DELAWARE RIVER BASIN
MUSCONETONG RIVER,
HUNTERDON COUNTY
NEW JERSEY

PENWELL MILL DAM
NJ 00781

PHASE 1 INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

DEPARTMENT OF THE ARMY
Philadelphia District
Corps of Engineers
Philadelphia, Pennsylvania

REPT. NO.: DAEN[WA] 53842 | NJ 00781 - 81/05
MAY 1981
Phase I Inspection Report
National Dam Safety Program
Penwell Mill Dam, NJ00781
Hunterdon County, New Jersey

Performing Organization Name and Address
Harrs-ECI
453 Amboy Ave.
Woodbridge, NJ 07095

Controlling Office Name and Address
NJ Department of Environmental Protection
Division of Water Resources
P.O. Box CN029
Trenton, NJ 08625

Monitoring Agency Name and Address (If different from Controlling Office)
U.S. Army Engineer District, Philadelphia
Custom House, 2d & Chestnut Streets
Philadelphia, PA 19106

DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

KEY WORDS
Dams
Embankments
Visual Inspection
Structural Analysis

ABSTRACT
This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report.
Mr. John O'Dowd, Acting Chief
Bureau of Flood Plain Regulation
Division of Water Resources
N.J. Department of Environmental Protection
P.O. Box CN029
Trenton, NJ 08625

Dear Mr. O'Dowd:

We are forwarding, for your information, under separate cover the available copies of the Final Report for Penwell Mill Dam, NJ00781. Since the dam does not meet the size criteria for inclusion in the National Inventory of Dams, a Corps of Engineers Assessment has not been prepared. The report does, however, provide a valid indication of the condition of the dam.

Sincerely,

D. J. SHERIDAN
Chief, Planning/Engineering Division
DELAWARE RIVER BASIN
MUSCONETCONG RIVER, HUNTERDON COUNTY
NEW JERSEY

PENWELL MILL DAM
NJ00781

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
PHILADELPHIA, PENNSYLVANIA 19106

MAY 1981
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name: Penwell Mill Dam, I.D. NJ 00781
State Located: New Jersey
County Located: Hunterdon County
Stream: Musconetcong River
River Basin: Delaware River Basin
Date of Inspection: January 12 and February 3, 1981

Assessment of General Conditions

Penwell Mill Dam is a concrete dam spanning the Musconetcong River. It is comprised of two overflow spillways separated by a small island. To the left of the dam are three timber stop plank sluice ways. The sluice way furthest to the left controls the flow to the mill. The overall condition of the dam is good. There are no major signs of distress. The downstream channel is well defined and in good condition. The hazard potential is recommended to be downgraded to "low".

Penwell Mill Dam is considered inadequate in view of its lack of spillway capacity to pass the SDF (100-year storm) without overtopping the dam. The spillway is capable of passing a flood equal to 7.6 percent of the SDF(100-year storm) and is assessed as "inadequate".

At present, the engineering data available is not sufficient to make a definitive statement on the stability of the dam, but based on the findings of the visual inspection, the preliminary assessment of static stability is that it is satisfactory. The following actions are recommended along with a timetable for their completion. All recommended actions should be conducted under the supervision of an Engineer who is experienced in the design, construction and inspection of dams.

1. The flow of seepage should be monitored monthly to determine its volume and whether it presents a problem to the safety of the dam.

2. Repair all spalled and deteriorated concrete on the abutments and wingwalls of the sluice ways within twelve months.

3. Replace all broken timber stop planks at the sluice ways within twelve months.
4. The owner should develop an emergency action plan (if one is not already available) outlining actions to be taken by the operator to minimize downstream effects of an emergency and establish a flood warning system for the downstream communities within three months.

Furthermore, while of a less urgent nature, the following additional actions are recommended and should be carried out within twelve months.

1. The owner should develop, within one (1) year after formal approval of the report, written operating procedures and a periodic maintenance plan to insure the safety of the dam.

2. Conduct a complete topographic survey of the dam and surrounding area, in order to develop a detailed plan and several cross-sections of the dam to form a coherent as-built set.

John P. Talerico, P.E.
HARRIS-ECI ASSOCIATES
Photo taken February 3, 1981

View of dam looking towards the right from the low-level outlet.
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the office of the Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
TABLE OF CONTENTS

ASSESSMENT OF GENERAL CONDITIONS

OVERVIEW PHOTO

PREFACE

SECTION 1 PROJECT INFORMATION ... 1

1.1 General .. 1

1.2 Description of Project ... 1

1.3 Pertinent Data ... 4

SECTION 2 ENGINEERING DATA .. 6

2.1 Design .. 6

2.2 Construction ... 6

2.3 Operation .. 6

2.4 Evaluation ... 6

SECTION 3 VISUAL INSPECTION ... 7

3.1 Findings ... 7

SECTION 4 OPERATION PROCEDURES ... 9

4.1 Procedures ... 9

4.2 Maintenance of Dam .. 9

4.3 Maintenance of Operating Facilities 9

4.4 Evaluation ... 9

SECTION 5 HYDRAULIC/HYDROLOGIC ... 10

5.1 Evaluation of Features .. 10

SECTION 6 STRUCTURAL STABILITY ... 12

6.1 Evaluation of Structural Stability 12

SECTION 7 ASSESSMENT/REMEDIAL MEASURES 14

7.1 Dam Assessment .. 14

7.2 Remedial Measures ... 14
TABLE OF CONTENTS CONTINUED

PLATES

<table>
<thead>
<tr>
<th>Plate Description</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY MAP</td>
<td>1</td>
</tr>
<tr>
<td>VICINITY MAP</td>
<td>2</td>
</tr>
<tr>
<td>GEOLOGIC MAP</td>
<td>3</td>
</tr>
<tr>
<td>DRAWINGS OF DAM</td>
<td>4</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Appendix Description</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX A - CHECK LIST - VISUAL OBSERVATIONS</td>
<td>1 - 12</td>
</tr>
<tr>
<td>APPENDIX B - PHOTOGRAPHS</td>
<td></td>
</tr>
<tr>
<td>APPENDIX C - SUMMARY OF ENGINEERING DATA</td>
<td>1</td>
</tr>
<tr>
<td>APPENDIX D - HYDROLOGIC COMPUTATIONS</td>
<td>1 - 14</td>
</tr>
</tbody>
</table>
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

