being processed. The goal of an update mechanism for a multiple

copy data base is to guarantee that updates get incorporated into

the data base copies in a way that preserves the mutual

consistency of the copies in the sense that all copies converge

to the same state and would be identical should update activity

cease.
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JTraditional update mechanisms can be characterized as

involving some form of centralized control whereby all update

requests are channeled through a single central point. At that

point the requests are first validated and then distributed to

the various data base sites for entry into the data base copies.

A second, fundamentally different approach to the update problem,

based on distributed control, is possible. For this approach the

responsibility for validating update requests and entering them

into the data base copies is distributed among the collection of

data base sites.

Mechanisms which use centralized control are attractive

because a central control point makes it relatively easy to

detect and resolve conflicts between update requests which, if

left unresolved, might lead to inconsistencies and eventual

divergence of the data base copies. The primary disadvantage of

such mechanisms is that data base update activity must be

suspended whenever the central control point is inaccessible.

Such inaccessibility could result from outages in the

I communications network or of the network site where the control

Ipoint resides. Because a distributed control update mechanism

has no single point of control, it should, in principle at least,

5 be possible to construct one which is capable of processing data
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A I

I base updates even when one or more of the component sites are in-

accessible. The problem here is that it is non-trivial to design

a mechanism which can resolve conflicting updates in a way that

preserves consistency of the data base copies and is deadlock

free. Centralized update control is adequate for many

applications. However, there are data base applications whose

update performance requirements can be satisfied only by a system

which uses distributed update control.

An algorithm to correctly support distributed data bases

should have the following properties:

- Distributed updating. Updates to a redundantly maintained

data base can be initiated through any of the data base

sites.

I Update synchronization. Races between conflicting,

"concurrent" update requests are resolved in a manner that

j maintains both the internal consistency and the mutual

consistency of the data base copies.

Deadlock prevention. The synchronization mechanism that

Iresolves races does not introduce the possibility of

so-called "deadly embrace" or deadlock situations.

I
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-iRobustness. The data base update algorithm can recover

from and function effectively in the presence of

communications (network) and data base site (host)

failures. The algorithm is robust with respect to lost and

duplicate messages, the (temporary) inability of data base

managing processes to communicate with one another (due to

network or host outages), and the loss of memory (state

information) by one or more of the data base managing

processes. In developing the algorithm, any mechanism that

required all data base managing processes to be up and

accessible in order for it to function effectively should

be rejected. A mechanism should be sought that requires

only pairwise interactions among the data base manacing

processes.

4.4 User Level Reliability Techniques

Despite everything the system can do to provide reliability,

users will also want user level reliability mechanisms, either

because they do not trust the system[27], or because they do not

[27] For a discussion of the environment users may face, see J.M.
McQuillan and D.C. Walden, "Some Considerations for a High
Performance Message Based Interprocess Communication System,"
Proceedings of the ACM SIGCOMM/SIGOPS Interprocess Communication
Workshop, March 1975, pp. 77-86.
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I trust the user at the other end. We look at the analogy of the

U.S. Mail (although the analogy is admittedly weak in the area of

the assumption that the system is doing its best to be reliable).

I After one mails an important letter, one often calls the party to

whom the letter was mailed to make sure he received the letter.

Alternatively, sometimes when one mails a letter, one requests a

receipt from the receiver to make sure he accepted the letter.

The message system should make provision for this sort of user

level reliability mechanism. For example, the following options

should be available:

- Automatic receiver acknowledgment of receipt of message

- Sender requested receiver acknowledgment of receipt of

message

- Special handling -- special end-to-end system

| acknowledgment and retransmission of message

- User level logging of message receipt and transmission.

19

I

~I

1
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:1 5. SYSTEM SECURITY METHODS

In some environments, it is quite important to assure that

the messages processed by the system are safe from disclosure to

unauthorized persons. In a secure military environment, for

example, the importance of this assurance is great enough to

warrant explicit protection techniques even though they may

increase the system cost appreciably.

The designer of the secure system is faced with a seemingly

unlimited variety of security hazards; Section 5.1 below and its

subsections detail a number of them. These security hazards

range from human errors on the part of the users to subversion

during the desigan and implementation of the system or even after

its installation. Between these extremes we find that many

simple and likely hardware failures and software flaws are

potential security hazards. Although we have not ignored the

security hazard caused by user error or subversion, we have

concentrated our efforts during the study on the latter group of

hardware and software faults, since they seem better suited to

technological solutions.

During the course of this study we have developed methods

for configuring the Pluribus computer into a message system and
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I techniques for processing messages which permit secure operation

fin the face of either hardware failure or software flaws. These

techniques are well suited to the PMS environment. Various

combinations of them can be applied at a reasonable cost to

provide the desired level of security. These techniques take

advantage of the flexibility of the Pluribus to configure a

secure system with no change to the basic machine, the only

changes being to the interface 1/0 system. The objective of

these techniques is to prevent the delivery of messages to

unauthorized users. We expect to be able to assure this even in

the face of any single failure or software design flaw (bug). In

I the case of hardware failure, we expect to be able to provide

rapid detection of any failure which leaves the system in a

jdegraded state. As a result of this study, we can meet these

objectives in an efficient and modular manner with minimal

I increase in cost. The techniques which achieve these objectives

are described in detail later in Section 5.2 below and its

subsections.
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5.1 Security Hazards

Our discussion of security hazards is divided into six

subsections: the I/O system, the memory system, processors,

software flaws, subversion, and user error.

5.1.1 Security Hazards -- I/O System

Security hazards in the 1/O system include:

1) misdirection of a valid message to the wrong I/O

device;

2) copying a message on a second terminal during a normal

1/O transfer; and

3) transferring the wrong part of memory to the I/0

device.

These hazards are caused by failures in device address

logic, memory address logic, or the address paths to I/O devices

or memory.

Figure 8 shows a common structure for computer I/O systems.

In the simplest structure based on passive, polled I/O devices,

each 1/O device is physically separate and is attached to a

device address bus and data bus. The processor accesses the I/0

4 devices by presenting the device address on the device address
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gI
bus. The device recognizes its address and either accepts data

frow the data bus or presents data to the data bus. In this

simple environment we can see how the first two I/O system

security hazards can arise. Misdirection of text to the wrong

I/O device can arise because of bit errors in the address bus.

ISince this is typically a bus which drives many I/O devices, a

Ifailure in any I/O device which shorts an address wire to ground

can cause this type of failure. Similarly, if a bit failure

joccurs in the address recognition logic of one of the devices,

that device may accept transactions intended for some other

device. This can produce an extraneous copy of the message.

The structure of a direct memory access (DMA) system is

shown in Figure 9. The top portion of this system is the same as

for polled I/O and provides the mechanism by which the processor

communicates with the I/O devices. The direct memory access

feature is achieved by adding a memory bus which the devices use

to transfer data directly to or from memory (thus achieving a

high data rate while relieving the processor of the task of

polling). Bit errors on the DMA memory address bus or the

processor data bus can result in sending the wrong portion of

memory to a device.

I
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IIn addition to these weaknesses, these types of I/0

structures have some strong points with regard to security.

Primarily, there is a reasonably high degree of physical

separation between devices as illustrated in Figure 10. This

physical separation makes it extremely unlikely that other

hardware failures within the device could become security

hazards.

Having presented several failure modes for the 1/0 system of

a computer system, we come to the key question: What alternative

protection mechanism can be implemented against the possibility

of these failures? Three solutions are apparent:

1) classic error control (e.g., pal ity) techniques applied

to all address paths, address holding register and

address recognition circuits throughout the system;

2) full redundancy and separation in all of the address

paths and logic in the 1/0 system; and

3) data segment oriented error control.

Classic error control techniques, such as parity, have been

used for many years in computer systems to detect data errors.

In this system, however, they would be applied to the address

4 1 paths, since for security purposes, we care much more about
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I addressing errors than about data failures in the 1/0 system.

(The correctness of the data path which selects and specifies the

address of a buffer is also quite important to the security of

the system.) There are two major problems to this approach:

First, simple parity is probably not adequate protection against

these types of faults since it detects only an odd number of bit

errors. Many faults (i.e., the failure of an IC which drives

four address lines) can produce an even number of bit errors

which would then be undetected. Second, this technique must be

scrupulously applied throughout the entire address structure of

the machine, which most minicomputers (including the SUE) do not

do. In either case we believe that one of the other approaches

must be used.

Figure 11 illustrates the second solution. This approach

uses two independent interfaces for each I/0 device, serviced by

independent I/0 busses. A comparator is used to insure that the

j outputs of the two interfaces are suppressed if not identical.

This approach still suffers from the weakness that if it is being

I serviced by a common processor or memory, an address failure in

I that processor or memory represents a security hazard. This

approach is also quite expensive since it duplicates so much

Ihardware. A critical component in this type of design is the
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comparator. It is important that it be tested periodically so as

to insure that any failure in it is rapidly detected.

Before discarding this approach, we should note that if the

two independent I/O systems interface to two independent

processor and memory systems, secure operation is achieved.

The third approach is illustrated in Figure 12. In this

approach errors are controlled by a multiple bit checksum on each

segment of data. Each data input or output takes the form of a

block consisting of a device number, text, and a checksum which

includes both the device number and text . Each 1/O device has

the necessary hardware to accept and buffet, one of these blocks

while verifying the checksum and device number. The device would

output the text if and only if the device and checksum were

valid. On input, the device packages the incoming data in the

same format and attaches the device number and checksum. With

this approach, errors in the address path do not represent

security hazards since the device address is part of the data

itself and is checksumnmed. The device number must be included in

the segment because it is necessary to define the physical I/O

port which is to transfer this segment. The device number was

chosen instead of, for example, the user name, so that it will be
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$ easy for the device to recognize whether the field is correct.

Notice that this te,,hnique provides protection against address

failures in the memory and processors as well as the 1/0 system

itself. The disadvantage of this approach is that buffering for

the entire text segment, checksum logic and device number

checking logic is necessary in every I/0 device. However, it is

more efficient than doubling all of the interfaces, as suggested

in the previous approach.

