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ABSTRACT
The theory of the computable a-posteriori error estimate for a finite element

method is developed. Among other things, it is shown that the error estimate is

very reliable and the ratio (called effectivity index) between the estimator and

Numerical examples computed by program FEARS

the true error approaches one.

(Finite Element Adaptive Research Solver) of the University of Maryland, illustrate
the effectivity and reliability of the estimators.

\

T e
3 pr .

g




1. INTRODUCTION

Recent ly an increasing interest in the finite element computations is
being focused on the reliability of the results and the quality of the used
meshes and elements.

During recent years at the University of Maryland, the studies were under-
taken which focused toward the development of a finite element system having
the following features.

a) The solver supplies the user with a reliable and accurate information
about achieved accuracy in the desired norm.

b) The solver constructs adaptively meshes which are leading to the highest
possible accuracy (through an adaptive refinement).

€) The solver uses the most simple input.

d) The solver combines the advances in the mathematics and computer science
including parallel computations.

The solver FEARS (Finite Element Adaptive Research Solver), its mathematical
version FM developed for Univac Series 1100 implements some of the points mentioned
above*. The detailed description of FEARS and the experience with it will be
published elsewhere. Yor some information about FEARS and its applications,

we refer to [ 2], 131,14}, 1[5].

*
Vor analvsis of the parallelity we reter to [ 1].
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One of the main aspects of FEARS is the theory of the a-posteriori estimates.
Some aspects of the a-posteriori error estimates and optimality of the meshes
were investigated in {6 1,071,[(81].

The error norm l]el] is approximated by the computable estimator ¢
computed through error indicators ni(A) associated to every element 4 and
computable locally by kaowledge of the finite element solution at the particular
element A and its direct neighbors. The effectivity index 6 = TTETT expresses
the qualitv of the estimator and 6 should be close to one when the error is
sufficiently small (e.g. 5%). It is desirable that the estimator ¢ has the

following two properties:
(1.1) 0 <C, <8 <C(C, <>

with CL and CF independent of the solution and the meshes under very general

conditions.
(1.2) ¢ >1 as |le|] >0

provided that some addicional assumptions about smoothness are made. The present
paper develops the theory of the estimator which satisfies (1.1) and (1.2), and
is implemented in FEARS. The energy error norm is assumed and model elasticity
problem is considered.

Section 2 consists of some preliminary notions.

Sections 3 and 4 elaborate on the type of meshes which are adaptively
constructed.

-

Section 5 deals with the approximation properties of the elements on the




admissible meshes.

Section & formulates the model problem (elasticity problem).
Section 7 develops the estimator and proves (1.1).
Section 8 proves that the estimator is asymptotically correct, i.e..
8~ 1
Section 9 deals with two computational examples and discusses the effectivity
of the approach.
The adaptive construction of the meshes is based on the equilibration of
the error indicators. This principle was theoretically analyzed in [7 ] for
one dimensional problems and its theoretical investigation in the context of

FEARS will appear elsewnere.




2. BASIC NOTATION

Throughout this article we denote by R2

the two dimensional real Euclidian

“ space with x # (x;,x,) €R" , l1x]|| = max(]x1|,|x2|),| | x| |E = [x]+x}] Let
QCR2 be a bounded set and 3Q 1its boundary. We define
diam Q = sup ||x-y|] ,
X, Vv€Q
dist(x,Q) = inf| 1x—y[|
vEQ
and for Qié R2 , 1 =1,2
dist(Q,Q,) = inf [ 1x-v 1]
x€Q
1
XGQZ
An index E will denote that the norm HHE is used instead of IIH

E..., dist (x,Q) = infllx—_vllE

D)
For a p >0 , QC

is the p-neighborhood of

Qp = {x€m2|dist(x,0) <p}

The closure of Q

in 1R2 is denoted by Q , int Q means as usual the interior

of (Q .

By 22 we denote the set of all two dimensional integers k = (kl,kz) s ) 4
ki‘ i =1,2 integral.

Suppose © > 0 1is a positive real number, then we will write for any k€Z2




k _ 2 o
QG = {x€IR Ikie‘i x; < (k#1)6 , 1= 1,2)

"
Assume that ZOC:Z“ is a finite set. Then we denote

QZ 5 = int{ U Qg]
o’ k€ZO

We shall assume that Zo is such that QZ 0 is a Lipschitz domain. For brevity,
0’

whenever it cannot lead to misunderstanding we shall write Q 1instead of QZ 6
o!

When we talk of a square S in IR2 , we shall always suppose that it is closed
and that its sides are parallel to the coordinate axes, i.e. S 1is of the form
[a,a+d] x [b,b+d] for a,b,d€IR, d > O .

As usual, let LZ(Q) = HO(Q) be the space of all square integrable functions

on  with the inner product

”

(U’V)LZ(Q) = Juvdx, dx = dx.ldx2
&
. k
and the corresponding rorm ||~||L @) By H (?) , k >0 integral we denote
) .

the usual Sobolev space with the norm

2 o
Hull = 3 %l gy o
H)  0<]al<k Ly (D)

where = (al,az), a2 o, Im‘ = o + ay

and

et e




Obviously we have Ho(ﬁ) = LZ(Q) . We will also use the notation

P AR AN T E
() |of=k 2
We define the support of a function |J€1?(Q) in the usual (distributive) way
and denote it by supp u . Let ﬁk(Q)c:Hk(Q) be the completion of the set of
all functions having ccmpact support in Q
We will also deal with functions defined on one dimensional manifolds,

more precisely on the boundary 32 or a part T of it. The notation

LZ(F) = H°(r) has then the obvious meaning.

m (i)

let I = iglri, where each Pi is a closed side of some Q: ca .,

k(l)GZ0 with T,Ca2, (i =1,...,m); then we shall write

L,r,, 1 )

H () = {u€H () u=0 on Tt
Obviously Hl(Q) = Hl’r(ﬂ) when [ = 32 and Hl(Q) = HI’F(Q) when [ =0 .
Tinally bv CO(Q) we denote the space of all continuous functions on Q

and let

Hall o = suplu|
I E?)] x€RN

. 1 °1
We will deal later with extensions of functions in H (Q), H (Q) and

6T from o into a neighborhood of @ .

. l|r 2 1
Theorem 2.1. There exists an operator T mapping H () 1into H (QOL

N
(where U

is a ¢o-neigkborhood of & ) such that
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i) fora 2 <R <o Q< a <P and any square SCQ and any

0 < v < a, we have

HTul| o< cllull
ul(s%) 1 s®no)

with C independent of a, S, u

i) 1f x€9° , x€9 .7 # .9 and dist (x,I) < 3 dist (x,30-T)

10

then

w

Tu =0 on SY(x)—Q, Y = ivdistE(x,F)

with SY(x) being the square with the center in x and lengthside ¥y

[+]
iii) If [ =230 i.e., a1 T(@) = m(R) , then Tu=9 on ©° - a.

Proof. 1If is enough to prove the theorem in the neighborhood of the boundary

(i.e., endpoints) of T . 1In the neighborhood of all other points

x €30 we

use the classical extersion theorem when )<¢I‘ and we extend by zero when

x €T and applv the standard argument with partition of unity.

The endpoint of [ can be located in a vertex of 3R with the internal

angle % noor %—ﬂ or it can be on straight part of the boundary.

We will deal onlv with the case of the vertex in the coordinates origin

‘ and the internal angle on %—w . The other cases are analogous.

f Let (see Fig. 2.1)

szz = {x € | xéﬂ, discE(x,aQ—r) < —% distE(x,r)}
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Figure 2.1

The scheme o) notation in the proof of the Theorem 2.1.
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)
Obviously Q;** consists of a sector with the lines S1 and S2 as

its boundary. Let V be a symmetric (with respect to the origin) sector

A

y
with the boundary S1 and gz and let %1 be the line symmetric to S1
G
(with respect to 30 - T') . Finally let VC (resvectivelv VC Q) be the sector
.onl . ¥
bounded by AQ - ' and S  (respectively gl) and W be the sector bounded
vl

bv S and T

1,7 , .
Assume now that v €H *> (Q) . Bv an afine transformation,we construct
£\

G N “
w€H1(V) such that w=u on R -T , w(x) = u(x) for x€r§1, xé%l and

;{XI’E = !IQIIE . Obviously

Pwll oo = cltal] o
HI(V) Hl(V)

. S . .
The extention Tu on iy be now the reflection of w (with respect to

2 =7Y ., It is readilv seen that

! \11'1 < A N < u
T SR I RN P

G wl (%

and for

we have

(Tw) (%) = w(x)

We extend u on ), Sy zero.
Bv an afine transformation of W V we can easily continue a function

_ ¥

v such that v = u on gl and v =0 on 2 and

I RANR ARt ] Voo
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vl < |lu}] -
nl v )

. , D L .
Now let Tu on &, . be the symmetric image of v . It is easy to see

that our construction has all properties of the extension formulated in the

theorem when  © is chosen sutficientlv large.
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3. THE MESH AND ITS BASIC PROPERTIES

We will introduce now a class of partitions of 97 0
o

We define a mesh D() = {Al} as a finite collection of closed squares
A1C:5 of various sizes with sides parallel to the coordinate axes, and which

are gouerated by the fcllowing recursive rules.

i) The squares {Qg} , RGIQ), create a mesh.

ii) If {Al} , 1=1,...,m 1is a mesh, then a new mesh is obtained if any

A’ is subdivided into four congruent squares of half the side length of A:l .

Any A'€ D will be called an element and its sides the edges. The

vertices of the elements will be called the nodes. A node P will be called a

regular node if either PE€3Q or P 1is a vertex of four different elements.

Otherwise P 1is an jrreguiar mode. By P(D) we denote the set of all nodes

of D and by R(MCP@P) the set of all regular nodes. Finally let h(D)

mav diam » .

NED

Figure 3.1 shows an example of a mesh. The irregular nodes are marked by

a4 Ccross.

Figure 3.1. An example of a mesh.




Let D ity , 1 =1,...,m. Then obviously SAL = . We shall
i=1
denote bv AM(D) , the subspace of all continuous functions on £ which are

individually bilinear on cach Al , i =1,...,m . Tt is clear that
1, .
M(DYcH ()

We will always assume that at least four different A€D 1lie in every

Now we will analvze further the basic properties of the meshes introduced

above.

LEMMA 3.1. Let o' ,A"€D

1) Assume that £'12" # ¢ and diam A' < diam A" . Then one and only

one of the following statements holds.

i) S A
ii) A'N"" 4s just one point being a common vertex of A' and 4" .

iii) A NAAv _is an edge of A' and is contained in an edge, I _say,

of M . If x', x" &zre anv two endpoints of (A'MA") and T respectively,

then !'x'-x"| is an integral multiple of diam A'

2) 1f PEPD) , P%R(D) (i.e., P is an irregular mode) and P is a

vertex of ' € D, then therve exists A"€ D such that

iy ren”

ii) diam ' = diam A'

iiti) ~"MNA" is an cdge of A’

3) diamA"/diamh' = 2% with s an integer.

The lemma can be casily proven by induction.

LEMMA 3.2. Suppote that A€D . Then at least one vertex of A 1is a




regular node and if an edge of A is contained in DOS for some l<€Zo ’

. N
then at least one vertex of A which is not on aQO is a regular node.

—— _——— ———— -

Proof. Observe that any regular node always rzmains regular when our
recurrent construction is implemented. The lemma follows now easily since at
each step the midpoint of the subdivided element becomes a regular node and it is
a vertex of all four new elements created at that step.

As seen in Figure 3.1 there could be an element A€D , such that only one
of its four vertices it a regular node.

LEMMA 3.3. Let D be a mesh and P€R(D) . Then there exists

vpéM(D) such that VP(P) =1 and vp(Q) =0 for any QER@D) , Q# P .

Proof. We first note that it suffices to define vp at the vertex of each

AED . Let D= {s"}, i=1,...,m . Assume that we have denumerated the
. i . i+l

elements so that diam A” > diam A i=1,...,m1. We prove now our lemma
by induction with respect to 1

First let us observe that all four vertices of Al are regular nodes.

n

If one were irregular then by lemma 2.1, there exists A€7D such that

N
diam A > diam Al . This is a contradiction because Al is the largest element.