PENWELL MILL DAM, I.O. NJ 00781

SECTION 1

1. PROJECT INFORMATION

1.1 General

a. Authority

The National Dam Inspection Act (Public Law 92-367, 1972) provides for the National Inventory and Inspection Program by the U.S. Army Corps of Engineers. This inspection was made in accordance with this authority under Contract C-FPM No. 35 with the State of New Jersey who, in turn, is contracted to the Philadelphia District of the Corps of Engineers, and was carried out by the engineering firm of Harris-ECI Associates, Woodbridge, New Jersey.

b. Purpose of Inspection

The visual inspection of Penwell Mill Dam was made on January 12 and February 3, 1981. The purpose of the inspection was to make a general assessment as to the structural integrity and operational adequacy of the dam embankment and its appurtenant structures.

c. Scope of Report

The report summarizes available pertinent data relating to the project; presents a summary of visual observations made during the field inspection; presents an evaluation of hydrologic and hydraulic conditions at the site; presents an evaluation as to the structural adequacy of the various project features; and assesses the general condition of the dam with respect to safety.

1.2 Description of Project

a. Description of Dam and Appurtenances

Penwell Mill Dam is a concrete dam about 239 feet in length. There is a 90 foot concrete spillway at the dam's right side and an 85 foot spillway, 1-inch higher than the right spillway, at the dam's left side. The two spillways are separated by an island approximately 64 feet wide in the river channel. To the immediate left of the left spillway is a 6 foot wide sluice way consisting of two concrete walls and timber stops planks. The stop planks are slotted into the bottom of the sluice way, and held in place by a vertical and a horizontal I beam. Adjacent to this sluice way is a 70 foot island.
On the island's left side is a second 6 foot sluice way consisting of two concrete walls and timber stop planks, which are held in place in the same manner as the other sluice way. Adjacent to this sluice way is an 8 foot section of the river bank that connects to a 12 foot wide outlet which supplies water to Penwell Mill by way of a raceway. The flow to the mill is controlled by timber stop planks. The planks are held in place by slots in the concrete wingwalls at the ends and a vertical steel I beam in the center. The concrete walls are 2.5 feet thick by 7 feet on the left and 5.5 feet on the right. The distance from the top of the walls to the spillway crest varies from 2 to 2.5 feet.

The flow from the sluice way adjacent to the left spillway discharges into the downstream channel at the bottom of the spillway. The flow from the other sluice way discharges into a narrow channel that meets the main channel (Musconetcong River) approximately 70 feet downstream from the spillway.

The Musconetcong River continues passing under the Penwell Road bridge through an 6.5 foot x 76 foot opening, approximately 400 feet downstream from the spillway.

A generalized description of the soil conditions is contained in Report No. 5, Hunterdon County, Engineering Soil Survey of New Jersey, by Rutgers University. The report dated 1952 describes the river area soil as recent alluvium. Recent alluvium can be described as materials with a wide range of grain sizes which often have been sorted into rough intermingled layers by successive stages of water action. The underlying formation is limestone of varying thickness with a depth to bedrock of greater than 10 feet. The NJ Department of Environmental Protection Geologic Overlay Sheet 24 describes the underlying rock as Undifferentiated Cambro-Ordovician.

b. Location

Penwell Mill Dam is located on the Musconetcong River in the Township of Lebanon, Hunterdon County, New Jersey. It is accessible from Route 57 at Penwell by way of Penwell Road.

c. Size Classification

According to the "Recommended Guidelines for Safety Inspection of Dams" by the U.S. Department of the Army, Office of the Chief of Engineers, the dam is classified in the dam size category as being "small", since its storage volume of 4 acre-feet is less than 1,000 acre-feet. The dam is also classified as "small" because its height of 6 feet is less than 40 feet. The overall size classification of Penwell Mill Dam is "small".

d. Hazard Classification

A hazard classification of "low" has been assigned to the dam. This is based on the fact that a hypothetical failure would not result in damage
to the one house 600 feet downstream on the left and four houses 2,000 feet downstream on the right and no loss of life can be expected in the event of dam failure.

e. Ownership

Penwell Mill Dam is owned by:

Isabella Thomas
R.D.I, Box 46
Port Murray, NJ 07865

Attention: Ralph B. Thomas
(201)689-0353

f. Purpose

Penwell Mill Dam is presently used to supply water power to Penwell Mill.

g. Design and Construction History

Penwell Mill Dam was constructed as a timber crib-rock fill dam with timber overflow spillways, in 1861. An inspection in June of 1943, showed that a new plank crest and some concrete work at the left end had been done. In 1972 the left spillway was concreted and the right spillway was concreted in 1976.

