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ABSTRACT

In this paper we study a history-boundary value problem for a nonlinear
conservation with fading memory in one space dimension. The motivation for
studying this problem is an earlier work by C. M. Dafermos and the author
concerning the motion of a nonlinear, one-dimensional viscoelastic body.
Using a variant of an energy method applied to the viscoelastic problem it is
shown that under physically reasonable assumptions the nonlinear conservation
law has a unique, classical solution (global in time), provided the data are
sufficiently smooth and "small" in a suitable norm; moreover, the solution and
its first order derivatives decay to zero as ,t + . The proof illustrates
the versatility of the energy method combined with frequency domain techniques
for Volterra operators.

A preliminary analysis based on current work of R. Malek-Madani and the
author is presented concerning the development of singularities in smooth
solutions of the conservation law (in finite time) for sufficiently "large"
smooth data; under special assumptions it is shown that such singularities
necessarily develop. The hope is to apply such a procedure to the
viscoelastic problem.
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SIGNIFICANCE AND EXPLANATION

Problems arising in continuum mechanics can often be modeled by quasilinear
hyperbolic systems in which the characteristic speeds are not necessarily constant.
Such systems have the property that waves may be amplified and solutions that were
initially smooth may develop discontinuities ("shocks") in finite time. Of
particular interest are situations in which the destabilizing mechanism arising from
nonlinear effects can coexist and compete with dissipative effects.

In certain cases dissipation is so powerful that waves cannot break and
solutions remain smooth for all time. A more interesting situation arises when the
amplification and decay mechanisms are nearly balanced so that the outcome of their
confrontation cannot be predicted at the outset. A dimensional analysis indicates
that the breaking of waves develops on a time scale inversely proportional to wave
amplitude, whereas dissipation proceeds at a rate roughly independent of amplitude.
Therefore, when the initial data are small it might be expected that the dissipation
effects would prevail and waves would not break. Results of this type have been

Jobtained by Nishida (17] for a model problem concerning a quasilinear second order
wave equation in one space dimension. Nishida's analysis uses the method of Riemann
invariants and is therefore restricted to one space dimension. Using energy methods,
Matsumura [161 has studied the case of more than one space dimension, and was able to
prove the existence of smooth solutions for all time for quasilinear hyperbolic
systems with frictional damping. The necessity of the presence of some form of
frictional damping to avoid the formation of "shocks" in finite time follows from a
fundamental result of Lax [10]. An assumption of this theory is that the
constitutive relation characterizing the nonlinear partial differential operator is
convex, but in the case of non-convex functions, as may arise in problems in
nonlinear elasticity, similar 'blow-up' results have been obtained by MacCamy and
Mizel [12]; general results for nonlinear hyperbolic equations have been obtained by
John (8] and Kleinerman and Majda [9].

A different and subtler dissipative mechanism is induced by memory effects of
elastico-viscous materials. Dafermos and Nohel [5] have recently developed and ana-
lyzed a one-dimensional nonlinear model for the homogeneous extension of an elastico-
viscous rod whose ends are free of traction. This equation, which is a quasilinear
hyperbolic integrodifferential equation of Volterra type, is based on the assumption
that the stress is a particular nonlinear functional of the strain involving two
assigned constitutive relations, and an assigned stress-strain relaxation function.
Shock solutions are known to occur for this model in the special case in which the
stress-strain relaxation function is identically constant. But, by combining energy
methods with frequency-domain techniques for nonlinear Volterra equations, it has
been shown in (5] that the nonlinear integro-differential equation which describes
the motion has a unique, smooth solution for all time provided the given data
(history of motion and external body force) are sufficiently smooth and "small." The
decay properties of the solution and of its derivatives have also been analyzed. The
hypotheses for this theory include all currently used constitutive and stress-strain

* relaxation functions. This work generalizes studies by MacCamy [11] who used the
method of Riemann invariants, and by Dafermos and Nohel [4] and Staffans [20] who
used the energy method; in these the stress-strain functional involved a single

-- assigned constitutive function. The energy method developed for these problems was
used recently by Slemrod [18] to study the evolution of smooth solutions of a
mathematical model for thermoelasticity where the dissipation arose through the
influence of thermal damping.

A natural and difficult question for the viscoelastic problems is: do shock
solutions develop (i.e. do the waves break in finite time) as the smooth data become
sufficiently large? This question was answered in the affirmative by Slemrod (19]
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for the aforementioned thermoelastic problem. For the more subtle viscoelastic model
the problem is far from solved in its full generality.

The purpose of this paper is to study a simpler model problem consisting of a
nonlinear conservation law with memory ((1.1) below), together with a prescribed
history function for t 4 0, and a prescribed boundary condition. This problem,
which is of independent interest, is of first order (while the viscoelastic problem
is of second order), however it displays the crucial features of the more complex
problem. Namely, it is quasilinear hyperbolic and in the absence of the memory term
the model problem reduces to Burger's equation which motivated the above mentioned
theory of Lax on the formation of shocks in finite time.

In this paper we modify the energy method developed by Dafermos and the author
(51, and obtain the global existence of smooth solution for sufficiently smooth and
"small" data of the model conservation law with memory.

Wl then formulate an approach to studying the formation of singularities
(shocks) in smooth solutions in finite time; an advantage of this approach is that
whenever it is applicable, physically meaningful entropy conditions are satisfied by
the shock solutions. We present one such result covering a wide class of problems.
Tho ultimate objective is to extend these methods to systems of conservation laws
with memory, and eventually to the viscoelastic problem.

a

The responsibility for the warding and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A NONLINEAR CONSERVATION LAW WITH MEMORY

J. A. Nohel

1. Introduction. In this paper we study the model nonlinear Volterra functional

differential equation (with infinite memory)

t
(1.1) u+ (u)x + I a'(t - r)*(u(r,x)) xdT - f(t,x) (- ( t < a, 0 4 x ( 1)

where o,* : R + R are given smooth constitutive functions, a : 10,") + R is a given

memory kernel, and f : R x (0,1] + R is a given function representing an external forcel

subscripts denote partial derivatives and ' - d/dt. The motivation and the assumptions

under which (1.1) is studied are provided by the more complex physical problem of the

extension of a finite, homogeneous, elastoviscous body moving under the action an assigned

body force. The viscoelastic problem, formulated in Section 2, was recently studied by

Dafermos and Nobel [51, references to earlier literature are given in Section 2.

The model problem (1.1), which is of independent interest, is simpler in that it is of

first order, while the equation of motion (2.8) below, is of second orderi otherwise (1.1)

incorporates the interesting features of (2.8). The most important of these is the

following. If 1 0, f 0, (1.1) reduces to Burger's equation (conservation law of gas

dynamics):

(1.2) ut + o(U)x . 0 1

note that (1.2) is quasilinear and hyperbolic. It is classical, see Lax (10], that the

Cauchy problem consisting of Burger's equation and the initial condition u(O,x) = u0 (x),

El x e R, does not, in general, possess a classical smooth solution, no matter how smooth

(and "small") one takes the initial datum u0i if s is convex Lax (10] has shown that

the solution develops a singularity (shock) in finite time due to the crossing of

characteristics. More precisely, if u (x) > 0, u0  smooth, and 0 is convex, (1.2) has a

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



smooth solution for all t > 0, while if u;(x o ) < 0 for some x., the characteristics

of (1.2) will cross and shocks will develop in finite time, a similar result also holds for

systems of conservation laws in one space dimension. If P is not convex, e.g. in

nonlinear elasticity, similar results have been established by MacCamy and Mizel (12] for

recent closely related literature see also general results by John (8], Kleinerman and

Maids (9], alek-t4adani (13].