Suppose now that j =1 , or j > 1 and vp has already been constructed

on 1=i;1 Ai . Consider now the vertices of Aj . If Q 1is a vertex of Aj
i=1
and
i) Q 1is a regular node, we define vp(Q) =1 for Q=P and vp(Q) =0
for Q # P
ii) Q 1is an irregular node, then by Lemma 2.), Q€A' where
diam A' >~ diam Aj . By induction assumption vp was already defined
on A' and so vp(Q) is defined ;S?' We therefore construct vp
on Aj with desired property on U Ai . Let us remark that

i=]




I

*q
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i=j-1 :
if Q€ igl A then the value VP(Q) = 1 respectively 0 1is the same as in
the previous phase.
LEMMA 3.4. let D be a mesh and u €MD) be such that u(Q) = 0 for any
QERD) then u =0
Proof. Let {4’} be numerated as in the proof of l.emma 3.3. The lemma
: \ 1
will be proven by induction with respect to 1 . Because all vertices of A
are regular nodes we have u = ( on Al. Let now 1 = 1,...,j-1 < m and consider
u on A7 . If the vertex P of AJ is a regular node then by assumption
u(P) = 0 . 1f P 1is irregular node then by lemma 2.1, we have also P € A
with diam A"~ diam » , i.c., A = Ak , for some k < j . By induction
i=j-1 |
u="n on igl pt and therefore u(P) =0 . So wu=0 1in all vertices
of ) andso u=0 on ~! and lemma is proven.
Lemmas 3.3 and 3.4 show that the function u€M(D) is uniquely defined {
bv its values at the regular nodal points. 1
f
Lemma 3.1 and arguments analogous to those used in the proof of Lemma
3.3 vield w
LEMMA 3.5. Let U be a mesh.  Then
I 1
i) The sel of functions ‘\}J!’él?(p)} creates a basis for M(D) '
iiy v -0 ]
P
iii) ¥ vo= i
PERMD U

Definition 3.1: The set o} = gupp ip,}’GR(D) will be called a star

associated to the node P or brieflv a P-star.
iRphliaLke toe DAy neee ot o ey d. TRt .

[emma 3.5 ({ii) vields readilv that U W=
rerm P




— ———————
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LEMMA 3.6. let (€D , PE€R(D) and ANint mp#@ . Then Acﬁp'

Proof. Assume on the contrary that A¢‘“p . Then there exists an open
set SCA ., SN rnp = @ . Because VPGM(D) . vp is bilinear on A . But
v =0 on S , and herce vp =0 on A . This is a contradiction because

P
we assumed that A N int wp + ¢ .

LEMMA 3.7. The set R is connected in the sense that for any two elements
e —————— £

A', A'C wE there exists a sequence of elements A' = AO,Al,...An = A" such

that

i) A Cuw
i p

ii) Aiﬂdiﬂ# ¢ and is the edge either Ai or Ay

s . X
Proof. Let w_ = AV, A€D . Assume that we have enumerated the
: S B} : 1
elements A of u)r so that diam AJ > diam A7 , J=1,...,8-3 . 1t is
1]
obvious that we can restrict ourself to the case when A = Al .

First we prove that one of the vertices of Al is the node P . Suppose

that the node P 1is not a vertex of Al . Let Q be any vertex of Al . If

Q 1is regular, then Vl’(Q) =0 . If Q 1is irregular, then there exists

A*€D with Q€A* and diam A* > diam Al . Thus a* Nint wp= ¢ and so Vo = 0
on A* by lemma 3.6 and it follows that vp(Q) =0, so vp =0 on Al
which is a contradiction. Now we prove the lemma by introduction with respect

to j . Assume therefore that we are able to connect Ak with Al and

+
consider the element Ak L . If a vertex of Ak+l is the node P , then

Ak+1 can be connected with Al because  1is a Lipschitz domain. If all

vertices of /\k+1 were regular nodes different from P then Ak+1¢wp by

lemma 3.6.

So we need onlv consider the case where a vertex R of Ak+1 is irregular




and vp(R) # 0 . By lemma 3.1 there exists A*€]D such that diam A* >

k+l . At g an edge of AL and reax

so % = Al <k . So Ak+] can be connected with A7) and therefore

diam A . Thus A*pr and
with Al and lemma is proven.

Lemma 3.7 shows that 1int wp is a domain.

So far we have not made any restrictions concerning the mesh D . 1In

the next section we will analyze the family of K-meshes, which play an

essential role in the theory.




4.__THE K-MESH

I)}-t'init ion_ 4.1. Let K ()_L real. A mesh *D will be called a K-mesh

if for any PGR(_D_)

(4. diam , < K inf diam &’
N'ED
A'C

p

The definition has a c¢lear sense because of Lemma 3.6.

We conjecture that definition 4.1 is equivalent to 3K* > 0 such that

i A
for all A€D | sup %E‘:"E" < K¥
ANL'is an edge of A’

Everywhere in what will follow we shall assume that we deal only with

K-meshes. We mostly will not mention it explicitly.

LEMMA 4.1. Suppose D is a K-mesh. Then there exists numbers M, N

depending only on K such that

i) if PE€R() then the P-star consists at most of N _different

elements of D .

ii) If ~"€D then /\'Cmp for at most M different PE€R(D)

iii) I1f /('€D then there are at most 4K + 4 elements A" €D such

that a'Na" 49 .

Proof.
i) The star mp can be contained in a square Sp with its side diam

So for the number Np of elements contained in (“p we have the simple estimate

area o [diam w ] ?

N < K

p = Tinf (arca AY) © [inf (diam AD)]Z =
ANEw Aew
P P




T

ek )

ot 4
N

e

2

Hence N < K
ii) If /\'Cwp thken diam wp < K diam (A")
Qp is a square with the center in the middle of

2(K-1/2) diam A’ See Figure 4.1.

. Hence w_CQ where
P P

A' and of the diameter

ez

i
RN 53///

/

/)

'/
/
//

san &'

———

72N b

Figure 4.1. The Relation Between A4' and mp .

Since /\'c'np we have

diam A' < diam wy < K inf diam A"
1"
u,

and hence for any A"C v

diam A'

(4.2) diam A" > %

e 2o . . hudtads oy

18
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The node P

must be a vertex of some A"C:ub satisfying (4.2). The number

of such elements is obviously bounded by

area () 5
T ar - KU
)

Becanse not more than 4 regular nodes could be on any element, we see that

2 2
M < 16K7(K-1/2)"

iii) Any vertex of 4A' can be a vertex of at most three other elements
and therefore by lemma 3.1 it is sufficient to bound the number of elements
4" with diam A" < diam A' such that A"MA' is an edge of A" contained
in some edge of A' , say ' . Fix this I , and suppose that there are ¢
such " . q 1is finite since by the definition of D , there is only a
n, N
finite number of elements. Then for at least one such A" , A say , diam A <

édiam &' . Since = 1 by lemma 3.5, there exists PER(D) such

v
PER(D) P

Y Y
that vp is not identicallv zero on AMNA' | and therefore both 4 and

A'C u)p . But

A N
q diam A

BY
< diam A' < diam wy < K diam A
Hence
q:- K

and the lemma easily fcllows.

LEMMA 4.2. There exists a number 1 (depending only on K) such that
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R(D) can be partitioned into j < 1. sets Xy j=1,...,L such that if

=0

P,OE€E o P #Q then int u)pnint W

Q

Proof. Suppose P # 0, P,QER(D) and int mpﬂint wy # @ . By lemma
3.6 int wpnint gy must contain the entire interior of at least one element.
By Lemma 4.1 mp contains at most N elements and each of these elements
can be contained in o for at most M~1 nodes P'€R(D) , P # P' . There-
fore there can be at most N(M-1) regular nodes Q such that int wpn int w. # 0.

Q

We shall construct now the sets Xj by the following recursive procedure.

Let Pl’ PZ""Pr be some enumeration of the regular nodes. Set xi = {Pl}.
. £-1 £-1
Suppose that we have already defined sets se ooy A for some S > 1,
1 Sp_1 -1 —
£ - n 1. 1f for P£€R(D) and some 1 < k < SE 1° int wp Nint wQ =@ for
- £
-1

all Q€~.‘k , then choose k to be minimal, and set

e L-1 ,

o= for t€ll,..,8, () - k)
¢ _ el

_(k - Ak U{PE}

i S, = 8§ . i
and define ¢ P-1 Otherwise set

Now from the first part of our proof we see that S5, < N(M-1) + 1 and so

3

L < N(M-1) + 1 and the lemma is proven.
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Remark. As we mentioned in the introduction, this paper develops the
basic ideas of [ 1] . The lemma 4.1 relates to the intersection index and the
lemma 4.2 to the overlap index as introduced there.

Given an element A€D we will always enumerate its vertices as shown

in Figure 4.2. @ 3

O @

Figure 4.2. The Numeration of the Vertices

Let PER(D) and wp its star. The node P 1is a vertex of at most 4
elements. We will denote by APC wp the element for which the vertex number
given by Fig. 4.2 has the minimal value. This rule associates to every P a
unique element.

Let now wp be a P-star. Then by Jp we denote the invertible affine
transformation taking P to the origin and Jp (Ap) = [0,1] x {1,0]) . Further
let @p = Jp(wp) . ¢p will be called a standard P-star and we shall call

members of Sp = {JP(A)IAGD , ACmp} the standard P elements of ¢p and

if no confusion arises denote them also by A . Note that d>p can equal ¢

Q

S
for P # Q and yet p#SQ

LEMMA 4.3.

i i) int ¢ is a domain.
P

11) There are not more than Z = A(K) possibilities for S as P ranges

P
over R(D) .

e oo




]

N

K
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Proof.

i) TFollows immediately by lemma 3.7.
ii) The result will follow if we can show that there is a finite collection

of squares S ,...,S . such that {JP(A) (€D, ACu)p} = {81,428, 4y} -

1’
To this end we show by induction that the vertices of each J (A) must
- int
have coordinates of the form (kn,fn) where n = 2 ([ngK] +1) k,£ integral

[k[,lﬂ{ §_2K2 and that diam JP(A) = Znn for some 4 = 1,2,3,... Here [']lnt

denotes the integral part.

Now if A €D , ACcup we can construct a sequence

having the properties mentioned in Lemma 3.7.
Clearly any vertex of J(Ap) satisfies the above inductive hypothesis.

So suppose it holds for J(Ao)""’J(Ai) N <1i<n-1., Then by Lemma 3.1

: = 95 43 . s . =S
(3) diam biy 27 diam A, , s integral,giving diam Jp(Ai+l) 2° diam Jp(Ai)

1
n+s . . . .
2 n for some integral #f,s . Since C:wp we have as in 4.2 diam Ai+l

Ai+1

and so 27+ s > 0 and so we

\ s . . 1
diam AP/K . This gives d1am(Jp(Ai+1)) > X

conclude that diam Jp(A ) = 2tn with t > 1 integral.

i+l
Suppose for the moment that Ai+1 < diam Ai . Appealing to Lemma 3.1 (1)

we see that the two vertices of Jp(A which are the end points of

i+l)
Jp(Ai+1)f7Jp(Ai) must satisfy the induction hypotheses. Since Jp(Ai+1)
is a square, it follows also for the other two vertices. The bound on

|k|,|2] is a consequence of diam ¢, < 2K . The case diam 4, < diam A,

follows by a similar argument.

COROLLARY: There is not more than 2Z(K) of different possible domains Qp——




GCiven A€7TD ye denocte
(4.3) Q*(A) =u{u.p|p€R(D) . Apr}

"As in the proof of Lemma 4.1 we have Q*(A)CQ(A), where

with the center at the middle of A and
(4.4) diam Q(4) < 2(K-1/2) diam A

LEMMA 4.4

i) 1f A',A"€D and A',A"CQ*(A) then

i
(4.5) diam A' > ¥ diam A

and

(4.6) diam A' Z”L” diam A"

K

ii) Int Q*(A) 1is a domain .

iii) I1f PERD) and mpCQ*(A) then on A

K(diam &)1

| A

1
(4.7) D vp[

For any A pr

7 -—
(4.8) |D K~ (diam 8)™2 on & .

vpl

[ A

Q(8)

23

is a square




Proof. Let A'€CQ*(A) then for some P'€R(D) we have A,A'ewp,

hence

T

\ 1 .. 1
3 (4.9) diam o' >  diam Wy 2% diam A
4
b'_
Further we have for A"c:wp"
(4.10) diam A > £~diam w > 1 diam A"
: ~ K p" = K 1

(4.9) and combination of (4.9)and (4.10) yield (4.5) and (4.6).

ii) We have to prove only that Q*(4) 1is connected. This follows

immediately from the Lemma 3.7.

PR S

iii) From Lemma 3.5 (ii) and (iii) we have O j.vp < 1 and so obviously

1

{D vp] < [ min diam a]7!