h. Normal Operating Procedures

The discharge from the dam is unregulated and is allowed to naturally balance the inflow from the river.
1.3 Pertinent Data

a. Drainage Area
 105.9 sq. miles

b. Discharge at Dam Site

 Ungated spillway capacity at
elevation of top of dam:
 498 cfs (410.5 NGVD)

 Total spillway capacity at
 maximum pool elevation (SDF):
 6,590 cfs (413.31 NGVD)

 c. Elevation (Feet above NGVD)

 Top of dam: 410.5
 Maximum pool design surcharge (SDF): 413.31
 Recreation pool: 409.67
 Spillway crest: 409.67
 Streambed at centerline of dam: 404.5 (Estimated)
 Maximum tailwater: 406 (Estimated)

 d. Reservoir

 Length of maximum pool: 350 ft. (Estimated)
 Length of recreation pool: 500 ft. (Estimated)

 e. Storage (acre-feet)

 Spillway Crest: 3
 Top of dam: 4
 Maximum pool (SDF): 18

 f. Reservoir Surface (acres)

 Top of dam: 2 (Estimated)
 Maximum pool (SDF): 10 (Estimated)
 Recreation pool: 1.67
 Spillway crest: 1.67 (409.67 NGVD)
g. **Dam**

- **Type:** Concrete
- **Length:** 353 ft. (Effective)
- **Height:** 6 ft.
- **Top width:** Varies
- **Side slopes - Upstream:** Unknown
 - **Downstream:** Unknown
- **Zoning:** Unknown
- **Impervious core:** None
- **Cutoff:** None
- **Grout curtain:** None

h. **Diversion and Regulating Tunnel**

- **N/A**

i. **Spillway**

- **Type:** Overflow weir
- **Length of weir:** Right-90 ft., Left-85 ft.
- **Crest elevation:** 409.67 NGVD
- **Gates:** None
- **U/S Channel:** Musconetcong River
- **D/S Channel:** Musconetcong River

j. **Regulating Outlets**

- **Low level outlet:** 2 - 6 ft. x 7 ft. deep sluice ways,
 12 ft x 5 ft. deep raceway.
- **Controls:** Timber stop planks
- **Emergency gate:** None
- **Outlet:** 405 NGVD (Estimated)
SECTION 2

2. ENGINEERING DATA

2.1 Design

There are no drawings or design computations for Penwell Mill Dam available. No data from soil borings, soil tests or other geotechnical data is available. The only information relating to the dam is a copy of an inspection report done by the State Water Policy Commission on file at the Trenton offices of the NJ Department of Environmental Protection (NJ-DEP).

2.2 Construction

Data is not available concerning the as-built construction of the dam. No data exists on the construction methods, borrow sources, or other data pertinent to the construction of the dam.

2.3 Operation

Formal operation records are not kept for the dam. The overflow from the dam is unregulated and the river is allowed to operate naturally.

2.4 Evaluation

a. Availability

The availability of engineering data is very poor. The stated information concerning the dam is available from the NJ-DEP.

b. Adequacy

The engineering data available together with that obtained in the field, was adequate to perform hydrologic and hydraulic computations. The data was insufficient to perform a stability analysis, but preliminary evaluation could be made based on visual observations.

c. Validity

Information contained in a previous inspection report and checked by limited field measurement appears to be valid.
3. VISUAL INSPECTION

3.1 Findings

a. General

The visual inspection of Penwell Mill Dam revealed the dam and spillways to be in good condition, but in need of minor repairs. The river level was above the crest of the spillways at the time of the inspection.

b. Dam

The right and left sections of the concrete overflow dam appear sound. No spalling or cracks were noticed along the top or downstream face of the dam. No misalignment of the dam in the horizontal or vertical planes was evident. All visible construction joints appeared in good condition.

c. Appurtenant Structures

1. Spillways

The entire length of the right and left sections of the dam are the spillways.

2. Outlet Works

Two 6 foot sluice ways serve as low-level outlets. One adjacent to the left spillway and the other 70 feet to the left of the first. Timber stop planks, slotted into the concrete and held in place by a vertical and horizontal I-beam, are used to control the flow through the sluice ways. At both locations the stop planks were broken, allowing water to flow between the planks.

There is minor spalling on the downstream face of the left abutment for the sluice way at the left spillway. The lower portion of the downstream face of both abutments for the left sluice way are heavily spalled and deteriorated exposing the rock fill. The concrete at the water level of both walls has completely deteriorated resulting in undermining of the abutments.

There is also a 12-foot outlet, which supplies water to the mill by way of a raceway, located 8 feet to the left of the second sluice way. Timber stop planks slotted into the concrete and held in place by a vertical I-beam, are used to control the flow. At this location some of the planks were broken allowing water to flow under the flash board instead of over it. The concrete on the downstream face of both wingwalls is heavily spalled.
Minor seepage was observed at the base of the left abutment of the sluice way adjacent to the left spillway.

d. Reservoir Area

Slopes on both sides of the reservoir are steep to flat and partially wooded. There is no indication of slope instability.

e. Downstream Channel

The downstream channel is in good condition. There is a small island immediately downstream in the river channel near the left spillway. The slopes of the river are relatively flat, shallow and wooded.

Approximately 400 feet from the spillway, Penwell Road bridge crosses the channel. There is one house about 600 feet downstream on the river's left bank and another four houses approximately 2,000 feet downstream of the dam on the right bank. All five buildings are above the flood plain.
SECTION 4

4. OPERATIONAL PROCEDURES

4.1 Procedures

Penwell Mill Dam is used to impound water which is used as a power source for Penwell Mill. The level of the impounded water is maintained through the unregulated flow over the spillways.