The purpose of this paper is: First, in Section 2 we formulate the problem of motion

of a nonlinear viscoelastic body as analysed recently by Dafermos and Nohel [5] using a

combination of energy methods and properties of strongly positive kernels. Second, under

assumptions motivated by the viscoelastic problem, we show in Sections 3 and 4 that

equation (1.1), together with an assigned periodic boundary condition and an assigned

* smooth history

u(t,x) - v(tx), < ( t 4 0, 0 4 x 4 1

which satisfies (1.1) for t 4 0, possesses a unique classical solution for all t > 0,

provided the history function v and the forcing term f are sufficiently smooth and

'small" in suitable norms. This result, in which the same strategy as in (5] is used,

exhibits the dissipative character of the integral term in (1.1)i its proof serves to

illustrate a general energy technique for hyperbolic, nonlinear Volterra problems.

Finally, in Section 5 we formulate the problem of development of singularities in finite

time and we present a recent result, analogous to the result for Burger's equation, in an

important special case, 115] the proof will appear elsewhere. The fact that the question

of development of singularities for the physically interesting visooelastic problem remains

open, provides the principal motivation for studying the simpler model problem (1.1). It

should be noted that the problem discussed in Section 5 is different from the study of weak

solutions for the Riemann problem for (1.1) (Greenberg, Ling Hsiao, and MacCamy [6],

Dafermos and Ling Heiso (3]).
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2. A Hyperbolic, Nonlinear Volterra Equation in Viscoelasticity. Problems arising in

continuum mechanics can often be modeled by quasilinear hyperbolic systems in which the

characteristic speeds are not necessarily constant. Such systems have the property that

waves may be amplified and solutions that were initially smooth may develop discontinuities

("shocks") in finite time. Of particular interest are situations in which the

destabilizing mechanism arising from nonlinear effects can coexist and compete with

dissipative effects.

In certain cases dissipation is so powerful that waves cannot break and solutions

remain smooth for all time. A more interesting situation arises when the amplification and

decay mechanisms are nearly balanced so that the outcome of their confrontation cannot be

predicted at the outset. A dimensional analysis indicates that the breaking of waves

develops on a time scale inversely proportional to wave amplitude, whereas dissipation

proceeds at a rate roughly independent of amplitude. Therefore, when the initial data are

small it might be expected that the dissipation effects would prevail and waves would not

break. Results of this type have been obtained by Nishida [17] for a model problem

concerning a quasilinear second order wave equation in one space dimension. Nishida's

analysis uses the method of Riemann invariants and is therefore restricted to one space

dimension. Using energy methods, Matsumura [16] has studied the case of more than one

space dimension, and was able to prove the existence of smooth solutions for all time for

quasilinear hyperbolic systems with frictional damping. Burger's equation (1.2) shows the

necessity of the presence of some form of frictional damping to avoid the formation of

"shocks". The rather delicate situation of thermal damping in thermoelasticity is

discussed by Slemrod [18]

A different and subtler dissipative mechanism is induced by memory effects of

elastico-viscous materials. Dafermos and Nohel (5] have recently developed and analyzed a

one-dimensional nonlinear model for the homogeneous extension of an elastio-viscous rod

wlinse ends a~e free of traction. Their simple, one-dimensional, model corresponds to the

following conntitutive relation, suggested by the theory developed by Coleman and Gurtin

-3-



t
(2.1) O(t,x) i (e(t,x)) + f a'(t - T)*(O(T,x))dT ,

where 0 is the stress, e the strain, a the relaxation function with ' - d/dt, and

0,# assigned constitutive functions. The relaxation function is normalized so that

a(M) - 0. When the reference configuration is a natural state, 0(0) - *(0) - 0.

Experience indicates that (e), *(e), as well as the equilibrium stress

(2.2) x(e) s(e) - a(O)*(e)

are increasing functions of e, at least near equilibrium (lel small). Moreover, the

effect of viscosity is dissipative. To express mathematically the above physical

requirements, we impose upon a(t), o(e), #(e) and X(e) the following assumptions:

(2.3) a(t) e w2,1 (o,), a(t) is strongly positive definite on [0, 
) 

1

(2.4) o(e) 6 C3 (-,i), V(0) = 0, '() > 0

(2.5) *(e) e c2 (-Am,) (0) - 0, 4'(0) >0

(2.6) X'(0) = 4'(0) - a(0)*'(0) > 0

Assumption (2.3), which requires that a(t) - a exp(-t) be a positive definite kernel on

[0, ) for some a > 0, expresses the dissipative character of viscosity. Smooth,

integrable, nonincreasing, convex relaxation functions, e.g.,

K
(2.7) a(t) I I kexp(-Ukt), V > 0, Uk > 0

k-I

which are commonly employed in the applications of the theory of viscoelasticity, satisfy

(2.3).

We now consider a homogeneous, one-dimensional body (string or bar) with reference

configuration (0,I] of density p - t (for simplicity) and constitutive relation (2.1)

which is moving under the action of an assigned body force g(t,x), - < t < -, 0 4 x 4 1,

with the aids of the rod free of traction. We let u(t,x) denote the displacement of

particle x at time t in which case the strain is e(t,x) -u x(t,x). Thus the equation

of motion pu tt 0x + Pg here takes the form of the nonlinear (hyperbolic) Volterra

-4-

" I II I 1J r A' S



functional differential equation

t
(2.8) utt = O(ux)x + f a'(t - T)*(u x) xdT + g, .< t < 0 x

The physical problem of the motion of a viscoelastic body suggests that the history of the

motion of the body up to time t - 0 is assumed known, i.e.,

(2.9) u(t,x) - v(t,x), < t 4 0, 0 4 x < 1

where v(t,x) is a given sufficiently smooth function which satisfies equation (2.8) for

t 4 0, together with appropriate boundary conditions. In order to show that the motion of

the visooelastic bar remains smooth for all t > 0, the mathematical task is to determine

a smooth extension u(t,x) of v(t,x) on (_ii) x [0,1] which satisfies (2.8) together

with assigned boundary conditions, for -w < t < .

Dafermos and Nohel [5, Theorem 1.1] establish such a global result for the problem

(2.8), (2.9) together with homogeneous Neumann boundary conditions

(2.10) ux (t,0) =u x(t,l) - 0, - < t <

these are shown to be equivalent to the statement: the boundary of the body is free of

traction (U(t,0) = o(t,1) = 0, -" < t < 0, 0 given by (1.1)). Their global result is

valid for sufficiently smooth and "small" external body forces g and history functions

v. other boundary conditions and various generalizations are also considered.

