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ABSTRACT

In this paper we study the problem of the minimization of the Dirichlet

integral over a two-dimensional domain, by non-negative functions satisfying a

finite number of linear constraints. Existence and uniqueness of the solution

is proved. A characterization by variational inequality is given, leading to

local and boundary behaviour of the solution. This characterization is of

importance in the construction of numerical algorithms for the production of

non-negative smooth surfaces from aggregated data.
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SIGNIFICANCE AND EXPLANATION

The problem of constructing a smooth positive surface over a given

domain, matching a set of data in aggregated form, as volumes over sub-

domains, is important in the estimation of densities. For example, given the

population census according to political subdivisions (e.g. counties), it is

desired to obtain a smooth positive function estimating the population density

as a function of the geographical coordinates.

In order to select, from the infinitely many positive surfaces matching

the data, a particular one which is smooth, we require the surface to minimize

a Dirichlet-type integral, measuring the roughness of the surface over the

domain. In this work we analyze the properties of the minimizing surface and

characterize it by variational inequalities and also by its local differential

behaviour in the domain and on its boundary.

This characterization is important in the construction of numerical

methods for the production of discrete approximations to the minimizing

surface and in the analysis of their convergence.
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ON THE SOLUTION OF A CONSTRAINED MINIMIZATION
PROBLE IN H'(Q) RELATED TO DENSITY ISTIATION

Nira Dyn and Wing Hung Wong

1. Introduction

In this paper we are interested in the existence, uniqueness and characterization of

the solution to the following minimization problem:

(I,) minimize J(u) f(u 2 + U dy
udi' (A)

subject to

(1b) fauf. a c1.i .. s

(10)1) u ) 0 a.e. in ,

where $ is a smooth region in R
2
, f e L 2(n) i - 1,0..,s, and H'(SI) is the first

i

order Sobolev space:

T

In case 1 has a smooth boundary, the non-neativity almost everywhere in (ic) is
equivalent to non-negativity in the sense of H (a) (u > 0 in 9 in the sense of H (a),
if 340c C

1
()n 0 in 12, such that n - * in 11l()) (See e.g. Kinderlehrer and

Stampacchia (61).
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2 y 2
HI(M) - (u e L (0):ux  uy 1 L () where Uxs uy are the first order distributional

derivatives.

This problem is of interest in the production of smooth contour maps from aggregated

data (Dyn and Wahba [3]), and in particular for the estimation of a density from its given

volumes

, ( b ) ' f ol U (X i - . . .

ii

over a certain partition 1,...,12 of the domain 2. (Tobler [7], Wahba (8].)

The familiar stationary obstacle problem in mechanics (Glowinski (5]) is similar to

(1) without the linear constraints (ib).

In the following, we limit the discussion to sets of constraints (lb) satisfied by at

least one smooth positive function. This is always the case for constraints of the form

. (1b)' with a, > 0. i =

In section 2, we give a simple existence and uniqueness proof. Using results from

optimization theory in Banach spaces, we have given in Section 3 a characterization of the

solution in terms of a variational inequality. In Section 4, we combine the results of

Section 2 and Section 3 with a theorem of P. 8. Brezis [2] to study local properties of the

solution. In particular the solution is found to be continuous and therefore non-negative

everywhere in 1, two properties which are essential for applications.

These characterizations of the solution to (1) are of crucial importance in the

construction of numeical procedures for the computation of the solution, and in

establishing their convergence rates (Wong [9]). The analogous characterizations of the

solution to the obstacle problem (la) + (Ic) are the basis to several numerical procedures

for the computation of this solution (see Glowinski [5] for a review of these methods).

We conclude by considering in Section 5 similar minimization problems to (), but with

the functional in (1a) replaced by

J m (u) fa I

-2-
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The results obtained are analogous to those for the case a - 1, with the exception

of the local and boundary behaviour deduced from Brezis' result for m - 1.

This problem with a ) 2 in of interest in the production of highly moth surfaces

fitting given aggregated data.

2. Existence and uniqueness

Theorem 1: There exists a unique solution to problem (1) whenever

(f f i > 0.

