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ABSTRACT
| "In this paper we study the problem of the minimization of the Dirichlet
integral over a two-dimensional domain, by non~negative functions satisfying a
finite number of linear constraints. Existence and uniqueness of the solution
is proved. A characterization by variational inequality is given, leading to
local and boundary behaviour of the solution. This characterization is of
importance in the construction of numerical algorithms for the production of

non-negative smooth surfaces from aggregated data.‘;
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SIGNIFICANCE AND EXPLANATION

The problem of constructing a smooth positive surface over a given

domain, matching a set of data in aggregated form, as volumes over sub-

domains, is important in the estimation of densities. For example, given the
population census according to political subdivisions (e.g. counties), it is
desired to obtain a smooth positive function estimating the population density
as a function of the geographical coordinates.

In order to select, from the infinitely many positive surfaces matching
the data, a particular one which is smooth, we require the surface to minimize
a Dirichlet-type integral, measuring the roughness of the surface over the
domain. 1In this work we analyze the properties of the minimizing surface and
characterize it by variational inequalities and also by its local differential
behaviour in the domain and on its boundary.

This characterization is important in the construction of numerical
methods for the production of discrete approximations to the minimizing

surface and in the analysis of their convergence.
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ON THE SOLUTION OF A CONSTRAINED MINIMIZATION
PROBLEM IN H'(Q) RELATED TO DENSITY ESTIMATION

*i
Nira Dyn‘ and Wing Hung Wong

1. Introduction
In this paper we are interested in the existence, uniqueness and characterization of

the solution to the following minimization problem:

(1a) minimize J(u) = [ (u: + u2 Jaxay
uel' () ¥

subject to

{1b) fouf, =9 « 1=t

(1c)‘) ua>0 a.e. in 9 ,

where Q is a smooth region in Rz, fi e Lz(n), i=1,..0,8, and H'(Q) is the first

order Sobolev space:

1

In case (! has a smooth boundary, the non—ne?acivtty almost everywhere in (tc) is
equivalent to non-negativity in the sense of H (Q) (u> 0 in Q in the senge of H‘(Q):
it {9} © cl(a) ¢ 20 in 0, such that ¢, + ¢ in u'(@)) (see e.g. Kinderlehrer and
Stampacchia (6]).
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H'(D) = {u e Lz(n)sux, uy e Lz(ﬂ)} where u,, uy are the first order distributional

derivatives.

This problem is of interest in the production of smooth contour maps from aggregated

data (Dyn and Wahba [3]), and in particular for the estimation of a density from its given

volumes

(1b)* fnu- o s i=l,..0,8
1

over a certain partition 91,...,99 of the domain Q.

(Tobler [7], Wahba (8].)
The familiar stationary obstacle problem in mechanics (Glowinski [5]) is similar to

(1) without the linear constraints (1b).

In the following, we limit the discussion to sets of constraints (1b) satisfied by at

least one smooth positive function. This is always the case for constraints of the form

(1b) ' with a

4 >0, { = 1,004,8.

In section 2, we give a simple existence and uniqueness proof. Using results from

optimization theory in Banach spaces, we have given in Section 3 a characterization of the

solution in terms of a variational inequality. 1In Section 4, we combine the results of

Section 2 and Section 3 with a theorem of P. H. Brezis [2] to study local properties of the
gsolution. 1In particular the solution is found to be continuous and therefore non-negative
everywhere in , two properties which are essential for applications.

These characterizations of the solution to (1) are of crucial importance in the

construction of numeical procedures for the computation of the solution, and in

establishing their convergence rates (Wong [9]). The analogous characterizations of the

solution to the obstacle problem (1a) + (1c) are the basis to several numerical procedures
for the computation of this solution (see Glowinski [5] for a review of these methods).

We conclude by considering in Section 5 similar minimization problems to (1), but with

the functional in (ta) replaced by

n m ( am\l )2
J (= [ 7 () .
m Q 1=0 i axiaym-i
-2 -
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. i The results obtained are analogous to those for the case n = 1, with the exception
: of the local and boundary behaviour deduced from Brezis' result for m = 1.
This problem with m > 2 is of interest in the production of highly smooth surfaces

fitting given aggregated data.

2. Bxistence and uniqueness

Theorem 1: There exists a unigque solution to problem (1) whenever

2
Tiay gt > 00
Proof: Without loss of generality assume '{Q £,=G ¥ 0, and let u=u - % aye

Then (1) is equivalent to

~ ~ 2 ~ 2
(2a) win J(u) = In u, tug {

subject to u € H'(Q) = {u e H'(Q) | fﬂ uf =0} and

G

i
e q‘ where G

(2b) [gf, 9= a .

y = In fi, 1.2'000,3

(2¢) G'>-G— a.e. in Q .