The general strategy used in [5] is as follows. First one establishes the existence

of a unique smooth local solution u defined on a maximal interval (-,T 0 ) x [0,1], with

the property that when To < 0  a certain norm of the solution becomes infinite as t + T0J

this is done by a fixed point argument (combined with a standard energy method for linear

problems) on a suitably chosen abstract space of functions. Second, energy methods are

combined with properties of strongly positive kernels to show that due to the viscous

dissipation of the integral term in (2.8), the aforementioned norm remains uniformly

bounded on the maximal interval, provided the data g and v are sufficiently smooth and

small. By standard theory for nonlinear problems this means that To - + and the smooth

solution exists globally in t. This part of the analysis involves obtaining a priori

-5-



7

estimates of certain norms of the derivatives (in one space dimension, up to and including

order 3) directly from the equation (2.8). It is here that it becomes convenient to use

the equivalent form

t
(2.11) ut - X(u ) + f a(t - t)*(Ux) dT + g, _ < t < , 0 ( 1 ,

of equation (2.8) (equation (2.11) is obtained from (2.8) by integrating by parts with

respect to T and by using the definition of the equilibrium stress X); assumption (2.6)

plays a crucial role.

For the special case *(e) T (e) various global existence results for (2.8), were

established by MacCamy (11], Dafermos and Nohel [41 and Staffans [20]. The assumption

- allows one to invert the linear Volterra integral operator on the right-hand side

of (2.8) and thus express i(ux)X  in terms of utt - g through an inverse Volterra

integral operator using the resolvent kernel associated with a'. One may then transfer

time derivatives from utt to the resolvent kernel via integration by parts. This

procedure, which was also discussed by Dafermos (2] in a recent expository paper in a

number of special cases, reveals the instantaneous character of dissipation and, at the

same time, renders the memory term linear and milder, thus simplifying the analysis

considerably. On the other hand, the above approach is somewhat artificial: By inverting

the right-hand side of (2.8), one loses sight of the original equation and of the physical

interpretation of the derived a priori estimates. More importantly, the physical

appropriateness of the restriction ' - P is by no means clear.

Remark: The present normalization of the kernel a with a( ) - 0 is different from that

in the existing literature (see [4), [11], 120)). The reader should note a', not a,

enters the constitutive relation (2.1) as well as the equation of motion (2.8). In the

earlier literature in which only the special case .P was studied, the normalization

a(t) = a. + A(t) 0 4 t < ,

a(O) = 1, a 0, A e w2, (0,"), A qtrongly positive was used. The normalization used

here is crucial for generating the a priori estimates directly from equation (2.11)

t-6-
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(equivalent to (2.8)). The reader should note that the present normalization and (2.6)

imply that 0 < a(O) < 1, if p B'.

The question of the development of singularities of solutions of (2.8) in finite time

for sufficiently "large", smooth data (which have been observed for viscoelastic bodies

[1j) is under active study. Some partial results with * E o in (2.8) have been obtained

by Hattori [73; for a viscoelastic fluid (see Slemrod (19]). However, in the general case

of (2.8) the problem is far from settled. For this reason we believe that the approach in

4

Section 5 for the considerably simpler problem (1.1) is particularly useful and suggestive.
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3. A Conservation Law with Fading Memory. We study the model nonlinear, history-boundary

value problem

t
(3.1) ut + S(u)x + f a-(t - T)*(u(T,X)) xdT f(t,x) (-" < t < , 0 ( x (1)

subject to the periodic boundary condition

(3.2) u(t,O) - u(t,1) I

the history of the solution u is assumed to be known up to time t - 0, i.e.

(3.3) u(t,x) - v(t,x) (-e < t < 0, 0 4 x 4 1)
%1

where v is a given smooth (C ((-m,0] x (0,1])) function which satisfies (3.1), (3.2)

for t < 0. In (3.1) ,: R + R, f : R x [0,1] + R, and a : [0,e) + R are given

functions satisfying assumptions analogous to those for the viscoelastic problem outlined

in Section 2. Our task in this section is to determine a smooth extension u(t,x) of

v(t,x) on (- x,) x (0,1] which satisfies (3.1) and (3.2), and to study the asymptotic

properties of u as t + . In order to do this the history v and the forcing

function f will have to be taken sufficiently smooth and "small" in suitable norms.

The requirement that the history function v should satisfy (3.1) and (3.2) for

t < 0 is motivated by the viscoelastic problem described in Section 2. The history value

problem in which the function v is sufficiently smooth for t 4 0 (but need not satisfy

(3.1)) is also of interest, and can be studied by the same methods (see further remarks

below).

The basic assumptions for the global existence theory are as follows. Concerning the

constitutive functions ,*:

(c) 0,* e C2 (R), (0) = *(0) 0, '(0) > 0, V(O) > 0

concerning the kernel a:

(a) a e w 2,1[0,) and a is strongly positive on [0,-)

concerning the forcing term f:

-8-



f,ftfx e C[(-",)lL.2 (0ol) L 2 2(11)] 

f(t,x) - fl(tex) + f2(tx) I

ff fltt~f2tx e L 2[(-'e)L 2 (01)] 1

1

f f(t,x)dx - 0 (- t < )

0

and to measure the "size* of the forcing term we define

F 2  f2  f(tx)x + f 2 +f t + "2 2
- sup f If + ft -+ f x fitt 2tx

-S ( ' ' 0 - 0

concerning the history v:

vvtVxtVttVtxVx e C[(-- , );L 2 (0,I)] r) L 2 I2

(H) f v(t,x)dx - 0 1- ' t < 0)
0

and v satisfies (3.1), (3.2) for t 4 0

Analogous to the "equilibriLun stress" for the viscoelastic body we define the constitutive

function X R R by

X() = ' (') - a(O)*(.) ,

and we assume that

(3.4) X'(0) W '(0) - a(0)*"(0) > 0

The following equation, obtained from (3.1) by carrying out an integration by parts with

respect to T, will play a crucial role in the analysis:II
t

(3.5) ut + X(u)x + f alt - T)4(u(T,x)) xdT - f(t,x) (- < t < 0, 0 C x C 1)

It is clear that the problem consisting of (3.5), (3.2). (3.3) is equivalent to the

original problem (3.1), (3.2), (3.3).

-9-
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Upon setting

0
(3.6) h(tx) - - I a'(t - T)#(v(T,x)) dT + f(t,x) (0 ( t <* 0 ( x ' 1).- x

(3.7) u0 (x) - v(0,x) (0 4 x 4 1)

the history-boundary value problem (3.1)-(3.3) reduces to the intial-boundary value problem

t
ut + O(u)x + f a'(t - T)*(U(T,X)) dT - h(tx) (0 < t < , 0 ' x 4 1)

0 x
(3.8) u(tO) - u(t,1) (0 4 t < )

u(O,x) - uo(x) (0 4 x 4 1)

I

where f h(tx)dx - 0 (0 4 t < ,) [use v(t,0) - v(t,1), and assumptions (fMI.
0 1

Conversely a solution of (3.8), where f u0 (x)dx - 0, can be shown to solve (3.1)-(3.3)
0

by constructing a smooth function v(tx) on (-,01 x [0,1], satisfying (3.2),
1

f v(t,x)dx - 0 (. ( t 4 0), and also requiring v(O,x) - uo(x), as well as

0 def
vt(O,x) - -o(uo(xl)x + h(O,x) V u(x)

(3.9) vtt(O,x) - -v"(uo(x))u6(x)u(x) -. ,(uo(x))UlCx)

a'(0)*(u 0 (x))x + ht(O,x)

and defining

t
vt + ,(v) x + f a'(t - T)*(v(Tx)) dT (- t I 0, 0 C x ( 1)

(3.10) f(t,x) =

h(t,x) + f s'(t - T)*(v(T,X)) dT (0 < t < ", 0 C x • 1)

the requirements (3.9) insure that f defined by (3.10) has the necessary smoothness

properties across t - 0 required in the existence theory.