5.1.2 Security Hazards -- Memory System

Security hazards in the memory system are address errors or

data errors -- they can occur on instruction fetches or data

fetches (errors in writing appear only when read). If the error

occurs on an instruction fetch, it modifies the algorithm. if it

occurs on a data fetch, it can result in incorrect pointers to

message or other data structures.

These security hazards in the memory system are similar to

some of the hazards in the 1/0 system and illustrate that a

successful strategy must protect against errors in both the

address and data portions of the system. These failures in the

memory system are also similar to common software flaws such as

accidentally referencing the wrong data structure or accidentally

1o
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writing to the wrong place in memory because of a bug in handling

pointers. Because we would like to deal with hardware failures

in the memory system as well as these types of software problems,

error control on the hardware in the memory system is less

attractive than checksums on blocks of data and redundant,

physically separate, copies of the critical elements of the data.

* These security hazards in the memory system also point out a

weakness in the various "capability" mechanisms[28] normally used

with security kernels. It does little good to prevent the

software from accidentally accessing the wrong data structure if

* the memory system itself may fail so as to produce the same

accessing error.

If error control is used to cope with these types of

security hazards, it is clear that normal parity (which only

includes the data stored in memory) is not adequate because of

the possibility of serious errors caused by address bit failures.

A straightforward solution to this problem is to include the

j memory address in the parity calculation as is done in the

Pluribus. With this type of address and data parity, whenever a

I word is written into memory, the parity bit which is written with

(28] B.W. Lampson, "Dynamic Protection Structures," AFIPIS

Conference Proceedings 35, November 1969, pp. 27-38.
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that word is the exclusive-or of all the address and data bits.

When the word is read from memory, the parity bit is checked

against the exclusive-or of the address bits of the address that

was requested and the exclusive-or of the data retrieved from

memory. Therefore, if the memory system accesses the wrong

address because of a single bit error in the address logic, the

parity bit retrieved will be incorrect and the fault will be

detected. This approach still, of course, has the same weakness

as any parity scheme, namely that there is only one bit of

redundancy and thus only single bit errors are reliably detected.

The two methods which seem most attractive for assuring

secure operation of the memory system are checksums on all of the

important data in the system as was described in solution three

of the previous section and redundant execution of the critical

algorithms in two separate and physically independent systems.

We describe this solution in detail in section 5.2.2.

5.1.3 Security Hazards -- Processors

Processor (or processor bus) failures which produce security

hazards are few, both because there are few paths and storage

elements in a processor and because these paths and storage

elements are constantly exercised by many parts of the algorithm.
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As a result, a failure in a storage element or a data path in a

processor will affect many portions of the overall system and

will be detected rapidly. Processor failures which could affect

the 1/0 system were described in section 5.1.1. Failures in the

data path to memory or the address path to memory could be

security hazards in the way described in section 5.1.2. Failures

in the address path are much more serious because they are much

more likely to go undetected for a longer period of time.

5.1.4 Security Hazards -- Softw, re Flaws

Many software flaws are like the hardware failures described

in pr'evious sections in that they result in erroneous access to

system memory or a trarsfer of data to the wrong 1/0 device.

There seem to be three methods for dealing with software flaws:

1) the classic debugging cycle where flaws are detected and

repaired one by one as they reveal themselves;

2) controlled software environments such as user mode and

capabilities mechanisms; and

3) automatic or manual program verification.

The first approach is certainly simplest since debugging

must be done anyway, but requires that every flaw be active
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I before it can be repaired. It suffers from the weakness that one

can never be sure that the last flaw has been discovered.

Controlled software environments, whether produced by a full

I scale capabilities mechanism or a bi-modal user and supervisor

mode mechanism, provide a reasonably high degree of protection

for the code in the controlled environment. However, this

J approach has the disadvantage of requiring elaborate software

structures to deal with the controlled environments (setting up

I the capabilities and communicating the data between various

system modules). These structures are often large and are

themselves vulnerable to system flaws which represent security

hazards.

Automatic software verification is the most powerful means

of assuring secure software. Unfortunately the state-of-the.art

I in software verification limits its usefulness in validating

large systems such as we anticipate for the PMS.

1 5.1.5 Security hazards -- Subversion

Subversion can occur during system design, implementation,

dor operation. The primary techniques to deal with it are not

technological. They include:
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I1) government review

2) personnel screening

3) physical security

J 4) automatic verification.

5.1.6 Security Hazards -- Uscr Error

The most common form of security hazard is user error.

Although we do not currently envision any user programming in the

PMS, it is still important to guard against security failures

because of errors on the part of users. Two important classes of

these hazards are addressing a message incorrectly and addressing

it to a recipient who is not cleared to receive that class of

message.

A simple cause of misdirected messages is an error on the

part of the sender in specifying the recipients. For example, in

typing in the address for a message, the sender may misspell the

recipient's name; if that misspelled name happens to match some

other user of the system, it will be difficult for the system to

*detect the error. For example, in sending a message to Allen

Smith he may address it to SMITH, not realizing that the message

address for that user is ASMITH. The method for dealing with

K this type of failure is positive identification of each recipient
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I (i.e., ASMELTH - SMITH, Allen). Clearly some human engineering of

this type of mechanism is important. The first step is to make

it quite easy to use distribution lists for messages with

safeguards so that distribution lists are unique and distribution

list names are long enough to greatly reduce the possibility of

error.

To assure against sending classified messages to users whose

security clearance is below the level of the message, it is clear

that a failsafe way of specifying the security of the level for

the message must be implemented and the PMS must verify that each

recipient is authorized to receive messages of that security

level. The former is an administrative and human engineering

matter while the latter is relatively easy to do with software.

5.2 Secure System Design

Three important system design themes were developed during

j the study. First, division of the Pluribus message system into

two different software environments. In one environment the

I message parts are vunerable and the program is run in two

parallel but independent paths which are compared at their

conclusion. For the benefit of discussion, these two paths are

3called blue and green. The second environment exists for

11
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I processing complete and otherwise protected message segments.

This is a single program thread and is discussed here as the

orange path. The orange machine performs almost all of the

message handling tasks. The other two machines, the blue machine

and the green machine, operate in parallel and perform only those

tasks which are critical to the security of the system (those

which change checksummed data segments -- see below). Providing

two machines to per'form the critical portions of the message

handling tasks makes the system immune to an extremely wide range

of hardware failures.

Second, to establish secure operation in the primary

machine, every message in the primary machine, every fragment of

a message as it is being built up, and every important data

structure is protected by a powerful error detecting checksum.

Every message fragment also carries an access list. All

operations which require a modification to the checksum or which

1 perform input or output to users are performed independently by

the security kernel machines. This assures detection of any

I hardware error in the primary machine through the error detecting

I checksum and access list and in the security kernel machines
through independence. (Actually, as will be discussed in detail

I below, two checksums are used on every critical element.)
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I This checksumming technique, while permitting the separation

of critical and non-critical code, nevertheless allows an

efficient and cost-effective solution by minimizing the

repertoire of commands which must be performed by blue and green.

Furthermore, this separation simplifies the task of software

I validation, since the critical code is only a small portion of

the system software and is effectively insulated from the

non-critical code.

The third system design theme is redundancy in the 1/0

structure to assure secure operation in the face of hardware

failures in the 1/0 system. Much as redundancy in execution by

blue and green provides protection against security failures due

to hardware failures during message processing, redundancy in the

1/0 system assures against security failures due to hardware

failures in the 1/0 system.

These system design themes were developed primarily to

provide protection against hardware failures and accidental

Isoftware flaws. However, to assure a truly secure system,

protection must also be provided against user errors and

I malicious activity. User errors can only be detected through

3 careful human engineering of the critical portions of user

interaction such as establishing the list of addressees for a

11
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Imessage. Because the P14S is a dedicated single use system, most

of the problems associated with malicious users are avoided. For

example, since users do not write any software for the machine

there is no need to provide constrained environments for "user"

code. The problem of malicious activity on the part of the

software development personnel is best handled in this context by

software verification where possible and careful review of the

software development elsewhere. The techniques developed to cope

with hardware failures and accidental software flaws also provide

some protection against the actions of malicious programmers.

In short, we have developed a system design based on the

Pluribus which assures secure message processing through a

carefully engineered combination of proven tcchniques. These

techniques, which will be discussed in the following subsections,

may be summarized as:

1) checksummned messages

2) redundant execution

3) physical separation

4I) secure 1/0 structure

5) software verification.
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This system design has an inherently high degree of

security. It provides mechanisms which assure that security

failures will not occur through any single hardware failure or

Iany single software flaw. Furthermore, to cope with multiple

failures, hardware or software failures which lead to a degraded

level of protection will be detected rapidly. The cost of

providing this protection is reasonably low both in its impact on

the throughput of the system and in the amount of equipment and

software which must be implemented.

Although the first four methods are designed primarily to

cope with hardware failures, they also provide a level of

software security which makes security failures through software

bugs extremely unlikely and detection of software flaws which

would be able to leak secure data relatively certain. This

combined with software verification of a small part of the code

permits a cost-effective solution to the software certification

I problem.

j5.2.1 Checksummed Data Units

Checksummed messages and checksummed data segments permit

efficient implementation of security in the PMS. The basic

I principle behind checksummed messages is as follows:

11
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I Every message and message fragment and every sensitive data

structure has a list of users with access rights to that data and

Itwo checksums (which we call blue and green) to insure the

integrity and continuity of the data and access list. The orang;e

machine never changes any of the data in these checksurmed

segments nor does it ever adjust a checksum on these segments.