4.2 Maintenance of the Dam

There is no regular inspection and maintenance program for the dam. The owner of Penwell Mill is responsible for the maintenance of the dam.

4.3 Maintenance of Operating Facilities

The low-level outlets consists of two sluice ways and a raceway to the mill. All three outlets consists of two concrete walls and a series of timber stop planks slotted into the concrete and held in place by steel I-beams. The water level can be lowered by the removal of the stop planks. At the time of inspection there were broken stop planks at all three locations, allowing water to flow through.

4.4 Evaluation

The present operational and maintenance procedures are fair with the dam and spillway being maintained in a serviceable condition.
5. HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. Design

The drainage area above Penwell Mill Dam is approximately 105.9 square miles. A drainage map of the watershed of the dam site is presented on Plate 1, Appendix D.

The topography within the basin is generally moderate to steeply sloped. Elevations range from approximately 1200 feet above NGVD at the north end of the watershed to about 410 feet at the dam site. Land use patterns within the watershed are mostly undeveloped and wooded with some residential development around the upstream lake areas.

The evaluation of the hydraulic and hydrologic features of the dam was based on criteria set forth in the Corps guidelines and additional guidance provided by the Philadelphia District, Corps of Engineers. The SDF for the dam is the 100-year storm.

The 100-year Flood was calculated from 100-year precipitation using National Weather Service Hydro - 35 and Technical Paper No. 40. Snyders coefficients $C_t = 3.7$ and $C_p = 0.557$ were used to develop a synthetic unit hydrograph.

Initial and constant infiltration loss rates were applied to the 100-year rainfall to obtain rainfall excesses. The rainfall excesses were applied to the unit hydrograph to obtain the 100-year Flood hydrograph utilizing program HEC-1-DB.

The SDF peak outflow calculated for the dam is 6,590 cfs. This value is derived from the 100-year flood, and results in overtopping of the dam, assuming that the lake was originally at the spillway crest elevation.

The stage-outflow relation for the spillway was determined from the geometry of the spillway and dam, utilizing HEC-1-Dam Safety Version program.

The reservoir stage-storage capacity relationship was computed directly by the conic method, utilizing the HEC-1-DB program. The reservoir surface areas at various elevations were measured by planimeter from a U.S.G.S. Quadrangle topographic map. Reservoir storage capacity included surcharge levels exceeding the top of the dam, and the spillway rating curve was based on the assumption that the dam remains intact during routing. The spillway rating curve is presented in the Hydrologic Computation, Appendix D.
Drawdown calculations indicate that to empty the lake to an elevation of 406 NGVD through the three stop plank outlets would take 4.5 minutes, assuming a 2 cfs/square mile inflow. This is not considered to be an excessive drawdown period.

b. Experience Data

No records of reservoir stage or spillway discharge are maintained for this site.

c. Visual Observation

The downstream channel, of the Musconetcong River, is fairly wide with relatively flat, shallow and wooded slopes. The river passes under Penwell Road 400 feet downstream of the dam. There is one house 600 feet downstream of the dam on the left and four houses 2000 feet downstream on the right. The side slopes of the reservoir are steep to flat and do not exhibit any signs of instability. The drainage area is wooded and moderately to steeply sloped.

d. Overtopping Potential

A storm of magnitude equivalent to the SDF would cause overtopping of the dam to a height of 2.81 feet. Computations indicate that the dam can pass approximately 7.6 percent of the 100-year storm without overtopping the dam crest. Since the 100-year storm is the Spillway Design Flood (SDF) for this dam, according to the Recommended Guidelines for Safety Inspection of Dams by the Corps of Engineers, the spillway capacity of the dam is assessed as "inadequate."
6. **STRUCTURAL STABILITY**

6.1 Evaluation of Structural Stability

a. **Visual Observations**

At the time of inspection Penwell Mill Dam did not exhibit any visible signs of major distress. There was no evidence of tilting, misalignment or movement on the foundation. Minor seepage was observed near the base of the downstream face of the left abutment of the sluice way adjacent to the left spillway. There was some spalling and patchwork on the downstream abutment faces at all three outlets. In addition, at the left sluice way, the concrete has deteriorated at the water level on both walls causing undermining of the walls. Numerous trees are growing on the islands between the spillways and between the sluice ways.

b. **Design and Construction Data**

No design computations were uncovered during the report preparation phase. No construction data, plans or geotechnical data are available for carrying out a conventional stability analysis on the dam.

c. **Operating Records**

No operating records are available relating to the stability of the dam.

d. **Post-Construction Changes**

In 1972 the left spillway was concreted and in 1976 the right spillway was concreted.

e. **Static Stability**

A static stability analysis was not performed for Penwell Mill Dam because the lack of data on which to base assumptions of material properties within embankment zones might produce misleading results, but based on the findings of the visual inspection, the preliminary assessment of static stability is that it is satisfactory.
f. Seismic Stability

The dam is located in Seismic Zone 1, as defined in Recommended Guidelines for Safety Inspection of Dams, prepared by the Corps of Engineers. In general, projects located in Seismic Zones 0, 1 and 2 may be assumed to present no hazard from earthquake, provided the static stability conditions are satisfactory and conventional safety margins exist, and based on the findings of the visual inspection, the preliminary assessment of the static and seismic stabilities is that they are satisfactory.
SECTION 7

7. ASSESSMENT/REMEDIAL MEASURES

7.1 Dam Assessment

a. Safety

The dam has been inspected visually and a review has been made of the available engineering data. This assessment is subject to the limitations inherent in the visual inspection procedures stipulated by the Corps of Engineers for a Phase I report.