ACw {
p .

and

D [ min diam 8] °© i

AC w
p

v, |

i A

{(4.9)yields the Lemma.

So
Let K < 2 . Denote

S oottt i

Qx*(b) = {x €Q*(8) |dist(x,3Q%-3Q) > ——r
2
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LEMMA 4.5.
i) Let vanQ*(A) . Then P E€Q**(A)
1i) ACQx* (n)
iii) int Q**(A) is a domain. -
Proof.
i) Assume that P¢Q**([\) then dist (P,9Q%-3Q) < diam A/ZSO-*-2
Because vp =0 on 23Q%-3Q , (4.7) leads obviously to a contradiction.
ii) Assume that A("‘:Q**(A) . Then there is a vertex P* of A such
that dist (P*,3Q*-3Q) < (diam A)2_(50+2) Obviously w = z v =1

*() P
on A . By the same argument as leading to (4.7) we see that lDlul < K{diam 8) 1.

Because w = 0 on 23Q*-3Q we have a contradiction.
iii) Let x€Q**(A) x€AOC w, - Then by Lemma 3.7 there exists sequence
n
yO0.,...8 =4 such that V=int Y A, 1is a domain. Because diam A, >
o’"1 n i=0 J —

A
1 diam A by 6.2)it is readily seen that int Q**V is a domain. This leads

K
immediately to the desired result.

Let ll!’; = JP(Q*(A)) (analogously as <I>p) and UJ;* = JP(Q**(A)). Then we have

LEMMA 4.6. There exists not more than Z*(k) (respectively Z**(k))

possible domains int w;’; (respectively int wl’)‘*)

Proof. The first part of the lemma follows from Lemma 4.3 and is a

corallary. The second part follows by analogous argument when realizing that

w;‘;* is vomposed by squares with diam n/4 when n was introduced in the proof

of Lemma 4.3.
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5. THE APPROXIMATION PROPERTIES OF M(D)

In this section we will analyze the approximation properties of M(D)

1 Let 7 be the mapping of c®(q) onto M(D) such that (Mu)(P) = u(P),
,. PERMD) . By Lemma 3.5 we can write
,. Mu = Z u(P)v

PER(D)

* (4 . o
Further define the operator nQ (&) mapping C () into M(D) by

(v) = ) u(P)v
PER(D)
u\pCQ*( \)

Clearly supp(L’Q*(u) (u))CcQ*(A) and

5.2y 1y = ) on A

For given A€D we define JA as the invertible affine transformation

of TR2 onto TRZ taking A into standard unit square [0,1] x [0,1] = S .

LEMMA 5.1. There exists a constant C dependent only on K such that

for any w€H’(2) and £ = 0,1

. ~1 * (A -1 -1
I 5.3 lwolit - a®Owertty < clfworit]

HC(5) b, 0 0))




4
-

1

+

!

!

!

e —————
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Proof. By Sobolev iwmbedding theorem we have

i

-1
(5.4) llwoJA H <_C||woJA

c”(J,Q(8)) WP (7,Q%% ()
Because of Lemma 4.6 there are at most Z**(K) different domains JAQ**(A) .
where 2*%*(K) depends on K only. This shows that C 1in (5.4) depends on

K only.

Using (5.1), Lemma 4.4 and Lemma 4.5 i) we get

- *(4) -1 -1
G.sy @Y Bgyert < c|lwolH|
i) b R ,0mr )
where C depends on K only.
Since by Lemma 4.5 ACQ**(A)
-1 -1
(5.6) | JwoT || < |{weT, 7|
2 b s 2 HE,ark ()

Combining (5.5) and (5.6) we get the Lemma.

LEMMA 5.2. There exists a constant C (dependent only on K) such that

for any WGHZ(Q) and £ = 0,1

-1 () | o1 -1
(5.7 fwor;t - (¥ )w)°JA1‘Hz < clwosil|

(s) H (J, Q%% (8))

Proof. Suppose 2z 1is any function bilinear on Q** . Then on A we

Qr8)

have z and therefore




g

(w+z)oJ;1 - (HQ*(A)(w+z))°J;1 = ch;l - (HQ*(A)w)oJ;1
and hence using lemra 5.1 we get
wedyt = ¥ ®er < coint|fuedy 2l
i H"(s) z H (JAQ**(A))

where 2z 1is an arbitrary bilinear function on JAQ**(A) .

Becavse by lemma 4.6 there is only a finite number (depending on K only)

of different JAQ**(A) , and by lemma 4.5 any int JAQ**(A) is a domain, we

have (see e.g. [ 2 |}, pp. ) that

Inf {fweJ ™ '-2]] < clwel Y

HZ(JAQ**(A)) HZ(JAQ**(A))

The theorem follows immediately.

Now we have

THEOREM 5.3. There exists a constant C depending only on K such that

for any A€TD, u€H2(§2) and 2 = 0,1

(5.8  [lu-rull , < catam 27 Nul]
H™(A) H™(Q**(4))

Proof. Using (5.2) we obtain (5.8) from lemma 5.2 by standard scaling

argument.

THEOREM 5.4, Let |J€H2(Q) then for & = 0,1

e T T VY 7 I PSR S T PO S Prrsr=F =i’ g yrmt = = ¥ T8 i = S e A Y845 2t
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5.9 llemll , <o’ o],
H(Q) HE ()
with C depending only on K . :
Proof. We have
2 2 2 2(2-
ool 2, = ] flenal | <] lull? n20 @) <
H(Q) €D H™(8) A€ED H™(Q**(4))
< cf fhull? W22y < c Jallu]|?, w?EFP
L€ED H™(Q* (1)) AED H™(A)

where A(A) 1is the number of Q%(A') such that ACQ*(A') . Using lemma 4.1

we see that A(A) < MN < C(k) and so theorem 5.4 is proven.

Remark: In Theorems 5.3 and 5.4, the restriction ué’HZ(Q) can be weakened

to u€H2(A) for every AED .

Theorem 5.4 shows that M(D) has the same basic "interpolation" properties
as the usual finite element spaces. The spaces M(l’) are more flexible than the
usual spaces defined on quadrilateral meshes. The space M(D) allows us to
make a refinement and still keep square elements. The restriction to K-meshes
is from a practical point not importani. A more essential restriction is that
we deal only with squares. How to overcome this resctiction with respect to the
implementation and the theory will be discussed elsewhere.

The use of the spaces M(D) does seem to have a major advantage over tri-
angular elements because of programming and data management simplicity, expecially

when some form of automatic or adaptive mesh generator is envisaged. One mani-

festation of this is that the element can be uniquely defined by the binary
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expansion of the coordinates of its center, the length of such an expansion
indicating the size of the element. Since all the elements have moduli, a
scaling factor the same geometric shape, the calculation of the stiffness
matrix, etc. is simplified. 1In addition this seems to be important for the
practical effectiveness of the error estimation.
We shall analyze now the approximation properties of M(D) when UGHI(Q).
Before being that, we introduce some notations. By u(x), xéﬂRz we denote
a molifier, a function with all derivatives continuous p(x) > 0, p(x) =0
for |x| >1, u(0 =1, and J p{x)dx = A . For € > 0, let ue(x) =

R,

—%- u(x/e)

£ A

Let QC.IR2 be an arbitrary bounded domain and ®  its p~neighborhood.

s
For u defined on ¢ , we put

[yl
A
p=]

= %
u [ EARY]
3 i € ?

Nbviously u is defined on Q .

Further for any t €IR2 s Jt] <1, e <p let

utg(x) = u(x+te)
Then utE is also defined on  , and we have

(5.10) | ]u_|]| < ce Yl
£ 12 () o (@)

[u -l <cC
€ u’ ()

T
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| ut-ul | < el
1) nl(e?)

with C 1independent on £ , u and ¢

Let us prove now

LEMMA 5.5. For every PER(D) , let a function wpéHz(Q) be given. Let

A€D and ACw . If
Po

W=1 Z v w
peR() P P

then for ¢ = 0,1

.1 Jw -wll, < cleatan 027w || +
Po  H'(A) Po  HE(Q**(n))
2 i—p
) Voo w e | (diam A)' ")
PER(D) i=0 Po P nQrx(a))
[\eup

Proof. On A we have

W=1 v [-w  +w
[ p]

Z vV w + 1 %
PeR(5) P Po PER(r) P Po

= HQ*(A)W + HQ*(A> Z v ["W +w ]
Po peR(py P Po P

Using lemma 4.4 and Leibnitz's rule, we have for ¢ = 0,1,2

C




t —————— e —
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(5.12) ) v [~w w,]li . <
arnaoxeay#g Pl Po Pl W (gxximynat)
K 19
< C ) ll—w +w i[ . (diam 8)
i=0 Po P HI(Q**(a))
Therefore on A
w o -W=w —HQ*(A)W - Z v [~-w . ] - [HQ*(A)( Z v [-w +w_]
Py Po Po  pPER(p) P Pop P PeR(p) P Po P

- v [-w_+w_ 1)
peRp)y P Py P

Applving theorem 5.3 and noting the remark after theorem 5.4, we get the lemma.

LEMMA 5.6. Let véHl(IRZ). Associate to every PER(D) a sector

t GIR2 , Jt. .l <1 and a number A such that
P pP’_— P
min{diam A)
), = hE. 1
L A K.512
VLet furtQSE
t A
W= % [v p p]
P
R . L S
and
W=1 ] vuw
peR(D) P P

P o T e e, < <

g
;
1
!




Then for any A€D and ¢ = 0,1

| lv-w]| < c(diam 0)Y7H v
1t (a) algeea2®

14

(5.13) p = max )\p
Oy C * A
. Q*(A)

Proof. Let Apr and /_\pr . Then using lemma 4.4 we have
o
)‘P’)\P < C(K) diam A. Using (5.10) we get for 1 = 0,1,2
o

lw -w_ || . < c(diam 8) 7| |v]|
PPy 1 (Qx*(a)) B ([Q**(8)1%7)

By lemma 5.5 we get readily the lemma.

LEMMA 5.7. Let p be defined by (5.13), then

[Q**(8) 1% Naco*(a)

The lemma follows easily from the definition.

THEOREM 5.8. Let u€H1(Q) respectively Hl’F(Q) . Then for any D

with h(D) < g, there exists w€M(D) respectively M(T))nHl’F(Q) such that

for all A€D and ¢ = 0,1

(5.14) [[u-w]] . < C(diam A)l—gllu 1
H™(A) H™(Q*(a))

izt
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with C independent of D, u and A

Proof. The extension of u onto a neighborhood o° » has the properties
2p
listed in theorem 2.1. Denote by [Q**(A)] °  the ZDO-neighborhood of Q**(A)

Po = min[p,n/28] where p is defined by (5.13) and B was introduced in

Theorem 2.1. Then by lemma 5.7 and theorem 2.1

< ¢fful]

[l < L
neo HT[Q*(A) ]

yy. < ClTul|

) nlrore(a)1%

ul([Q**(A)]
Let L1€H1(&2). Select tp = 0 in Lemma 5.6 for all PE€R(D) . Then

for W constructed in Lemma 5.6 we have WEM(D) and

< ¢l ]uf] < ¢|]ul]

1 1 200 = lr*(a)]

| fu-w]|
B (a) HO[(Q*%(a)

and the first part of the theorem is proven.

We have now to show that when uEHl’r(Q) then we can choose W so
that W(P) = 0 for all PE€R(D), PET . To every PER(D), P¢I‘ , we take
tp =0 . If P€3n, P€Er , PE€I" then we take t:p the outward unit normal
(if P 1is a corner of # then the normal is bisecting the outside angle).
If P€3F then it is easy to see that we can select vector tp (pointing in

to the sector 320 in Fig. 2.1) and not necessarily of the unit length such

b
that wp(P) = 0 also. This finishes the proof.

Finally we prove

-]
THEOREM 5.9. 7I,(‘t_r_fur€Hl(Q) [respectively HI(Q), Hl’r(Q))]. Then there

ks

exists wE€M(D) respectively M(D)ﬂHl(Q) respectively M(T))ﬂHl?r(Q) such

that
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(5.15) Y]] (u—w)H2l < CHU|121
PER( P H(Q) HE(Q)

"y

with the constant C dependent only on K .

