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ABSTRACT

Multiple stochastic integral expansions are applied to the problem of

filtering a signal observed in additive noise. It is shown that the optimal

mean-square estimate may be represented as a ratio of two multiple integral

series. A formula for expanding the product of two multiple integrals is

developed and applied to deriving equations for the kernels of best, finite

expansion approximations to the optimal filter. These equations are studied

in detail in the quadratic case.
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SIGNIFICANCE AND EXPLANATION

A common problem in the analysis of stochastic systems is the estimation

of a stochastic process given only noise-corrupted or incomplete observations.

Examples occur in communications theory when one wants to estimate a signal

sent over a noisy channel or in time series problems. If x(t) is a

stochastic process denoting the signal, the observations are typically

modelled by

y(t) h(x(s))ds + dW(t)

where W(t) is an independent increments "noise" process, usually Brownian

motion. The problem of filtering is to build an estimate, i.e., filter, of

x(t) using the observations y(s), s 4 t. Theoretical characterizations of

best mean-square estimates are known, but can be translated into effective

solutions only in special instances. In this paper, the general filtering

problem is treated by attempting to expand filters in series of multiple

stochastic integrals of the form

f ffr a(t,s , )dy(s)...dy(s,S0 'o 0 r

Two primary issues raised by this idea are considered; representation of the

optimal mean-square estimate by multiple integral expansions, and construction

of suboptimal estimates using a finite number of multiple integrals. It is

shown that expansion of the optimal filter is indeed possible, and a method is

presented for finding best, finite expansion estimates. A rudimentary algebra

of multiple integral expansions is first developed as a tool to prove these

results.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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MULTIPLE INTEGRAL EXPANSIONS FOR NONLINEAR FILTERING

Daniel Ocone

1.1 Introduction

In the additive noise model of filtering, information about a stochastic process

x(t), t > 0, called the signal, is received through observations of the form

y(t) 
f h(x(s))ds + w(t) t ) 0

w(t) is a noise term that corrupts the signal, and it is usually assumed to be a Brownian

motion. The filtering problem is to estimate from the observations y(s), 0 4 s 4 t, a

given moment f(x(t)) of the signal at time t, and, if estimators minimizing mean-

square-error are desired, this means calculating the conditional mean F(f(x(t)) IF y1,t,

t o{y(s) I 0 a s r t). E{f(x(t)) I F is henceforth referred to as the optimal

filter. Two fundamental characterizations of the optimal filter are available: a) a Bayes

formula for E{f(x(t)) I FlY} as the ratio of two conditional, functional integrals
t

(Kallianpur, Striebel [9], cf. J1.2 of this paper); b), in the case that x(t) is Markov,

a representation of the optimal filter as a stochastic integral against the innovations

process, v(t) = y(t) - E{h(x(s)) I F'Y}ds, the stochastic integrand being adapted to

w the observation process (Fujisaki, Kallianpur, and Kunita (2]). However, though

theoretically deep, these results lead to explicit and analytically computable solutions

only in special instances.

i

t4 This work formed part of the author's Ph.D. thesis in Applied Mathematics at M.I.T. under
the supervision of Professor Sanjoy K. Mitter.

Sponsored by the United States Army under Contract No. DOAAG29-80-C-0041. This material is
based upon work supported by the National qcience Foundation under Grant No. MCS-7927062,
by a National Science Foundation Graduate Fellowship, and by the Air Porce OfFice of
Scientific Research under Grant No. RPOSR-77-323119.
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This paper studies the application of multiple stochastic integral expansions to the

filtering problem. Any filter, optimal or suboptimal is actually an anticipating

functional of the observation process, thus suggesting that filters be represented and

analyzed within a framework for functional expansions. Multiple stochastic integrals prove

useful for this purpose. In fact, their definition originates in Wiener's homogeneous

chaos theory, which constructs orthogonal decompositions of spaces of finite-variance

functionals of Gaussian processes (cf. Kallianpur [8] and Hida [51). In the Brownian

motion case, each subspace of the decomposition corresponds to the space of MLItiple

stochastic integrals of a given order, and, thus, Wiener's theory shows that any L2 _

functional of the Brownian motion may be expanded in a series of multiple integrals.