Penwell Mill Dam is inadequate because the dam does not have the spillway capacity to pass the SDF, 100-year storm, without overtopping. The present spillway capacity of the dam is approximately 7.6 percent of the 100-year storm.

No definitive statement pertaining to the safety of the embankment can be made without acquisition of embankment material engineering properties, but based on the findings of the visual inspection, preliminary assessment of the static stability is that it is satisfactory.

b. Adequacy of Information

The information uncovered was adequate to perform hydrologic and hydraulic computations. The data was insufficient to perform even an approximate computation of the stability of the dam. A preliminary assessment of the dam could be made by visual observation only.

c. Urgency

The remedial measures and recommended actions along with a timetable for their completion are detailed below. All recommended action should be conducted under the supervision of an engineer who is experienced in the design, construction and inspection of dams.

7.2 Remedial Measures

a. Alternatives for Increasing Spillway Capacity

Alternatives for increasing spillway capacity are not required as the hazard potential of the dam is rated as "low".
b. **Recommendations**

1. The flow of seepage should be monitored monthly to determine its volume and whether it presents a problem to the safety of the dam.

2. Repair all spalled and deteriorated concrete on the abutments and windwalls of the sluice ways within twelve months.

3. Replace all broken timber stop planks at the sluice ways within twelve months.

The following additional actions are recommended:

1. The owner should develop an emergency action plan (if one is not already available) outlining actions to be taken by the operator to minimize downstream effects of an emergency and establish a flood warning system for the downstream communities within three months.

2. Conduct a complete topographic survey of the dam and surrounding area, in order to develop a detailed plan and several cross-sections of the dam to form a coherent as-built set.

c. **O & M Procedures**

The owner should develop, within one (1) year after formal approval of the report, written operating procedures and a periodic maintenance plan to insure the safety of the dam.
LEGEND

ORDOVICIAN
Ojb Jacksonburg Formation
CAMBRO-ORDOVICIAN
EOu Undifferentiated Cambro-Ordovician
PRE-CAMBRIAN
P-C Undifferentiated Pre-Cambrian
gh Hornblende Granite
gpx Pyroxene Gneiss
qfb Quartz-Feldspar-Biotite Gneiss

FAULT

(Dashed Where Inferred)

GEOLOGIC MAP
PENWELL MILL DAM

PLATE 3
PLAN
SCALE: 1" = 20'

MUSCONETCONG RIVER
APPENDIX A

CHECK LIST - VISUAL OBSERVATIONS

CHECK LIST - ENGINEERING, CONSTRUCTION

MAINTENANCE DATA
CHECK LIST
VISUAL INSPECTION
PHASE 1

Name Dam: Penwell Mill Dam
County: Hunterdon
State: New Jersey
Coordinators: NJ-DEP

Date(s) Inspection:
- January 12, 1981
- February 3, 1981

Weather: Clear
Temperature: -10°F

Pool Elevation at Time of Inspection: 409.7 NGVD
Tailwater at Time of Inspection: 406 NGVD

Inspection Personnel:

January 12, 1981
William Birch
Thomas Moroney
Joseph Sirianni (Recorder)

February 3, 1981
Thomas Moroney

OWNER/REPRESENTATIVE:
Harold Thomas
R.D.I. Box 46
Port Murray, NJ 07865

(Did not attend)
CONCRETE/HASONRY DAMS

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS AND RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEEPAGE OR LEAKAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None observed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS| | Monitor for clearness and quantity. |
| Minor seepage observed at base of downstream face of left abutment of sluice way adjacent to left spillway. | | |

| DRAINS | | |
| None. | | |

| WATER PASSAGES | | |
| None. | | |

<p>| FOUNDATIONS | | |
| Unknown. | | |</p>
<table>
<thead>
<tr>
<th>CONCRETE/MASONRY DAMS</th>
<th>OBSERVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISUAL EXAMINATION OF</td>
<td>None observed. Water flowing over spillway.</td>
</tr>
<tr>
<td>SURFACE CRACKS</td>
<td>None observed.</td>
</tr>
<tr>
<td>STRUCTURAL CRACKING</td>
<td>None observed.</td>
</tr>
<tr>
<td>VERTICAL & HORIZONTAL ALIGNMENT</td>
<td>Horizontal and vertical alignments appeared good for both spillways.</td>
</tr>
<tr>
<td>MONOLITH JOINTS</td>
<td>N/A</td>
</tr>
<tr>
<td>CONSTRUCTION JOINTS</td>
<td>Good</td>
</tr>
</tbody>
</table>
OUTLET WORKS

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS AND RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRACKING & SPALLING OF CONCRETE SURFACES IN STILLING BASIN</td>
<td>None visible stilling basins were under water.</td>
<td></td>
</tr>
<tr>
<td>INTAKE STRUCTURE</td>
<td>3 stop plank structures. First two are sluice ways used as low-level outlets, the third structure leads to a raceway leading to the mill. Upper planks are broken on both low-level outlets and there is leakage between the planks at all three outlets.</td>
<td>Replace the broken timber stop planks.</td>
</tr>
<tr>
<td>OUTLET STRUCTURE</td>
<td>All outlets have slotted concrete abutments that hold the stop planks. There is spalling on the downstream faces of the concrete walls at all three outlets. At the left low-level outlet the concrete on both abutments has deteriorated at the water level causing the walls to be undermined.</td>
<td>Repair spalled concrete and the deteriorated walls.</td>
</tr>
<tr>
<td>OUTLET FACILITIES</td>
<td>Junctions of all outlets to embankments are good.</td>
<td></td>
</tr>
<tr>
<td>EMERGENCY GATE</td>
<td>None.</td>
<td></td>
</tr>
</tbody>
</table>
UNGATED SPILLWAY

