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I. INTRODUCTION

In the search to reduce drag of road vehicles, it has become clear that a
more basic understanding of the complex flows about such bodies is required.
Many investigations of drag and flow phenomena exist; see Reference 1 for
surveys of recent work.

A particularly interesting phenomenon is the effect that slanting the
base has on the drag of a bluff body. Following up on work by Janssen and
Hucho, partially reported in Reference 1, Morel did a comprehensive study of
that effect, see References 1 and 2. Janssen and Hucho observed an overshoot
in drag and a change in separation pattern in tests on a model of a hatch-back
car, when the angle of the slanted portion of the roof was varied over a small
range. In order to examine this effect more closely and gain some understand-
ing of it, Morel1'2 made extensive tests on two models (see Figure 1): (i) an
ogive cylinder with a slanted base, mounted in the center of a wind tunnel to
minimize wall effects; and (ii) a vehicle-like model simulating a hatch-back
car, mounted in the center of the tunnel and close to the tunnel wall.
Because the wind tunnel models are simpler to discuss and there are more
experimental details, the results of Morel will be used in this paper.

The most striking result from the tests of Morel was the extremely rapid
change in drag coefficient, CD, as the slant angle, 8, is varied. In fact the

data show, essentially, a discontinuity in CD for a certain 8 = Oc . Also,

for 8 < $c , the variation of CD with 8 is much greater than for B > Oc. The

results of Janssen and Hucho are qualitatively the same, but the variation of
CD with a is smooth, i.e., no discontinuity. (The term discontinuity is used
here for convenience and its descriptive accuracy, even though a mathematical
discontinuity does not exist.)

Visualizing the flow with smoke, Morel showed that there are two distinct

types of base flow. For a > ac a closed base flow, typical of blunt-based

axisymmetric bodies, was found. For a < $c streamwise vortices were formed at

the side edges with a resultant 3-D separation pattern. It was concluded that
switching from one separation pattern to the other caused the discontinuity in
CD-

1. Sovran, G., Morel, T., and Mason, Jr., W.T., Aerodynamic Drag Mechanisms
of Bluff Bodies and Road Vehiles, Symposiun held at the General Motors
Research Laboratories, Plenum Press, New York, 1978.

2. Morel, T., "Aerodynamic Drag on Bluff Body Shapes Characteristic of Hatch-
Back Cars", Research Publication GMR-2581, General Motors Research
Laboratories, November 1977. See also S.A.E. Technical Paper 78026?,
1978.
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Additional evidence for the existence of the streamwise vortices spring-
ing from the side edges is given by Carr 3. He used the surface indicator (oil
flow) method to visualize the flow and found clear and distinct edge vortices
for 0 = 250 but not for 0 = 35* .  Carr also discusses the downwash produced
by, and the effect on the rear lift force of, the side edge vortices.

The primary purpose of this paper is to propose a flow mechanism to
explain the change in separation pattern and the discontinuity in CD. The

mechanism involves breakdown of the side-edge vortices. Vortex breakdown has
been relatively well studied and is partially understood; the work on this
subject through 1972 has been reviewed by Hall 4 , and later work by
Leibovich5 . To make use of the empirical knowledge on vortex breakdown, a
model for the flow over a side edge is required. For an idealized side edge
configuration, a flow model is constructed which allows a simple estimate of
the swirl in the vortex. Empirical evidence shows that breakdown occurs for a
value of swirl corresponding to 8 = %c, approximately. The consistency of

this theoretical result and the experimental data is sufficient to warrant
further examination of this mechanism and to test it in additional experi-
ments.

II. THE EXPERIMENTAL EVIDENCE

For the two models tested by Morel, see Figure 1, the ac were

different. It is simpler to discuss the vehicle-like model because it has a
straight side edge. Some discussion of the ogive-cylinder model is given
later.

The drag coefficient, based on projected frontal area, as a function
of 0 is shown in Figure 2. The base flows corresponding to Regimes I and II
are shown in Figure 3. In Figure 3a, for Regime I, the base flow is essenti-
ally like that of an axisymmetric body; in the mean the base flow is a closed
region. In Figure 3b, for Regime II, a vortex springs from each side edge;
between them there is attached longitudinal flow. In Reference 3 Carr quotes
the work of Potthoff, 1969, who pointed out the existence of the side edge
vortices and the fact that they can prevent the slanted base flow from separ-
ating for a as large as 30', or even greater with suitable shaping of the body
sides.