Now functions satisfying (2b) and (2c) are easily seen to form a closed convex set in
H' (). It is also easy to see that (J(u) )'/2 is a norm in H'(f). This norm is in fact
equivalent to the Sobolev norm in H'(Q) : it = g0 + [n u? restricted to H'(Q), as
can be deduced from Poincare's inequality (see e.g. Dyn and Wahba ([3]).

Thus (2) is the problem of finding the minimum norm element of a closed convex set in

a HRilbert space, which always has a unique solution.

-3-
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3. Variational characterization

For finite Aimensional optimization, the solution is usually characterized by the

famous Xarush-Xuhn-Tucker conditions,
Ranach space setting.

closed convex set in a Banach space H,

functions on H,

then a necessary condition for u to minimize J(u)

hy(u) = a,, 1= 1,...,8 is that there exist multipliers x‘,...,xs,

-
(Wagu) + ¥

h,(u)){v-u) 20, ¥ veqQ .
(=1 11

Furthermore, {f J 1is convex, hi' 1i=1,...,8 are linear and there

to Q satisfying h,(u*) = q
for u €@ 9 agsatisfying hi(u) -
To apply the above theorem to our problem, let J(u) = a(u,u) = fn “x +u

hy(u) = fo £, Q

T i=1,...8, then the above condition

i

are given by (%J({uw))(v) = a(u,v) = f uv + uyvy and (Vhi(“))(V) =

T x x

There are extensions of the Xuhn-Tucker theorem to
We will use the following extension (Girsanov {4)): If Q is a

and J;“,:o--.hs are Prechet Aifferentiable

subject to u € Q,

such that

exists u* interior

is also sufficient

a, 1=1,...,8 to be the extremal solution.

2 2
Yy

= {ueH'(Q), u > 0 a.e. in ), and H = H'(Q). The Frechet derivatives

Iﬂfiv' L= 1,e00,8.

By the above result, we obtain the following characterization of the solution to (1),

for any set of constraints (1b) satisfied by at least one smooth positive function:

(3a)

(3b)

Theorem 2: u 1is the solution to (1) iff there exist multipliers A1,

a(u,v-u) > Iﬂ f(v-u) for all v >0, v @ H'(R)

s
where £ = J A f .
jmp 11

u >0 a.e. in Q2 ,

f:: fu=a,i=1... .,

-~

...,As such that
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By the same arquments we also obtain:

Lemma 1: Given A‘,...,A‘ there is a unidua function satisfying (3a) and (3b). This

8
function minimizes J(u) - Iﬂ ) A\ f )u among all non-negative functions in H'(9).
i=1

4. local behaviour and boundary conditions

If in (1), we ignore the equality and inequality constraints, then the problem becomes -
a classical calculus of variation problem, the local behaviour of the solution will then be

glven by the Euler equation (vanishing of the first variation) and the natural boundary

IPOVRPURRY WY

conditions. 1In our problem (1), which is constrained, we should expect to get a

41 characterization of local behaviour similar to the Buler equation in the unconstrained

f case. We will show that, roughly speaking, when the constraints are not active in a
certain neighbourhood, then the solution will satisfy a differential equation locally in
the neighbourhood. This kind of local results are in general very difficult to prove, but

our task is simplified considerahly by some existing theorems on variational inequalities.

- Lemma 2: Given f ¢ Lz(ﬂ), there exists a u ¢ Hz(ﬂ), satisfying the following

variational inequality:

(4a) [t tv-a) > [ f(vu) for all v >0 a.e. in @, veH(Q) ,
(4b) w0 in Q ,
(4c) %“1 =0 on I ,

wvhere M = L. + uyy is the laplacian of u and %ﬁ is the normal derivative at the

houndary .
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Proof: This is a special case of theorem 1.12 in Brezis (2] (page 55), where we take
Blr) =0 , =w<r <= in applying that theorem.

This result is related to the solution of (1) in the following:

Lemma 3: Let u @ Hz(ﬂ) satisfy (4). Then u satisfies also (3a).
Proof: Since u € Hz(ﬂ), we can use Green's formu1a1) to write
[o U (v=0)_ + 0 (veu) = [ (=80)(v-u) + [ 2 (v=a) .
Q x x Y y Q N on

The second integral in the right hand side vanishes, because the function u

satisfies the boundary conditions (4c). Therefore by (4a)
a(u,v-u) = Iq (-Aa) (v-a) > lq £(v-u) for all v >0 a.e. in R, v e H'(D)

-, and u satisfies (3a).
Combining the results of Theorem 2 and lemmas 1-3, we obtain a differential type

necessary and sufficient condition for u to be the solution of (1).