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS AND RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCRETE WEIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete overflow weir in two sections:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right - approximately 90 feet long and 5 feet high.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left - approximately 85 feet long and 5.5 feet high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both are in good condition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPROACH CHANNEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musconetcong River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISCHARGE CHANNEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musconetcong River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRIDGE AND PIERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INSTRUMENTATION

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS AND RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONUMENTATION/SURVEYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBSERVATION WELLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEIRS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIEZOMETERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reservoir

<table>
<thead>
<tr>
<th>Visual Examination of</th>
<th>Observations</th>
<th>Remarks and Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOPES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slopes are steep to flat on both sides and partially wooded. Route 57 is along the right bank.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEDIMENTATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None visible.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Downstream Channel

Visual Examination of Observations

<table>
<thead>
<tr>
<th>Condition (Obstructions, Debris, Etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No debris, small island in river channel by left spillway.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slopes are flat, shallow and wooded.</td>
</tr>
</tbody>
</table>

Approximate Number of Homes and Population

Penwell Road bridge with utility conduit is 400 feet downstream. There is one house on left bank 600 feet downstream and four houses on the right approximately 2,000 feet downstream.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAN OF DAM</td>
<td>None available.</td>
</tr>
<tr>
<td>REGIONAL VICINITY MAP</td>
<td>Available-Hunterdon County Map and U.S.G.S. Quadrangle Sheet for Washington, N.J.</td>
</tr>
<tr>
<td>CONSTRUCTION HISTORY</td>
<td>No formal history exists, but can be deduced from available microfilm at NJ Department of Environmental Protection (NJ-DEP), 1474 Prospect Street, P.O. Box CN-029, Trenton, NJ 08625</td>
</tr>
<tr>
<td>TYPICAL SECTIONS OF DAM</td>
<td>None available.</td>
</tr>
<tr>
<td>HYDROLOGIC/HYDRAULIC DATA</td>
<td>None available.</td>
</tr>
<tr>
<td>OUTLETS - PLAN</td>
<td>None available.</td>
</tr>
<tr>
<td>- DETAILS</td>
<td>None available.</td>
</tr>
<tr>
<td>- CONSTRAINTS</td>
<td>None available.</td>
</tr>
<tr>
<td>- DISCHARGE RATINGS</td>
<td>None available.</td>
</tr>
<tr>
<td>RAINFALL / RESERVOIR RECORDS</td>
<td>None available.</td>
</tr>
<tr>
<td>ITEM</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>DESIGN REPORTS</td>
<td>None available.</td>
</tr>
<tr>
<td>GEOLOGY REPORTS</td>
<td>Available U.S.G.S. Geologic Overlay Sheet for Hunterdon County and Engineering Soil Survey of New Jersey, Report No. 6, Hunterdon County by Rutgers University (New Brunswick, N.J.)</td>
</tr>
<tr>
<td>DESIGN COMPUTATIONS</td>
<td>None available.</td>
</tr>
<tr>
<td>HYDROLOGY & HYDRAULICS</td>
<td>None available.</td>
</tr>
<tr>
<td>DAM STABILITY</td>
<td>None available.</td>
</tr>
<tr>
<td>SEEPAGE STUDIES</td>
<td>None available.</td>
</tr>
<tr>
<td>MATERIALS INVESTIGATIONS</td>
<td>None available.</td>
</tr>
<tr>
<td>BORING RECORDS</td>
<td>None available.</td>
</tr>
<tr>
<td>LABORATORY FIELD</td>
<td>Unknown.</td>
</tr>
<tr>
<td>POST-CONSTRUCTION SURVEYS OF DAM</td>
<td>None.</td>
</tr>
<tr>
<td>BORROW SOURCES</td>
<td>None available.</td>
</tr>
<tr>
<td>SPILLWAY PLAN - SECTIONS</td>
<td>None available.</td>
</tr>
<tr>
<td>- DETAILS</td>
<td>None available.</td>
</tr>
<tr>
<td>ITEM</td>
<td>REMARKS</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OPERATING EQUIPMENT PLAN AND DETAILS</td>
<td>None available.</td>
</tr>
<tr>
<td>MONITORING SYSTEMS</td>
<td>None.</td>
</tr>
<tr>
<td>HIGH POOL RECORDS</td>
<td>Not kept.</td>
</tr>
<tr>
<td>POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS</td>
<td>Available on microfilm at NJ Department of Environmental Protection (NJ-DEP), 1474 Prospect Street, P.O. Box CN-029, Trenton, NJ 08625</td>
</tr>
<tr>
<td>PRIOR ACCIDENTS OF FAILURE OF DAM - DESCRIPTION REPORTS</td>
<td>None known to exist.</td>
</tr>
<tr>
<td>MAINTENANCE OPERATION RECORDS</td>
<td>None known to exist.</td>
</tr>
</tbody>
</table>
APPENDIX B

PHOTOGRAPHS

(Photographs Taken February 3, 1981)
Photo 1 - View of left spillway and upstream river.

Photo 2 - View of right spillway looking towards island that separates the spillways.
Photo 3 - View left spillway and low-level outlet from downstream.

Photo 4 - View of broken timber stop planks of low-level outlet at the left spillway.
Photo 5 - Downstream view of left low-level outlet. Note deterioration and undermining of bottom of concrete walls.