3. Carr, G.W., "Influence of Rear Body Shape on the Aerodynamic
Characteristics of Saloon Cars" Motor Industry Research Association,
Report No. 1974/2, Nuneaton, Warwickshire, February 1974.

4. Hall, M.G., 'Vortex Breakdown". Annual Review of Fluid Mechanics, Vol. 4,
1972, Annual Review, Inc.

5. Leibovich, S., "The Structure of Vortex Breakdown", Annual Review of Fluid
Mechanics Vol. 10, 1978, Annual Reviews, Inc.



For Carr's model, which had a short "boot length" at the end of the slant
base, 8 = 25. The surface flow pattern clearly showed the trace of the side
edge vortices. A part of this pattern is sketched in Figure 4, which shows
the rear view of the slanted part of the roof, i.e., slanted base. The flow
along the side separates at the side edge and reattaches along the dashed
line. The surface streamlines, easily visible in the oil film used for the
visualization, which emanate from the dashed line, are typical of reattach-
ment, forming what is often called a herringbone pattern close to the reat-
tachment line. Using the reattachment line to indicate the inboard boundary
of the vortex, this result shows that the vortices extend over about one-half
of the width of the slant base, for this case.

There is enough evidence to conclude that side edge vortices exist for
a < ac.  For smaller 8, say B < 100, they probably exist but would be diffi-

cult to detect because they are weak. As pointed out by Morel 1,2, the
initial decrease in CD, for 0 4 8 ' 10', may be a boattail type of effect,

familiar in the design of projectiles, rather than a side edge vortex
effect. The latter probably begins to dominate for 8 > 100. For a = sc the
discontinuity in CD occurs and the side edge vortices disappear. This massive

change in the slanted base flow field occurs suddenly, for a small change
in 8.

Before discussing the flow mechanism for this sudden change, some esti-
mates of the side edge flow are necesary.

III. THE SIDE EDGE FLOW

A description of the complete flow field over either of the models shown
in Figure 1 by analytical methods would be very difficult. To obtain a tract-
able idealization the local flow at the side edge should be examined. One
possibility is shown in Figure 5 where the side edge is along the x-axis and
the leading edge of the slanted base, or corner, is along the y-axis. The z-
axis is normal to the base and forms a right-handed, rectangular, Cartesian
coordinate system. The external flow, U, is parallel to the top and side
surfaces. The boundary layer would be neglected until the flow reaches the
side edge and corner. This idealization, however, will not yield the simple
estimates needed here.

As a further simplification, appropriate to the side edge flow away from
the corner, consider an infinite, slanted, or yawed, side edge. That is,
there is no corner. The side view, y = 0 and the back view, x = constant, are
shown in Figures 6a and 6b, respectively. The solution to this problem is
independent of x. This kind of idealization is basic in the study of swept
wings. As an additional approximation the incoming flow, U, is taken to be
the free stream velocity over the model in Figure lb. The thickness of the
boundary layer, before it separates from the edge, is neglected. This is the
same assumption made in the classical Gortler, solution for the 2-D, free,
turbulent, shear layer, often called the mixing zone problem. We obtain this
problem, discussed in Reference 6, if 8 = 900. This idealization of the side
edge flow can be called a combination of the 2-D mixing zone solution with the

sweep-back principle.
- 9



However, an additional caution must be discussed. In most applications
of sweep-back theory the independence principle holds, i.e., the flow in the
(y,z) plane can be computed, and then the flow in x-direction determined. For
laminar flow this is always possible but, because of the Reynolds stress terms
in the momentum equations, the independence principle is not strictly valid
for turbulent flow. It will be assumed here that the independence principle
holds; this assumption should cause a small error in the swept-back mixing
zone problem.

Therefore, from Figure 6, the mixing zone flow is determined for the
external velocity U sin 8. The velocity, w, in the z-direction, in the mixing
zone is given by the well known solution6 ,

w = (1/2) U sin 8 [1 + erf (-ay/z)] (1)

where a =12 is the mixing coefficient. The vorticity, Dw/ay, is solely in
the x-direction. The velocity parallel to the edge, U cos 8, is constant for
all z. This is as far as the idealization can be carried. Specifically, in
the absence of pressure gradients, the free shear layer cannot reattach to the
wall z = 0.

