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ABSTRACT

It is shown that when an acceleration wave propagates in a hyperelastic

rod with slowly varying cross-section, the transport equation for the wave

intensity is a generalized Riccati equation. The three coefficients in the

equation all depend on the material properties, but only the coefficient of

the quadratic term is independent of the effect of area change. Three

theorems are proved, based on the use of comparison equations, which establish

that in general the acceleration wave intensity will become infinite (escape)

after the wave has propagated only a finite distance along the rod. The

existence of thresholds for the initial intensity are also established in

certain cases, with their most notable property being that as the initial

intensity decreases towards the threshold, so the distance the wave propagates

to escape increases without bound.
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SIGNIFICANCE AND EXPLANATION

This work studies the propagation of an acceleration wave in the class of
nonlinear elastic materials known as hyperelastic . These are materials in
which the stress potential depends only on the displacement gradient. In
particular, the effect of wave propagation along a rod of slowly varying
cross-section is studied, since in many physical situations such rods are
often to be found. The assumption of a slowly varying cross-section allows
the problem to be approximated by a one-dimensional situation, with the area

variation either modifying terms or introducing new ones.

The equation governing the acceleration wave intensity, the transport
equation, is shown not to be the Bernoulli equation, which usually arises, but
the generalized Riccati equation. In the case of a rod of constant cross-
section this reduces to a degenerate Bernoulli equation which may be solved
exactly to yield results which, in conjunction with experiment, permit the
determination of the material characteristics needed if non-constant cross-
section rods are to be studied.

The paper concludes with the proof of three theorems which give some
insight into the behaviour of the solution of the generalized Riccati equation
in terms of simple conditions placed on the coefficients and on the initial
condition for the acceleration wave. It is shown that, in general, the
intensity of an acceleration wave will become infinite, leading to shock wave
formation, after propagating only a finite distance along the rod. An
interesting new result which arises out of this analysis is the existence of a
threshold for the initial wave intensity. This has the property that the
closer the initial intensity is to this threshold, the further will the wave
propagate before a shock wave forms, provided only that the initial intensity
exceeds this positive threshold.
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ACCELERATION WAVE PROPAGATION IN HYPRELASTIC RODS
OF VARIABLE CROSS-SECTION

A. Jeffreyt
1. INTRODUCTION

The nonlinear elastic material studied in this paper is one in which the

stress potential E is dependent only on the deformation, or displacement,

gradient. It is thus a material which belongs to the class known as

hyperelastic [1], and we shall consider a special problem concerning one-

dimensional acceleration wave propagation, so that E will depend only on p,

the displacement gradient in the direction of propagation.

Many authors have considered both static and dynamic problems for such

materials, of whom we mention only Antman [2] and Antman and Jordan [3] who

studied the Kirchhoff problem for nonlinearly elastic rods and qualitative

properties in general, Jeffrey and Teymur [4] and Jeffrey and Suhubi [5] who

considered shock wave formation and acceleration wave propagation through

periodically layered media, and Antman and Liu [6] who made a detailed study

of travelling waves in hyperelastic rods which were permitted various forms of

deformation. In what follows we show how, when a variable area of cross-

section occurs in a rod, the effect of the geometry is to produce a transport

,& equation for the acceleration wave intensity which is more general than usual.

In Sections 2 and 3 of this paper our purpose will be to show that the

transport equation for acceleration wave propagation along the axis of

symmetry of a hyperelastic rod of slowly varying cross-section is a

generalized Riccati equation, and to deduce the form of its coefficients.

This is a generalization of the transport equation studied by Bailey and Chen

tDepartment of Engineering Mathematics, The University of Newcastle upon Tyne,
Newcastle upon Tyne, England.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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[7,8,91 which was a variable coefficient Bernoulli equation known to apply in

diverse situations.

Since the Bernoulli equation may be solved exactly, Bailey and Chen were

able to make precise estimates concerning the growth and decay properties of

solutions in terms of the coefficients and the initial condition. Such

precise estimates are not possible in this case, so in Section 4 three

representative theorems are proved concerning the unbounded nature (escape) of

* the acceleration wave intensity s after propagation along only a finite

length X, of such a rod. It is shown, for example, that some hyperelastic

q materials and cross-sectional area variations always lead to the escape of s,

+
whereas in others a threshold a0 exists for s with the property that the

+
escape can only be certain to occur if s > a

40

-2
--- 2-

2U



2. Formulation of Problem

We shall consider a homogeneous hyperelastic medium [I] in the form of a

semi-infinite rod of variable cross-section, which has the stress potential

£. Furthermore, we shall assume that the cross-section is everywhere

symmetrical relative to the axis of the rod and to two fixed mutually

orthogonal axes that are normal to it, but that the cross-sectional area is a

slowly varying function of distance measured along the rod. The material will

be assumed to be incompressible.