Proof. By Theorem 5.8 we see that for any A€D and & = 0,1

(5.16) | |u-w] | 3 iC(diam)lagHuH 1
H7(8) H™(Q*(8))

and applying Leibnitz's rule and lemma 4.4, we obtain

(5.17) v (u-w) || < ¢|ull
P al(a) al(qx(a))

for all PE€R(D) such that prQ*(A) . By lemma 4.1 there are not more than

M(K) such nodes so we have

I Hvwwll? < 1 v el <cmllul?
rer(p) P HE(A) PER (D) P H(A) HT(Q*(A))
W CQ*(A)
P
and therefore
2 2
(5.18) I Hv o 1% <ew | Hall®)
PER(D) P H () AED HY(Q*(8))

By lemma 4.1 there are not more than C(K) different A' €T such that

Q*(A')D 4 and so (5.18) yields (5.15).




Ehbase 2 el
T

e bk adis g

i

Remark to Theorem 5.9. Assume now that int supp u = * . ‘Then

sSupp w = U W
PER(D) P
A,A-pnsi*aéw

This observation follows immediately from (5.16).

Remark: Theorem 5.9 is closely related to (3.1) of [ 9] which is an

essential part of the a-posteriori error analysis.
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6. THE MODEL PROBLEM, ITS FINITE ELEMENT SOLUTION

AND THE BASIC A-POSTERIORI ESTIMATE

As a model problem we will discuss the case of plane elasticity for a
body, homogeneous and isotropic on every Qg making up the domain Q .
Let Hl(Q)C:HiC:Hl(Q) i =1,2 where Hi = Hl’ri(Q) as defined in
Section 2.
Let HO = H; x H,y , with u = (ul,uz) and consider on H, x H the

0 0

following bilinear form

Bul avl 3u2 8v2
(6-1) Blu,v) = Bluy,up3vq,vy) = J[(qu)( ox, ax, T %, ax,) t
1 %1 2 9%
Q
Bul 8u2 avl sz aul sz 3u2 Bvl
PG e G e TG e, T a0 |9
2 1 2 1 X1 9% Xy 9%y

~
[

L k
We assume that A and v are positive and constant on every Q of

The constants X , u are the usual Lamé constants.

We will assume that there exist constants 0 < Cl’CZ < » guch that

for any u €HO

6.2) ¢ |lull < B(u,u) < C,}|ul]
1 1 (9) 2 H'(g)
with
2 2 2
[ul | = | lu,l] + | lu,]]
ulo) Ul 2 vl




Obviouslv B(u,v)°= B(v,u) and |B(u,v)]| ‘;CHUH 1 vl . There-
1)

H™ (s Hl(ﬁ)

fore on H( B(u,v) 1is a scalar product with the energy norm

)’

2

(6.3) H‘u;H = B(u,u)

2
(6.2) shows that the energv norm Hiall]®  is equivalent with HUH 1
H™{Q)

The problem  P(H ,w,e), w€ll](§:) X Hl(iz) . gGHO(Q) X HO(Q) consists

0’

of finding lleHl(Ll) X Hl(([:) such that u - wéllo and
(6.%) B(u,v) = (g,v), \‘,"VGHO
where we have written
(
(e,v) = J(glvl + gy, )dx

It follows by the standard theorv that u  exists and is uniquely determined

The function u will be called the exact selution of the problem P

Let now "-(1.(9) = M(D)nHi(;.‘), i = 1,2 and MO(D) = HI(D) x MZ(D) .

N -
Assuming that w€ M ]° in the problem P(Ho,w,g) , the finite element

solution I of P with respect to M consists of finding U€M(D) x M(D)

such that U-w 5.'.10(0) and

(6.5) B(U,v) = (g,v), vaMO(D)

Just as for the exact solution it follows that the finite element solution

exists and is uniquely determined,

U




Finally we denote by e = U - u the error of the finite element solution.

We will be interested in an a-posteriori estimate of the norm |(e|| 1

'ieill or some norm equivalent to it. We will design an estimator E --
[ depending only on the known finite element solution -- which will be related
to the error norm. As estimator E is called an upper respective to lower

estimator if there exist constants AU respectively AL independent of D

and u , U such that

1 Hell < Ay

respective
AE < |lell

THEOREM 6.1. Let w€M®) u be the exact solution of the problem

P(Ho,w,g) and U its finite element solution with respect to M . Then

there exist strictly positive constants C C depending only on K,

0’ "1

g, A and § such that

(6.6) C B(n_,n ) < H\ell‘z < C ) B(n_,n_)
OPCR%D) PP 1 per(py PP

where

N,
(6.7) npeu(wp) = {v€}lolv=0 on Q-wp}

and

—— e

= (6.8)  B(n ,v) = Ble,v), Vve?{(mp)




{
i

Proof. 1t follows from the definition cf U and u that

B(esv) = 0, VvGMO

and therefore
B(e,e) = B(e,e-v) = B(e, | v (e-v)) = ) B(n_,v_(e-v))
PR (D) © reR7D) PP

Using Schwarz's inequality we get

. ’ 2 1/2
Ble,e) = n B v e g ()
PER (D) : ' PER(D) P
9 1
L) v (e=w|119]
PER(D) P
By (6.2)
[ )lliz (‘1! ( )||2
v _(e-v)! - Litv (e-v !
p p "ulca

and therefore by Theorem 5.9 for a proper choice of v

l 1|;v (c—v)[liz - C1:e‘l21 < C"‘elllz
PER(D) P H ()
Hence we have
2 . 2
el Loy
lehd ;g
rer(p) "

which proves right hand side of (h.f).

40

/2



Let us prove now the left hand side of (6.6). Define
w, = ) n_ o, j=1,...,J, where
xj are the sets introduced in lemma 4.2. We have now

(6.9) B(e,w,) = ; B(e,n) =} B(n_,n)
J PGXJ p PEx P P

Because for P # Q , Pﬁ}exi int (supp np) Nint (supp nQ) = @ we have

B(ﬂp.nQ) = 0 and hence
.10)  B(w..w.) = B(n_,
(6.10) (w5 ws) N (nvn0)

PE€y .
]

Further
e | < el 1 Thel]

and hence using (6.9) and (6.10) we get

1112 | 2
oy 'pe'fj‘”“p”' < el T
and hence
i 2 Co 2 2
| el t1? 2w, 1] —pezjlllnpltl

»

Because j ranges over 1,...,J we get




L
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P

N5

6.1 (el [[Z -3 ¥ q1n
I per'(p) P

By lemma 4.2 J < L(k) and therefore (6.11) proves the left side of (6.6).

3 We have proven in Theorem 6 that the estimator

2
e () = X B(n_,n)
peR(D) P P
is simultaneously on upper and lower estimators. The individual terms np
are determired locally on separate stars mp . Let us underline that al-
though the unknown error e 1is present in the definition of np in (6.8)

we have not to know it. In fact
B(e,v) = B(U-u,v) = B{(U,v) - B(u,v) = B(U,v) ~ (q,v)

Remark. The proof of the theorem 6.1 follows very closely the ideas
in [ 9]

We assumed in Theorem 6.1 that w€M(D) . It is obvious that
w = (wl,wz) influences the solution only by its values at the boundary
3% , more exactly on T . 1In general when xﬂ*ﬁKD) we replace w by
3€WHD) and estimate the norm of the solution of the problem P(Ho,w—g,O)
Usually it is easy to explicitly construct a function zé'Hl(Q) x Hl(ﬂ)
Z = (w-w) on T

i i

! In practical cases we can expect that IHZH |1s much smaller than HIeIH .

1,2 and the desired estimate is then simply ll!zlll

i 1




.

43

7. THE A-POSTERIORI ERROR ESTIMATE

Let us denote by Q any of the squares comprising the domain § and

let Q
o

i=1,..

.,n are given and denote by Z the linear span of =z,

be the unit square [0,1] x [0,1] . Assume that ziéHl(Qo) ,

i’ i=1,...n.

Definition 7.1 Let o >0, e >0 . By %(,p,e,0) we denote the

family of functions EelfQQ) such that for any square § = [al,al+h] X

[az,a2+h]C:Q the following properties are fulfilled

@) gEHl(S)
B) There exists QO = z(h—l(x—a)), z€Z and constant M (both depending
on £ ) such that
i) |le-g 1] <M,
° Ho(s)
i)  |e-g | <M,
°1les)
iii)  fe | > oMb~ ©
H™(S)
Let us illustrate our definition by a few examples.
(i) Let I be the set of all polynomials of degree less than or equal
to n . Then any polynomial of degree < n on Q belongs to the family
9(Z,0,:,Q) with o and ¢ arbitrarv.
ii) Let Z be the set of guadratic poiynomials. Then £ = sin 3

belongs to the family 9(Z,p,e,Q) for =« < 1 and some suitably chosen ¢ .




iii) The family % is typically characterized by Z being the poly-

nomials of degree < m , say, and then we take Co to be a suitable Taylor

expansion of £ . Then (i) and (ii) are more or less standard, and (iii)

>

states that €o is not 'degenerate".

LEMMA 7.1. Suppose that f€r1({,p,e,Q) then there exists C (depen-

dent on (Z,0,€,Q), such that for any square SCQ .

7.1) gl | < C(diam )7 inf £-al|
H™(S) d = constant H (S)
functions on S

Proof.1) Define FGHI(QO) by

F(x) = f(a + hx)

Now by the assumption there exists Fo(x)e Z such that

(7.2) {[F-F |] <M,
° HoQ

(7.3 |F-F_| <M,
° )

—€

(7.4) |F | > pMh
°HhQ)

Denote now by F respectively F; the average of F respective to Fo on

Qo . Then ve have

(o]

o -—
@) #°(Q,)

(7.5) II(F-FO)—(F-FO)llHO < IF-F I <M



i
|
|
r
n
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o .
because F-F is the H projection onto the set of constant functions on

(o]

Q

o .

Because Z is finite dimensional space there exists C (dependent on

Z) such that

N N IR L I | LA T

HI7Q,) H'(Q) HO(Q,)

(o] (o]

and hence combining (7.4), (7.5) and (7.6) we get

-1 -1 —
M<h®S IR | <o IIFO—FOIIHo

| (QO) Q)

[0}

and

| o - -1 ¢ !
!"F-FOHF'FO)“HO(Q < ¢ h||E, F01|H0

(o}

@)
On the other hand

| |F-F|| > ||F -F || - || P-F)-F-F ) ||
HO(QO) ° % E%) ° ° 1@,

1, ¢

and hence for Cp ~h- < 1/2 we have

- 1
(7.7) | |F=F]| | > ={|F
HO(Q 2

Further from (7.3) and (7.4)

e bt 47
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s (7.8)  |F| < |F | + |F _-F < |F_|
1 o' 1 1 o' 1
L H(Q,) H (Q) H Q) H(Q,)
1, ¢
tuc Rl @+t <2fF |
. H (QO) H (Qo)
b for h ! <1
Therefore by (7.6), (7.7) and (7.8), we have
|F| < 2|F | < 2¢]|F~F_}| < 4C||F-F||
p 1 - o' 1 - o o'' o - o
H(Q) R () R(Q,) K@)
so upon rescaling back to § (7.1) is proven in the case diam S < ho(p,e,Z) .
2) Suppose now that diam S > ho(p,E,Z). Put
5 - [di-ﬂé]m +1
ho
INT . P
where [-] denotes as before the integral part. Clearly we can divide
S into 02 congruent squares Si’ i= 1,...,02 with
diam S, = diam S < h
i o — o0
Thus
(12 -2 02
2 212 di S 2
l 3 R D N T N SN NS C1 RS TN
' H(S) i=1 H (S ) i=1 H(S,)
o i
d=constant
function
: < Co’(diam s)72 inf [|£-d] ]20
d=constant H (S)

function
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But o < 1 + Q%EE—Q < C and the result follows.
o

We introduce the family %(Z,p,e,Q) for Q = Q: with Q: as in section

, - k .
2. Because { consists of a finite number of Qe it is clear that we can

extend the family 9 into 9%(Z,p,e,9) so that the restriction on Q = Qg

is the family %(Z,p,¢s,9)

In what follows we will assume that we are concerned with problems P(Ho,w,g)
introduced in section 6 where g = (gl,gz) , gieﬂ(z,p,e,ﬂ)

We shall discuss now the error estimate of section 6 in more detail. We
have shown in theorem 6.1 that the essential part of the estimate is the norm

of np which is defined on the star wp . In section 4 we introduced the

standard star ¢p (see lemma 4.3) as the image of wp under the mapping

J .
P
On ¢ we will define now the space H_ = H x H with
P P 2,p

: -y - 1 1 v
H(0) = {v = (v,vy) €0°(0)) X H (@ )]ve] €H(w))

with ﬁ(wp) defined in (6.7).