On the actual model, the separated flow must reattach on the slanted base
in order to form the vortex. Only empirical criteria for reattachment are
available and these require knowledge of the pressure. The criterion given by

Crabtree 7 , for leading edge bubbles on airfoils is S < 0.35 where

S = (Cpr- C ps)/(1 - cps) (2)

and Cpr and Cps are the pressure coefficients at reattachment and separation,

respectively. Using Morel's pressure datal, reattachment is indicated by
Crabtree's criterion. At this stage this is only a consistency statement. It
would be useful deductively if estimates of the pressure could be obtained.

The most important quantity that can be estimated from the solution to
the swept-back mixing zone problem is the swirl in the side edge vortex.
Assume that the flow over the actual model reattaches on the slanted base.
The swirl angle is defined as

* : tan- 1 (ve/u)

6. White, F.M., Viscous Fluid Flow, p. 509, McGvazw-Hill Book Company, New
York, 1974.

7. Crabtree, L.F., "Effects of Leading-Edge Separations on Thin Wings in Too-

Dimensional Incompressible Flow" I.A.S. Preprint 659, January 1957.
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where v, is the azimuthal velocity in the vortex and uw is the velocity in the

x-direction, i.e., axial velocity in the vortex. *varies with position in
the vortex because yv and u vary. The estimate for v0 is obtained from (1)
and that for u from U cos 8. Thus,

v= 0 (U sin 0)

U =0 (U Cos 0)

so that

This result for will be used as an approximate relation

. (3)

The velocities ye and u could be measured using a laser Doppler velocimeter to

obtain a check on this result.

An estimate of 0 is needed to relate breakdown of the side edge vortex to
the discontinuity in CD. The error in this estimate may be considerable; but

it should decrease as x increases. Since only the ratio, ye/u, is used to

estimate 0 and it may have smaller error than v6 and u.

IV. THE VORTEX BREAKDOWN HYPOTHESIS

Vortex breakdown has been observed in a number of flows; e.g., flow over
highly swept wings and flow in ducts. Breakdown is one of the more remarkable
aspects of vortex cores. Although it has been studied vigorously, there is no
completely satisfactory theory for it. The description of it given by Hall4

will be quoted here; he refers to flow in a duct with swirl imparted by vanes
at the duct entrance. "If we follow the fluid as it spirals along the duct we
find, typically, that the structure of the vortex, as indicated for example by
the velocity distribution over a cross section of the duct, varies only slowly
in the axial direction and then, suddenly and, at first sight, unexpectedly,'
there is an abrupt change in the structure with a very pronounced retardation
of the flow along the axis and a corresponding divergence of the stream sur-
faces near the axis." This abrupt change is called vortex breakdown. Since
Hall's review many papers on the subject have appeared, too numerous to
mention here. Leibovichs reviews the recent work. The important facts for
present purposes are the abruptness of the change in the vortex core flow and
its sensitivity to small changes in flow conditions. Vortex breakdown occurs
in two forms, mainly, Reference 5. One is called the bubble type and is
nearly axisyninetric, at least close to the breakdown region; the second is
called the spiral type and is highly asyrmetric. These are illustrated in



Figures 7a and 7b, respectively. In the duct flow a filament of dye is intro-
duced along the axis which then gives a visual record of the breakdown.

Most of the quantitative information on vortex breakdown is obtained from
duct flows because it is more difficult to run a controlled experiment in
other flows. It seems that the phenomenon was first discovered in flows over
highly swept wings, see Reference 4 for references and a smoke flow photo-
graph. This photograph shows a bubble type breakdown on one side of a delta
wing and a spiral type on the other. Clearly the flow over a wing, with
vortices on each side of the plane of symmetry, is more representative of the
slanted base flows discussed here than duct flows. For typical wings, the
spanwise separation of the vortices is much greater than in slanted base
flows; the interaction between the vortices is then quite different.

According to HalI' the necessary conditions for breakdown are: (1) the
maximum * > 40% (2) an adverse pressure gradient; (3) stream tube divergence
in the vortex core. Conditions (2) and (3) are satisfied for the side edge
vortices. The estimate obtained from the swept-back mixing zone problem
gave * = so that condition (1) would give a8 40' for breakdown.