Furthermore, we take care to assure that an item without a valid

checksum will not be permitted to leave the PMS. Since all I/O

to users passes through the blue and green machines, a barrier

can be established. If the blue checksum is not valid, the blue

module will block the packet's exit; while if the green checksumn

is not valid, the green module will block its exit. If its

addressee or security limits are incorrect, both the blue and

Jgreen modules will block its exit. Since all of the data in the

orange machine is protected by a checksum and the orange module

jnever adjusts the checksum, it can handle all messages and

segments of messages during normal data processing with assurance

that if by accident some of the data in a segment is altered by

orange, that alteration will be detected by the checksum.

i As an example of the division of tasks and the

communications between blue/green and orange, consider the

actions during the generation of a new message. Characters enter

I
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both blue and green from the user's I/O device. Blue and green

perform the tasks of terminal echoing and monitoring for any

special control characters. They gather together a number of

characters into a data segment, and place the user name

associated with that port on the access list for the resulting

j data segment. Then both blue and green calculate their

respective checksum for the data segment. At this point, the

operations performed by blue and green are slightly different in

that the checksums that blue and green compute are different fro

each other. Orange (whose job it is to do most of the

processing) has established a character input queue; blue or

green (whichever gets there first) locks that queue to block

access to it by the other modules. Assuming that blue 7ains

access, bluc then writes the eritire data segment with its access

list characters and the blue checksum into a buffer, places it on

j the input character queue and marks it as having been serviced by

blue, and unlocks the character input queue. Green, either

I because it recognizes that it has some input for that terminal or

J because of a periodic attention to that queue, looks at the data

buffer and finds that it has been processed by blue but has not

I been processed by green. It therefore locks that queue, adds the

green checksum (calculated from green's internal buffer) to the

data segment, marks it as having been processed by green, and
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then unlocks the queue. Orange now wakes up (perhaps having been

prodded by blue and green) and notices that a new data segment is

on the character input queue and that it has been processed by

blue and green. Orange processes these input characters to

determine whether they represent control information or text and

performs the appropriate processing. For example, assume that a

message is being constructed and that these characters are the

next characters of the text of the message and should therefore

be appended to the message that is being compiled. Orange has

been maintaining a copy of the message as it has accumulated so

far, but must get help from blue and green to add thesc

characters to the end. It does this by making up a block whic

indicates the operation to be done (in this case joining the two

j data segments togethem) and which contains pointers to both of

these data segments and the destination buffer where the result

Iof the operation should be placed. Orange then places this block

on a queue for processing by blue and green. When blue and 6-een

find that this block is ready for processing, they copy the two

I segments into their own private memories and then check their

respective checksums. If the checksums are valid, the processing

I can continue. If not, further processing of that request is

blocked and an error message is generated. Blue and green then

independently make sure that the requested operation is valid and

I
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append the new characters to the text of the original message (in

fact only one of them needs to perform this operation). The list

of authorized users included in this new data segment is the

intersection of the access lists for the two original data

sebments. Blue and green calculate their respective checksums,4

append them to the data segment and mark it as having been

processed. One of them then moves it to the queue of operations

processed by blue and green. Should blue or green make an error

in performing the requested operation, the result will not be the

same in the two machines, and the checksums will not cover- the

same result. This will be detected the next time the checksumrmed

segment is given to blue and green. For example, if blue makes a

mistake and performs an incorrect operation, and furthermore, if

blue appends the wrong characters to the text of the origional

message, the green checksum will detect the error since it is

based on a copy of the message which has the correct characters

appended to it.

These checksums on data segments are in fact quite useful in

other contexts. For example in the file system (which is

naturally likely to make some errors) these checksums permit

error control. Notice that the file system can be entirely under

the control of the orange machine since the checksums on messages
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1 assure that errors in storage and retrieval of these data

segments will be detected. This removes a large portion of the

I processing burden from blue and green.

IIn addition to manipulating checksummed message fragments,

the blue and green machines must be able to perform certain

operations on other types of checksummed data structures such as

tables. As an example, we describe a possible implementation of

the login procedure on this machine. Before the login the port

is idle and no user name is associated with it. The user arrives

at the port and starts transmitting characters that indicate a

desire to make use of the system. As the characters arrive at

blue and green, they are gathered into checksuir.ed se:--ent , .

Since the user name is as yet unknown, the port nu-ber associated

I with that interface is placed on the access list of that data

segment to indicate where the characters came3 from. This

checksummed fragment of text is passed to orange as described

Iabove; orange performs the functions of command interpretation.

Orange sees that this is a new user who wants to log in and sends

I out a canned message asking for the user name and password. When

the user types his name and password and the checksummed data

segment finally reaches orange, orange looks ap the user name in

I the user directory and finds the password associated with that

1
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Iuser. (The user name and password data base is here assumed to

consist of a large number of short checksummed data segments each

containing a few user names, characteristics and passwords.) The

objective is for orange to convince both blue and green to

associate this new user name with that particular port number.

Orange passes a pointer to the correct section of the user name

and passwords data base and another pointer to the checksummed

data segment which contains the user name and password typed in

by the user. Blue and green now have the appropriate information

and can verify that the correct user name and password pair has

been presented and that the password table segment is valid, and

can bind that user name to that port.

This sequence illustrates one of the keys to efficient

system design: a technique which minimizes the memory and

processor requirements of blue and green. The orange machine

takes care of all of the protocol and maintains the user namne and

1 password data base. This saves a large amount of memory and

processor bandwidth in blue and green. Furtherminore, the various

I error routines and other aspects of user dialog are implemented

1only in orange. It is fair to say that orange does all of the

work and passes the results to blue and green for approval.

12
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This approach of physical separation between the critical

and non-critical portions of the machine together with

checksummed data segments in the non-critical portion of the

machine offers protection against hardware failures and software

faults while providing a lesser degree of protection against

malicious code in the non-critical portion of the machine. Since

every critical element of data in the orange machine is protected

I by a checksumi, single hardware faults in the orange machine do

Inot represent security hazards. While a hardware failure may

alter the text of the message, it will be unable to preserve a

j correct checksum. It is conceivable that a hardware or software

flaw in orange could produce a correctly checksuqimed segment with

I bad data. However, it is extrefiely unlikely, particularly since

there is no code in orance which calculates checksums. Such code

is totally unlike other code, and the chance of a flaw

duplicating this code is vanishingly small. Similarly, a

software flaw in the orange machine may erroneously present the

1 wrong piece of data for an operation; however, the checksum and

4 1access list will permit blue and green to detect the error.

We expect the code in blue and green to be quite small and

7 simple and reasonably easy to certify, whether through automatic

software verification or manual techniques. The orange code, on

1
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the other hand, is quite large. It includes the file system

software, editors, command interpreters, and the network protocol

modules. Because of its size, this software will be difficult to

verify given the state of the art of software verification. As

software verification techniques are improved, however,

verification of this portion may become practical. At that ti-me,

we will have technological insurance against malicious activity

on the part of the system programmers. Until then, the

techniques of personnel screening and over-the-shoulder review

can be used to provide the best available assurance of secure

software.

5.2.2 Redundant Execution

Redundant execution permits detection of a wide class of

hardware failures. By redundant execution we mean execution of

the same algorithms on two separate sets of hardware.

In its simplest, most brute force Implementation, redundant

execution would have two copies of the entire message system.

All inputs to the message system would be given to both systems.

All outputs of the message system would be generated

independently by the two systems and would be compared against

each other. The result would be passed on to the user only if
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the outputs from both of the machines agreed. This achieves a

high degree of protection against hardware failures since if a

1hardware failure occurred in one machine which would cause a

leakage of secure data, t]-at leakage would be detected unless the

same or a corresponding hardware failure occurred in the other

J machine as well. Unfortunately, this approach has the

disadvantages of 1) high cost because all of the equipment must

be doubled and further comparison logic must be added, and 2)

high technical difficulty because of problems with

synchronization between the two machines. We describe techniques

later in this section which preserve this high degree of

protection against hardware failures while also providing

reliability and security. While both machiies are in operation

j their results can be compared to detect hardware errors; however,

once one machine has failed, continued operation is still

possible if protection against security failures due to further

hardware errors can be tolerated in this degraded mode. If this

Iis unacceptable, secure and reliable operation can be achieved by

adding another copy of the critical hardware. The incremental

cost of adding security (triplication) to a reliable (duplicated)

system is only on the order of 50 in the critical portion of the

i system, which in turn is a small part of the overall system.
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I 5.2.3 Physical Separation

I The system design that we recommend uses physical separation

into three parts to achieve a high degree of security in a

reasonably efficient manner. The three physical modules are

referred to as blue, green, and orange. The blue and green

modules (executing the same algorithms) together act as the

security monitor. They perform tasks where hardware or software

failures are critical. The orange portion performs the bulk of

the operations, but calls on the blue and green portions to

perform critical parts. This system's structure is illustrated

in Figure 13.

In addition to the three basic modules the figure illustrates the

JI/O, which is connected to the blue and green modules. There is

a communications path between the blue and orange modules and

another one between the green and orange modules but there is no

communication directly from the blue module to the green module.

The key concept that makes this approach work is a mechaniZm

which assures that the operations performed by the orange machine

are in fact not critical to the security of the system. This

mechanism is the checksummed data unit which is described in the

next section.
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Figure 13 System Physical Separation
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j5.2.4 Secure I/O Structure

Secure operation of the I/O system will be assured by

requiring concurrence by blue and green on every system input and

output. Two methods of obtaining this concurrence are:

1. dual port interfaces with a port for blue and another

one for green; and

2. checksums and port identification numbers on all

segments.

These techniques were discussed previously in section 5.1.1

where we mentioned the security hazards in the I/O system. These

two techniques are appropriate in different portions of the I/O

system. The use of checksums and port identifications on all

data segments is an appropriate technique for a high speea device

which operates in a direct memory access mode. Since the amount

of logic in the device which is dedicated to accessing memory is

quite large, it is uneconomical to duplicate this logic in every

device and provide duplicate paths to independent memories. On

the other hand, dual port interfaces are quite appropriate for

j polled interfaces since the amount of logic associated with the

I/O bus is quite sm;ill.

1
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The use of checksums and port IDs in all segments naturally

leads to the possibility of putting that type of I/O device on

the orange machine provided that the format of the data packets

permits the I/O device to check whether this segment has been

authorized for output by blue and green (since the blue and green

machines must check the security level and user name access field

before a segment can be delivered to the user). This requires

that the devices be able to test the blue and green checksums.