Multiple integrals have been used already to solve a number of specific estimation

problems. Marcus, Mitter, and Ocone (13] apply the homogeneous chaos theory to compute

conditional statistics of polynomial functionals of a Gauss-Markov process observed in

z* white noise, and Hida and Kallianour [61 use multiple integrals to predict non-linear
'I
* functions of Brownian signals given perfect observations. In cumulant approximations of

the conditional density in filtering, Eterno (11 also derives expressions using multiple

integrals, Here, we seek to apply multiple integrals of the form

St S 
1  

S 
n - 1  

a(t,s, ..... n)dY(s ).*..dy(s, ,

where a(...) is deterministic, to the general filtering problem. We focus on two basic

issues; the expansion of the optimal filter by expressions involving multiple integrals,

and the construction of best suboptimal filters having a finite multiple integral expansion

of specified order. It is important to observe that the stochastic integrals we employ are

formed from the observation process and not the innovations process. At first, integration

against innovations might appear to be an attractive idea because the innovations process

Sis Brownian, integrals of different orders are thus orthogonal, and homogeneous chaos

theory can be applied. However, in practice the innovations process is not available since

its construction requires the estimate E(h(x(t)) I FY), to compute which is generally a
t



difficult filtering problem itself. Integrals using y(.) directly are thus more natural,

but, le to their ore general, aIsually non-Gaussian character are more difficult to

apply. For example, in suboptimal estimation one might like to project random variables on

a sum of spaces of multiple integrals. This is easily done for Brownian integrals, using

the orthogonality of different order integrals and explicit formulae to calculate the

integrands, but not so easily for more qeneral integrals, where the orthogonality structure

and kernel formulae are lost. In this paper we describe a method for analyzing y(-) -1
based integrals, that, in particular, allows resolution of this projection problem.

The paper is organized as follows. 51.2 introduces the precise filtering model we

consider and recalls the ICAllianpur-Striebel formula for the optimal estimate. h central

feature of this formula is the fact that the y(.) process is absolutely continuous with

-i respect to Brownian motion. Transformations of measure so that y(-) becomes Brownian

will be an underlying component of our analysis of y(.)-based integrals. 12 is a self-

contained treatment of multiple integrals of Brownian and observation processes. We define

multiple stochastic integrals, prove technical lemmas for later use, and develop some

useful properties of the integrals. Of particular importance is the multiplication formula

(theorem 2.1), which shows how to express the product of multiple integrals in a multiple

integral expansion, thus providing a rudimentary alqebra for handling expansions. We

present the applications to filtering in section 3. In 13.1, we show that the optimal

filter can be represented as the ratio of two multiple integral expansions, essentially by

expanding the Kallianpur-Striebel formula. J3.2 addresses the issue of finding the best

(mean square) estimate of the form

a0(t M + 0 a I(tfa)dy(a) +.. f. 1:1 r-1 ar(tls1 ... sr)dy(sr) ...dy(ar)

By combining the expansions of J3.1 and the multiplication formula, we derive a system of

linear integral equations for the kernels [a I ) . In effect, the method of analysis is

to transform measures to a space on which y(.) is a Brownian process and then to apply

-3-



the multiplication formula to discover the effect of the Radon-Vikodym derivative so

introduced. The remaining sections apply these results, first to rederiving the Kalman

filter, second to finding beat quadratic filters.

It is a pleasure to thank Professor S. K. Mitter, for suggestinq this problem and for

inspiring and guiding the research.

1.2 Filtering preliminaries

The precise filtering model to be considered is as follows. Let the underlying

probability space be denoted ((,F,P). For 0 < T < -, let [x(t) I t e [0,T)} be

a measurable, real-valued process on (M,F,P), h(sx) a Sorel function on (0,T) x R,

and w(t) a standard Brownian motion on (A, ,P), such that

i) wv.) is independent of x(-)
T2 (1.1)

ii) z fo h2 (sx(b))ds <  .
0

Set

y(t) =O h(s,x(e))ds + w(t) t e (0,T]

Such a process y(.) will be called an observation semi martingale.