Let us now relate the Eulerian coordinates xk (k = 1,2,3) to the

Lagrangian coordinates Xk (k = 1,2,3) by

x = u(Xt) + X, XI = x, X I M X,

x = X 2, (2.1)

x3  = 3 '

where u(X,t) is the displacement of a particle along the rod relative to the

natural axis along which X is also measured [10.] The orientation of the

X2  and X3  axes, which are mutually orthogonal and lie in a plane normal to

the X axis, is taken so that the cross-section is symmetrically disposed

relative to them.

In terms of these coordinates, the displacement gradient

u , (2.2)

while the velocity of a particle displaced by an amount u is

v = j- ut . (2.3)

The stress-tensor is given by

3E
T T - (2.4)

where because of the hyperelasticity E -(p).

Since the particle displacement u will be taken to be small, we shall

regard the cross-section area variation solely as a function of X, and denote

-3-
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it by S(X). We suppose the rod to be stressed and left in equilibrium prior

to the propagation of a disturbance. Then continuity of stress normal to the

(X2 ,X3 )-plane, coupled with the area variation iteself, shows that the initial

" displacement p0 (X) will be given by solving

T (o) ' (2.5)

where T - T(O) is the initial constant stress at the plane boundary X - 0,

which we take to be the end of the rod at which the cross-sectional area is

S(O).

The equation of motion is simply

3 (TS) av-(B 3 , (2.6)
ax

where P is the constant density. Then, by virtue of equation (2.4),

3T aT _a ,
" p ax 3p2 X

If we now introduce the quantity c, which has the dimensions of a

velocity, through the definition

c2)c/2 with 2 (2.7)
-p2 3p2

the equation of motion (2.6) becomes

av 2ax -(.
c (In S) - 0 2.8)

It 3X P dX

where T = T(X) is the stress as a function of X, which is influenced by

both the propagation of the wave and by the change of equilibrium stress

caused by the variation of the cross-sectional area.

Equality of mixed derivatives then leads to the additional equation

at 9. 
(2.9)

Thus the one-dimensional theory for the propagation of disturbances along the

rod is governed by the equations (2.8) and (2.9). The last term in (2.8)

represents the effect of the cross-sectional area change, and when S - const.

-4-



these equations reduce to those considered elsewhere in a somewhat different

context 14,5]. This is because the one-dimensional model does not distinguish

between wave propagation normal to the bounding plane of a half-space and wave

propagation along a rod of constant cross-section.

-5
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3. The Transport Zuation For The Acceleration Wave Amplitude

We shall suppose that a wave propagating along the the rod in the

positive X direction starts from the end of the rod corresponding to X -

0 at time t = 0, and that it advances into the equilibrium state determined

by (2.5). We thus assume that:

(i p and v are continuous, with v(X,t) = 0 ahead of the wave,

(ii) the first and second derivatives of p and v experience at most a

jump discontinuity, so that the wavefront which propagates is an

acceleration wave.

Let us now generalize an argument used by Gurtin [11] in connection with

water waves, and show that it may also be used in this case, though we shall

see that the transport equation which results differs significantly.

In what follows we denote by a superscript minus sign the value of a

quantity immediately behind the advancing wavefront, that is to say in the

disturbed region, and by a superscipt plus sign the corresponding value of

the wavefront in the equilibrium state.

We then conclude from (i above that

p p and v = v = 0, (3.1)

while from (2.8) it may be seen that the time-independent solution p+ must

satisfy
2 3R T0 d

c2 0 '5 + (tn S) - 0 , (3.2)

where the suffix zero signifies the form of the function on the wavefront.

Differentiating v parallel to and immediately behind the wavefront we

obtain

av- dt 0v--o , (3.3)

to which result may be supplemented the form taken by (2.9) immediately behind

the wavefront

-6-
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t " •v (3.4)
'- _ +

Next, differentiating p p in similiar fashion, and noting that p is a

function only of X, we find

+  t '(3.5)
ax dX at ax

which by virtue of (3.2) becomes

ST ~(In S) -0 *(3.6)*ax da t' -2dPco

This must also be supplemented by the form taken by (2.8) immediately behind

the wavefront
t- 0 3X" T d

We are now in a position to interpret dX/dt, the speed of wavefront

propagation, in terms of the material constants. Combining equations (3.3),

(3.4), (3.6) and (3.7) and solving for dX/dt we find that in fact

(dA)2 . c (3.8)
-t 0

Thus the quantity c introduced in (2.7) is merely the propagation speed of

* the disturbance (acceleration wave) characterized by (i) and (ii) above. We

notice that To = T 0(X) and c. = c0(X), since the initial displacement given

by solving (2.5) is p0 = P0 x).