These techniques are not necessary for the I/O devices in

the file system such as the disk and magnetic tape units, which

transmit complete checksummed data segments includin7 the

checksum, since we assume that the disks and magnetic tape units

are maintained in a physically secure environment along with thle

PMS computers.

The redundancy in the I/O system required to insure secure

operation interacts with the redundancy required in the system

for reliable operation. As we mentioned before, options exist

Swhere one could select reliably secure operation or,

alternatively, operation which is reliable but is only secure

jwhen all system components are operational. Even in achieving

the reliably secure system configuration, it is possible to

modify the structure of the Pluribus I/O system to achieve

reliability and security at a reasonably low cost.
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IFigure 111 illustrates a reliably secure configuration. The

orange machine is configured as a reliable Pluribus with

redundant processor and memory busses. A spare machine is

j included to execute the critical portions of the code should

either the blue or green machine fail. Notice that Simply making

j the blue and green machine reliable is an overly expensive

solution since not only must the machines be duplicated but also

the paths to both orange and the I/0 system must be duplicated,

which increases the cost of the critical portion of the system by

100%. The I/0 system is shown with three ports because in order

to assure security, two ports must be available even when one

port has failed, so that a spare mnu.',t be provided.

Figure 15 illustrates the structure of a polled I/0 device

in the system. It has three ports, one to each of the blue,

green, and spare machines with independent address recognition

and 1/0 interface logic for each of these parts. These three

sets of I/0 logic feed the logic which is dedicated to the data

transaction of this particular 1/0 device. The path to each of

the 1/0 busses includes a watchdog timer as well as the device

address logic and data logic. During normal operations, blue,

4 green, and spare machines access every I/0 device periodically.

The logic in each I/0 device which is responsible for insuring
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IFigure 15 Polled I/0 Device Structure
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I that at. least two of' the critical machines concur on every input

or output operation uses these watchdog timers in the following

way: If the watchdog timer for one of' the I/O busses indicates

that that I/O bus is active, then the data on that I/O bus must

agree with every transaction that the device performs. If,

however, the watchdog timer indicates that the I/O bus is idle

(i.e., the machine on that I/O bus has failed), then concurrence

on that I/O bus is not necessary before a transaction can be

processed by the I/O device. This logic furthermore requires

that at least two of the watchdog timers indicate activity,

otherwise no I/O transactions will be performed by thit devico.

This technique assures that concurrence from at le'st two

machines will be required on every I/O transaction, yet onl' t,o

of the three machines need be operational at one time. This is

an attractive approach because it provides both security -nd

reliability with only a small increase in the cost of the overall

j system.

15.2.5 Software Verification

As i.; have alluded to above, in Section 5.1.4 and in the

I introduction to Section 5.2, software verification will be

g required for some critic;al portions of the system. We have

m'nimized the portions of the system requiring software

1
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verification and grouped them together to be run on the

physically separated green and blue portions of the hardware

system. Thus, we have separated out a "kernel" of the system to

be verified. This is in keeping with the current

state-of-the-art of software verification for which "security

kernels" are frequently used.

Using the comon nomenclature, a security kernel is a

software module used to au7:mictt c-xisting; hardware provisions for

enforcing access controls within a computer system. The basic

idea is that a correctly designed and implemented security kernel

can enforce the security requirements for any unvalidrtcd

prograim:s running on it. For example, at MITRE a security kernel

has been desirned on a PDP-11/45 and its correctness is being

proved[29]. They use two steps to prove the correctness of a

security kernel. The first step is to validate a formal

specification of the program with respect to axioms for a secure

system. The second step is to demonstrate or prove the correct

implementation of the programs.

[291 J.K. Millen, "'eeurity Kernel Validation in Pract ic ",
CACf1, Vol. 19, No. 5, May 1976, pp. 243-250; W.L. Schiller, "The
Design and Speci ficat ion of a Security Kernel for the PDP-1 1/4)5",
ESD-TR-75-69, the MITir, Corporation, Bedford, Mass., March 1975.

I
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We will not go into further detail in this report about the

techniques for software verification. We have recently submitted

to ARPA a document[301 which demonstrates our understanding of

this area. Suffice it to say that for the PMS we would use a mix

of the pragmatic and the theoretic similar to that proposed in

the above-mentioned document, maximizing the probability of

obtaining a verified operational system, rather than becoming

bogged down in abstractions or verifying a toy system.

Note that in the design of conventional security kernels, it

is assumed that the hardware will work properly (i.e., all

programs in a security kernel will be executed correctly by the

hardware). No attempt is made to prevent security violations due

to hardware failures. In the real world, the hardware will go

down. For example, the contents of the data structures with a

security kernel may be changed by a memory failure. Hardware

failures definitely should be considered in a security kernel

design (i.e., how to design a reliable security kernel), and we

have done this.

[301 BBN Proposal P76-CSY-80, "Consolidation, Documentation,
Certification, and Maintenance of the UNIX Operating System," pp.
22-56, Appendix I.
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5.3 Conclusions

The methods described in this section combine to create a

secure environment for message processing. The system is designed

to protect against failures from both hardware and software. I/C

is protected from failure by duplication and assists in failure

detection by monitoring message checksums. Data interference is

protected against by physical separation of the I/0 equipment.

Finally, message integrity is protected by separation of blue and

green processes and by completed message checksums which are

verified at each critical point.

We e-ph7size aa-n that this design goes much further than

anyone has ever gone before. Previous systems have been built

usin, redundant hardware to protect against hardware failures.

Previous systems have also used verified software to protect

against software failures. To our knowledge, no one has

previously addressed the issue of preventing failures when code,

albeit verified, is run on hardware which can fail, the only

truly realistic assumption. Further, this has all been done

without inordinate amounts of costly hardware.

1
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6. HIGH ORDF t LANGUAGE

It is our opinion that the software for a PMS should be

written in a high order language (HOL). The reasons for such a

decision are well known and need merely be summarized here:

- Preparation efficiency and productivity increase using a

HOL.

- HOL code is easier to read and therefore easier to modify

than assembler code.

- HOL Pode is easier to maintain.

- If verification is to be done, it is practically possible

only if a HOL is used.

Given these advantag7es for usinc! a HOL, why is there any

question about using one? Two objections stand out: existence

of a compiler, and efficiency of the code. No existing compiler

for any HOL produces code for the Pluribus. Thus, a decision to

use a HOL for the PMS would require creating such a compiler.

Efficiency of the co:,ipiled code then becomes an issue. The PIS

will be a high bandwidth syste~m, requiring truly efficient code.

All previous Pluribus code has been written in assembly languaige.

A compiler that produces really high quality code at the state of

I
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the art in compiler production is quite expensive. Of course,

use of a less efficient compiler can be compensated for in a

I Pluribus environment by using, more hardware, so the issues

involved in the tradeoff between hardware and software costs are

relatively straightforward.

In spite of these objections, the possible payoffs appear to

be large enough that we have investigated the matter further. A

compiler for SUE would not run on Pluribus but would be a

cross-compiler from another machine, such as TENEX. Since the

SUE processor is similar in many ways to the PDP-11, we have

investigated the possibility of modifying some existing compiler

for the PDP-11 that runs on TENEX. Two obvious choices are BCPL

and BLISS.I
Two compilers for BCPL currently run on TENEX -- one for the

j PDP-1O and one for the PDP-11. The former has just gone through

an extensive improvement process and now produces moderately good

code. Although one might guess that a compiler for SUE could be

I most readily produced by modifying the PDP-11 compiler, our

investigation has revealed that the PDP-1O compiler is a better

starting point. In addition to the fact that the PDP-1O compiler

is a better compiler, there is the problem that the PDP-11

compiler makes extensive use of the PDP-11 memory-to-memory

I - 136 -
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opcodes which are not available in the SUE. We estimate that in

perhaps six person months we could modify the existing TENEX BCPL

compiler for the PDP-10 so that it would produce moderately good

SUE code.

The BLISS language was developed at Carnegie Mellon

University as a system programming language for the PDP-1O;

BLIS11 is a BLISS compiler for the PDP-11 that runs on the PDP-10

and can be run under TENEX. The people at Carnegie have put a

lot of effort into code optimization, so that BLIS11 produces

very high quality code -- probably about as good as the average

programmer, although a skilled programmer does better when he is

trying hard. The code generation strategies used in BLIS11 turn

out to be more easily adapted to the SUE than are those used in

the BCPL compiler, so we estimate that in about three person

months we might have a quite high quality BLISS compiler for the

SUE, running on TENEX.

The verification efforts that might be part of this project

suggest Euclid as a candidate, since it has been designed

specifically to facilitate verification. Although this advantage

cannot be ignored, Euclid has some serious problems that must be

considered. It is not clear that the language design process is
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at its end, since the latest document on Euclid[31] is marked as

a draft and apparently is to be modified. So, although the

language appears attractive in its present form, we have no way

to know how it will look when finished. Moreover, there are some

language issues in the present document that give us pause. The

document states (page 2) that the "design does not specifically

address the problems of constructing very large programs; we

believe most of the programs written in Euclid will be smaller

than about 2000 lines." It is difficult for us to evaluate the

implications of this statement, although it seems likely that the

code to be verified for the PMS will almost certainly be

considerably larger, and the total system will be at least an

order of magnitude larger. The document goes on to "assume that

the user is willing . .. to obtain verifiability by giving up some

run-time efficiency, and by tolerating some inconvenience in

writing his programs." Again, this is difficult to evaluate.

In addition to these potential language problems, there are

*some possible problems with the implementation. As mentioned

above, the language design process is not yet complete. It

* follows that no compiler is yet available and implementation of

[31] "Euclid Report", B. W. Lampson, J. J. Horning, R. L. London,

J. G. Mitchel, and G. J. Popek, 20 Apr 76, DRAFT for criticism.
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one can hardly start before completion of language design. On

the other hand, a Euclid compiler could probably be created by

modifying an existing PASCAL compiler, not likely to be a large

task. However, current PASCAL compilers usually require a

runtime support package, which would be awkward at best in the

Pluribus environment. Also, the PASCAL compiler for the PDP-10

does not produce particularly efficient code.