Photo 6 - Downstream view of outlet and raceway leading to mill.
Photo 7 - View of downstream channel looking upstream towards dam.

Photo 8 - View downstream at Penwell Road bridge looking downstream.
APPENDIX C

SUMMARY OF ENGINEERING DATA
Name of Dam: PENWELL MILL DAM

Drainage Area Characteristics: 105.9 sq. mi.

Elevation Top Normal Pool (Storage Capacity): 409.67 NGVD (3 acre-feet)

Elevation Top Flood Control Pool (Storage Capacity): N/A

Elevation Maximum Design Pool: 413.31 NGVD (SDF pool: 18 acre-feet)

Elevation Top Dam: 410.5 NGVD (4 acre-feet)

SPILLWAY CREST:
 a. Elevation 409.67 NGVD - Both spillways
 b. Type 2 concrete overflow spillways.
 c. Width 1 ft.
 d. Length Left - 85 ft. Right - 90 ft.
 e. Location Spillover Entire length, both spillways
 f. No. and Type of Gates None

OUTLET WORKS:
 a. Type 3 - stop plank sluice ways
 b. Location One located adjacent to left spillway, another 70 ft. left of 1st one & the third one 8 ft. left of the second.
 c. Entrance Inverts 405 NGVD (Estimated)
 d. Exit Inverts 405 NGVD (Estimated)
 e. Emergency Draindown Facilities Timber stop planks

HYDROMETEOROLOGICAL GAGES:
 a. Type None
 b. Location None
 c. Records None

MAXIMUM NON-DAMAGING DISCHARGE: 498 cfs at elevation 410.5 NGVD
APPENDIX D

HYDROLOGIC COMPUTATIONS
PLATE 1, APPENDIX D

Scale: 1" = 4 Miles

PENWELL MILL DAM
DRAINAGE BASIN
Area of the Lake at normal pool level

(No information available from any source. U.S.G.S. Quad does not show any lake. From field observation it is estimated that the lake is 150 ft long.

\[
\text{Area} = 353 \text{ Ft} \times (\text{Length of Shalaway Island}) \times 205 \text{ Ft} = 1.67 \text{ Ac}
\]

\[
\text{Height of the Dam} = 6 \text{ Ft (Max)}
\]

Small Dam ; Low Hazard

S.D.R. = 100 Year Flood

Hydrologic Analysis

\[
\text{D.A.} = 165.9 \text{ sq miles}
\]

Inflow hydrograph at reservoir was determined using HEC 1 DB program. Inflow routed through the reservoir.

Reservoir Stage Area Relations

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Area in Ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>405</td>
<td>0</td>
</tr>
<tr>
<td>409.67</td>
<td>1.67 Ac</td>
</tr>
<tr>
<td>420</td>
<td>27.55 Ac</td>
</tr>
</tbody>
</table>

Reservoir storage stage relationship was determined by HEC 1 DB program from the area stage relationship.
Precipitation Frequency Values (inches) of 100 yr. For

60 min. 3.05 Ref. NWS. Hyd. - 35 -
2 hr. 3.88
3 hr. 4.35 Ref. NWS. TP No. 40
4 hr. 4.73
5 hr. 4.98
6 hr. 5.20
100 year Rainfall Distribution (1 hr duration)

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>Total depth (inch)</th>
<th>A d inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.05</td>
<td>3.05</td>
</tr>
<tr>
<td>2</td>
<td>3.88</td>
<td>.83</td>
</tr>
<tr>
<td>3</td>
<td>4.35</td>
<td>.47</td>
</tr>
<tr>
<td>4</td>
<td>4.73</td>
<td>.38</td>
</tr>
<tr>
<td>5</td>
<td>4.98</td>
<td>.25</td>
</tr>
<tr>
<td>6</td>
<td>5.20</td>
<td>.22</td>
</tr>
</tbody>
</table>

Rainfall design arrangement:

0.25, 0.83, 3.05, 0.47, 0.38, 0.22
Snyders UNG Parameters

\[L = 30 \text{ miles} \]
\[L_e = 16.8 \text{ m}^2/\text{y} \]
\[R_c = 2.11 \text{ ft} \]
\[R_f = 2.07 \text{ ft} \]
\[Q = 23.1 \text{ cfs} \]

DAM SITE

SCALE 1" = 4 MILES
Inflow hydrograph was determined from the unit hydrograph and PMP. Snyder's unit hydrograph parameters are reflected as

\[C_t = 3.70 \quad \text{and} \quad C_p = 0.577 \]

\[t_p = \frac{C}{(L - L_c)^{0.3}} = \frac{3.7}{(36 \times 16.8)^{0.3}} = 23.9 \text{hrs} \]

Schematic Layout of Dam

Effective length of spillway = \(L_s = 199 \text{ ft} \quad C = 3.31 \)

Effective length of dam = \(L_d = 154 \text{ ft} \quad C = 2.5 \)

(very broad)

\[Q = C_5 L_s^{\frac{3}{2}} + C_6 L_d^{\frac{3}{2}} \]

\[= 0.31 \times 199 \times 154 \times 0.5 \]

\[= 0.59 \times 154 \times 15 \]

\[+ 385 \times 1.5 \]