Let f(t; x(s), a C t) be a non-anticipating functional of x(-) such that

xf(t, x(s), a 4 t) < , V t 6 (0,T], and define PY - o{y(s) 10 c a C t) and
t

1F ' y  ox(s), Y(s) 0 C sC t.
t

Theorem 1.1 (Kallianpur, Striebel (9]). Let

dPO 1T 2
dP ap i-F h~s,s))dws) • .f 

2 sxs)s

Then (i) Pn is a probability measure, and P an4 P0  are mutually absolutely

continuous.

-4-
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'* , x =y. exptS0 hCs,xCa))dy(s) h (sx(s)ldsl.0ii %(o t - - 2 ft sx~)d]

(iii) On (aPO), y(.) is a Brownian motion independent of x(-).

(iv) x(.) has the same law on (Q,P0 ) as on (f,P).

(v) Eff(t~x(s), a C t) I FYI

0 dP 0 t
0 0o (F1.2)

4 For a nice treatment of this theorem, see Wong (211. It is the principal theoretical

tool for our work in filtering, for it explicitly characterizes the optimal filter as a

functional integral and it establishes that y(-) is mutually absolutely continuous with

Brownien motion."°I

Finally, we remark that we restrict ourselves here to scalar processes only in the

interests of notational simplicity. The techniques to be discussed extend easily to the

vector case.

2. Multiple Integrals

2.1 Definitions

The concept of a multiple Wiener integral derives ultimately from Wiener's work on

'homogeneous chaos' decompositions of functionals of Brownian motiony however, the modern

definition and theory are due to Ito 7]7. Here we will define multiple integrals by

iteration of stochastic integration. While this differs from Ito's construction, it leads,

as Ito (71 notes, to the same result modulo a multiplicative constant. The iterative

definition is convenient for our calculations.

Let (b(t),F b ) be a standard Wiener process with its associated family of
t

b b
a-algebras Ft ' o(b(s) : a 4 t). Recall that, for a jointly measurable, F -adapted

orocess 0(t,w) such that Z SO Bd. < - the Io integral ft (.)db(s) has the

Iproperties

-5
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it

E f0 t(s)dbls) - 0 t ( T (2.1)

E(fo *(s db(s2 - a *2 (s~ds t < T (2.2)

Let

^2 r f 2 r)
(1 [0,T) ) - {f e L ([0,T] ) I f is symmetric)

This will be the set of integrands for the rth order integral. If f e L2 ([0,T]r),

f(o,...) e L2 ((O,Tr-I ), will denote the section of f at o.

Definition 2.1 Let f e L2UOTlr) t ( T. Ir(f) is defined recursively by (L2 (3OT])
t

:R)

0I Mf - f for r - 0
t

(2.3)
I r (f) - ft Ir'(f(S....))db(s) r > 0

It (f) is the rth order multiple integral of f with respect to b(.) up to time

t. Alternately stated,

I(f M ... j1 r-1 f ~ )db(sr ) ... db(s1

To insure that the rigPt-hand side of (2.3) is well defined it suffices to show that

-4 r-II (f(s,...)) has a jointly measurable version with bounded L2 (I x (0,T], P x X) norm.a

This may be done by proving recursively, along with the definition, that

Er (f)1r (g) 1El ~ Mi(g (f'g)
t t r

(2.4)

o ft I rI.. - .... ,

for all f,g e L2 ([0,Tlr). This isa consequence of (2.2). Then, if fn is a sequence of

n 2 Ir(fn
symmetrizations of separable functions, such that f f in L -norm, is

jointly measurable for all n and

_-6



d urn E f'O 11 ( f ( - r-1 2f~) 2do 0

r-1
Thus we can find a jointly measurable version of 1 I e..

It is important to note that multiple integrals have zero mean and that integrals of

different orders are orthogonal; that is, for f e L ([0,TI ), q e ([01O,T q r, t,

ZIrt (f) -0

(2.5)

t- 0

These follow from repeated application of (2.1) and (2.2).