Euclid has too many unknowns for us to evaluate it properly.

The compiler situation for BLIS11 is much better than that for

BCPL, although BCPL has the advantage that all needed expertise

is in house. As a language, we prefer BCPL to BLISS, although

the differences are not of great significance. BLISS has no

"goto" statement, sometimes a moderately serious lack. Further,

one could no'- readily be added, since the code optimization

strategies which make the compiler so attractive are heavily

dependent on there being no "goto". Although we favor the use of

some HOL to be used in implementing a PMS, the situation is

presently sufficiently fluid that it is premature to select a

language now; the decision should be made just before starting

the implementation. However, if we had to make a choice now, we

would select BCPL.
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Ignoring temporarily the issue of which HOL to use, we have

given some thought to what modifications might be needed in any

HOL to adapt it to the somewhat unusual environment presented by

Pluribus. For convenience, our thinking has been in terms of

BCPL. We note the following problems that would have to be

solved as part of an effort to produce a useful BCPL compiler for

the Pluribus.

1. We must modify an existing compiler to produce SUE code.

2. The Pluribus uses map registers to permit a processor with a

16-bit address to access 2**20 bytes of memory. Programmers

find that dealing with the map registers efficiently is a

significant part of writing good Pluribus code. Ideally, the

compiler would totally insulate the programmer from this

task, but this might be too much to hope for. The proper

answer is probably to provide the programmer with linguistic

constructs suitable for advising the compiler about how best

to handle map registers.

3. Life in a multi-processor environment requires certain

3 special linguistic constructs, such as those to deal with

interlocks, explicit parallel processing, etc.

1
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4. Pluribus code is broken into short (in time) segments called

strips, and in each Pluribus application there is the

requirement that no strip execute for more than some number

of milliseconds. The compiler may be able to help the

programmer deal with strips, but it will probably be

necessary for the programmer to advise the compiler.

5. Although there is no "operating system" as such in Pluribus,

there is the reliability package that is part of all Pluribus

systems. This is written in assembly language, and

provisions will be needed to interface the HOL to it.

6. BCPL, BLISS and (apparently) Euclid require a stack at run

time. It is not immediately obvious what this means in a

multi-processor. Should there be a stack per processor? Or

one per Pluribus PID level? Or a stack per user?

In addition to its capability of supporting a reliable and

secure message system, Pluribus also offers the capability of

high throughput through application of its multiple processors.

IFurthermore, as has been mentioned above, the task of message

handling is in many ways a "natural" for a multi-processor, due

to the parallelism inherent in the message-handling function.

414
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This brings us to an important issue, however: to what

extent do we expect parallelism to be discovered by the compiler,

and to what extent do we expect the programmer to specify it?

Our view is that the compiler will do very little sophisticated

parallelism discovery. Automatic discovery of parallelism is a

highly complex task which should not be placed in series with

development of a message system. Instead, we expect that the

programmer will maintain control over the parallel processing in

the algorithm.
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7. SYSTEM PERFORMANCE AND SIZING

In this section, we will investigate the configuration of an

actual PMS. Since a Pluribus is so modular, we need to determine

our requirements in many dimensions including processing power,

memory size, and I/O. A convenient metric for message systems is

the number of users, so we will attack this problem by

determining the load placed on the system by a typical user.

There are, in general, two approaches to determining this

load: analysis and analogy. When analysis is used, the various

tasks performed in serving user requests are abstracted and

estimates are made about 1) the processing time required to

perform each task, 2) the memory space required to hold the

programn which perform.s these tasks and that required to hold the

user data during execution of these tasks, and 3) the mass

storage requirements associated with this aspect of the system.

This approach can bE accurate if there is a body of experience on

which these estimates can be made. Furthermore, this approach is

attractive when a system is being moved from one environment to

another. On the other hand, the second approach to system

sizing, analogy, considers as a whole the system to be developed

* and compares it to the performance of a similar existing system.

Analogy has the advantage of providing answers to overall system
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performance questions when it is not possible to give accurate

estimates for the components of the system.

We have combined these two approaches to determine the

configuration for PMSs. We have used measurements performed on

an existing message system as an example. From these

measurements, we have derived statistics on the average user

activity (e.g., number of messages sent, number of addressees,

time spent in other commands, etc.) and on the resulting

performance of the system (e.g., CPU time to perform each task).

This statistics gathering activity provides the analogy. We have

extended it through analysis to determine from the user

activities the required disk storage, network bandwidth, etc.

The results of this study and of our analysis are described

below, followed by a summary of the tradeoff between the number

of users supported by the system and the cost of the system.

We faced a dilemma in trying to choose an analogous system

to measure. As has been mentioned, there is a plethora of

message systems in the world, with widely differing

characteristics. By the very act of choosing one of them to look

at in detail, we would be inviting our measurements to be biased

by the prejudices and inefficiencies of that particular

implementation.
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But this need not be disastrous. Although they differ

greatly in style, message systems really have many things in

common. They all must perform the same basic functions and thus,

to some degree of accuracy, will have similar processing and

memory requirements.

Independent of the choice of message system, another

inaccuracy arises with respect to the user population. The

notion of the load attributable to a "user" depends greatly on

whether that user spends his whole day at his terminal, or

whether his mail activity is only peripheral to his primary job.

We did, however, have to choose a system and an environment

to at least give a starting point for our calculations. We

decided to use Hermes on TENEX, knowing full well that this would

not be a perfect analogy to the system which would be ultimately

developed for Pluribus. This choice has the advantage,- of

proximity of the implementors and a good instrumentation package

built into the system.

7.1 Measurement of an Existing System

The instrunentation of Hermes is implemented as follows. As

execution of each command starts and ends, the name of the

command, the elapsed real time, the elapsed CPU time, and other
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selected data are recorded. Through this mechanism, the amount

of CPU time required for the execution of each command was

determined as well as the frequency of use of the various

commands. The interval between the end of one command and the

execution of the next command was also determined in this way.

Table 1 Measurements of Hermes

Total Sessions: 973
Avg. Real Time: 11422 sec.
Avg. CPU Time: 16.3 sec.

Total Messages: 572
Avg. Addressees per Message: 2.67
Avg. Length of a Message: 12314.7 chars.

Table 1 summarizes the results of this study. Over 900

sessions were measured over a period of about a week at several

TENEX sites. The average session lasted 1422 seconds (about 2~4

minutes), during which time 16.3 seconds of processor time were

used. Dividing these two numbers, we find the maximum number of

users which could be using the system at the same time:

1422/16.3 = 87 users

However, because of queuing limitations, the practical limit to

the number of users will be much lower. Queuing effects

seriously degrade operation of a system if it runs above about
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180% of capacity for short periods of time. The calculation is

t h e n :8 7 * .8 = 7 0 u s e r s

Thus, a TENEX should be able to support about 70 active Hermes

users. If the PDP-10 were programmed to run Hermes without the

overhead of the operating system, and if Hermes were rewritten to

increase its efficiency, this number could be increased

significantly. However, the PDP-10 is not a multiprocessor, so

it is not practical to increase the number of processors

performing these tasks. One of the central advantages of the

Pluribus is the ability to add resources to satisfy a higher

load.

We have used the statistics about the frequency of user

command usage to determine the amount of disk activity produced

by a user action. These statistics are given in Table 2. This

table gives a breakdown of the 973 sessions which were summarized

in Table 1. It gives the average number of times the coivmand is

used per session, the average real elapsed time durinig execution

of the command (in seconds), and the average CPU time consumed in

- execution of the command (in milliseconds). For example, the

"REPLY" command was used on the average .222 times per session,

and the average elapsed time from the termination of the command

1 -1'47-



i
Report No. 3339 Bolt Beranek and Newman Inc.

Table 2 Command Statistics

COMMAND USAGE REAL TIME CPU TIME

(SEC) (MILLISEC)

Compose Messages:

REPLY .2219938 347.6111 4568.19
EDIT .08119219 167.6709 1646.835
COMPO .2291881 502.1031 4975.422
CREAT .2045221 426.1307 5010.789
SEND .01336074 16.38462 1220.0
MAILE .09660843 335.9681 1444.234
FORWA .1181912 341.1826 3991.191
ERASE .02055498 13.0 221.75
SHOW .08941418 18.05747 739.6092
SUGGE .004110997 622.0 7378.25
EXPLO .006166495 331.5 5449.333

Look at Messages:

PRINT .7790339 92.61609 2593.319
S .2127441 21.19807 1898.894
GET .3597122 18.46 24140837
UPAR .03494347 26.44118 1314.412
LF .7800617 24.16733 1149.494
SURVE .393628 36.03916 2872.624

I TRANS .01849949 18.22222 3536.222
j CONSI .02363823 11.95652 869.7826

LIST .09249743 24.56667 5452.856
SUMMA .05035971 23.87755 3115.49
JUMP .002055498 3.0 101.5

J Manipulate Messages:

DELET .4655704 6.320088 286.5607
FILE .3627955 19.20397 978.6912
UNDEL .01849949 3.222222 275.0556
D .07194245 4.428571 283.8714
MOVE .1130524 20.56364 1130.209

I
I - 148 -

I
-! -



Report No. 3339 Bolt Beranek and Newman Inc.