The main global result is

Theorem 3.1. Let the assumptions (a), (c), and (3.4) be satisfied. There exists A

constant U > 0 such that for every rorcing term f 8atisfying Assumptions (f) with

-10-



2F ,, and for any history function v on (-m,0] x (0,1] satisfying assumptions (H),

there exists a unique function u on (-,") x [0,1] with

u,utuxutt,Utx,UXX e C[(-,M);L 2(0,1)] n L 2(-,0)YL 2(0,1)] satisfying (3.1)-(3.3), as

well as f u(t,x)dx - 0 ( < < t < -). !!oreover,
0

(3.11) u(t,x), ut(t,x), ux(t,x) + 0 as t ,

uniformly on [0,1].

The proof of Theorem 3.1 will be given in Section 4. It uses the general strategy

developed in (5], although there are technical differences in details. One first

establishes the existence of a local solution u on a maximal interval (-O,T 0 ) X [0,1],

with the property that when T0 < a certain norm of u becomes infinite an t + T_

(see Proposition 4.1 below). One then uses a combination of energy methods and properties

of strongly positive kernels to show that the integral in (3.1) exerts a dissipative effect

resulting in the aforementioned norm remaining uniformly bounded, independent of To,

provided the constant U in Theorem 3.1 is sufficiently small. Thus, in particular

T= and the smooth solution exists globally.

Remark 3.2. It follows by standard regularity techniques that the solution u of (3.1),

(3.2), (3.3) is C1  smooth on R x [0,1].

Remark 3.3. A result similar to Theorem 3.1 (established by the same methods) holds for

the boundary-initial value problem

t
" ut + '(U)x + f a'(t - T)*(u(T,X))x d = h(t,x) (0 < t < , 0 C x 4 1)

0

(3.12) u(t,O) - u(t,1) (0 C t < 1)

u(0,x) - uo(x) (0 4 x 4 1, u0(0) - u0 (1))

here €, 1, and a satisfy the assumptions of Theorem 3.1, h defined on (0,*') x [0,1]

satisfies assumptions (f) modified in the obvious way, and the initial datum u0 e H2(0,1),

with f u0 (x)dx 0. For the theorem to hold one must require that lunl 2' and a0 H"

suitable norm of h are sufficiently small, as can be seen from a detailed examination of

the corresponding estimates. (See Remark 4.3 below).

-11-
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Remark 3.4. The requirement that the history v satisfies (3.1), (3.2) for t 4 0, and

the condition: the constant M (where F 4 2 ) of Theorem 3.1 is "small", imply that the

history function v, as well as the forcing term f in (3.1), are both small in suitable

norms.

Remark 3.5. If 0 - ' in (3.1), Theorem 3.1 can be applied without any change, provided

0 < a(O) < 1 (in order that (3.4) is satisfied). However, in this special case the

somewhat different energy techniques of Dafermos and Nohel [4], or of Staffans [20], or the

; method of Rismann invariants of MacCamy (11] can also be used.

Remark 3.6. It will follow from the proof of Theorem 3.1 in Section 4 that because the

problem (3.1)-(3.3) is in one space dimension and on a finite space interval it is

sufficient to obtain global estimates for the derivatives (in this case estimates of utt,

Utx, Uxx, because (3.1) is of first order) in the L(L 2 (0,1)) and L2 (L 2 (0,1)) norms,

and then to make use of the Poincarg inequality to estimate lower order terms. However,

one cannot apply this method to obtain global estimates for the pure Cauchy problem

consisting of the Volterra equation

t
(3.13) ut + i(x)x + f a'(t - T)*(u(T,x)) xdT - h(t,x) (0 < t < , x e R)

0

together the initial condition u(o,x) - u0 (x), x e R, because x e R and

the Poincarg inequality does not apply. For the local existence result (analogue of

Proposition 4.1) one can circumvent this difficulty. The same comments apply to the

analogous pure Cauchy problem associated with the second-order nonlinear Volterra equation

(2.8). If * - * in (3.13) or (2.8) the analogous pure Cauchy problems can be treated by

either the methods of [4], [11] or of [20], because global estimates of u and of the

derivatives of u in appropriate norms are obtained successively from the equations.

However, if * P ' in (3.13) or the pure Cauchy problem associated with (2.8) these

mathematically interesting problems remain to be tackled.
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4. Proof of Theorem 3.1, a. local Theory. This is carried for the boundary-initial value

problem (which was shown to be equivalent to the history value problem (3.1)-(3.4) in

Section 3 for a suitable choice of the forcing term f - see (3.10)):

t
u +S(u) x + f a'(t - T)(u(T,x))x dT - h(t,x) (0 < t < , 0 4 x 4 1)

0
(4.1) u(t,O) - u(t,1), 0 ( t <

u(O,x) - Uo(X), x e [0,1]

We make the following assumptions:

a' ,a" e L(0,), p,# e C2 (n), s(o) - #(0) - 0, *'(0) > 0 ,

there exists a oonstant K > 0 such that >() ) C > 0 ( R),

2
h Z [0,") x [0,1] * R , h(t,x) - h1 (t,x) + h2 (tx), h,ht,hx S C([0,O)IL(0,1)),

fI h(t,x)dx - 0 (t e (0,-)), hitth 2tx e L 2([O,")L 2(0,1)), and u0  H21(0,1),
01
f un(x)dX - 0. The reader will note that the full strength of assumptions (a) and
0

assumption (3.4) are not used in Proposition 4.1 below; on the other hand 0" is now

required to be bounded away from zero (compare with assumptions (c)).

Proposition 4.1. Under the above assumptions there exists a 0 < To ( and a unique

function u e CI([O,To) x [0,1] with utt,utx,uxx e C(0,T]iL2 (0,1)) for every
1

0 < T < To , such that u satisfies (4.1) on [0,T 0 ) x (0,11 and f u(t,x)dx - 0.
0

moreover, if To (

1(4.2) sup f [u2 (t,x) + 2(t'x) + " + U2x(tx)]dx "

-0

It is clear that with h defined (3.6), u0  by (3.7) the problem (3.1)-(3.3)

satisfies the assumptions of Proposition 4.1.

Remark 4.2. A similar result holds for the pure Cauchy problem associated with (4.1), i.e.

no boundary condition is specified and u(0,x) - u0 (x), u0 e H2(2)1 however, the function

space X(M,T) below must be specified differently.