Proof: Without loss of generality assume f , fl - G 0, and let u u - 1

Then (1) is equivalent to

(2a) mi n() - f u + u

subject to ue li(n) - {u e H () I fnuf1 - 0) and

G4
G i

(2b) fn, u a, - a where Gi- ini, i -2,...,s

(2c) u -->.e. in f •

Now functions satisfying (2b) and (2c) are easily seen to form a closed convex met in

Ht(C). It is also easy to see that (J(u))
1
/2 is a norm in I'(). This norm is in fact

equivalent to the Sobolev norm in HI(M) . 1u
2 

- J(u) + fau
2  

restricted to 3'm, a's

can be deduced from Poincare's inequality (see e.g. Dyn and Wahba [31).

Thus (2) is the problem of finding the minimum norm element of a closed convex set in

a Hillbert space, which always has a unique solution.

A4
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3. Variational characterization

For finite dimensional optimization, the solution is usually characterized by the

famuous Warush-Kuhn-Tucker conditions. There are extensions of the Kuhn-Tucker theorem to

MAnach space setting. We will use the following extension (Giruanov (41): tf Q is a

closed convex set in a Banach space R, and J,h11 . ah are Prechet differentiable

functions on H, then a necesaary condition for u to minimize 3(u) subject to Q E Q,

h i(u) a, i -1.,s is that there exist multipliers 11.., such that

4J (1(u) + Vh Xi (ufl(v-u) )0, V v e Q

Furthermore, if J is convex, hi, i =1.. are linear and there exists u* interior

to Q satisfying h i~ue) - u1, i - 1,..,then the above condition is also sufficient

for u e Q satisfying h (u) - al, i -1,...,s to be the extremal solution.

-ITo apply the above theorem to our problem, let J(u) - a(u'u) U. + u y

h i(u) - fS, fi Q - {ucN'(n)), u ). 0 ae. in 9), and HI - H'(9). The Frechet derivatives

are given by (VJ(u))(v) - a(u,v) -=fe uv x+ u yv yand (VhiLu)) (v) - f~~v i

By the above result, we obtain the following characterization of the solution to (1),

f or any set of constraints (ib) satisfied by at least one smooth positive function:

* Theorem 2: u is the solution to (1) itt there exist multipliers A1 .. , such that

a(u,v-u) '7 af(v-u) for all v ), 0, v e*H N(Q)

(3a)

where f X xtf

(3b) u > 0 a.e. in a

-4-



By the same arguments we also obtain:

Loma 1: Given )1,...,s there is a unique function satisfying (3a) and (3b). This
a

function minimizes J(u) - 1( Ift)u among all non-negative functions in H'(a).
i-I

4. Local behaviour and boundary conditions

If in (1), we ignore the equality and inequality constraints, then the problem becomes

a classical calculus of variation problem, the local behaviour of the solution will then be

given by the Euler equation (vanishing of the first variation) and the natural boundary

conditions. In our problem (1), which is constrained, we should expect to get a

characterization of local behaviour similar to the Ruler equation in the unconstrained

case. We will show that, roughly speaking, when the constraints are not active in a

certain neighbourhood, then the solution will satisfy a differential equation locally in

the neighbourhooA. This kind of local results are in general very difficult to prove, but

our task is simplified considerably by some existing theorems on variational inequalities.

Lemma 2: Given f c L2 (Q), there exists a u £ H2 (a), satisfying the following

variational inequality:

(4a) f,(-i)(v-u) > fa f(v-u) for all v • 0 a.e. in n, v H'(I) ,

(4b) u 0 in a

(40 0 on a f

where Au u + u is the Laplacian of u and -2 is the normal derivative at thexx yy

boundary I I.



Proof: This is a special case of theorem 1.12 in Dresis (21 (page 55), where we take

$(r) E 0 , - ( r ( -, in applying that theorem.

This result is related to the solution of (1) in the following:

- 2
Lemla 3: Let e 9 H (n) satisfy (4). Then u satisfies also (3a).

- 2 1
Proof. Since u E H (Q), we can use Green's formula to write

fn- U(V-U) + u (v-u) f (-A7U) (v-u-) + J V4U)

The second integral in the right hand side vanishes, because the function u

satisfies the boundary conditions (4c). Therefore by (4a)

a(u,v-u) = (-AU)(V-U)) f(v-u) for all v ) 0 a.e. in 0, v e H'(0)

and u satisfies (3a).