Hermes Houskeeping:

EXPUN .04110997 8.6 2221.75
QUIT .4316547 5.364286 565.7286
BSYS .04316547 19.69048 1964.31
Q .5477903 5.245779 553.2176
STATU .1212744 1.771186 177.6949
CNTO .09146968 24.62921 537.5169
MARK .03597122 8.0 690.5143
EXPOR .01336074 14.84615 601.5385
EXIT .02466598 26.125 4271.5
COPY .004110997 12.75 428.5
USE .01130524 11.09091 220.1818
IMPOR .002055498 9.0 418.5

Miscellaneous:

EXEC .1336074 1427.923 724.7692
MAILS .02980473 16.68966 1098.483
VERSI .006166495 24.83333 986.3333
RETRI .006166495 8.0 124.5
CHECK .006166495 8.0 666.3333
DESCR .05960946 38.67241 1155.603
NEWS .02158273 42.47619 1012.619
JOBST .002055498 3.5 754.5
EXPLA .004110997 338.0 4109.25
DIREC .03494347 21.08824 1162.794
HELP .01233299 466.75 7185.917
DAYTI .005138746 5.0 97.6
SEMI .002055498 6.0 116.0
TALK .001027749 309.0 431.0

line to the return of the prompt for the next command was 347.6

seconds. The average CPU time consumed during execution of the

"REPLY" command was 4568 milliseconds. The elapsed real time for

some commands is quite large because it includes the time it took

for the user to fill in answers to various subcommands.
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I The messages are grouped into those which create or compose

messages, those which examine messages, those which manipulate or

file messages, those which perform internal tasks, and those

I which provide miscellaneous features (such as the time of day).

From these statistics, we have determined the load produced by an

I "average" user.

I 7.2 Processor, Memory, and Disk Requirements

Understanding the necessary inaccuracies of our procedure,

we can now extend the results derived in the previous section

from an existing system to the proposed Pluribus architecture in

order to determine the processing, memory, and disk requirements.

Our goal is a system which will support 1000 users.

As we calculated earlier, one TENEX processor can support 70

users. As a result, a TENEX-based message system which supported

1000 users would require 114 PDP-10 processors. A Pluribus

processor is about half as fast as a TENEX processor. However,

we feel that the TENEX processor is being used at less than full

efficiency for Hermes for the following two reasons:

-TENEX is an extremely powerful operating system, but much

Hof its generality is not being used by Hermes.
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- Hermes itself was not written with run-time efficiency as

a goal. As a result it is much less efficient than it

could be.

We might therefore estimate that the PDP-10 processor is about

50% efficient for Hermes, and come to the (somewhat surprising)

conclusion that a Pluribus processor would about equal a PDP-10

processor for this application. As a result, we estimate that

one Pluribus processor will serve about 70 users. Thus a

14-processor Pluribus system would be necessary to support 1000

users.

The requirements for disk space can be divided into two

classes: message file storage and working storage. The volume of

message file storage dominates the volume of working storage to

such a great extent that it is safe to ignore the latter. Our

results from the Hermes study (see Table 1) showed that during

973 sessions, 572 messages were created. The average session

lasted about 24 minutes. This corresponds to an average message

generation rate of 1.5 messages per user per hour, or 12 messages

jper day. At an average message size of 1234 characters and

assuming 20% overhead, a user generates 17,800 characters of

message storage per day. If we assume that these numbers are

valid for the future Pluribus environment, then we can compute

- 151 -



Report No. 3339 Bolt Beranek and Newman Inc.

the amount of disk storage required as a function of the number

of users and the length of time messages are retained by the

formula:

Disk Size (megabytes) =Days *Users .0178

For our 1000 user model, the disk storage requirement varies as

follows:

Storage (Days) Disk Size

10 178 megabytes

20 356 megabytes

30 5314 megabytes

60 1000 megabytes

Since the largest disk drives conveniently available have a 300

megabyte capacity, multiple drives are required for long term

storage. Thus, the price of disk storage is a direct function of

storage time.

There is a further question of whether the bandwidth to and

from a disk is adequate to support the load of 1000 users. In

this case, as in the case of disk volume, there are two types of

load: message storage and retrieval and temporary storage (like

swapping). From an analysis of the Hermes statistics, we have
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I found that the load on the disk due to message storage and

retrieval is about 7.5 characters per second per user. Thus,

1000 users require 7500 characters per second, a figure well

within the capability of these disks. The requirements for

temporary disk access are both greater and much harder to

Iestimate. Indeed, the swapping behavior of a multiprocessor

multi-user system is outside the scope of this study. Actual

determination of this parameter can be made after an initial

implementation. If it turns out that a 3330 type disk cannot

support this access rate (which is quite likely), there are at

I least two alternatives: drums (or fixed head disks) and EBAMs.

Since the access time of EBAMs is about three orders of magnitude

faster than disks, we feel comfortable that the short term

storage needs of even a 1000 user system can be met by an EBAM

device. A smaller system may be adequately supported by a disk

I alone.

J The main memory requirements of the message system are also

1 divisible into two types: program and system variables and user

Istorage. We again begin by analogy to an existing system. The

J Hermes memory requirements are summarized in Table 3.
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Table 3 Hermes Memory Requirements

Pure Code: 77300 words

Library Routines: 7000 words

Auxiliary: 12000 words

Total: 96300 words

Per User Storage: 7500 words

The TENEX word is 36 bits long while the Pluribus word is

only 16 bits. To compensate for this difference, we estimate

that a TENEX word is equivalent to two Pluribus words. As a

result, the code requirement to implement a similar message

system on the Pluribus would be 200,000 Pluribus words.

We believe that these code requirements are low enough that

it would make sense to provide enough memory to keep code in

memory all of the time, rather than resorting to complex

techniques of overlays or code swapping. Furthermore, in a

multiprocessor environment it could prove to be difficult to

implement these mechanisms. By keeping the code in memory, we

avoid these problems at a reasonable cost, and achieve efficient

operation.
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We believe that in an optimized implementation, the amount

of memory necessary to support an individual user can be much

less than implied by our analogy, perhaps on the order of 100

words per user always resident in memory plus a few thousand

words of working storage swapped among the active users.

7.3 Terminal Access

Up to now, we have been discussing the PMS as though it were

a stand-alone host connected to a communications network, but

without terminals of its own. As mentioned in Section 3.1,

another attractive approach is to integrate the PMS with a

Pluribus TIP to support local users. If this were done, the

number of processors and the amount of memory needed would

increase. The Pluribus TIP code requires about 6,000 words of

memory plus 40 words per terminal. The processor requirement for

the Pluribus TIP is .01 processors per terminal plus one

processor for background and periodic tasks. Thus, a 1000 user

PMS requires an additional 46,000 words of memory, and 11 extra

processors to support the terminals.

In addition to the processor and memory requirements,

terminal support obviously requires termination points for the

terminals. The Pluribus TIP uses the Multi-Line Controller which
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was developed for the Honeywell 316 TIP. One MLC can support up

to 63 terminals. As a result, a 1000 user system with all local

users would require 16 MLCs. (Such an extremely concentrated

environment would also probably require other termination

equipment such as a tech control installation.)

7.4 Pluribus Configurations Summary

Throughout this section, we have been assuming a

configuration that would support 1000 users. Let us now

summarize that system, assuming that the users would access the

PMS via a network. This system would have these characteristics:

- 17 processors

- 10 processor busses

- 2 300-megabyte disc drives

- 2 tape drives

- 400,000 words of memory

- 3 memory I/O busses

- doubled interfaces to the disks, tapes and network

- 1 4-megaword EBAM

This configuration can take advantage of the ability to combine

memory and I/O busses into one logical bus to reduce the number

of bus couplers. The system described above has enough
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redundancy to survive any failure, including entire busses,

without significant degradation. It also includes the three

small "sub-machines" to perform the blue and green security

functions (one is a spare).

This system is exemplary of a large PMS which would be used

in an actual operational environment. We can of course take

advantage of the inherent modularity of the Pluribus to configure

a system for whatever characteristics a particular environment

might have.

In any event, the system as described is much larger than

would be needed for the initial development of the P14S software

and security techniques. We have therefore included a summary of

another smaller configuration which might be appropriate for

development. This machine could later be expanded to a larger

operational system, if desired. The system is configured to

support about 100 users and has provision for both local and

network terminal connections. Its characteristics:

-7 processors

-5 processor busses

-100 megabytes of disk memory

-1 Multi-Line Controller
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--1 tape drive

- 250,000 words of memory

I- 2 memory 1/O busses

- doubled interface to the network

- doubled interface to the tapes and disk

Once again, the system can be configured to take advantage of

combined memory and 1/O busses to reduce the cost of the system.

This system has one processor for each of the blue, green, and

spare sub-machines and four for orange. This system has less

redundancy in the processor system than the previous one, but

because two processors can support 1'40 users, even with one bus

out of service, there is still enough orange processing power to

support the users. The memory is not configured to be fully

redundant, so the system cannot survive the loss of a memory bus

as a whole, although it can proceed if any memory element is

defective.
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I Appendix A The Pluribus "Stage" System

I The claim is made in the body of this report that the

Pluribus architecture permits programs to be written in a manner

that affords high rteliability. To help the reader to understand

this claim, we present in this appendix a more detailed

description of the Pluribus reliability package and an example of

its use in one particular Pluribus application -- the IMP. This

appendix assumes detailed knowLedge of Pluribus architecture;

see, e.g., [32].

The "stage" subsystem has the job of keeping track of just

which resources, both hardware and software, are available in a

Pluribus system, and coordinating their use. An application

built on the stage system, be it an IMP, a CCP or whatever, would

execute in a virtual environment where a (working) subset of the

avai'.able machine resources is set up for the use of the system

and the remaining resources are either kept in reserve as spares

or are being held aside pending repairs. If a resource in use

fails, the stage subsystem will automatically switch a spare into

the system's active environment, allowing the system to continue

with at most the need to reinitialize some portion of itself.

I 32] Pluribus Document 2, "System Handbook," BBN Report 2930,
January 1975.
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I The stage subsystem is organized as a series of hierarchical

routines (or stages) which all of the available processors run

'I asynchronously and in parallel. Each stage determines just what

resources are available in some portion of the system's

environment and selects some of these resources for use by the

system. A processor may not proceed on to the execution of the

next stage in the hierarchy until it has reached agreement with

all of the other processors, and the application system is not

run until all of the stages have been executed. Even after a

processor begins running the application system, it continues to

regularly run the checks of each stage incrementally and if a

change in the environmient is detected by this process the

processor "traps" back to the appropriate stage, makes any

necessary changes to the system's virtual environment and then

works up through the later stages to resume running the

application system. If the change is minor the system will

continue, having experienced only a short "hiccough," while if

the change is significant the system will have to reinitialize

itself.