Hereafter we confine attention to the situation immediately behind the

wavefront. Differentiating equations (2.8) and (2.9) partially with respect

to t and X, respectively, and eliminating 32p-/3tax gives

2_ _ 2 
___.- 2 ( -

at2  c 0 ax
2  

0  
3 a

-PT (In S) = 0 . (3.9)
ap- t Pa

Now it follows from (3.8) that on the wavefront Valt c0 d/dX, which

-7-
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leads at once to the identity

32v- d (vt) (3.10)
a;t2  0C

It is also true that on the wavefront

- d , (3.11)

so combining (3.10) and (3.11) brings us to the final identity
2v 2 2v- d(vt) 2 d(v-)

c -3 C 2 (3.12)
at - _ 0 -d--'0d

Setting ap-/3X = s, the acceleration wave intensity, and combining (3.9)

and (3.12), brings us to the result

ds -s + Os2 + Y , (3.13)
dX

where

-- [3- 2) T A 23) .](Zn S(X)), (3.14)

2Pc ap 0 2Pc 0  p 3 0d
0

0c 2  p 3 0
0

Y(x) = 0 c d- (Zn s(X)) + (Ln s(x))12] (3.16)

Equation (3.13) is the transport equation for the acceleration wave

intensity, and it has been expressed in this form ae this is an obvious

generalization of the canonical form introduced by Bailey and Chen (7,8,9].

However, on account of the geometrical effect introduced by the change of

cross-sectional area, (3.13) is now a generalized Riccati equation (12],

rather than the Bernoulli equation found by Bailey and Chen.

We conclude this section with some general remarks about the coefficients

U, 0, and Y. As observed by Bailey and Chen, the coefficient 0 is soley

determined by the material behaviour, but U and the new coefficient Y

involve both the Mterial behaviour and the geometry. Now T > 0, and it has

already been observed in (2.7) that for c to be real it is necessary to have
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a2 /ap2 > 0. However the sign of a 3Z/ap3 will be determined by the

particular material that is involved.

Some special cases of area variation arise which are worthy of note.
;" d2

If S is such that d-2 (In S) > 0 the graph of £n S is concave-up, and it

d 2 dwill be increasing if -X (In S) > 0 and decreasing if -L (In S) < 0

Conversely, if S is such that 2 (In S) < 0 the graph of In S is
d

concave-down, and it will be increasing if (Zn 5) > 0 and decreasing if

d (n S) < 0.
dX

-' When S = const. both P and Y vanish and B0  = const. Equation

(3.13) may then be integrated to give

s(X) s(0) (3.17)1-$8s(0)X
where s(0) is the initial acceleration wave intensity when X 0. In the

event that a0s(0) > 0 the acceleration wave intensity will become infinite

after it has propagated a finite distance X , which we shall call the escape

distance. In this case this is given by [see 41

x= 1/B s(0O) . (3.18)

When B0 s(0) < 0 the acceleration wave intensity will simply decay to zero as

the wave propagates. The position X = X. may be interpreted as the point at

which a shock first forms, but we shall not pursue this aspect further and

refer instead to Chen [9].

The transport equation (3.13) can only be used to study general wave
propagation if 2Z/ap2 and 3 3/ap3 are known, and the simple case of a

constant cross-section rod of fixed length L may be used to provide this

information. If the sound speed c(p) in such a rod is measured for

different displacement gradients p, then a2 Z/ap2  follows by use of (2.7).

Similiarly, if for such a rod of length L the initial intensity s(O) and

transmitted intensity s(L) are measured for different p, then a3 r/p 3

-9-
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follows by solving (3.17) for 0 to get

S(L) -s(O) (3.19)

and then using (3.15). This pre-supposes, of course, that the length L is

- sufficiently short to avoid escape of the intensity s before the end of the

rod is reached.

-i
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Escape of Solutions to the TransRort Equation

In this final section we offer some results concerning the conditions

necessary for the escape of the solution of the transport equation (3.13).