Remark. The requirement of symmetry for the integrands is not necessary, since integration

is carried out only over the set where s I )P s8 2 ... > sr. However this convention is

- * convenient in formulating the multiplication formula in section 2.2.

The following technical lemma, a Fubini result on interchanging db and do

integrations, is needed later.

Leumma 2.1 Let f e L2 U[O.Tlr). For t f

f ft I r I (f(s, )ds f. fr-2 f f(U ... )dudb(s )... db(s o (2.6)
0 s ' 00 as i u~ ~ r-1 r-1 I

roof Define =ft f(.s. ... s 1 )du. The r.h.s. of (2.6) is I~ r 1 (qt).

To prove the lemma, simply verify that

ELJ tIr- Ms... .))do - It r-~t ) 0

by using the basic properties (2.5) of the multiple stochastic integral.

For filtering applications, we must also define multiple integrals

ft..fr-l f~.. )dy(s )...(dy(s) (2.7)

-7-

7,



with respect to observation semi-martingales

ty(t) - f h(x )ds + w(t) (2.8)

(the assumptions of section 1 are assumed to be in force). Such integrals are known and

have been studied in the context of semi-martingale theory. However, the special structure

of (2.8) allows a simple definition which we present here. This takes advantage of the

absolute continuity of the y(*) process with respect to Brownian motion; as stated above,

if (Q,F, P) is the underlying probability space, there exists a probability measure P0

such that P0 
< < P, P << P0 , and y(.) is Brownian on (11,F, P 0). Therefore, for

f L 2([),T]r), we define (2.6) as the random variable, which on (9,F, P0 ) equals the

r
Brownian motion integral defined above. We call this integral I t(f) without reference to

measure or process, which should always be clear from context.

The iterative property of I (f) remains true for dy integrals; that is,
t

I of) r M I (f(s...))dy(s) , (2.9)

where the integral in (2.9) is defined with respect to the semi-martingale y(.) in the

usual sense (see Liptser and Shiryayev (I]). However, neither the expression (2.4) nor

the orthogonality of different orders, (2.5), now holds. Instead, we can prove the

following lemma, which is useful in section 3.2. (In this discussion, we abbreviate

hs,x(s)) by h(s))

Lemma 2.2 Suppose E{f h 2 Cs)dC r < . Then for k 4 r and f e L2 ([0,T]k)

(i) ErIt (f)12 4 M.,IfWi2 Mk < is independent of f
t ~ L2

(ii) I k(f) 1 -= ELh2 s ).. )-ds .2ds

-8-



Proof. We will actually prove by induction the more general resultt for r ) 2 • k

c(OTI

E[x(o*XlO)... k+)IMk (f)] 2 
4 a k("k+1I.oot)oIf2 (2.10)

aAk k k [0,T,-k)

where a cL ((,TI and

E(h(o I.. h( ok+ 1), ] 
Sk+

(2.k11

Lemma 2.2 is the case I - k for every k 4 r. First we demonstrate (2.10) and (2.11) for

"$ r > t > k - i, using the iterative formula of (2.9) and the independence of x(-) and

w(.). Thus

E[h(° )a.h( 2 ) 0'f()dy(s)] 2

XX 2 0

E(h(o )--h(o 2 ){ 0 f(s)h(s)ds + f0?fs)dw(s)I 
2 r (2.12)

(2L. IT, [h(o )".h(s)1 2 + 2 .( 12.h(o212] )1f,2 = a",(oa , .. a)f 2

To derive the inequality in (2.12), the Cauchy-Schwarz inequality is used several times.

a e L ((0,T] for Z 4 r because R(f, h
2
(s)ds]r < . Likewise

9(h(a2 J.tf 1-h f(a)djy]1 
1

(2.13)

Efh(o )..h(a2)(f 1 
f(s)h(s)ds + a f(s)dw(sl a f(s)t(h(2 )''h(a )Ids

2 20 0 0O 2 A

-9
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II

"i Now suppose (2.10) and (2.11) are true for a fixed k and all X, r ;P Z k. Again,