The basic mechanism by which the processors reach agreement

in each stage is called a "consensus". Each function of each

stage has a separate consensus word. As a processor begins
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r performing any particular stage function, it "checks in" to the

appropriate consensus by setting in the consensus word a bit

representing the processor. Thus, each consensus word always

contains the bits of all the processors participating in that

particular function. If a processor detects an anomaly, it set

its bit in a "fixit-word". If the fixit-word and the consensus

agree, then the repair, update, table change, or whatever, is

made and the fixit-word cleared; if the fixit-word and the

consensus do not agree, the processor hangs at that point in the

stage system waiting either fcr itself to be repaired, in which

case it will no longer desire the fix and will continue through

the stages, or for all the other processors to notice the

anomaly, in which case the fixit-word will eventually agree with

the consensus, the fix will be made, and all the processors will

be freed to continue through the stages.

For example, suppose a processor loses its coupler to one of

the memory busses. It will eventually notice that a portion of

memory is missing and will check into the appropriate fixit-word

to have the system's available memory tables updated. However,

none of the other processors will see any anomaly, and hence the

fix will never be allowed. The processor will be stuck at that

point in its stage subsystem until its coupler is repaired. The
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processor's own bit will be timed out of the higher consensuses,

the processor will not run the application system, and the

processor will have effectively isolated itself from causing any

trouble to the properly functioning processors. Now suppose

instead that the memory bus itself develops some problem. For

each processor the scenario proceeds as above (in fact, the

individual processor cannot tell the difference between this case

and the last!), but in this case all the processors will see that

some memory is missing and hence they will all check into the

appropriate fixit-word. Thus, the system's available memory

tables will be updated and all the processors will resume running

the system. Notice that in both cases, precisely and only the

failing component was removed from the system, which otherwise

continued to run.

In the IMP application, the code is divided into 9 separate

asynchronous stages, numbered from 0 to 8. The system

periodically executes each of these components. Each process or

executes them and as soon as a test fails, that processor will

only execute tests with number less than or equal to the number

of the failed test. Each test has common exit conventions;

there is a good exit and bad exit from each test. The bad exit

* causes the execution only of tests with number less than or equal

to current number.
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Stage 0 sets up the interrupt vectors for the processor,

both the interrupt vectors for devices and the interrupt vectors

for quits and illegal instructions. It then checksums the local

memory so that future changes to local memory can be found. The

stage fails if the checksum does not check with the previous

checksum.

Stage 1 finds those pages of common memory that are

available. It executes a test on each of the pages and builds a

table using the constant table of all available pages. All

active processors mnust agree before an entry can be changed in

the table. The page on which all processors will communicate is

chosen, and its map is stored in a register.

In Stage 2, processors discover who they are and what set of

processors exist in the machine.

Stage 3 recomputes the checksum of common memory pages.

Stage 4 reconfigures common memory, assigning various pages

to the various tasks. It attempts to keep variables and buffers

pages off the code bus and to keep copies of pages on separate

busses. It makes copies when they are needed.
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Stages 0 through ~4 reside in local memory for each processor

since it is not known which pages of common memory are available.

I After stage 4i, this is known, so stages 5 and up reside in common

memory code page three.

Stage 5 performs initialization of buffers and variable

pages as needed. The successful operation of the system holds

timers which inhibit any initialization from happening.

I Stage 6 checks the 1/0 devices to see which exit. The check
made is a simple read of a device register to see if a quit

occurs. Existing devices are noted in a table set up for the

configuration module. This stage also chooses which PIDs are

I usable and whi.ch clock will be used. Variables are set to the

g PID numbers of this clock so that clock-driven modules will start

only on the clock in use.

Stage 7 finds which processors are usable and keeps them

running. Each processor checks to see if the other processor on

its bus should be started. All processors cooperate to start

processors on separate busses.

j Stage 8 performs some checks which must be done by each

processor.
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I The application programs reside at stages 9 and above.
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Appendix B Description of the Pluribus

This report describes a proposed implementation of a message

handling facility on BBN's Pluribus hardware. Although we

recognize that most readers in the ARPA office are familiar with

this hardware and the motives that led to its design, for the

sake of completeness and for the benefit of non-ARPA readers we

feel it appropriate to discuss these matters in this chapter. We

present the motivational issues in the remainder of this section,

the Pluribus hardware in Section B.1, and issues relating to

Pluribus software in Section B.2.

The Pluribus computer is a modular multiprocessor based on a

commercial minicomputer. Its architecture is an outgrowth of the

new and flexible computer structures which began to appear in the

early '70s. The primary goals of the Pluribus are flexibility

(i.e., the ability to expand or contract smoothly over wide

ranges) and reliability. Originally, high throughput was

considered a primary goal, but this was soon seen to be balanced

by the need for a cheaper, smaller machine with low throughput.

Bandwidth is thus one of several domains in which flexibility is

desired.
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Let us consider the issue of flexibility in a little more

depth. In most machines certain hardware "utilities" are shared

among the various logical units. These include rack space,

power, cooling, etc. Generally these utilities come in fairly

large units, with correspondingly large steps in cost. Thus, one

can typically add, say, interfaces up to a certain point; at

which time a new rack, power supply, etc., must be added to

permit further expansion. Even then, one may run out of logical

channels or come up against other hard boundaries. The Honeywell

516/316, for example, has a fixed memory channel arrangement

which limits connection to a total of at most seven high-speed

circuits and/or Host computers. The specific component which is

totally inflexible in most systems is the processor; that is,

there is typically no processor modularity or possible variation

of processor capacity. The flexibility goal of the Pluribus was

to smooth large step functions in cost by utilizing a highly

modular design and to push really hard boundaries (such as

absolute limits on memory addressing capabilities or processing

* capacity) well beyond requirements anticipated at least for the

- next few years.

Now consider reliability. If a single computer fails on an

average of ten times a year, then a collection of ten computers,
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treated as a unit, will fail an average of 100 times a year.

However, suppose that rather than viewing the ten computers as a

unit which is down if any one of its constituent computers is

down, we view the ten computers as a unit which is u1 as long as

any of its constituent computers is up. If the mean time to

repair a failed computer is small compared to the time between

failures, the probability that all ten computers will all be down

is very small. The reliability of the Pluribus takes advantage

of such probabilities[331.

With the goals of flexibility and reliability in mind and

with the price and size of minicomputers dropping, it was decided

that the Pluribus should be built along the lines of a

minicomputer-multiprocessor, or more generally, a multi-resource

(processors, memories, I/O channels, etc.) system.

In considering which minicomputer might be most easily

adaptable to a multi-resource structure, the internal

communication between the processor and its memory was of primary

concern. Several years ago machines wer introduced which

1 [33] Note that a key assumption is that ±-dividual failures are
independent of one another. Although it is impossible to
guarantee this independence (flood, total power failure,
sabotage, etc.), nonetheless considerable attention has been
given in the Pluribus design to maintaining as much isolation as

practical so that one failure does not induce another.
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combined memory and 1/O busses into a single bus. As part of

this step, registers within the devices (pointers, status and

control registers, and the like) were made to look like memory

cells so that they and the memory could be referenced in a

homogeneous manner. One of the important features of this

structure is that it made memory accessing "public"; the

interface to the memory had to become asynchronous, cleanly

isolable electrically and mechanically, and well documented and

stable. A characteristic of this architecture is that all

references between users are time-multiplexed onto a single bus.

Conflicts for bus usage therefore establish an ultimate upper

bound on overall performance, and attempts to speed up the bus

eventually run into serious problems in arbitration. This

structure forms a very clear and attractive architecture in which

any unit can bid to become master of the bus in order to

communicate with any other desired unit.

In 1972 a new computer was introduced -- the Lockheed SUE --

which follows the single bus philosophy but carries it an

important step further by removing the bus arbitration logic to a

module separate from the processor. This step permits one to

consider configurations embodying multiple processors, as well as

multiple memories and 1/O, on a single bus. It also permits
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busses which do not include any processor at all. The processor

used in the SUE computer is a compact, relatively inexpensive

(approximately $600 in quantity), slow processor with a

jmicrocoded inner structure. Table B-1 shows some of its

characteristics. Its slowness and cheapness, of course, go

together and since in a modular multi-processor, increased

bandwidth is achieved merely by adding more processors, the

weak/cheap processor has the advantage of allowing smaller steps

Table B-1 SUE Computer Characteristics

16-bit word

8 general registers

3.7 microseconds add or load time

Microcoded

Two words/instruction typical

8-1/2"1 x 19"1 x 18"1 chassis

6'4K bytes addressable by a single instruction

200 ns minimum bus cycle time

850 ns memory cycle time

4125 ns memory access time
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A to be taken along the cost/performance curve.

In this section we have briefly described the technology

changes which make possible a minicomputer multiprocessor.

Reference [34] presents a more detailed discussion of this

evolution. In the next section we discuss one particular

minicomputer multiprocessor, the Pluribus.

B.1 Hardware Structure of the Pluribus

Several components of the SUE computer, mentioned above,

were adopted for the Pluribus system, in particular the physical

and logical bus, the processor, and the bus arbitration

logic[35].

The hardware consists of asynchronous and independently

functioning communication busses, coupled together. From a

physical point of view, the SUE chassis represents the basic

construction unit; it incorporates a printed circuit back plane

into which 24 cards may be plugged. From a logical point of view

this chassis includes a bus which provides a common connection

[34] Barker, W., "A Multiprocessor Design", BBN Report No. 3126,
October 1975.
[35] For further details, see F.E. Heart, S.M. Ornstein, W.R.
Crowther, and W.B. Barker, "A New Minicomputer/Multiprocessor for
the ARPA Network," AFIPS Conference Proceedings 42, June 1973,
pp. 529-537.
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I among all units plugged into the chassis. All specially designed

cards as well as all Lockheed-provided modules plug into these

bus chassis. With this hardware, the terms "bus" and "chassis"

are used somewhat interchangeably, but we will commonly call this

standard building unit a "bus." Each bus requires one card which

I performs arbitration. A bus can be logically extended (via a bus

i extender unit) to a second chassis if additional card space is
oequired; in such a case, a single bus arbiter controls access to

I the entire extended bus.