In 6.1 we defined the bilinear form B . Let us define the form Bp
defined on Hp x Hp with the same expression as in (6.1) but with integra-

v
“ ~

tion over Qp , and A, u 1instead of A, u, A = reJ1 y M= u°J_1 .

LEMMA 7.2. The bilinear form Bp is such that for any uéHp s

2 2
(7.9) Cyllul] < B _(u,u) <C,||ul|
L R RS

b (¢p)

with constants Lo i = 1,2 dependent only on A,u and K but independent

of P .
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(1)

For each P€ER(D) there are line segments T  'C 8<bp (i=1,2)

both being edges of standard P elements of ¢p and such that u€IH)2?ui =0

on F(l) Applying now lemma 4.3 we see that there are only finite number

of different cases of the domains ¢p and the line segments F(l) for each

the Korn inequality holds. Therefore (7.9) holds with ['( 1 replacing
H (¢p)

-1

on (

1
H (d>p)

s ,F(l)
P

Because these two norms are equivalent with constants depending

,F(Z))

we get (7.9) immediately when using again lemma 4.3.

Denote now by Mp(¢p) the set of all t1€ﬁp(¢p) being bilinear on

every standard P element of the standard star ¢p . Further we denote
. -1 - o -1~ o R 2
= e°Jp s, u-= u°Jp , U= U°Jp , 8y = giOJp » By < gi(dlam Ap)
i=1,2

where

and

with

e, u, U, g were defined in section 6.
We have
B (é,V =0, VVGM o] )
P ) P( P
B (e,v) = B_(0,v) - B_(u,
p( v) p( v) p(u v)
N 2 2 ~
B (u,v) = ) (g;,v) , WvE€H
P jo1 1 L2(¢p) P

4
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By integration by parts we get

[

1 3]

\

Il o~

. J Oi,j(U)nivjds - I Li(U)vidx]
3h A

. 2
B (U,v) = ] ]
P AE:SP i=

where (nl,nz) is the unit normal on each edge of 3A pointing outward from

A and

: _au. a0 30, oD,
3 % "A(a—l+ﬁz')+“[§£+5'i}
. > *1 2 i 0%

A A A a 32U2
: L. (U) = (M) 5=
3 1 axlaxz

~ A . oa 82U

L(U) = (A1) s——
oo 2 8x13x2
'
E Let Fl 0 (respective r, p) be the union of all vertical (horizontal)
; , y

edges of all AéSp . Then

- 2 A o~ - 2 ) A

(7.10) B (e,v) = ] [-(Ig.+L.(U)],v.) + 7 (o, (U),v) ]

b P <1 i i i L2(¢p) =1 i*7d,j j -LZ(Fi,p)
where Ji indicates the jump in a function across Fi . The jump Ji has

an obvious sense if the relevant edge I of A 1is inside ¢p . If

re 8d>p we have to distinguish the case of whether vjeﬁl,p ==}vj =0 on T

or not. If all vj =0 on T we will take the jump to be zero. If it is
! not the case, then Oij is set equal to zero outside ¢p , and the jump

F is taken the usual sense. This convention will be used through the paper.

~

: Because U 1is bilinear on every A Eép and X,y are constant on A
? ‘ " we see that Li(U) are constant on every A and Ji(oi_fu)) are linear on
' ]

every edge of A .

W -
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. -1 -
Putting ©n_ = n ¢]J (6.8) gives
P p P

b

(7.11) Bp(np,v) = Bp(e,v) V\JéHp(@P)

lUsing Lemma 7.2 and proceeding in the standard fashion it is easily seen

that ”p is the unique Hp(@p) function satisfying (7.11).

LEMMA 7.32 There exists a constant C dependent only on K and y , A

such that

3. o, ] )]
1 143 H°(ri)

Ho~—e

(7.12) || < C [ ) (llé.+£.(6))ll +
P i=1 ol HO(e,) ]

Proof. The set of possible Sp's is finite. Therefore we have by Sobolev

imbedding theorem

(7.13  |lvl] d
HO(Fi) 1

with C depending only on K . (7.13) with the Lemma 7.2 and Schwarz's Inequality

leads to the desired result.

LEMMA 7.4. Assume that gi€1KZ,p,g,Q) then

I o~

s il s

A 2 n R
Plg.+L, ©. .
ol 0y (Hlegr ] +jZIIIJi( 1J(U))llﬂo( )

1 H () ri)

wnere C depends only on K , the family % and A, u

PP S VO
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Proof. Suppose that the constant C does not exist. Then there exist

for each n = 1,2,3, ...
i) a K-mesh D[n]
1) p(™lerenl

iii) IAJ[n]e'Hl(@ ) with IAJ[n] being bilinear on each A €S
pln] pln]

Al

with | gi“] |

iv) éi[n]GLz(tb < CHé[n]—AE[nMHO for

pln}) - i ()

'l (a)
any A€S , with C independent of n and A§ denotes the
plnl

sln]

average of gi on A

such that the unique solution r][nléHI>[n](d>P[r1]) of

1 L al’

2 .
i [n]
+ 1 o, W™),v0. ] YveH . (& )
s L5 () (n]*p(n]
satisfies
~{n] 1 2 [n], : ]
7.1y [nM) <I oy diaMe ety
H (¢ [n‘]) i=]1 H (¢ rn‘])
! P p
|
2o “[n]
+ 713, o, W™D
] j=1 1 13 H°(r£"])
' 1
_ Putting r[i“] = ég“] + ii(fj[“])

L2




n

el
‘i

| “in)
i~ Ji(oi’j(u ))

’.

then without loss of generality we can assume

: n] &
7an 1AM + ) e ) =1
b . i,] o [n]
i=1 H (cbp[n]) j=1 H (ri
and
[n] A A—|n]
(7.18) |r. | <clle, = T VAES
i Hl(A) - i i HO(4) p[n]

The inequality (7.18) follows from the assumption that giGTMZ,p,E,Q) and that

Li(U[n]) is constant on A . From (7.17) we have

vy Inld A—[n] [n] [n]
(7.19)  |lr! tnl < e < rs <1
1 1o %) L H°(¢p)

~ ~

Using Lemma 4.3 we may assume that ¢p(n) =9 , Sp[n] =3, Hp[n](¢p[n]) =H .

Further by Rellich's lemma, (7.18) and (7.19), we may also assume that

r[n] » ¥ in HO(®)
i i
Now Ein; is linear on each edge of A€S and so we may assume also that
[n] . o, S . 5
£y i " in H (I') where T 1is the union of all edges of A€S. (7.17)
’ j
yields
2 2
o " " .
(7.200 7 (R + ) e L )=1

. s
1 i,] HO (I

(7.15), (7.16) and (7.20)

leads now to the contradiction.
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LEMMA 7.5. Let P€R(D) be such that VLE (vP,vp)éi\i‘(wp) (see(6.7))

and uoCQk for some k€Z_ . Then
p_6 0

) 2 . -
Hin 1] <c) (lg;-"g;ll
in < g g

P H1(¢>p) i= t

AR o 2
where 85 restricted to any AC¢p is the average value of g; on A .

Proof. The proof will be by contradiction. Suppose the lemma does not

hold. Then for each n = 1,2,3,... we can find D[n], pln] R vlrl ang

-

o (1]

g4 as in i}, iii), and iv) of the proof of lemma 7.4 when ii) is replaced
by ii")
s [n] n oY k
! P €R(D , (v , ) €H(w w . C for some k€2Z
ii") ), ( p[“] Vp[nj) ( p[n]), p[n] Q, o

and (because of (7.10) and Bp(é,v) = ()

2[n] 1

Ly o
(7.2  -(g" + LU, vp[“] Jp[“])u°(q> )
[n]
P
+ % .o, wl™yy,v el =0
j=1 i i,] p[n] P[n] HO(F )
1,p[n]
and with n[n] as in (7.15) and
(n] N ia] | A%(n]
(7.2 n 0 >of L dlgg - et
Hmp L7 H 0 tay’
+ § ||3 (o (':l[n]))l'l
. it7i,3 o
j=1 ’ H (T ):]
1,p[“]




S S e —— -
L m - ———— — - . e e —

54

As in the proof of the previous theorem, by use of lemma 4.3 we can assume

that
o) Sp[n]= S, ®p[n] = ¢ , ri,p[n]= Py s Hp[n] = H are independent
of n
: B) [n]C ng for some k€Zo where k 1is independent of n (because

Z is finite).

Now a), B) yield that also Bp[n](-,-) = B(+,+) does not depend on n

NI T
H™ (%)

Let us set now

LMY

i i

© o plnld
+ Li(U )

b4, 7 J; (o4

].u}[”]n

bl

Now by (7.21) and Yy we have

| |r£n] _ /,\;!n]

H -0 , VYA€ ®

HO ()
(7.23)

It is easily demonstrated that

Goaw T e -t @l < f e, LI
j=1 1 ’ HO(o) T i,351 RO

i.




-

-
-

—— m———— — ——— e

55

and so we must have

T In) N YN
(7.29) o™y - Lot -0
1 ! 0O (1)

By (7.23), using lemma 7.1 Reéllich's lemma and the fact that S 1is finite,

we may assume that

fq] A,
(7.26) rfnl - F, in IR
i i
(7.27) é{n] - Q. in M)
i i
. ' . 3/4
Because of lemma 7.1 we sce that g{”] 2. also in H / (1) where
1 1
3/4 . . . . .
H (%) is the usual space of fractional derivatives. Now by (7.23) again we
- n
see that ry and g, must be constant on cach AE€S Further by lemma 4.3(i)

,'u 7 ,\J
and the fact that gi61i3/4(®) we see that B4 is in fact constant over all of

$

Bv (7.26) and (7.27), it follows that Li(Ukﬂ) converges in H°(¢) and by

3,

(7.25) it must converge to a constant on 3 is a constant

This follows that ?i
on %

By (7.21) in the limit we sce that

1
[n])

(;..v o]~
£ pln] Tplnl yo

By lemma 3.5 we have v [n}i 0 and Vp[n]> 0 on a set of positive measure.

Thus we conclude that ¥i = ()

T N U
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Returning to 7.15, we see that ”ln} >0 in H1(¢) which contradicts v .

Now we return te the question of the a-posteriori estimate. (iven a
mesh D and the corresponding finite element solution U as in (6.5),

g we will associate to every €D the error indicator n(A) defined by

2

2
g -2 2 2
* (7.28)  n"(a) = ] fdiam s ] [[Jj0, (O[] + (diam A)zllgiﬂi(U)ll 0. !
= i=1 i=1 J L END) H(B)
where
2
A U2
L, (U) = (A+u)
1 3 laxz
3,
L,(U) = (M)
4 2 Bxlaxz
U U AU U
= a1ty 2 S S |
Ol,] A(axl + 5 )y + “laxi + % ]

and Jl (JZ) indicates the jump across the vertical edges, ;A (horizontal
edges, azA ) of A& . We use the same convention as before, i.e. if the edge
r<sQ is such that viG}H v, =0 on T then the jump Ji is not taken

into consideration. If it is not the case, we take the jump Ji(di j) = ni o
’ ’

The estimator FE then is defined

‘ =2 S
ES = ) W
| rED
{
l THEOREM 7.6. The estimator E is an upper and lower estimator, i.e. there
exists SR dependent only on K, X, 1,88 and 9 but not u and U , such
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that the error of the finite element solution of the problem P(Ho,w,g)

wélM(D)]2 , g€W(ZL,p,e,Q) satisfies the estimate

Before proving the theorem let us prove two simple lemma.

LEMMA 7.7. Suppose T is an edge of some A€0D . Then

a) Either (i) TC3Q .

or (ii) J PER(D)

such that ACw_ but T¢faw
p P

B) TNA' # 0 for at most x elements A'&§D where ¥ depends only

on K.
Proof.

®) By lemma 3.5 we have va =1, so certainly for some P €R(D)

v_ > 0 at the midpoint of T . Since vp is a non negative andlinear on T,

then v_ > 0 on T except perhaps at an endpoint. The result is then immediate

upon noting that vp is continuous and inducing lemma 3.6.

B) The number of such elements is clearly bounded by the number with non

Lemma 4.1 iii) then gives the result

empty intersection with A

LEMMA 7.8. Suppose a,,...,a ~ are non negative real numbers and let ©

{1,...,n} > {1,...,m} such that

l be a mapping from

— . .
e Ny SR

-
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i) « 1is onto

ii) 3IM >0 such that W1 < j <m the set {ill < i <mn, a(i) = j} has

at most M elements then

m n m
Voa, < Ja . <M)a, .
g1 3 Tt e@ =y

The lemma is obvious.