Condition (1) is clearly approximate. It was deduced by Hall from the
limited experimental data available at the time. Since then laser-Doppler
anemometry has come into wide use and is ideal for velocity measurements in
vortex breakdown flow fields because no probe is introduced into the flow; a
probe in the breakdown region can introduce large perturbations in the flow
field. Results from many experiments on duct flows, using laser-Doppler
anemometry, are presented by Leibovich5. In particular, his Table 1 sum-
marizes data for the velocity in the approach flow, i.e., the flow to within
about 1.5 vortex core diameters upstream of the breakdown point. Both bubble
and spiral types of breakdown were observed and measured at three Reynolds
numbers, which is based on the axial velocity far from the axis and the vortex
core diameter. From that data, Table 1 was constructed.

Table 1.*

Core
Type of m Expansion

Re Breakdown (deg) Ratio

1920 Spiral 31.7 1.64
Bubble 30.4 2.54

2812 Spiral 30.6 1.78
Bubble 30.8 1.97

3348 Spiral 33.5 2.10
Bubble 29.9 2.76

*Data from Reference 5.

The swirl angle, *,presented in Table is defined as
12



tan' (v /u

It is calculated using certain functional forms for v. and u; the parameters

in those forms are determined from a best fit to the data. The value of 0 m is
a measure orl the swirl angle for vortex breakdown; it is more reliable than
the criterion given in condition (1).

In Table 1, *m varies between 29.90 and 33.5%* No trend in the variation

Of om with Reynolds number can be detected; the average value of *m is 31.90

for the spiral type, 3Q.* for the bubble type, and 31.20 if both types are
considered. For purposes of estimation, *m =30' can be used. Assuming

that om approximates the estimate of * in (3), breakdown of the side edge
vortex is estimated to occur at a = 300.

Another feature of vortex breakdown that enters the proposed mechanism to
explain the discontinuity in CD is the increase in size of the vortex core
after breakdown. Downstream of the breakdown region a new vortex is formed,
in the wake region. The ratio of the wake-core radius to that in the flow
upstream of breakdown is called the core expansion ratio, given in Table 1.
The core radius is defined as the radial coordinate of the maximum in the
azimuthal velocity. The smallest entry in the table gives a 64% increase in
the size of the core.

One of the major results of the above theory is that breakdown of the
side edge vortices is possible for the range of parameters covered in Morel's
experiments. Assuming it does occur, its relation to the sudden change in CD
can be described as follows. Before breakdown the two vortices occupy a
substantial part of the slanted base, see the discusssion of Figure 4,
above. The sudden billowing of these vortices, as measured by the core
expansion ratio, will cause the mutual interaction between them and their
interaction with the outer stream to increase. The adverse pressure gradient
acting on the vortices will increase and cause the breakdown region to move
further upstream, etc. Rapid movement of the breakdown region is observed in
duct flow experiments. The 3-D separation pattern, or open base flow, then
collapses into the quasi -axi symmnetric base flow. The final stage of this
collapse cannot be described by the model.

8The estimates of swirl, the relationship between swirl and slant angle,
a , and the model proposed here can now be combined. They give the criti-

cal slant angle for the discontinuity in CD, 0 c =30% Morel's experiments
give, Figure 2, Bc = 30'. Considering the idealizations made in arriving at
the theoretical result, its agreement with the experimental value must be
considered fortuitous. The proper conclusion is that the theory is consistent
with the available experimental findings.

For the ogive-cylinder wind tunnel model tested by Morel2, Figure la, the
CD versus 8 variation was generally the same as that in Figure 2. However,

13



ii
the discontinuous decrease in CD, from 0.62 to 0.3 in this case, occurs at

Bc = 430 rather than ac = 300 as for the straight side-edge. Development of a

flow model for the ogive-cylinder slanted base, where the edge is an ellipse,
will not be attempted. Some understanding of the flow for 8 < 0c can be

obtained by isolating three modules of the base flow field, assuming steady
flow. (1) At the top of the base the flow separates. The scale of this
separated region, measured by the location of reattachment line, is a small
fraction of the major axis. (2) In the neighborhood of the side of the base
the flow separates and side-edge vortices are formed. The flow pattern would
be topologically the same as that in Figure 4. The scale of the separation
region is a significant fraction of the minor axis. (3) At the bottom of the
base the flow has, at most, a small scale separated region.