The proof of Proposition 4.1 is very similar to that of Theorem 2.1 in (5], and will

* only be sketched. Let M > 0, T > 0 and let X(M,T) denote the set of functions
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w(t,x) on (0,?] ( (0,1] with wIwt.,x,wttwtxvxx e C(O,TIL2 (0,1)), w(t,O) - w(t,1),
1 1

w(0x) - u0 (x), f w(t,x)dx - 0, f wt(tx)dx - 0, 0 4 t 4 T, and

0 0

(4.) sp [W 22 (txld 2(4.3) f~p J" [w~t(t,x) + wtx(t,x) + wxx(t,x)]dx .

[0,T] 0

It follows from the Poincari-type inequalities (see application of Lemsas A.1 and A.2 in

Appendix) and from (4.3) that if w e X(M,T) then

(4.4) w
2
(t,x) + w2(t,x) + w2(t,x) 4 M

2  
(0 4 t 4 T, 0 < x 4 1)

Let S : X(M,T) + C
1
([0,T] x [0,11 be the mapping which carries w e X(M,T) into the

solution of the linear problem consisting of

t
(4.5) ut + V'Wu - a'(t - T)*(W(T,X)) xdT + h(t,x) (0 < t C T, 0 < x CI)

0

and of the boundary and initial conditions in (4.1). It is clear that a fixed point of S

is a solution of (4.1) on (0,T] x (0,1]. Also note '(w) is W1 ' "  
smooth and 01(w)

2t

and p'(w)x are in L ([0,T]L 2(0.1)). Moreover, if g(t,x) denotes the right-hand side

of (4.5), g(t,x) - g1 (t,x) + g2 (t,x), then g satisfies the same assumptions as h

does, and by fairly standard theory for linear problems u tt,Utx,UX e C([O,T];L 2
(0,1))

embedding type arguments then yield that u e C I([0,T] x (0,1]). Thus it suffices to show

that the map S has a unique fixed point u in X(M,T). Once this has been demonstrated

it follows from the assumption f h(t,x)dx = 0, t e (0,1], the equation in (4.1), and
0

t

from the boundary condition that f f u(t,x)dx = 0 for t e (0,T]; since f u0 (x)dx - 0,
1 0 0

one then also has f u(t,x)dx - 0, t e [0,T].
0

The remainder of the proof of Proposition 4.1 is completed in the following steps:

i) analogous to the proof of Lemma 2.1 in (5] (here the argument is shorter), use the

standard energy method for linear problems to show that when M is sufficiently large

and T > 0 is sufficiently small, S maps X(M,T) into itself, (ii) define the metric
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P(u,;) = max {f (ut -t) 2 + (ux - ax) 2 ](tx)dx
[0,T] 0

where u,a e X(M,T)j by the lower semioontinuity of norms in a Banach space, X(M,T) is

complete under P1 analogous to Lema 2.2 in [5] show that 5 is a strict contraction

on X(M,T) under the metric P1 (iii) by Banach's fixed point theorem the map S has a

unique fixed point u e C ([0,T] x [0,1]) for M sufficiently large and T sufficiently

small, which solves (4.1); the existence of the maximal interval of validity

[0,T 0 ) x [0,1] of the solution u satisfying (4.2) is established in a standard manner

(see (]5). This completes the sketch of the proof of Proposition 4.1.

b. Global Theory. By the constitutive assumptions (c) and (3.4) there exist

5 0, K > 0 such that

(4.6) 0'(4) • K, * '(C) ) K, X'(E) • K (11 4 6).

If necessary modify 0 outside [-5,6] such that o e c2 (a) and P'(E) )I K (C e R). To

prove the existence of the global solution u on (-mm) x [0,1] of the history value

problem (3.1)-(3.3) asserted in Theorem 3.1, let u be the unique solution on the maximal

interval (-",T 0) x [0,1] guaranteed by Proposition 4.1, and assume that 0 < To <

For 0 < T < To  let

1(4.) M sp [2(tx 2 2 2
- + (tx) + ux(t,X) + . + uxx(tx)dx(-=,T] 0

T I
+ f f [u 2 + u2 + u2  + .+ 1dxdt

0t x x

where stand for the terms u 2  and ux Recall that is characterized by (4.2)t u e t T0

and thus the first integral in UT) tends to infinity as T + T-; also recall that

u z v for t ( 0. The basic strategy of the proof is the same as in [5]; we wish to show

that there exist constants V > 0 (V ( 5 in (4.6)) and K > 0, independent of T, such

that if

(4.8) lu(t,x) l2 + Iux(t,x) 2 + Iut(t,x)1 2 
( V2 , v 4

on (-",T] x (0,1] then

-15-
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(4.9) U(T) 4 F,

where P is the constant defined under assumptions (f). The proof that (4.8) implies

(4.9) will he outlined below using energy estimates. Once this claim is established the

proof of Theorem 3.1 is completed as follows. First, by the assumptions on the history

v(t.x), (4.8) holds as a strict inequality for t > 0 sufficiently small. Next, by

the Poincari inequality (see Lemma A.1 in Appendix) and the definition of U(T)

(4.10) lu(t,x)1 
2 + lux(tx)1

2 + lut(t,x)1
2

iI  I
4 f Cu!(t,x) + u2 (t x) + U2 Ct,x)]dx < (T)
0

2
on (-",T] x (0,11. Choosing the constant U2 <- and F 4 U2, (4.10) shows that (4.9)

22

implies (4.8) (as a strict inequality). Therefore if F 4 2 < r- the estimates (4.8)

and (4.9) both hold for every T 8 (-w,T0 ), and consequently by Proposition 4.1 (see

especially (4.2)) To - +. Moreover, (4.7) and (4.9) imply that

(4.11) u,ut,uxuttUtxUxx a L ((- r)xe (0,1)) r) L2(-,) (0,1)))

But u,ut,u ttUtxU S L2 (( 2)L(0,1)) also implies that

(4.12) u,ut,ux + 0 in L2 (0,I) as t +

which in view of u,ut....,Ux L x ((-x,)L 2(0,1)) yields (3.11) and completes the proof.

It remains to establish that (4.8) implies (4.9). For this purpose we will need the

following properties of strongly positive Xernels. Introduce the notation

t

(ag)(t) f a(t - T)g(T)d

and

Q[a,w~s] - f w(t)(a-w)(t)dt

Let assumptions (a) of Theorem 3.1 be satisfied. There exist constants B, Y > 0 such

that for every 9 e n and for every w e L 2(-,s)
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(4.13) / [(a*wllt]2dt 19 09 a,w 18],

where

1 . 1
2  Is' 12,
L (o,) L IoW)

and

a

(4.14) [(a'*w)(t)] 2dt ( YQ[a,w;s]

where

Y I 12 +4 2a"t2

L1(0o,1 )  
a (,"1

The estimtes (4.13), (4.14) which have also been used in (51 are essentially contained in

Staffans (201. Another important property deals with the resolvent kernel k of the

linear Volterra operator

01(O)y + OI(O)a'ty

defined to be the solution of the linear Volterra equation

t
(k) wl(O)k(t) + *'(0) f a'(t - T)k(r)dT - -*'(O)a'(t) 0 ( t <

0
-1

Lemma 4.2. If assumptions (a) are satisfied, and if 0'(0) > 0, *'(0) > 0, then

k L1 (,0).