* usinq I 1(f) - ft Ilf,...,dy~s, auchy-Schwarz, and induction

Elh( I ).h(k+2 )1k+1 (f)) 2

0k+1 klI2

2 X 1 k f0, 1h(o1..hc 2 )h(s 1 )I f~s 2 ,..))J d 2ds 1
2

+ 2 f2k Ejh( )..h2( ) kf s,.] 2do

• [2 J0 a k(S'k+ 2... o£°)ds + 2aZ1,
I f

l 2

a 1,k+ I ( 0k+2 -al)f 1

1 i-k-1
By induction, ak+l L ([0,T] ). Thus (2.10) is true for k + 1. That (2.10) holds

for k also implies

Thus, from (2.1),

"t c
.I I (f(s,-'))dw(s) 0 0, for t T

with the aid of this equality we can prove that (2.11) also is true for k + 1. This

completes the induction step. Induction stops at k r since we have required

r I L )t in order to apply E(Jo h (s)ds) < .

-10-



2.3 The multiplication formula.

As above let (b~t),F b) denote a standard Brownian motion. If #(b(s), s 4 t) is a
SI t

functional of b(-) up to time t, we want to consider expansions of the form

r-O

(if * e L2(2,F ,P such a representation exists, uniquely, and the series converges to

*in mean-square: see Ito [71 or Hida 151.) Rules prescribing how this representation

changes as various operations are performed on *, must be available if multiple integral

expansions are to be of use in applications. In this section, we address the simplest

problem in this direction. if f e t2 (tO,T~r) and q e i,2((O,T)q), what, if any, are the

kernels, (I i such that

I1 r i q()(g) 1 (ici t -CT) ?

To express the answer, we first introduce the following notation.

Definition 2.2

2 r) 2 r,Mi Pr projection of L ([O,T) onto L ([O,T) :

(P h) (a, *** ) h(,j ..'
r rt "M w~r

r

where Sr =permutation group on r letters.

(ii) For integers r,q,k, 0 r. k 4C min(r,q), and

4f . L ([0,T] ), g c L2JTq

(f tk~~q)L~l--"r+q-2k)

f; I" k 'rkl r+q-2kdk

ii) f *.,k t) g Pr+q-2k'f 9k(t)gl

-11-



4

(iv) f qg f * 0 (t)g - rj

0 kt) is the operation by which new kernels are created from old indeed,

f @k(t)g L2
( ([0,Tr) xL 2

((0,T] ) +L
2
((O,Tl 

2
k)

as the following lemma demonstrates

Lemqta 2.3 For every t < T

f 8k(t)g c L2 (10, 
r+ q -2 k )

SI ktg2 4 cr~~ IfI 2 
IgI 

2

If Qkt~g1 r ,q,k

where cr,q,k in independent of f and g.

Proof It suffices to prove the lemma for 0, instead of 9, since Pr+q-2k is a bounded

operator. Let do - d 1 --d r+q2k' do = d,..ds k . We then have, using the Cauchy-Schwarz

inequality

If O(t)ql I da-- x f kdf(l,, k rq_2k)] 2

0 ,,T) rdq-2k (ki)2 (0,T]k

Sa2 2
2- Ifs EqS(ki)2

To understand the meaning of Sk(t), it is useful to think of the functions f and

g as tensors, which they in fact are by the isomorphism

12 r 2 2
L ([0,T 1 ) T L ([0,T]) ... L ([0,T]) (r-fold)

Then f k(t)g may be viewed as a tensor contraction since it 'sums', that is,

integrates, f and g along the first k indices. Thus f k(t)q is simply a

symmetri.ed, k-fold, tensor contraction. It is in this definition that the symmetry of

f and g is used; otherwise G(t) would have a more complicated definition. For

notational convenience, we shall often write 0 instead of Ok(t), in which case the

t) is to be assumed. When the time parameter is important or different than t, it will

always be given.