These are obtained by making simple assumptions about the coefficients

a, B and Y of equation (3.13), and then using elementary comparison

equation methods. No systematic study of the qualitative properties of the

transport equation has been attempted, since our objective is merely to

establish that, in general, an acceleration wave in a hyperelastic material

will have a finite escape distance. However, in addition, we also establish

+
the existence of thresholds a0 > 0 and a < 0. These have the property

that in certain circumstances escape only occurs at an infinite distance when
+

the initial acceleration wave intensity s(0) is such that s(0) + a +
0

while when s(0) + 0 the solution s is monotonic increasing with

lim siX) > a

We now prove three theorems, the first two being related, and begin by

supposing Y(X) > 0 for X ) 0, for then
s~2 s2

-)Is + 2 + Y > -us + as 2

Now consider the equation
: ds2

" - s + B 2 + Y , (4.1)

dX

and the comparison equation

do =- ia + a2 , (4.2)

with s(O) = 0(0) > 0, where we now assume P(x) < 0 , OX) > 0 for X > 0.

Then

_(s. - 0) J Y(0) > 0
dX X=O

and it follows directly that

d
(a - ) > 0 for X > 0 , (4.3)

+
unless the derivative becomes unbounded for some finite escape distance X~o

-11-
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This shows that s > a as long as the derivative in (4.3) is defined. If a

+has a finite escape distance X,, then so also has s, say X, , where
+ -+ ++-

0< < X., showing that X, provides an upper bound for X,. To find

we may use the results of Bailey and Chen [7, Theorem 4.3(1) or 9, Theorem

3.2.4(i)] in connection with the comparison equation (4.2) with

0O) = s(O) > 0

The result asserts that if s(O) > a , where
X

a = I/S 8(X) exp(- f P(T)dT)dX) , (4.4)
0 0

then there exists a finite escape distance X0 > 0 such that

X. X

f O(X) exp(- f U(T)dT)dX = 1/s(0). (4.5)
0 0

We conclude that, when a finite X, exists, there is some X. with
+ +

0 < X. < X, such that

lim (X) -+
X+X+.

The second part of the theorem by Bailey and Chen cannot be used to

establish the decay of s(X) to zero as X++0 when 0 < s(0) < M * This is

because we are working with the inequality s > 0 and the decay of 0 does

not imply the decay of s.

Let us now consider equation (4.1) and the comparison equation (4.2) when

1J(X) < 0, 8(X) < 0, Y(X) < 0 and s(0) - 0(0) < 0 . Then the same form of

reasoning as before again establishes that escape is possible for 0 at some

escape distance X, > 0 , determined by the results of Bailey and Chen when a

threshold condition on s(0) is satisfied, and that this time

lim(X) -c .
X+XM

Since the stated conditions ensure that s < a , we conclude that when 0 has

an escape distance X. , then so has s, say X; , where 0 < X < XOO and

-12-
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that

lims(X) =-
X+X

For the same reason as before, no conclusion may be reached from the

second part of the theorem by Bailey and Chen concerning the decay of s to

zero when the threshold condition on s(0) is not satisfied and

-L < s(O) < 0 .

We have proved the following result.

Theorem 1

Consider the differential equation

ds s + 082 + ,
dX

where P, 8 and Y are integrable functions of X on every finite subinterval

of [0,I) p and let

f 1/ { f 1S(x)I exp(- f U(T)dT)d }
0 0

Then, if 11(X) < 0, Owx > 0, Y(X) > 01and ) (0) > 0 with Is(0)I > a" '(X) <0, 0 ,X) < 0, Y(X) <0) (S(0) <0)

there exips a unique finite escape di for slX), with upper

boundssuch that
,J..

f 8(X) exp(-f 1(T)d )dX = 1/s(O)
4:0 0

l1im s(X +0IXtX+
and

lim 8(X) -

4ow suppose constants I0' 80 exist such that P(X) 4 10 < 0,

O(X) > 0 > 0, and suppose also that Y(X) > 0 and s(0) > 0. Then

-13-
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- 11s + s + Y> - 8is + 8.2 a

so that considering equation (4.1) and the constant coefficient comparison

equation
do

S ao + 8o02 
(4.6)

with a(0) - s(O) > 0 we see, as before, that s > V. Applying Theorem 1 to

(4.6) we find G 0, so that in this case an escape distance X. always

exists for 0, and hence for s. A trivial integration of (4.6), or of the

condition determining X. in Theorem 1, shows

-+ I rs(0)X- = 7- nL s(O)-XO > 0 (4.7)

where 0 0/8 > 0. Hence, if X. is the escape distance for s, we have
+ -+

0 < X. + X , where

lim s(X) = +0•
X+XI

A similar form of argument applies when P(X) V 10 < 0, O(X) ( 0 < 0,

0 0
Y(X) < 0 and s(O) < 0, only now the solution s escapes negatively at some

escape distance X. where 0 < X . and X, is still given by equation

(4.7). We have thus arrived at our next result.