It appears reasonable to neglect first order interaction between these
three modules; then some portion of the base surface streamlines can be
sketched. For small enough a the side-edge vortices must depart from the base
either by reaching the edge or by lifting off. It is conjectured that, for
8 = 300, either the swirl is decreased below the critical value before they
depart the surface or they break down off the surface. In the former, larger
a is required for breakdown on the surface. In the latter, their mutual
interaction and that with the outer stream, which is necessary to explain the
sudden change in base flow and CD, is relatively weak. Stronger vortices,

i.e., larger 8, would be required to have breakdown on the surface and the
required interaction. In either case the conclusion is consistent with the
observed larger 0c.

V. DISCUSSION

More refined estimates for the swirl in the side edge vortices are pos-
sible, e.g., using the configuration of Figure 5, but would require much more
analysis. It would be preferable to test the central hypothesis of this
theory experimentally. Introduction of a blunt body along the center of the
vortex core, which is known to promote breakdown, could be useful as a diag-
nostic tool.

An explanation of the discontinuity in CD at 8 = c requires a process

with the abruptness (almost explosive nature) of vortex breakdown. Theories
based on some other hypothesis are possible, however. One of these could be
based on the inability of the free shear layer to reattach for 8 > 8c.

In addition to an understanding of the phenomena that lead to the discon-
tinuity in CD, it would be desirable to be able to predict drag, especially

for 8 < 8c.  Linearized theory might be useful for the case of small o.

Otherwise, only numerical methods could be successful.

Although the discussion in this report is limited to the effect on drag
of slanting the base, the phenomenon of side edge vortices and the flow model
proposed for their breakdown has wider applicability. Other parts of a road
vehicle have side edges and they occur in other applications. One of these is

14



in ballistics: the non-conical boattail proposed by Platou8. No studies of
varying $ have been made, however. A more complete understanding of the
generation and breakdown of side edge vortices will be useful in many fluid
dynamic problems.

7

8. Platou, A.S., "An Improved ProjectiZe Design", U.S. A y BallZietic
Research Laboratory/ARRADCOM Memorandum Report No. 2395, Aberdeen Proving
GTound, Mamland, July 1974. AD A785520
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Figure 1. Models Tested by Morel (2). Dimensions in mm.

(a) Ogive-Cylinder Model
(b) Vehicle-Like Model
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Figure 2. Drag Coefficient of the Vehicle-Like Model in the

Free Stream Location, From (2)
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IIPP
Wa Quasi-axis mmtric Separation Pattern

(b) 3-D Separation Pattern

Figure 3. The Two Types of Base Flows for a Body with a Slanted Base

(a) The Closed Type Exists in Regime I
(b) The Open Type with Side Edge Vortices Exists in

Regime II

CENTERLINE

SID

REATTACHMENT
LINE

Figure 4. Rear View of a Slanted Base Showing Part of the Surface Flow
Pattern. The Flow along the Side (Out of the Plane of the
Paper) Separates at the Side Edge and Reattaches at the
Dashed Line. Sketched from a Photograph in(3
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Figure 5. A Wedge, Semi-Infinite in the Y-Direction, as an Idealized
Configuration for Side Edge Flow. The Free Stream Velocity,
U, is Parallel to the Top and the Side. The Slanted Base
is z = 0, x > 0, y > 0
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Figure 6. Flow Over an Infinite, Yawed Side Edge at y = 0, z = 0

Sa) The View in the Plane y = 0.
b) The View in the Plane x = constant. The Flow

Separates from the Side Edge, Forming a Free
Shear Layer or Mixing Zone.
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Figure 7. Vortex Breakdown in a Duct Flow, Made Visible with Dye
Introduced into the Flow, From (6). B is the Breakdown
Point

(a) Bubble Type
(b) Spiral Type
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LIST OF SYMBOLS

CD - drag coefficient based on frontal area

Cp - pressure coefficient

0 - order of magnitude symbol

S - see (2)

u - axial velocity in vortex and velocity in x-direction

U - free stream velocity

ve - azimuthal velocity in vortex

w - velocity in z-direction

x,y,z - Cartesian coordinates, see Figure 5

a - angle of slanted base

0c - angle of slanted base dividing Regimes I and II

r - swirl angle in vortex

o - mixing coefficient

Subscripts

r,s - reattachment and separation
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