-12-
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We can now state the result

Theorem 2.1 Let f L2([0,Tr), g eL21,T Then

min(r,q) -2k
I(f t~ g) k 1  rq2 0 it r fk (~k (2.14)

t ~~~ k-O c ''k

Remarks 1. (2.14) shall be referred to as the multiplication formula. Kida has

- independently derived this result as an application of his theory of generalized Brownian

functionals (personal communication of T. Kids; for generalized Brownian functional theory,

see Hid& (41). Our proof is elementary, using only Ito's differentiation rule. For

similar theory, see also Mayer (151. Versions of this formula are also known in

mathematical quantum field theory (Reed, Simon [19]). See Hitter and Ocone [171 for

further comments.

2. The multiplication formula generalizes a Hermit. polynomial indentity. The nth order

Hermite polynomial of a single variable is

(-I)n 2 dn

dxn

Let
G -(r(f) I f G L2([O,tlr)}

Sr t

and lt be an orthonormal basis of L2 ([Otl). Then, (Ito [71, Kallianpur [81)

n P1 +"-+ pn - r

Gr m 1 hpi Pf # (s)db(s) Ji are pairwise unequal'

where p denotes the closure in L (P) of the linear span. One then seen that (2.14)

generalizes the identity, ([121),

min(r,q) r+-k 1 1/2
hr(xlhq(xl = ) ( (k(l) (Iq ) h (x) (2.15)r q k-0 r-k r+q-2k

-13-



r~i

V r,q ) 0. There is a discrepancy between (2.15) and (2.14) in the factors multiplying the

expansion terms, but this is due to the different normalizations involved in the

definitions of hn, Zr and 0. The relationship between (2.14) and (2.15) may be seen

clearly in Rida's work, but we shall not pursue the matter further here.

We will show how to prove theorem 2.1 using Ito's rule and induction. bor this

purpose, we need certain facts and identities concerning 0, and these are collected In

4 the next lea. The notation f(S1,.... SM ... ) indicates the section of f in which the

first k variables are fixed at s11 .. . s k respectively.

Lemma 2.4J ;()f(011..) 0k(Cr )9(010--) (a 2,L., ((q_2k.1) 2k

k~2 I 0aT}r 
q

-
2

k)

(ii) f Ok(t)g - f 0 (o)q + f: f(S.-)Ot.(s)q(s,..)ds (2.16)

l 1 (iii) ,or k ) 1, (f oK(t)q)(, %

q-2kf( ..) +q-2k 
f  

2K(t)g(0'-)1 ( r2'-''r+q-2k) (2.17)

(iv) (f o(t)q)(a,..0, +q) - (2.18)

-- ( l,..) o(t)q + - f O(t)q(o1 ..) (2,..,O+q.2k)

Proof i) follows from calculations similar to those in lemma 2.3. The details will not be

presented.

ii) By direct calculation and 4efinition, usinq the symmetry of f and g extensively.

f 0k(t)g
I t

P r+q-2k (V1 f0 " 0 ds1"'dk s'"k')qs''k ' 1

-14-
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1I t d, rI.. frkIf(i..*s..)(8... .... gg]d

f (- + do f(n,..) 6kI()q*

(iii) and (iv). The prooft of (iii) and (iv) are similar, (iv) being just a special case

of (iii). We *hall only present (iv), as it is simpler. Note first that, by definition,

r I f (a~ao ..) a

r+q (r+q-1)I Wes 1I%1(2)' *%r G1 r+I)' **1 wv)(r+q) (2.19)

where w c 3 is interpreted as a permutation of {2,..,r+q). now using the symmetry
r+q-1

of f. (2.19) may be written as:

11 r
*~~ii- jj wS f(o'v( 2 ) '' (J)' 1 0 je) 0wr x

S'r+q-1
(2.20)

*Using the expression analogouas to (2.20) for q f 9 (t)q~o
4 ~r+q O)

I r
-(r~qfl J1 WES w(2 ) s ~ (r) W( r~

+ jI Ws v w 2 aw~rI) g~ w~+2)**'r11 t) w rr

r~q-1

T q)I f(o 1 v) )(o W(rI)F ai~~)

f t *(t)q(oa11 .. a)

* qq



This is the desired result.