.* Theorem 2

Let s satisfy the differential equation

ds 2V.-;S Ps+Os + Y.

4 Then if constants Poo 80 exist such that

I- j() 0 a, 8(X) < 0 00 0 and Y(X) > 0, s(0) > for X 0, it

follows that there exists a finite escape distance for s such that

lim s(X) - where an upper bound on is provided by

-14-
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1 In ( 9(O))>0

41 = PO -l)')O --10

with

0o j0 0 >

For our final theorem we begin by supposing constants a0 0, Y0 exist
0

such that P(X) < P0 < 0, O(X) < 80 ( 0 and Y0 < Y(X) < 0 for X ) 0, and

that s satisfies equation (4.1) with an appropriate initial condition s(O)

which ensures

-i0s + Bs2 + Y > I-o0s + 80s2 + Y > 0 . (4.8)

Clearly condition (4.8) will be true at X - 0 if Is(0)I is

sufficiently large, thereby ensuring that when comparing equation (4.1) with

the comparison equation

do -O + 002 + Y 0 (4.9)

the inequality will remain true for X > 0 so that s > 0 . Hence the escape

of 0 will ensure the escape of s.

Now the right hand side of (4.9) will be positive provided C does not

lie between its two zeros

0 0 ~2 - 40 0Y0 ) 1/21/280

Consequently, inequality (4.8) will be true for X ) 0 , so that s > 0,

provided either (W) s(O) - 0(0) > a > ,a, or (ii) s(O) G o(0) < 0.

Suppose (i) is true and write (4.9) in the form

1 dY 2 2 (4.10)

0 0d

where Y- - (P0/28 ) and a2 - (P0/20) 2 (Y0/0 or, equivalently,

-15-
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a O+  (U0/280) with a > 0. Then (4.10) may be integrated to give

2aO Y+a Y +a

o 0

where YO 0(0) - (P /20O).
- 00 0

This may be solved for a when we find

P 1 + A exp(200aX)
a - + a( 1  A A exp(2a 0 ) '(4.12)

where
Y - a  -

A "1 Y +a . an-d 0 < A < 1.

0 0(0) - 0

Inspection of (4.12) shows that escape of 0 occurs at X, when

1 = A exp(20a X+). This leads to the required upper bound X+ for the

escape distance for s

i+ 1 . .n+( ( O) - 0 > 0. (4.13)

20 0) +0
0

The significance of the threshold 0 + is seen by examining result
+

(4.13). The closer the initial value s(0) = i(0) is to O0, the further the

comparison solution propagates before the escape of 0 occurs.

Repetition of the same form of argument for case (ii) leads to the

results

1O 1 + B exp(2B0 bX)
a 2 + b( - B exp(2%bX) ' (4.14)

where b (P 0O/20 O ) - a with b > 0, and

-0- b 0(0) with B > 1 • (4.15)

Y0 + b a(0) -

00Inspection of (4.14) shows that since B > I and. 0 0b > 0, there can be

no escape of a as X +. In fact, as X + +0 so + (P0 /20 - b 00,

showing that as X + +0 s must exceed the value a0.

We have thus proved our final result.

-16-
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Theorem 3

Let a satisfy the differential equation
ds s2
dl _ _Us +82 + Y

subject to the initial condition s = C(0), where U(X) < MO < 0,

O(x) >B 0 > 0, Y < Y(X) < 0 for X 0 0, and set

0± 2 /o ( U 0 ± (U 0 - 4 0Y0 ) 21/20 "

Then it follows that:

(i) if a(0) > 00 the solution s will escape at a finite escape

distance X. > 0, where an upper bound Xis provided by

I0
1. (n( 0(0) -0 +

(n0 0  (0) 

and

lim s(X) 9 += ;

(ii) if 0(0) < a0  the solution s(X) is monotonic increasing and

lim s(X) > a

In conclusion, we remark that other similar theorems may be formulated,

but these three will suffice to indicate the behaviour of the solution to the

transport equation (3.13) in some typical circumstances. Here again we will

not pursue further the matter of shock wave formation associated with the

escape of the acceleration wave intensity s.

I
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