Proof of the Theorem 7.6. Using a scaling argument applied to lemma 7.3 and

7.4 we obtain

2 .- 2 2
(7.3 {In Il N v Y [(diam) Ilgi+Li(U)|| . +
Pointqe ) 1€l i=1 HO (D)
P AC
p
2 2
+ diam & ) |17, .|| ]
=1+ 1 HO(BiA)

where J? indicates that we use the jump across edges {4 which are on awp
but within @ equal to zero. Adding over all PER(D) and using lemma 7.8
and lemma 4.1, we are in a situation covered by lemma 7.7 and the result follows.

Before formulating the next theorem, we prove

LEMMA 7.10. Let Rx(D) = (PER(D|v =0 on U 25 J . Then

k€ 7

[0}
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Proof. The lemma follows from lemma 3.2 applied to each Qg separately
which shows that any A€0D has at least one vertex P say, being a regular node
located in the interior of a Q: . Clearly the corresponding mPCZQ: , and so
PER*(D)

n,
Let us introduce now another error indicator n(4) ,

: "2 2 2 2 2 A= 12
. (7.33)  n"(a) = ) {diam A ) }lJioi J.(u)}] o + (diam A) llgi- gi\l o !
3 2=1 j=1 ’ H™ (3, 8) H (4)
. wnere Ei is the average value of g; on and the corresponding error
estimator

(7.3 ¥ =7 ¥
r€p 1

THEOREM 7.11. The estimator (7.34) is also an upper and lower estimator.

Proof. Let P€R#(D) . Then using lemma 7.5 and 7.4, we see that for any
h€w
P
2 2 2 2 201 b
(7.35) ! (diam 07 g i+, @ ||° ) < c¢) [ (@iam )7||g;-"g ll |+
i=1 H(4) Aeu)p i=1
l 2 o 2
i + diam A .Z Il]ioi’j(U)ll o )
: j=1 H%(3,)

We have shown in lemma 4.1 that any A 1is contained in not more than M(K)

( stars wp . Lemma 7.10 shows that every A 1s contained at least in one wp

7 £ a3 TR P RV OV A TR

v




PE€Rx(D) and therefore summing (7.35) over all A€D we see immediately that

"

- . " N Y
E < Ck which yields that £ 1is an upper estimator. Because E < E E is clearly

a lower estimator.

Lemma 7.12. There exist Ci >0, 1= 1,2 such that

2 4 (A), .2

(7.36) Colyr i, <diam & ] [Jiop (W0, D17 <

- 1 (9, 8) =1 >
)
ol Tos, oy e
2 i7i,] HO(Q,A)
o i
() . '
where X, are the vertices of A .

Proof. The inequality (7.36) follows immediately from the fact that

J.e. .(U) 1is linear on every edge of A
i1,]

Lenima 7.12 allows us to introduce another error indicator,

~

~

(1.37)  n() =

2
i}
j=

’ 4
. 2 b2 2 A— 2
di: A J ! i i .
3 {( iam A) ?Zlf ioi,j([)(xQ)] + (diam A) ||g1 gl]IHO(A)}

a9,

1

and error estimator

(7.38)  BS = Y ont(n)
AG - !

and we have from lemma 7.12 and Theorem 7.11,

THEOREM 7.13. The estimator (7.38) is an upper and lower estimator.
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8. THE ASYMPTOTIC ESTIMATE

: We have shown in the previous section that the estimator E introduced in
(7.35) and (7.34) is under the proper assumptions simultaneously an upper and
. lower estimator.
In this section we will analyze an‘estimator E , which will be equivalent
o with E i.e. there exist C, and C, so that

1 2

(8.1) CE <E<CE ,

. 2 1
3
L ‘
J
and will be asymptotically exact for the energy norm |||*||| introduced in (6.3).
’ 4 We shall say that an estimator € 1is asymptotically exact with respect to the

energy norm if

E
(8.2) H‘[—a—”—> 1 as l|el| -+ 0

b To show (8.2) we have to make various assumptions about the solution u and
. the meshes in addition to the assumption that the mesh is a K-mesh.

Suppose D(R) is a mesh and let D'€D satisfy

i) If A€D' , diamA=h, h >0

ii) if A€D' then all vertices of A are proper nodes.

If (i), and (ii) hold then we shall say that D' {is uniform. If only
} (i) holds then we will say that D' has uniform size.

Suppose now that AC B C Q then we shall write A < B if

| P(A,B) = dist(A,[®-B) > O .

Let UOC D(Q) then we will write
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and (U ) - reaabcr oos clements contained in DO . We will write D'"<D' if
(8]
Dy e
< 5 : ) S . 2 s
Finailv denore by M(D; 'l) the set of functions of {M(D)] restricted

to i and M(D,AE])CM(D,.‘]) the set of functions which are zero at 3%, .

We shall make use ol the following version of Theorem 5.2 of [11]

THEOREM 8.1. Let D'QUD(2) be a uniform mesh. Assume that the bilinear

form B defined in (6.1) has constant coefficients on 2(0') and let D'"< D'

) k
Then if 7 = (Z.l,f,ﬂelHl(#(D‘)]‘ satisfies

9
(8.3) S TGRS B S S I |
i=1 HO oAD"

i

for all :ieﬁ.Of(D,mD')) then

(8.4) jf’_i! . . C
H (D™ j

I i~Tre

| ]

inf |7 - x| + - ~ ~ |e.-x| +
J r‘ ¢ 13 \‘(Q(D ),Q(U )) 3 s '

1{x€‘1(0,':(0))[ (1:(0") HO (2(D'))

! o
to e T T Yy L Al tA
H MUY e pry)y }

with € dependent only on the bilinear form (6.1) (and not on 20", 2(0")).

Suppose now that D'CP  has uniform mesh size and let D" <D' . Then
. | . . 1
we can define o ditference operator I'; which maps H](u(D')) into H Q@)

so that

('I‘Tu) (%) = 2I1-1 [u(x+hvi ) -u{x-he i) |
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with h being the diameter of the elements of Q' and ey the coordinate
unit vector.
We have then the following theorem which follows easily from Theorem

6.2 of | ]

THEOREM 8.2. Suppose that ug and U1 j = 1,2 are the components of the

exact respective finite element solution of the problem P(HO,W,g) as defined in

Section 6.

Assume further that D" < D', D'CD are as above, that the bilinear form

B of (6.1) has constant coefficients on Q(D') and uj€H3(Q(D')) y j =1,2.

9
axi we have

Then if D"' < D" it follows that for Di =

(8.5) HDiuj—ThU ! <c § (n?]) +

Y u ||
i wonqoyy T k41 K w3y

1 |
* p (D) ,0(D™)) 'luk-UkIIHO(Q(Dv)))

Denote now for any square QC:IR2 by Hi(Q) the space of all functions which
are of the form ax; on Q (when referred to an origin placed at the center
of A)

Now we prove

THEOREM 8.3. Using the same notation as in Theorem 8.2 then for each

A €D there exists ¢? ieHi(A) i,j = 1,2 such that

]

2
-1
(8.6) D, (u,~U) = § ¢, .|| < Cp (D) a0y T
17373 rep I 1 (")) k=1
2 .
by || + {ju.-vu ||
{ 3@y k Tk HO(Q(D"))}

P PV
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=
Proof. For any we€MD, (D)) we have

(8.7) B(U' - u,w) = B(u-‘u,w) = X B, (u-iu,w)
/\@u A

where fu€M(DP) 1is such that (lu)(x) = u(x) ftor any x€RD), and BA is the
restriction of B to A

On each A€V , B (u-ilu,w) is the sum of terms of the form

. W
0 ——- (u.,-lu,) --— dx
| <, ity
2 : i
for i,j,k," = 1.2 and some constant ¢ . Consider first the terms
( W
5181 R 1
Lo (u -.1'}) T dx
[ ',A’
i k

[t is oasv to wee that for ”j a quadratic function the above expression is

equal to zero. Therciore by standard argument we get

oo . i 2
(8.8) - (u=tny) e M ChT L] lw. |
[ i i oA ‘ 3 i1,
. : * HoA H{A)
with O  iadependent of 74 and o,w .
Let us consider now the term
‘- AW,
. . i.
(8.9) e (u,=Tu,) e Tdx, kO#
ax i ioax.
4\ K h
Obviously we nced only analyse the case k =1, ¢ = 2 |

SRS SN




” N L N’
T -1
L .} A
| Xe
Iw L‘;? Ie
L B
S Is s

Figure 8.1. The notation of an element.

and get
3w
3 i .9
[ e (uj—ﬂuj) = dx = P (uj—Huj)widx1 -
" 2 N
N 'S
\2 N 3w,
. - = _ - -1 1
f % % (uj ﬂuj)widx (uj Huj)wil _ J (uj uj) = dx1
172 N 1
A r
N
+
S
3wi [ 32
- - + - —_— - — -
(uj Huj)wi J (uj Huj) i dx1 | oo (uj Huj)vidx
- . 1 172
S | A
S
Because for a quadratic function we have N (g~fg) = 0 we conclude
3x13x2
3 Swi Bwi
(8.10) ‘ J X (uj-ﬂuj) F dx + J (uj—Huj) Py dxll
A 1 2 rir 1
N 'S
2
B conllul 5 eyl
H™(A) H™(A)

Using the notation as shown in Figure 8.1 we integrate by parts in (8.9)
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AW,
Realivzing that  (u.—iy.) is o continuous fanction on (P")  and - is
i A Ix
" 1
cont inuous on all horizontal edges of " and .. = 0 on the horizontal edges
X
of D" we get by adding (8.10) over all L €Dn
3 4 5 iiwl, \
(811) ! 'f iv'.x (ur.—llu,) ‘)\‘ dXi : (H‘“rl:_; 3 wil l
Towy K LR Yoy H(0TD™))
. B
: Yor k #i
(8.8), 12.11) and (8.7) vield
2
(S0 Bl (TR u, , ) ( ‘/— | 1 )
Pl T e R T CTE2A
Applving new theorom 8,10 we get trom (3.12)
(R. %) U=, Y {hzi i + ‘_'"‘_”_'”L “‘\U -Tu |
R, RSN L ] . , E L P . \ 0 Dn r?DVll s .
1 } e (va) ],__1 ] HS(L.’(D' )) "( ( )y ( ) ] ) HO(Q(D“)
2
( g { 2 vl { ) g
e sy L I O SR I R TR + U,~u '| }
) et " . ] i | 3!
SOty oD )';:1 ' H‘(;??(D")) R R N OICAD)
where we have ased the bact that
a ;
(R.14) U ra . l\[‘_*-u,H + [lu, -1 | i
; [ § e PURE | | 0 sl ] J a n
5 0" TR CHC/ABD) H(2(0"))
i
P
aniel Huv)\! (Ih“HnH ,
oV Ry (DY)
[
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Let us consider further Di(uj—ﬂuj) on AED"

Refering to Figure 8.2

(2]
Z
3 ~&-
4
. fol %
[ —x_'—) ?
Yy 3
. h .
Figure 8.2.

The notation of an element.
2 A
for any w€H"(A) we choose ¢i = JiweHi(A) so that
0,2y = wiz'D)

where Z(i)

are the midpoints of the particular sides as shown in Figure 8.2,
For uJ, = g a quardatic function , we can easily check that
D, (g-Mg) = J°D
18778 1 i

And so by the usual arguments we have that for some ¢ 16”1(‘” .
14

A 2
(8.15) llDi(uj—Huj)—¢j,i||Ho < Ch ujl
!

H3(A)

Summing over all A€D"

we obtain




8.16 D (u-ta) - o Ch™iu,
¢ ) D it : ' )1”3

wh e

(8.
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e Ty (20" )

Combining now (2,14) and (8.13) we get the desired result.