The proof of Lemma 4.2 is given in [5].

The first estimate needed for the proof that (4.8) implies (4.9) is obtained from

equation (3.5). (Recall that (3.5), (3.2), (3.3) is equivalent to the original problem

(3.1)-(3.3), and it is assumption (3.4) concerning X which will play an important

role.] multiply (3.5) by (Cu)xt and integrate over (-0,s] x [0,1], 9 < To. After

several integrations by parts in which the boundary condition is invoked we obtain

-17-

- -I _ I I I.



( 5 X,(u(s,x))*,(u(s,x))u2(8,x)dx + Q[a,sg4(U))
0 xx(425 2 0t

fs f CX'(u)*"(u) + X(u)*D(u)1utudx

-0

f ff ID.(u)ux ut xdt + f f(sx) u(sx)) dx
00 

-f f t *(u) dxdt

In ontrast to the analogous calculation in (5, see (3.21)], no useful information is

extracted here from integration of the term u t (u)xt over (-",s] x (0,11.

Remark 4.3. Wen obtaining the analogous estimates for the boundary-initial value problem

(3.12) (see Remark 3.3), the analogue of equation (3.5) from which the global estimates are

calculated is

t

ut + X(u)x + f a(t - T)*(u(T,X)) dT - h(t,x) - a(t)(u )
0 x

To simplify several of the estimates which follow we make the additional assumption

that #,* (and hence also x) e C3 (a); the alternative is to employ difference quotients

and pass to limits as in (5]. Differentiate (3.5) with respect to t (use

(aeg)(t) f- a(E)g(t - E)dC, differentiate, and then change variables) obtaining
0

(4.16) utt + X(u)xt + a**(u)xtt " f (- < t< -, 0 C x 4 1)

Multiply (4.16) by f(u)xtt  and integrate over (-",sl X (0,1]. After several

integrations by parts the result of this tedious calculation is
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(4.17) f 11 sx) (~sx)2
=~~~ Xt~~~i(~~)u(a,x)dx + Q~a,sj*~(u)xt

1 C~ + .1 12 + 13) - 1 * J7 ) + f ft Cax~ua xG)

0 xt t

.4the terms Ik in (4.17) come from

if f u ON() dxdt- I~ + I2 + I3+14I
0 tt xtt 2 3 4

where

1 i 2
I I f I'(u)u ttu t u dxdt

-0

12-f f *"(U)u 2 dxdt
-2' tt ux

I3 - 2 f I *"(u)u u ii dxdt
3 0 ttxt t

14 I I t xt

the terms Jk in (4.17) come from

j f I 1(u) x (u) Kt ddt J1 + *+ J7+ Ja
-0

where
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3a=f f X'(I)*I'u)u tU xtdxdt
-0

=1f X'(u(s,x))*'(u(a,x))u 
2 (9,x)dx

2o xt

f X"(u)*'(U) + x'(u)*"(u)]u 2u dxdt

which respectively give the first term on the left side and last term on the right side of

(4.17),

f1 f X"(U)."(u)u u~dxft

Si 2

J2 2 f f X-(u)*"-(u)u 2 udxdt

33- X(u*(u)u u 2u dxdt
3 m f f X-u* tX t

0

4 f - 'Sx")*(us'())
2  t -Bx~ SI (Bx~ xt [Bx~u'i)x

-0

Si 2

J6 2 f f X'(U)*"(U)out2tdxdt

s 1
37 f f X'(u)*-(u)u xtu tu Xdxdt

The next estimate follows from the identity

a()()xt a*()xt &Pu xtt

which is derived by integrating a&4i(u) xtby parts. M4ultiply (4.18) by uxt An
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integrate over (-o,s) x [0,11 then in each term on the right hand side use the Cauchy

Schwartz inequality and (4.13), (4.14). This leads to the estimate

(4.19) a(O) 1 f Ut x(u) dxdt
" 0

s 1t

[ 2 2 , xdt] 1/2 (a s,*(u) 1) 1/2 + (OQra,sV(u) j) 1/2}
ti J t xtt

Using (u)xt = *'(u)uxt + *"(u)u xut  and (4.6) on the left aids of (4.19) and~2
ab IL + 1 b £ - 2/'a(0) on the right side of (4.19) given the useful estimate

2C 2 2

'c (0 s 11
(4.20) ~ !~2 f f 2 dxdt - -. Qla,sI11(u)]

0 uto) Q~' '()t x t)ffO(UUtxtX
-- 0

r-1

Qta,sIV'(u) I Ic a(0) f, f V"(u)ii u u~ dxdt
7a (0) xtt ~ -0 xtx

Next write (4.16) in the form

Utt - "(X"(U)Uxut + X'(u)ut + e*V(u)xtt} + ft ;

n n
square both sides, integrate over (- ,.j x [0,1], use a -i)2  n a ai (n 4), and

use (4.13) to obtain the estimate

s 1 si1

(4.21).j f u2dxdt - 4 f  f X'(u)] 2ut2 dxdt
A. -t0 xt

- 4$[a,s,,(u) 1tt , 4 f Ix2(u,] U tdxdt + 4 f f2dxdt
-A0 xt 0

,,q

Wle now return to (3.1), differentiate with respect to t and obtain

utt - -(0'(u)u xt + a.*40"(UlUxut) + ft

square both sides, integrate with respect to x over [0,1], and evaluate at t 9.

This giv.s the estimate

-21-
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(4.22) f 4,(S,X)dx -5 f ,((.~,x))1 2 x(.,.)dx
0 0

-5Ia
3
1  sup f to'(u(t,x))]2 u 2(t,x)dx
L 10)("s 0 tx

6 f "Cu(s,x))12u2C s,x)ut2(s,x)dx + 5 f f2 (8,x)dx
0 0

4+ 1al' 2 sup f [0_(u(t,x)12 u 2(t,x)u 2(t,x)dx
1

L (0, ) -.Ct~s 0x t

Next, differentiate (3.1) with respect to x obtaining

Ux+ OCU)xx + a'**(u) =fx
-I xx

and write 0(u)XX ' SPI(u)uxx + P(U)u2 + (VO~~ I ((u) - P'(0)]u~ + P"(u)u2, and

similarly for *I(u) x* This gives the equation

(4.23) ~'(0)ux + 1l(0)a*u xx'X(t,x)

where

1-X(t,x) m -UtX + fX - [p'(u) - O'(O)]uxx - v,..U) 2

xx x

Letting kc be the resolvent of the operator on the left sitde of (4.23) we have

(4.24) O'(0)ux(t'x) -X(t,x) + (k*X)(t,x)

By Lemma 4.2 k e L (0,in), and this gives the estimates

2f1 212212
(4.25) F MI ux(s,x)dx 4 2 f X (aSxOdx + 21k1 sup f X (t,x)dx

0 0 L (-#a 0

and

(4.26) (v'(0fl2  2 f ~dxdt 4 2[1 + Ik I If X2dxdt

0 L -a0

To complete the proof that (4.9) implies (4.9), we first use (4.8), (4.6), (f), and

the fact that for Iu(t,x)j C v, the derivatives IP'(u(t,x))I, IkP"(u(t'x))I,
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hP'"(u(t,xl)l, 1*1(u(t,xl)lo I*"(ult,x)l , 1*"I(u(t,xl)), lx*(U(tox))lo Ix"(ult,xl)),

IXI''(u(t,x))l are bounded by a constant C > 0 in order to simplify the basic estimates

derived above, here we have used the additional simplifying assumption that -',* and hence

also x e c3
(m)M this can be avoided as in [5].