1
-
f: Theorem 3: u 1s the solution to (1) iff the following conditions are satisfied:
3
-§ )
F L
¢ (5a) uex(Q

vg; (5b) There exist x,,...,xs such that u satisfies

8
[ (=ta)(v=u) > [ (] XAf£)(v-u) for all v > 0 a.e. in Q, v € H'(Q)
Q SR ¢

1) -
See Aubin [1] for conditions required for Green's formula.

-f=
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| (S¢c) u>0 in @

i

! N

: 54 —=

< (54) oy 0 on 239

i

: {5e) fq uf, = a o+ i=1.8 .

1 Proof: The sufficiency follows from Lemma 3 and Theorem 2. To prove the necessity of

these conditions assume u to be the solution of (1). Then by Theorem 2, there exist

{ x1,...,xs such that u satisfies (3a), and by Lemma 2, there exists ue llz(ﬂ)
j satisfying (5b), (5¢), (5d), with '\1""'As as in (3a). Hence by Lemma 3 u satisfies
{

(3a) and (3b), which in view of Lemma 1 implies that U coincides with u. This completes

the proof of the theorem.

Property (5b) of the solution of (1) is equivalent to the following local behaviour in

the distributional sense (Brezis [2]):

8 8
(5b)' (-aa) > § Af, in @ (-m) = ] ME, in {x @ @ulx) > 0} .
i=1 1=1

Moreover since u € nz(m, M€ Lz(Q) and (5b)' holds almost everywhere in Q. Thus

WS G

{(Sb)' in view of (Sa) is equivalent to:

-] s
(5b)* “m- J Af >0 ae.in D (- - ] Af)u=0 a.e.in Q .
s . i1 171
i=1 i=1
IX
4
ey
e 5. Problems of higher order
2
: Similar analysis as done for problem (1) can be carried out for the more general
"; a7 . problem related to the iterated Laplace operator:
2
: 3
N - a"‘u 2
(6a) min g = [ [ F () [ )
. o m Q =0 i axlam-i
ue™(Q) y

-7~
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subjact to
(6b) Iuti-ui . L= 10,8
(6¢) a>»0 in @ ,

where Q is a smooth region in RZ, £ e 32, L = 1,.0.,8, and H™Q) 1s the m'th

order Sobolev space

Kk

) = (ul —22— e 13, 1= 0,00k, k= 0,...,m) .
1, k=i
X" Iy
For m » 2 all functions in Hm(ﬂ) are continuous, and the positivity in (6¢c) is
pointwise.

Por this problem we obtain analogous results to Theorem 1,2 for the case m = 1, for

sets of linear constraints (6b) satisfying the following two assumptions:
(1) There exists a smooth positive function satisfying (6b).

(ii) There does not exist a polynomial g of total degree k, k < m, satisfying

Q fiq =0, {=1,...,9.

The existence, uniqueness and characterization in terms of a variational inequality

are derived by the same arguments used in Sections 2,3. We formulate the results and omit

the proofs.

Theorem 4: There exists a unique solution to problem (6). u is the solution to (6) iff

there exist multipliers x1,...,xs such that

8
(7a) a(u, vu) > [ (vu) § \E  for all v >0, vaH R
m Q 1=1 i
(7b) u?>0 in R
-8
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(7c) IQ fiuﬂ a 1 =1.00,8 .
where
n m m
3 u I v
(8) a(uv) = [ 1 (D .
m Q i=0 i axiaym-i axiay“"i

In order to conclude local and boundary behaviour of the solution to (6), an extension

of Brezis' result (Lemma 2) to m > 2 is needed. At this stage the extension of Theorem 3

to m > 2 is yet a conjecture:

Conjecture: u 1is the solution to (6) iff the following conditions are satisfied

(9a) we u® @
(9b) There exist A1,...,Xs such that u gatisfies

s
0" fo Aate-uy > fo (£ )v-w) for all v >0, verum
i=1

(9¢) u>0 in Q

(94d) 62m-i a=0 on 30 , L =1,..e,m

(9e) jﬂ uf = . i Vs

where § i=1,...,m are differential operators of order 2m-i defined by the

2m-1’

generalized Green's formula (Aubin (1]):

n n m=1 31
{19) a (u,v) = (-1)7 o (ATw)v + 120 [aa Comerey® -;; v .

-9-
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The local bshaviour of u in £ implied by (%9a) and (9b) is:

)
(11a) (-0 > § Af ae. tn 9 :
i=1 1

5 f
, (11b) =" - § Aglu=0 ae.tn 3 . | !
3 1=1

— ..

!
j

=10~
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