VEMMA A4, Using the sane notation as in Theorem 8.3 we pget for k # 4

€ A S SN o -

2
(f\(l:,“l,l.i‘/,(alﬁL,‘))“ © G / hl’lu.i‘ +
‘ ' H i ! G0 " . . ! ] ! 3 - "
’ Hoety j=1 TOHT@O)
-1 . - Loy L :
+ ‘ll;'_", R N K b \\”‘]1‘. 3 + I‘U'—U'Il o
S AR LonTe @) J_J_-IJ_(Q(D"'))
Fe Oty
Proot,  Write
N (RS DI o
‘ CP"Y, PN h S + u -U )) .
i=1 oy SR o)
Now we have for any 2~ €D
) ’ /
(h o =1 ) D U = (e, A0 (u =U0) = b, 60+ UL) -
17) 08 ' i,l. k(“i Li )HO(‘) ( i l"(”,] IJ) C c»]’k Dk(u1 Ll)
S SREIIN i - e ety
{ . < ) : b
NS 4 AT o) A LN TS
L NI U B SN STIELON B A TR U EY ) i
Js " ’ ”“(/‘\) N ] B Js 7 1 » HO(/\)
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It is easy to see that for ¢ # k we have (¢§ ,¢A ) =0 . Summing (8.17)
j,2’"i,h HO(A)
over all A€D'" and using Theorem 8.3 we get
2, 2 A2 172
(8.18) | (D, (u,-U,),D, (u,~U.))| < C((e%+o( § ) N )79
L3 7] k1 i HO(Q(D"')) i,5=1 r€D™ i,] HO(A)
Using once more Theorem 8.3, we get
N A
(8.19) || T e, L] < cle+] D, (u,~U) || ]
AED'" Js1 HO(Q(DHI )) 13 1] HO(Q(D"' ))
Using now Theorem 8.1 for § = u-U we have
2 -1
(8.20) 1D, (u,-u,)]] <c( ] {hllu,l] + 0 |lu,-u ] ) j
P e qomyy T s T WP emy) 33 W0 o)

and combining now (8.18), (8.19), and (8.20), we obtain the desired result.

LEMMA 8.5. Let S be the square as in Figure 8.1 with side length h .

Eﬁen for any

f = ax1 + bx2 + cxlx2 + d

we have
+ - - +
(8.21) Hax, |12 - L w2e2ah+e2a)+£2 (s +£%(s™y)
1 o 12
H (S)
< Mllbx +ex % +d|!2
= 2 172 o

H (S)

with M {independent of h, a, b, c, d.
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Proof. By simple computation we get

1|ax | = a ;”ll
b ')
1 HO(S) 12
2ot 2= 2 - 2+ 2. 2.¢° 2.2
FENDHETNDHE(ST)HT(ST) = (a“+b ™+ + 4d9)h
4

and
4 . ?
b (b2 + Y+ 4dT) < M| bx, + X)X, +d1 12

< | HO(S)

which immediately vields (8.21).

THEOREM 8.6. lU'sing the same notation as in Theorem 8.2 we get

2 2 2 1.3 -2.4 2
(8.22) 1D, (-t 1]° -y 0" ¢ Y Thite “h) | u || +
R X CIUAD D I k=1 ® 3
-2 2 -1 =22 A '
o “llu -u + (o “htp D) | ug [ [{a.-0 {] }
KR e aom) K daemy K K gogpny)

where

- 2 . .
o 2wy = b T v ary 72 iy + 12 sty + 12y sH ]
1. 1,] 1,] 1,]

e aep e b .

and Ji J,(/.)(N_) is the jump in é;i with jth coordinate direction at the

point N of A (i.e. the value of the jump across w at N ) and analogously

for the other vertices.

-—J""""'-*---ﬂ---I----uu------i-u-I--nu-lliillllinununul‘
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Proof. We have

(8.24) D,(u.,-U.,) = (D.u ~ThU ) + (ThU -D.U.)

) i3 ] i) "ij i"j Tij
By Theorem 8.2 we get

h 2 2I l
(8.25) ||p.u, - ToU. || <cl T lu || +
P31 o y) k=1 weon)

-1
+ (20", 00" 17 Ju,-u, || !
kR o)

Theorem 8.3 yields

2
A -1
(8.26)  |lp (u~v.) - ¥ &7 . < Clo™ (™), "y §
17373 r€M It w9 )) k=1

(h?]]u + 1w -u | M= E

10" 1

Combining (8.24), (8.29) and (8.26) we get

(8.27) {1l -p Ui- ) ot <CE

PIOU € Bt ey T

Simple computation shows that T?Uj—D U, is bilinear on each £2A€P"' . For sake

173

of definitions and without loss of any generality let us suppose that i = 1.

Consider now ThU,-D
15 71

for £ = (EI,EZ)GTE

Uj . Using notation shown in Figure 8.3 we have




(8.28)

For

(8.29)

Let now

(8.30)

L. tion of

Now it is easy to see that for any bilinear function f

bx2 + cxlx2 + d

72

N N’
aamm A —ATV—
W | < Ie
h
SNl 4
S S’ 4

Figure 8.3. The scheme of the notation.

h -1 -1 ~

£ €T we get analogously
1%

SN

N~

h
(TJU;-DU ) (&)

A \ h
¢1,j be the L1, projection of (TlUj-Dluj) onto Hl(A) . Then from

(8.27) we get

2 113

2
0 - Z 1,3 |
H (Q(D"' )) Aevﬂl 3

2
IlThU--D v + 0(EY) .
175 "173 R (a) 1

on A, f = ax,y +

(with coordinate origin in the center of A ) the L, projec-

f onto Hl(A) is exactly ax, and so by lemma 8.5, (8.28) and (8.29)

1

we obtain
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2
VA 2 h 2 - 2 + 2 - +
= - J J Jo . + J  .(S +
(8.31) AéD"'|I¢l’jllHo(A) 15 Ae%"'( DO+ TP L)+ I7 (8T + T (8]
h + LA
o(||Tyu.-p.u. - § ¢ .|| )
175 7173 AEDM 1,3 HO(Q(D"'))
vsing now (8.27) and (8.30) we get
h 2 2 2
(8.32) ||t U.-D,U, || = y7 . (D") + 0(ED)
T3 3 o gpryy b !

Hence we have

2 h h | =
- -D, U, ~T U =
(8.3 [[p) (u, Uj)'lno(w(v"w [(TyU,-D U +(Du,-T) j)I'HO(Q(D"')
h 2 h 2
||T;u,-D,U. || + ||D u, -1 U, || +
17] 1] HO(Q(DHV » 13 1] HO(A;/](T,)"')

h h
+ allDluj-TlUjll ||T1Uj—D

u, ||
HO(2(D"™ ) P340 @)

where -2 < n < 2

Further using (8.25) and (8.20)

h
(8.34) ||ttv.-p,U. || < ||p, (u,-u) || +
1] 1] HO(Q(D")) 1'73 7] HO(Q(DIH))
h ; -1
+ |tM.-D 0, || <C@E, + T nflu.l] + o Y@y a0
13 715 o a0y Ly 3 oy
Hug-vs 1]

T (0to))

Using now (8.32), (8.33), (8.34) and (8.25), we have
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2
)

2 s m 2,
(8.35) I|D1(uj—Uj)|| o = wl’j(v ) + 0(E] + E(

bl lug +
H (D") J

1 w3 (0"

Al

-1
+ 0 (" ),2(0")) | |u,-U )
33 Kom))

and (8.35) yields almost immediately the theorem.

In section 6 and 7 we introduced various error indicators. See e.g.
theorems 7.11 and 7.12. It is obvious that we can have many equivalent error
indicators which would be simultaneously upper and lower ones. Theorem 8.6
enables us to design a special one, optimally suited to our purpose.

In (6.1) we introduced the basic bilinear form. Obviously we can write

B(u,v) = [Dv]A[Du]T where
[Du] = [Dlul’Dluz’DZUI’DZuZ]

and analogously Dv

The matrix A has then the form,

[ T [~ n
A+2u 0 0 A
A A
0 y " 0 ) 11 12
A = -
0 1 u 0
A A
A A+2u 21 22
- and - -

Assume now that A€D" as in theorem 8.2. Then define

az(A) =
j

N o~

T T
1{[JI,1’11,2]A11[Jl,1’11,2] lagl + 1Ty 1475 51455005 1575 5]

[aj]}




where ai j=1,2,3,4 are the four vertices of the element A .

Further let

”
B7(8) =
i

I o~—1r0

ISl
1 H (A)
and then define the error indicator (which obviously is simultaneously an upper

and lower one)

2
(8.36) n%(a) = 2—8 O hz-ysz(A)
where y>(0 is a constant which will be determined later. We mention here only

that for smooth g we have [B(A)] < Ch .

Now we have

THEOREM 8.7. Let the assumptions of Theorem 8.6 be satisfied. Then

' 2 2
2 h 2 -1, 3, -2, 4 2
8.3 Mu-vlll® pwy = 1 ge @ +cl ] (G h n) [yl +
2V pégm 48 k=1 w3 @y
-2 2 -1 -2.2
+0 “llel]” + @ htp 0 | |u, || e 1+
O K waoy W
Pl 1) el il
+ { ) h||u, + 0 e ot ) h g, +
j=1 0 3 w3 #O@OEnH) 351 3 EXa@")
+ |]el] }

HO(Q(D"))

Proof. We have for u ~ U= &e = (el,ez)

) 2
|||U‘U| I IQ(D'”) =




! LOH20) (00 24,00 ) + ul (Dye) 4D e,)”] + 2ulDye D ey] +

27171
Q(Dl'l )

+ 2 [|D1elDZeZ ] }dx

Using Lemma 8.4 and Theorem 8.6 we get the desired result.

So far we have defined the error indicator n(4) by (8.36) for all A€D"M.
We will extend this definition to all elements A with IXGQ: (see-sections
2 and 6) where the coefficients are constant and A’TBQ: =@ . If A has an
edge on BQZ then we shall define the indicator in terms of the jumps in Oi,j s
so that we obtain an upper and lower estimator. The detailed formulation and
extensive numerical experience will be addressed in a forthcoming paper.

Here we will assume only

a) The indicator has the form (8.36) for any AGQ: . Anan =0 (y > 0)
fixed but arbitrary.

b) All the meshes on K-meshes and the indicator leads to a simultaneous
upper and lower estimator (under the assumptions spelled out in Section 7 ).

We will place some additional assumptions on the solution u and the meshes

used, as listed below. Then we shall prove that the error estimator is asymp-

totically correct. By this we mean that

ety >

as ||lelll-o0

We will assume that there is a sequence of K-meshes vh, h(Uh) = h,

h ~ 0 with K independent of h
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¢) The mesh is equilibrated in the sense that max n(A)/ min n(a) < C
A€Dh A€Uh

with C independent of h
a) }llel}] -ch with € > 0 independent of h .

é) There exists s > 0 and C , both independent of h , such that

lilelll, < cn®l]ell]
HO ()

f) For each € >0, h >0 , there exists meshes D’ . > DY > D",
h,e,i h,e,1 h,e,1
i=1,2...m(h,e) such that
i) the bilinear form has constant coefficients on Q(Dg ¢ i)
’ k]
ii) pr . are uniform and D! ., are of uniform size
h,e,1i h,e,i

iii) Q(D;}'"%”i)ﬂ Q(D;',r_,j) =@ for all 1 # j

: " "e e . Py
iv) O(Q(Dh,r’i), Q(Dh,s,i)) > Ch  with C and 8 independent of

h and ¢, 0 < 8 <3S

m(h,e)
g) Denote Ry _ = Q(Dé . ;) and analogously Ry _ and b, and
k4 i=1 R I ] 9 ’
we shall assume that
o lll, < xo
1
H (Rh,r)
i) lell 4 < X(e)
u ') s
,E
e m(“,h) 1" "y &(h) b h ) ighborh i
h) Let S = Q- U Q(Dh . i) and sh . e the neighborhood
°= e=1 6 ’
| of S with s=h" 0<8- s,
1 T
Denote now
= "y &(ll)
- ?Jh’ﬁ (alansy £ 0,




E and we will assume that

”(bh,i) < EO(Dh)

where G(Dh) respective o(ﬁh €) denotes the number of elements contained in Dh

’

respective 5
P h,e

Now we have

THEOREM 8.8. Suppose that the assumptions listed above are satisfied, then

€ > 0 such that for e < € and h < h_(g)
o o -0

where M 1is independent of h and «

Proof. For every D;'E ; Wwe can write by theorem 8.7 and property f) and
g)
m(h,c)

k] 2 2

z mem " = Z n“(A) +z -2

i=1 wu( h,e,i) m

L'€'U D‘"h,e,i
i=1

where

21« el 2007y + nT2H e fl|2 + (T2 wio) el +

+ 0% + 228 llell ) cean® S+ flle DT

N , 4
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and

Taking into consideration the property d) we get

1-0,, 2-2s 250 o (150 1¥5728) (o) +

2] < clllefl]2 3x2(e) +h

1 1+s-26 2s-20

+ (h 'exz(e) + h x(e) + hs"ex(e) + h ]

We have
- 2 2 2
Hagrg 12, < on?llgll?
H™(A) H Q)

and therefore

2
° 2 2 2
lzl b ChAile lgl-l IQ(DHV ) < Ch l ‘el l x(e)

h,e,i

Hence
i+ 12l < clliel;

for h <« hi(f)

We have further




2
pon () = ) W2y + ) nz(A)

/‘€Dl m rED.