Thus (4.15) becomes

2 1 3 8(4.27) f .2(..d Ist <I2 f ft u2dxdt
40 -x 20

CV f S 1 u[xd +1c(

M 0 2- 2C 
2.

~similarly (4.17) simplifies to

(4.28) K f U2t(s,x)dx + Qa,(u) xs] 1

0

1t 1

C2 , 2 f 1 u 2 t( ,x1 dx + C [ + C) u 2(s ,x1 dx
0 x0

+ CV, + C1 v+C ]fafIudd C 2V2 f 1~ x

7 -0 " 0 -

+ 2)C f f u2 xdt

2 222CV

thstimarly (4.) simfest

0 t

1 1
" c" IUs (a cx)dx f fV. + u~(sdxd x c[

. + cVE[2 + c + cv + j uxt+cvffuid
.-- 0 - G0

~the estimate (4.20) becomes

l
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- (4.29) a(O) fu?.dxdt Q [assI(u)xt
2 0 Va(0)

. 1 sI1

a() Qas(Uxtt a(0) If I u2tdxdt + f f u 
2
dxdt) ,

- m0 - m0

estimate (4.21) simplifies to

2* xd - 4C2 f f 2 ~dxdt
(4.30) f f Udxdt 

" t

-00

40Q[a,s,*(u) t 4 4C 2 I u2 dxdt + 4?
-m 0

estimate (4.22) simplifies to

1 1

(4.31) f 2t(S,x)dx " 5C
2 

f U2 X(s
x )

dx
0 0

1

5C 21Iasi sup f U2.(tx)dx 
< 

5C
2 2 

f U2(9,x)
d x

Ll _t~s 0 
0

4I 1
+ C 2 V2Iasl1i tSUP f u2lt'xldx 

+ 
5p I

L inte-s 0

the estimate (4.25) becomes

(4.32) K2f U
2 
(x)dx 4 2 f X

2
(sx)dx + 21kI

2  
sup f X

2
(tx)dx

0 0 L (-ig] 0

finally, (4.26) becomes

2 2 2 2 1
(4.33) K f I uxdt ( 2(1 I I ] f f f

2 dxt,
0 L (I

where in the estimates (4.32) and (4.33) X(t,x) is the function (depending on ", ux , Uxx

utx' a, and f) given preceding formula (4.24).
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We now focus our attention on the simplified estimates (4.27) through (4.33).

By the Poincar& inequality (see Appendix) U(T), given by (4.7), can be majorized by

1

(4.34) U(T) 4 *up ff (2u!(t,x) + 2~~~x 2~(~)+u(~f d
(-m,T] 

0

TI
+ f f [u +t 2u2 + 3u.l]dxdt

-e O

Moreover, each term on the right hand side of (4.34) can be majorized by a suitable linear

combination of the left hand aides of the estimates (4.27-4.33). on the other hand, each

term on the right hand sides of the estimates (4.27-4.33) can be majorized by terms of the

form O(r), or O(V)U(T), or CU(T) + c(C)r(T) for any 0 > 0 the last of these comes

from estimating the right hand sides of (4.32) and (4.33). This combined with (4.34)

yields the final estimate

(4.35) U(T) < {O(V) + O(C)}U(T) + c(C)P

Therefore, fixing V > 0, C > 0 sufficiently small, (4.35) yields (4.9), assuming that

(4.8) holds. This completes the proof of Theorem 3.1.
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5. Development of SingularitLes. we consider the pure Cauchy problem

5 ut + O(U)x + a'l*(u)x - 0

* u(O,x) - u0 (x) (x e R)

throughout this section * will denote the convolution on [0,t] (not (-,t]). For a

discussion of the existence of smooth solutions of (5.1) on [0, ) x R for sufficiently

smooth and "small" data we refer the reader to Remarks 3.3, 3.6. It is known (see

Proposition 4.1 and Remark 4.2) that if a, 0, # satisfy the assumptions of Proposition

4.1 and u0 e H
2(0), then there exists a unique smooth solution of (5.1) on a maximal

interval (0,T0 ) x R, 0 ( TO o *.

Our objective is to study the problem of the development of singularities (shocks) of

the solution in finite time such that a physically meaningful entropy condition will be

satisfied (see (14]), assuming that a local smooth solution exists.

Let 9e R and let u(tx) be a smooth solution of (5.1). Wb define the

characteristic through C of (5.1) to be the curve x = x(t,t) in the t,x plane

specified by the initial value problem

(1(u(t,x)) (t > 0)
% (5.2)

x(0,) - E (c e R)

It should be noted that the total derivative of u(t,x) along the characteristic x(t,c)

is

ddx__u(t,x(t,g)) - ut(t,x(t,W) + u ftlx(t,U))--

= u (t,x(t,t)) + V,'(u(t,x(t,&)))u (t,x(t,))t x

d2f ut (t,x(t,)) + (u(t,x(t,)))x

Let u(t,t) = u(t,x(t,&)). If u is a solution of (5.1) its derivative along the

characteristic x(t,g) satisfies the integrodifferential equation
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du f alt - T)*(u(r,x(t,C))) dT (t 0)

0t x

(5.3)

u(O,x(0,&)) - u0(x(0,C)) - u0(C) (C 6 3)

The reader should note that (5.3) is no longer of convolution type, because of the term

#((UT'xlt#E))) x . *'(u(T'x(tC)))u x(T,x(t,C)) under the integral.

Lot x(t}C) be the characteristic of (5.1) through & and define

v(t,C) = x(t,U)r note that v(OC) - 1. The function v measures the growth of the

characteristics with respect to C. Let €"() * 0. According to Lemma 2.1 of [14] a

singularity will develop in the solution u of (5.1) in finite time, if it can be shown

that there exists a number ', 0 ( It < 0 such that v(TC) ( 0. For, in this case there

exists a 0 < T < I and C1  C 2 e R such that x(T, 1 )- x(T,C2) (ie. the

characteristics through C and &2  cross at T), and u(Tx(TCl)) * u(',x(TC2 )).

This is the definition of the development of a "shock" at 1 in the solution u of

(5.1). It is explained in [14] that this "Shock" solution satisfies the physically

meaningful entropy condition.