One can build a small multiprocessor just by plugging

several processors and memories (and 1/0) into a single bus. For

larger systerx_ one quickly exceeds the bandwidth capability of a

single bus and is forced to mnulti-bus architecture, shown in

Figure B-1.

* The functional units of the system (processors, memories,

1 /O controllers, and special devices) are distributed on these

busses in such a way that units whch must communicate frequently

are placed on the same bus, whereas units which communicate less

frequently will in general be on different busses. Units on the

same bus can thus communicate at high speed without disturbing

the remainder of the system. When a unit on one bus must

communicate with a unit on another bus, some interference occurs

I - 172 -



"I
Report No. 3339 Bolt Beranek and Newman Inc.

I

I

BUS
COUPLERS

COMMON
MEMORY
BUSSES

PROCESSOR E 2
BUSSES

I/O BUSSES

Figure B-I Pluribus Structure
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I while both busses are momentarily involved in the interaction.

Each bus, together with its own power supply and cooling, is

mounted in its own modular unit, permitting flexible variation in

the size and structure of systems. There are processor busses,

memory busses and 1/0 busses.

This design is highly modular an(' permits systems of widely

varying size and performance.

B.1.1 Resources

A central notion in a parallel system is the idea of a

"resource", which we define to mean a part of the system needed

by more than one of the parallel users and therefore a possible

source of contention. The three basic hardiare resources are trie

memories, the 1/0, and the processors. It is useful to consider

the memories, furthermore, as a collection of resources of quite

different character: a program, queues and variables of a global

nature, local variables, and large areas of buffer storage. The

multiprocessor system is therefore in reality a multi-resource

system, as mentioned above. The basic idea is to provide

multiple copies of every resource so that the algorithm can run

faster by using themn in parallel. It can also survive a failure

of an instance of a resource since other copies will be
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I available. The number of copies of the resource which are

required to allow concurrent operation is determined by the speed

of the resource and the frequency with which it is used.

It may seem peculiar to think of a processor as a resource

rather than the controlling device, but in fact in a Pluribus

system the parallel parts of an algorithm compete with each other

1 for a processor on which to run. Indeed, a novel feature of the

Pluribus design is the consistent treatment of all processors as

equal units, both in the hardware and in the software. There is

no specialization of processors for particular system functions,

and no assignment of priority among the processors, such as

I designating one as master. Not only the application job but also

the multi-processor control and reliability jobs are distributed

among the processors so that all jobs are uniformly treated. The

Iprocessors are viewed as a resource used to advance the

algorithm; the identity of the processor performing a particular

task is of no importance. Programs are written as for a single

processor except that the algorithm includes interlocks necessary

to insure multiprocessor sequentiality when required. The

software thus consists of a single conventional program run by

all processors.
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I B.1.2 Processor Busses

I While the bus used in the Pluribus can support up to four

processors, as this number is approached, contention for the bus

increases, and the performance increment per processor drops.

Pluribus systems use at most two processors per bus, which loses

almost nothing in processor performance. When a processor makes

access to shared memory via the switching arrangement, that

access incurs delays due to contention and delays introduced by

the intervening switch. In a typical application, some parts of

the program are run very frequently and other parts are run far

less frequently. This allows a significant advantage to be

gained by the use of private memory. An 8K local memory

containing an individual copy of the frequently run code is

*associated with each processor on its bus. This allows faster

access to this "hot" code; the local memories all contain the

same code. In the IMP application, for example, the ratio of

accesses to local versus shared memory is better than three to

one.

B.1.3 Shared Memory Busses

The shared memory contains program, buffers, global

variables, etc. Buffer requirements, of course, vary depending
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I on the application. Since the bus is considerably faster than

I the memories, two logical memory units may be placed on each

shared memory bus with almost no interference, to reduce

1contention between processors as they access this memory, and to

increase the available storage.

B.1.4 I/O BussesI
The I/O system consists of more standard busses. Into these

L busses are plugged cards for each of the various types of I/O

interfaces that are required, including interfaces for modems,

I terminals, network connection, disks, etc., as well as interfaces

I for standard peripherals. The I/O bus also houses a number of

special units including, for instance, (1) a clock; (2) a

Ichecksum/block transfer card which flows a block of memory

through itself computing a checksum as it goes (used to checksum

S I critical code, to compute end-to-end-checksums, etc.); and (3) a

i Ispecial hardware task disbursing unit known as a Pseudo-Interrupt

Device (PID), discussed further below.
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B.1.5 Interconnection System

To adhere to the requirement that all processors must be

equal and able to perform any system task, busses must be

connected so that every processor can access every part of shared

memory, so that 1/0 can be fed to and from shared memory, and so

that any of the processors may control the operation and sense

the status of any 1/0 unit.

A distributed inter-communication scheme was chosen in the

interest of expandability, reliability, and design simplicity.

The kernel of this scheme is called a bus coupler, and consists

of two cards and an interconnecting cable. In making connections

between processors and shared memory, one card plugs inte a

shared memory bus, the other into a processor bus. Similar

connections are made for every processor bus to every shared

memory bus. When the processor requests a cycle within the

address range which the bus coupler recognizes, a request is sent

down the cable to the memory end, which then starts contending

for the shared memory bus. When selected, it requests the

desired cycle of the shared memory. The memory returns the

desired information to the bus coupler, which then provides it to

the requesting processor, which, except for an additional delay,

does not knuw that the memory was not on its own bus.
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The bus coupler also does address mapping. Since a

processor can address only 614K bytes (16-bit address), and since

we wished to permit multiprocessor configurations with up to

1024K( bytes (20-bit address) of shared memory, a mechanism for

address expansion is required. The bus coupler provides four

independent 8K-byte windows into shared memory. The processor

Ican load registers *in the bus coupler which provide the
high-order bits of the shared memory address for each of the four

* I windows.

Given a bus coupler connecting each processor bus to each

shared-memory bus, all processors can access all shared memory.

I 1/0 devices which do direct memory transfers must also access

q these shared memories. These 1/0 devices are plugged into as

I many 1/0 busses as are required to handle the bandwidth involved,

and bus couplers then connect each 1/0 bus to each memory bus.

Similarly, 1/0 devices also need to respond to processor requests

I for action or information; in this regard, the 1/0 devices act

like memories and bus couplers are again used to connect each

processor bus to each I/0 bus. The path between processor busses

f and 1/0 busses is also used to allow processors to examine and

1control other processors for startup and trouble situations.
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1B.2 Software Structure[36]

The problem of building a message system lends itself

especially well to parallel solution since messages can be

treated independently of one another. Other functions of the

program such as general housekeeping, routine computations,

reliability tasks, etc., can also be easily performed in

parallel. A software structure must be developed to exploit this

parallelism. The structure chosen for the Pluribus works as

follows: First, the program is divided into small pieces, called

strips, each of which handles a particular aspect of the job.

When a particular task needs to be performed, for instance upon

receipt of a message over a communications circuit, the name

(number) of the appropriate strip is put on a queue of tasks to

be run. Each processor, when it is not running a strip,

jrepeatedly checks this queue. When a strip number appears on the

queue, the next available processor will take it off the queue

and execute the corresponding strip. The program is broken into

[36] Furtherdetails may be found in FLD. Bressler, M.F. Kraley,
and A. Michel, "Pluribus: a Multiprocessor for Communications
Networks," Fourteenth Annual ACM/NBS Technical Symposium --
Computing in the mid-70's: an Assessment, June 1975, pp. 13-19.
See also S. M. Ornstein, W. R. Crowther, M. F. Kraley, R. D.

I Bressler, A. Michel, and F. E. Heart, "Pluribus -- a Reliable
Multiprocessor", AFIPS Conference Proceedings 411, May 1975, pp.
551-559.
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strips in such a way that a minimum of context saving is

necessary.

Strips have different levels of importance. Data coming in

over a high-speed communication circuit must be serviced more

rapidly than data coming in over a Teletype-speed line. The

number assigned to each strip reflects the priority of the task

it performs. When a processor checks the task assignment queue,

it takes the highest priority job then available. Since all

processors access this queue frequently, the contention for it is

very high. For efficiency, therefore, a special hardware device,

the Pseudo Interrupt Device, was designed to serve as a task

queue. A single instruction allows the highest priority task to

be fetched and removed fro-1 the queue. Another instruction

allows a new task to be put onto the queue. All contention is

j arbitrated by standard bus logic hardware.

The length of strips is governed by how long priority tasks

can wait if all the processors are busy. The worst case arises

I when all processors have just begun the longest strip. In the

IMP application, the most urgent tasks can afford to wait a

I maximum of 400O microseconds. Therefore, strips must not be

I longer than that. (Of course, a strip might be longer if it is

run infrequently and if the urgent tasks do not have absolute
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1 'time requirements. That is, one might build a statistically

acceptable set of strip lengths.) In the message system

application, the interface requirements are more relaxed, and

longer strips are acceptable.

I An inherent part of multiprocessor operation is locking

critical resources. This is the mechanism by which the algorithm

enforces sequentiality when it is needed. Our system uses an

indivisible load-and-clear operation (load an accumulator with

the contents of a memory location and then clear the location) as

its primitive locking facility (i.e., as the necessary

multiprocessor lock equivalent to Dijkstra semaphores)[37]. To

avoid deadlocks, we assign a priority ordering to our resources

and arrange that the software not lock one resource when it has

already locked another of lower or equal priority.

I

i [37] E. W. Dijkstra, "Cooperating Sequential Processes", in
Proramaingargua.es, ed. F. Genuys, Academic Press, London and
New York 1968, pp. 143-112.
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