! AEU DT A

=1 h,r,1i ¢m "

A U D h,e,i
i=1
and by property (h) we get
r|2
2 2 2 2 max
) n“(a) < o(ﬁh’e)nmax(A) < so(Dh)nmax < e Y nS() -5
AED n

h min

Aébh

m
1"y
A¢,U D h,e,i
i=1

<ceJ nt)

A€Dh

when using property «c¢)

So we have for sufficiently small ¢

(1-ed) ) nZ(8) < ) n2a) < ¥ nl)
A€Uh m AEDh
AGU Dn! .
. h,e,1
i=1

Using further the .act that the estimator is an upper and lower estimator we get

el 12 2
(8.39) ] e A = E°(1+f(h,e) )
i=1 Y h,f,i)

. Tth, )« Mo, MO independent of h and ¢

voionsly we have

oom(h ) .
S Hellggm oy el 112,

i1 h,e,1 h,e

I Y e T 45 1 Yl TR R e




t 2 . . .
Let us analyze now H|eHlS", . It is easy to see that there exists a function

h’s'.
wh such that
i) 0 f-wh <1 on 2
1L, . C -0
i) oyl <G < ch
PRPEY W = 1"y
iii) 28 1 on Sh,z
§(h)
— - "e
wh 0 on @ Sh,c
Obviously now
(8.40)  llelllZm < Blew, ,ev,)
vac_: h? h

’ t.

A typical term of B(e wh,ewh) is
i k
J AD (ejwh)D (egwh)dx
194

where A 1is piecewise constant.

We have now
i k i i, 2
= *
D (ejwh)D (egwh) D ejD (wheo) + z

where

i k i i k i k k i
%, = + -
z whD whe!D ej whD whejD e, + ejelD'whD wh thD whD eje

Hence

| J Az*dx| < CHleHlé[hs—e+hzs_201
Q




and so we have

(8.41) B(e¢h,ewh) = B(e,eWE) + R
where

2
(8.42) R <e||]ull)

if h <h_(e)

2
Let us analyze now the term B(e,ewi) . Obviously supp etphc:Q(Dh e) .
?

Using theorem 5.9 and the remark to it and lemma 4.1, we can find weM(D) ,

a,
"y

supp wc:Q(Dh ) such that
,€

2 2,,2
1 < C||ewhl| 1

I v (v ]|
p'h HE (1) HO(Q)

PER(D)

Y Y

N o~
and o(Dh ) i.KU(Dh, )

S E £

Denote further
= '.’,\ O =
Rx {PfR(Dh)l‘an(Dh,r_) ¢}

h,

Then repeating arguments of theorem 6.1 we get

1/2
(8.43) [Ble,sle) | :c[pX 1t mz] leel
erx P

Denote now

v




~

Dh’E =fMApr,P€RﬁJ}

Using lemma 4.1 we easily get

] Y
v

- (8.44) o(ﬁh,e) < Ko(D

A"
e) = Koo(Dh,r)

’
and

1Z<c 7 nlw)
3

»E h,e

(8.45) ) lanH
PER*
In fact if on wp the bilinear form has constant coefficients and wpflaﬂ =0
then lemma 7.5 shows that |an|” can be estimated from above by the suitable
turn of the error indicators. 1In the other cases we first use lemma~7.3 and

lemma 7.5 and the same argument as used in theorem 7.8. Therefore we get

Blesv’e)| < el .5 n* 1Y% [u2e]|
h rEY &
h,e
Now
2 2 < 2 : 2 2
el <cllell , setilvell®, e Vel 15 o *
h,e h,e h,¢
2 2
+ {lopel| 4 8(hy, |
H (SZ—Sh’E )
because wh 1 on SH‘E and wh =0 on Q - S;':(h) we get
|
2 2 2
8.46)  ugelll, < c(| v el + {lurell )
h Q h Hl(qm h Hl(S"' é(h) s™M )

“h,e h,e “h,e
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Consider now
@41 el | sy s el el
"y - "y " m "y - "
H (Sh,e‘ Sh,a) H (Sh,e Sh,e) H (Sh,s 5 h,e)
< Huell o oy o o ¥ el 8(h)
" " ne e
H (sh,E sh’g) H (sh,e sh’ )
-_ Now
?:
2 i i
o (8.48)  |u’e] = Yot g el +
. h ' 1 " 6(h) 1" P h"h o " 6(h) "
‘ H (sh',e -sh"E) i=1 H (sh',e —sh"s)
i
+ oD (whe)HHo(sm ) _gur ]
) h,e h,e
and
i i
(8.49) |l D (“’he)l'.10(8.-.6(11)_3...-) < |ip (“’he)“ﬂo(s...é(h) o )
¥ Y¥he h,e h,e  "h,e
< |l ell
h 1 "'\S(h) 1"
i (sh, _Sh',e)
i -0
(8:59 H(D lbh)whEI|HO(Sm‘S(h)_Sm < Ch HwheHHU(q'"d(h) g )
h, h, *h, e h.c
E |
l 8
For xGSi]'"E(h)—S;]'"E we have

J




dist(x,Q-—S;'i(h)) < n®

e =

and so

0
. e, el < Ch |y el
. h o " 6(h) - h 1 a(h)
- ] - "y 1"t - ”e
1 H (Shyc Shyc) H (Sh,E Sh,E)
because Ype =0 on Q- S;::(h)
2. So we have from (8.43), (8.49) and (8.50),
4
2 42 2
lvrel < cly, el
h 1 "|6(h)_ m - h 1 ll'é(h)_ "y
i (Sh,e Sh,e) H (Sh,e Sh,e)
Recalling (8.46), (8.47), we get
2
o el < cllv el
h Q h Hl(Q)
and therefore
1/2
2 ~ 1/2 1/2
(8.51) B(e,b;e) <Co@,_ ) n__ |lvell <ce @M n___|lnell
h h,e max h Hl(Q) h max'' 'h Hl(Q)

1/2
el Tt Hagell s cePllell | lnell
v€D, n (2) H (o) 1 (o

} where we used the fact that the mesh is equilibrated in the sense of the assumption
c) above and that the estimator is an upper and lower one.

Returning to (8.41)
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Heell®, <8 we < ce2( et + llell ;  Iluell .
Pty - R RS H™ (%) aley M alce

and so ;
b
'
3 2 2 i
. el l?, < celfell?
¥ H™ () H(Q)
l1.e.
T
E Ble,dpe) < Cellel]?)
? H™(R)
and so by (8.40) H

lelllZm < cellell?
h,e HT ()
and the result follows.

The theorem 8.8 obviously shows that the error estimator is asymptotically
correct. This property is achieved for any y > 0 . Let us discuss now the
selection of y . Obviously when the finite element solution is identically zero
then the term in the error indicator associated with the jumps on the edges will

disappear and the error indicator consists only of the "volume'" integral ]

i 2

2 — 112
v(dfam 8)° ] |lg;-g, |17
l e=1 H ()
{
( Assume now that we have a uniform mesh in 1R2 and the exact solution is periodic
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Then it is easy to see that the

leads to the choice

1 A3

(8.51) Y = !
2T 2n) 242

As said above, the choice of vy

possibilities.

We have assumed many very particular properties of the meshes and solutions,
in the theorem 8.8. The problem arises whether these conditions can be satisfied.
Practically we create the meshes in an adaptive mode. The experience has shown

that the meshes which are adaptively constructed have roughly these properties,

and that the effectivity index,
theorem 8.8 supports.

R . 2
For uniform meshes in TR

lelll, = € 1+o(E%))

(see [11}) and adaptively created meshes seem to lead to the same behaviour.

In the next section we will discuss some concrete illustrative examples

pertinent to these questions,

87
x2]Cl
xz]C2 .

finite element solution is identically zero. This

is rather arbitrary and (8.47) is one of the

E
HWEHT] seems to converge to 1 quicker than the

and smooth solutions it can be shown that
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9. THE FEARS PROGRAM

Based on the theory explained above, the program FEARS (Finite Element Adap-
tive Research Solver) was developed. FFEARS is a fully adaptive program solving
a system of two elliptic equations and produces the error estimation (in
various norms) together with the numerical solution of the given partial dif-
ferential equation. The admissible domain is a union of curvilinear rectangles.
The adaptive approach is based on equilibration of the error indicators. The
description and experimentation with FEARS will be reported elsewhere.

In this paper we are using FEARS as an illustration of the developed theory.
We will discuss here two examples. 1In both, we are concerned with the (plane
strain) elasticity problem. We assume that E =1 (E 1is the Young's elasticity
modulus) and v = .3 (v 1is the Poission ratio).

Example 1. The elasticity problem on the square with displacements pre-
scribed on the boundary. The data are shown in Figure 9.1. It is easy to see that

the solution belongs to the space Hz-f(Q) (e > 0 , arbitrary).

Figure 9.1. The data of example 1.
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Example 2. The elasticity problem on the rectangle with mixed boundary con-

ditions. The data are shown in Figure 9.2. The solution is of the "stamp" type

I

v=-1 —— vl ——
iz |

Figure 9.2. The data of example 2.

and the singularities are of the type described in [12] . Solution belong to

H3/2—€(Q) , € >0 arbitrary.

the space

In both cases the exact solution is not known, nevertheless by now elaborate
computations we estimated with sufficient accuracy the exact energy of the solu-
tion. This gives the possibility to compute the (exact) energy norm of the error
and compare it with the estimator.

Example 1. Because of the obvious symmetries of the solution, we can compute

the solution only on the quarter of the original square applying boundary condi-

tions shown in Figure 9.3.
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Figure 9.3. The boundary conditions for example 1.

FEARS constructs adaptively the meshes by equilibrating the error indicators.

Figure 9.4a,b,c,d,e,f,g show the sequence of constructed meshes.

We see that

the sequence of meshes satisfies the assumptions made in section 8.

Figure 9.4.

The sequence of adaptively constructed meshes for example 1.
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Figure 9.5 shows the dependence of the energy norm of the error on the number
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of tne elements N . The norm at the error is measured in percent of the energy

norm of the solution (;||u||!) . Because the solution belongs to

the rate of convergence is

as for the adaptive one.
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Figure 9.5 shows the slope N_% in addition to the error behavior of the uniform
and adaptive mesh.

The Figure 9.6 shows the effectivity index © respect 1 - 6 as a function
of the number of elements. We see that for the accuracy in the range of 5-107%,
the effectivity index is quite acceptable from a practical point of view. We

also see that 6 » 1 converges with a higher rate than the error itself.
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Figure 9.6. The effectivity index -- Example 1.
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We alsosee that the quality of the error estimator is better for the adaptively

constructed meshes than for the uniform ones. This is likely the consequence

of the equilibration of the error indicators which is essential in our theory.
Example 2. Because of the obvious symmetries of the solution, we can

restrict the computation to the domain on a boundary condition shown in Figure 9.7.

<C

nwn
~O
<X
n
9
N
QO

e m—— e 0

Figure 9.7. The boundary condition for example 1.
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Figure 9.8a, b, ¢, d, e, f, g, h, i shows the sequence of the meshes constructed
by FEARS. Once more we sce that the assumption about the mesh made in section 8

is essentially satisfied.

Figure 9.8. The sequence of adaptively constructed meshes for example 2.

Figure 9.9 shows the behavior of the energy norm of the error. Because the

H3/2—l H3/2

solution belongs to (¢ > 0 arbitrary) and u the rate of convergence

1
of the uniform mesh is N ° . This is in complete agreement with the data shown
-3
in Figure 9.9. The adaptive mesh gives the rate of convergence N which is the

maximal possible rate for the smooth solution. We see that the adaptive mesh

-
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Figure 9.9. The energy norm of the error -- Example 2.

removes the influence of the singularities on the rate of convergence. We see
also very clearly that using a uniform mesh we practically can never achieve an

accuracy of 5%.

Figure 9.10 shows the behavior of the effectivity index for the Example 2.

Once more we see that the effectivity index has practically acceptable value when

the accuracy of the solution is in the range of 5-10%. In addition the rate of

convergence of the effectivity index seems to be twice as high as that of the
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Figure 9.10. The effectivity index -~ Example 2.

solution. Also we see that the error estimator performs much better for the

adaptively constructed meshes which equilibrate the error indicators than for

the uniform mesh.
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