We shall therefore set up a differential equation for v(t,C). Let

au
w(t,C) - (t,x(t,&)), and note that w(0,C) = u,(&). Then using (5.2)

A. A- x -- O'(u(tx(tC)))

= -"(u(tx(t,'C)))w(tC)

Thus v satisfies the initial value problem

(5.4) - O"(u(tx(tC)))w, v(OC) = I
dt

The equation satisfied by w is found by differentiating (5.3) with respect to C,

obtaining the initial value problem

(5.5) t- v(tC) f '(t - TI U(T,xlt,E)))u2 lTxltt))

0

+ 0'(u(T,x(t,)))U xx(,x(t,C))ldT, we0) - uO().
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Our objective is to use the system of four nonlinear equations (5.2)-(5.5) for the

quantities xMt,C, U(t,C), v(t.~g), w(t,C) satisfying the indicated initial conditions to

establish the development of a shock in the manse described above. This problem which in

under active study remains to be solved in this generality.

We restrict ourselves to the special Case # S 0 in (5.1). Bly Remarks 3.5, 3.6 the

Cauchy problem (5.1) has a unique smooth solution u on (0,f) x R if a and 0 satisfy

the assumptions of Theorem 3.1, 0 < aCO) <1, and if lu 0I is sufficiently small.

in the special case V we can ose the method of Maccamy III) and Dafermos and Nohel

(41, introduce the resolvent kernel k of a' defined by the equation

Mk k(t) + (ask)(t) - -al(t) (0 4 t < *

and write (5.1) in the equivalent form

f t + P(u)x + k(0)u + k'*u - k(t)uo(x) (0 < t (.x e 3)

(.)u(O,x) -u 0(x) (x 0R)

Note that since a satisfies assumptions (a), k(0) - -a'(0) > 0. The method of Lemma 4.2

applied to equation (k) shown that since 0 < a(0) < 1, one has

(5.7) k,k' 6 L 1(0,-)

Remark. (5.7) also holds if a(t) - a. + A(t), a(0) u1, am > 0, and A satisfies

assumptions (a).

To establish the development of singularities in a smooth solution u of (5.1) with

v (equivalently of (5.6)) we study the system of nonlinear equations corresponding to

(5.2)-(5.5). in this case it is easily seen that the quantities xtt,U),

U(t,c) - U(t,x(t,g)), v(t,0) =X(t,O), w(t,t) - u(t,x(t,t)) satisfy the initial

value preblem



dx %01- (u(t'x(tW)

dt
+ MOu + f k'(t - T)u(T,x(t,C))dT - k(t)uo(x)

0

(5.8) dv - "(u(t'x(tW)

dt

w + k(O)w + (f k'(t - T)u x(T,x(t,))d? - uo (tx(tC)))v - 0

.4

x(OC) - C', u(O,) - u0 (C), v(OC) - 1, w(o,) - uv)

In recent Joint work with Malek-Madani (15] we have established the following result,

its proof which uses (5.7), (5.8) and the general strategy for the formation of shocks

outlined above will appear elsewhere. A similar result was stated by MacCamy in his

lecture, see note in (6].

Theorem 5.1. Let a (0 ( a(O) < 1) satisfy asumptions (a). In addition, let the

resolvent kernel k of a' satisfy

(5.9) k(t) 3 0, k'(t) I 0 (0 C t < d)•

Let p e C2 (a), p(0) - 0, P'(*) > 0, '(.) > 0. Let uo e c 2 (a). f uV(C) < 0 and

lu;(C)I, C e R, is sufficiently large, every (necessarily) smooth solution u(t,x) of

the Cauchy problem (5.6) (<---> (5.1) if * 5 s) will develop a shock in finite time. If

1) B , an upper bound for the time at which a shock develops is

j%.

1lg u()

14 M() u;(Z)S + k(O)

The following oonsiderations provide examples of kernels a in (5.1) (==> (5.6) if

0D i .) for which Theorem 5.1 can be applied.

Remark 5.2. If a(t) - Be-a t (0 < 0 < 1), a simple calculation shows that
-" kt) a~-U( 1-0)t

k(t) - oe , and evidently the inequalities (5.9) are satisfied in the strict

sense.
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More generally, one has the following result established by elementary consideration

from the resolvent equation ().

Lemma 5.3. Let a e C 2(O,), (-1)Ja(J)(t) ) 0, j - 0,1,2 (0 4 t < -), and assume that

a'(t)a'(0) - a"(t) < 0 (0 C t < -) .

Then k(t) > 0, k'(t) < 0 (0 4 t < "). If also 0 < a(O) < 1, and a e w 2,[O,m), then

kk' e Ll (o,).

3 -0 t
Corollary 5.4. Let a(t) - > 0, a0 > Os if

-I

Q3 1
S>jl

then k(t) > 0, k'(t) < 0 (0 C t < O)v if also B < 1 then k,k' 0 L (0,0).

Finally we remark that the general approach used to prove Theorem 5.1 can also be used

to show that if by contrast, u;(&) > 0, and if the other assumptions of Theorem 5.1 hold,

no singularities develop in the solution u in finite time. Thus Theorem 5.1, together

with this remark, form the analogue for the conservation law with memory (5.1) of Lax's

classical result for the conservation law i.2).
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Appendix

* For the convenience of the reader we state and prove the following elementary

inequalities which were used in the proof of Theorem 3.1 and which are generally referred

to as Poincare inequalities.
I

Lemma A.1. Let g,g' e L
2
(0,1), g real, and let - f g(x)dx. Then

0
!IS1 1

f g2(x)dx g + f [qg(x)]2 dx i
0 0

in particular, if g - 0, then

f g2(x)dx f (g,(x))2dx
0 0

Proof. Take 0 ( x0 < x < 1. Then

x
g(x) - fx0) - " g'l()d,

x 
0

and by Cauchy-Schwartz

(g(x) - g(x0 ))
2  I(x x0  f (g,(C)12d4 f (g.(&))2d4

x 0
0

Thus

I 1
f (g(x) - g(x0))2dx - f g

2
(x)dx - 2g(x0 ) + g lx0 )

0 0

1

fJ (g'(x)12dx

0

By the continuity of g choose x0  such that g(x O) = j, and the first inequality is

immediate.
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1

Lemma A.2. Let g,g',g" e L2(0,1), g real, g(1) - g(0), - f g(x)dx = 0. Then
0

1

g2x) + [gl(x)]
2 

4 f (g_(x)]
2
dx (0 4 x 4 1) •

Proof. Let 0 4 y <x • 1 we have

x

g'(x) - g(y)= f g-(C)d.

y

Squaring both sides and using Cauchy-Schwartz gives

Cg'(Xfl)
2 
+ [g,(ly)

2 
- 2g'x)g'l(y) I f [g(x)]2dx.

0

1

Integrating with respect to y over (0,1] and using f g'(y)dy = g(1) - g(0) = 0 we
0

have

1 1

[g'(x)]
2 

+ f [g'(yl)
2
dy f I [g"(xfl

2
dx

0 0

Since -0 the conclusion follows from the inequality

1
(glx)]2 < f [g'ly])2 dy

0

the proof of which is contained in that of Lemma 1.

Application. If w L X(M,T) defined in the proof of Proposition 4.1, then

w2(t,x) + w2(t,x) + w2Ct,x) f (w Ct,x) + w~x(t,x)ldx (0 4 x 4 1)
0
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