Note: Stop blocks are approximately 2' higher than the spillway. But at the time of inspection, it is found that leakage through the blocks. Stop blocks are considered at spillway level for the calculation of rating curve.
<table>
<thead>
<tr>
<th>W.S.E.1</th>
<th>Hs</th>
<th>θ_5</th>
<th>θ_4</th>
<th>θ_d</th>
<th>θ_5 - θ_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>409.67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>410.5</td>
<td>1</td>
<td>498</td>
<td>0</td>
<td>0</td>
<td>498</td>
</tr>
<tr>
<td>412</td>
<td>2.63</td>
<td>2344</td>
<td>1.5</td>
<td>707</td>
<td>3,051</td>
</tr>
<tr>
<td>414</td>
<td>4.33</td>
<td>5,937</td>
<td>3.5</td>
<td>2,521</td>
<td>8,458</td>
</tr>
<tr>
<td>416</td>
<td>6.33</td>
<td>10,495</td>
<td>5.5</td>
<td>4,966</td>
<td>15,461</td>
</tr>
<tr>
<td>418</td>
<td>8.33</td>
<td>15,643</td>
<td>7.5</td>
<td>7,908</td>
<td>23,751</td>
</tr>
<tr>
<td>420</td>
<td>10.33</td>
<td>21,879</td>
<td>9.5</td>
<td>11,273</td>
<td>33,152</td>
</tr>
<tr>
<td>425</td>
<td>15.33</td>
<td>39,555</td>
<td>14.5</td>
<td>21,257</td>
<td>60,812</td>
</tr>
<tr>
<td>430</td>
<td>20.33</td>
<td>60,408</td>
<td>19.5</td>
<td>33,152</td>
<td>93,560</td>
</tr>
</tbody>
</table>
Drawdown Computation

There are three stop blocks, each 6 ft wide and 1 each, 12 ft wide. Total 24 ft wide.

\[
\begin{array}{c}
7 \\
\hline
\end{array}
\]

Normal elevation to start = 409.67

\[
\text{Inflow} = \frac{2.72}{\text{mi}^2} \times 105.9 \approx 212.4\text{ cu ft/ft}
\]

\[
\begin{align*}
\Delta & = CA \sqrt{2gh} \\
& = 0.62 \sqrt{2 \cdot 9} \cdot A \sqrt{h} \approx 5A \sqrt{h}
\end{align*}
\]

Assume tailwater elevation = 405.0

Area \(A_2 = \left(\frac{h_2}{h_1} \right)^2 A_1 = \left(\frac{4.67}{4.67} \right)^2 \times 1.67 = 0.766 \text{ ft}^2 \)

\(A_1 = 1.67 \text{ ft} \times h_1 = 4.67 \text{ ft} \times h \)

\[
\text{Drawdown time} = \frac{\text{Vol in AF} \times 43560}{Q \times 3600} = \frac{12.1 \text{ Vf}^2}{Q} \text{ Hrs.}
\]

\[
\text{Drawdown time with inflow} = \frac{212 \times t}{Q} \text{ Hrs.}
\]

\[
\text{Area of orifice variable with depth} = 24' \times h.
\]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ft</td>
<td>Ac</td>
<td>Ft</td>
<td>ft^3</td>
<td>CFS</td>
<td>Vol X 726 &</td>
<td>Vol X 726</td>
<td>Vol X 726</td>
<td>Min</td>
</tr>
<tr>
<td>409.67</td>
<td>1.67</td>
<td>1.45</td>
<td>.97</td>
<td>434</td>
<td>104</td>
<td>.65</td>
<td>.65</td>
<td>.13</td>
</tr>
<tr>
<td>409</td>
<td>1.23</td>
<td>1.96</td>
<td>.96</td>
<td>3.5</td>
<td>84</td>
<td>.89</td>
<td>1.54</td>
<td>.24</td>
</tr>
<tr>
<td>408</td>
<td>.69</td>
<td>5.0</td>
<td>.50</td>
<td>2.5</td>
<td>60</td>
<td>.76</td>
<td>2.30</td>
<td>.34</td>
</tr>
<tr>
<td>407</td>
<td>.31</td>
<td>1.20</td>
<td>.20</td>
<td>1.5</td>
<td>36</td>
<td>.60</td>
<td>2.96</td>
<td>.64</td>
</tr>
<tr>
<td>406</td>
<td>.08</td>
<td>.04</td>
<td>.04</td>
<td>.5</td>
<td>12</td>
<td>.43</td>
<td>3.64</td>
<td>3.35</td>
</tr>
<tr>
<td>405</td>
<td>0</td>
<td>.04</td>
<td>.04</td>
<td>.5</td>
<td>12</td>
<td>.68</td>
<td>3.64</td>
<td>3.35</td>
</tr>
</tbody>
</table>

* Inflow exceeding outflow. For practical purpose drawdown up to an elevation of 406 is considered.

Time of Drawdown without inflow = 2.94 min x 2.3 min

Time of Drawdown with inflow = 4.31 min x 4.5 min
<table>
<thead>
<tr>
<th>Month</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
<th>Stage 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td>15000</td>
</tr>
<tr>
<td>Feb</td>
<td>1100</td>
<td>2100</td>
<td>3100</td>
<td>4100</td>
<td>5100</td>
<td>15400</td>
</tr>
<tr>
<td>Mar</td>
<td>1200</td>
<td>2200</td>
<td>3200</td>
<td>4200</td>
<td>5200</td>
<td>15800</td>
</tr>
<tr>
<td>Apr</td>
<td>1300</td>
<td>2300</td>
<td>3300</td>
<td>4300</td>
<td>5300</td>
<td>16300</td>
</tr>
<tr>
<td>May</td>
<td>1400</td>
<td>2400</td>
<td>3400</td>
<td>4400</td>
<td>5400</td>
<td>16800</td>
</tr>
</tbody>
</table>

Note: All values are in thousands.