Combining the results of Theorem 2 and emmas 1-3, we obtain a differential type

necessary and sufficient condition for u to be the solution of (I).

Theorem 3: u is the solution to (1) iff the following conditions are satisfied:

(Sa) u e H2 ()

(5b) There exist X I Is such that u satisfies

f (-Au)(v-u) f lifi)(v-u) for all v ) 0 a.e. in n, v e H'(n)

fii

1)
See Aubin [1] for conditions required for Green's formula.

I I ,II. . *....



(Sc) u >0 in n

-5d)0 on (

(Se)~~ Q uf =i * i -

Proof: The sufficiency follows from Lemma 3 and Theorem 2. To prove the necessity of

these conditions assume u to be the solution of (1). Then by Theorem 2, there exist

Alf... A.such that u satisfies (3a), and by Lemma 2, there exists u e H 2(SI)

satisfying (5b), (5c), (5d), with All ... IA. &a i (3a). Hence by Lemms 3 iu satisfies

(3a an (3), hic invie ofLema Iimpiestha ucoincides with u. This completes

Property (5b) of the solution of (1) is equivalent to the following local behaviour in

the distributional sense (Brezis [23):

(Sb)' (- Au) Xf 1  in SI, (-bAu) - .Lf, in {x e Sbuwx > 01

Moreover since u e H 2 (), A~u e L 2 () and (Sb)' holds almost everywhere in SI. Thus

(Sb)' in view of (5a) is equivalent to:

(Sb)* - A i )f~ ) 0 a.e. in nl, (-Au X f Xf)u -0 a.e. in 9i

S. Problems of higher order

Similar analysis as done for problem (1) can be carried out for the more general

problem related to the iterated Laplace operator,

(6a) min j ) f (m) amu 2

m) i.0 ax a y

-7-



r7,

subject to

(6b) f u f1 " I ..... s

(6c) u ) 0 in al

where n is a smooth region in R2, f1 e L2( " = 1,...,s, and li(a) is the mth

order Sobolev space

Hm{ ) - a {uI k-. I e L2 (s) - 0 ... kc, k - 0,.O.,l

For m > 2 all functions in O(Sl) are continuous, and the positivity in (6c) Is

pointwise.

Por this problem we obtain analogous results to Theorem 1,2 for the case m - 1, for

sets of linear constraints (6b) satisfying the following two assumptions:

(i) There exists a smooth positive function satisfying (6b).

(ii) There does not exist a polynomial q of total degree k, k < m, satisfying

fo- flq - 0, i 1

The existence, uniqueness and characterization in terms of a variational inequality

are derived by the same arguments used in Sections 2,3. We formulate the results and omit

the proofs.

Theorem 4: There exists a unique solution to problem (6). u is the solution to (6) iff

there exist multipliers ) 1 ,.. A s  such that
5

(7a) am(u, v-U) > fn (v-u) X f i for all v ) 0, v e Hm(S)

(7b) u 0 in R2

-8-
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where

i-a axiy M - i 
ax ay m - i

In order to conclude local and boundary behaviour of the solution to (6), an extension

of 8rezis' result (temma 2) to m , 2 is needed. At this stage the extension of Theorem 3

to m ) 2 is yet a conjecture:

Conjecture: u is the solution to (6) iff the following conditions are satisfied

-i (9a) u e H 2m(s)

(9b) There exist XI1. such that u satisfies

s

Sli /A'U(U > Au L ii)v-u) for all v > o, v e H'(s)
i-1

(9c) u ) 0 in Q

(9d) 62m-i u 0 on 3Q ,
:-m-

(9e) a ufi =a i .

where 62m-i" i = 1,...,, are differential operators of order 2m-i defined by the

generalized Green's formula (hubin ]):

1 (10) a (u,v) = (-I)i ]fa (Am u)v + ' [a ( 215-l-U) --- V

i0 f9 ani

:.1



The local behaviour of u in n implied by (9) and (9b) is:

(Ila) (-1) m m u f [ ;f: a.e. in
*1

111b) [(-llm,?u - ii -,11u 0 a.e. in n

1.-1

..
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