Proof of theorem 2.1. We use Ito's dif farentlation formula and the preceding lemmas to

implement an induction argument that proceeds in two steps:

(a) Show (by induction) that (2.14) holds for orders r - n, q - 1, Vn.

(b) Assuming (2.14) for (r-l,q), (r,q-1) and (r-1,q-1), show that it holds for (r,q).

(a) and (b) then provide a consistent scheme of induction for proving theorem 2.1 for all

orders.

Step (a) By Ito's differentiation rule

f(s)db(s) ft g~s)db(e) - f,, f f(s1)q(s2  + Vsa2 3g(s )ldb(s1

+ f(.)g(s)ds .

This proves the case rq 1.

.2
Suppose that the theorem is true for (r,q) - (n-1,l) and let f C L ([0,T)n),

g c L ((0,T]). Applying rto's differentiation rule again,

l(f)I (g)- ft gs,) ln(f)db(.) + 1 t 1 n1 (f(..,')) 1(gd1,

(2.21)

-~ ~t n-iZ + j 0 I :-(g(s)f(s,..))ds •

By induction,

I" InI((f(s'',) )I -(g) 0 g]) + I n2(f(s...) 0(s)g)
a a

amma 2.5(1) and lemma 2.1 justify interchanging integrations in the last term of (2.21):

-- ~~~~n-1 (ft gu lllU

I 0 (g@)f (s,.' ))ds nI (f g(Uu "s"e-re )du)

Thus, by substitution in (2.20)

-16-



" 1) i () fo() ng()f(-.)) + ( S ))db(s)

+ nt n-2 (f2''",) 0 1 (qs)db(s)

o Is

+- nI

+ 1n- Malt.. Q C q + ft q(*)f(s~o -- ,ao )du}

By lemma 2.5 (ii) and (iv) this becomes

n+1 n-1
I ((n+i)f 0 q) + I (f i(t)q)

which completes the induction step of (a).

Step b Without loss of generality assume that q i r. The induction hypothesis is that

theorem 2.4 is true for (r-1,q), (r,q-1), and (r-1,q-1). Apply Ito's differentiation

rule:

I 1r(f)q(q) _ ft ,q..)ll(f , - )d(s)

+tIq1(qII r(f)db(s)

d *+ ft 1 r)) 1 s,())ds

Next, use the induction hypothesis to expand the integrands in (2.2a), then interchange

ds and db(s) integrations where necessary, and collect like order terms. The result is,

for q 4 r

t t

- rg+ q {[(rr l)tf(si,..) 0 q] + 1 r+q-1 ) g(s 1 ,..)1,(s..,s)

r-1 r2q
+ q- ~ -2k (( r~q-1-2k 8'.)c3 -- s .I

+ r+q-1-2k i.+(r-k ) 02 
[ O(aqs1 ')s2F "r+q-2k)

-17-

-1'



.4 . ... '[!!

1*

"1 + (r+q-2k) f. flu,--)-)u
r-k a 1  k-1

(u ) 
g
(u

"- " u

S+ Jr'q{f(,l'' I q (a1l)](s2.'art 
+ 

f t f (u,.-) eqlU)glu,--)du}

To complete the proof, we need only apply the identities of lemma 2.4 (i1) and (iv) to the

kernels of this last expression. For example, the kernel of Itq I2k 4C k q-1, equals

(r+q-2k r-k + (f )g(S .. ))r-k [ ---2-k ((S' eK(Sl q(20
'  + 

-2 008 1Ks~(l') (2#''

+(f f(g,.. ) ( U) g( ., )du)(.2 .
+

S(r-q- 2kr-k 
)  

r
( 

K(s~)Sl'sq-2k) + 4 f~u,-.) QK~l(U)q(u,..)dhu) (s2,..
- 1 ( 1)g)( 1 1*s 1

This is the kernel given in (2.14). The kernels of I1r+q-2k k - 0 and k q are

treated similarly. This completes the proof.

3. Multiple Integral Expansions in Filtering Theory.

This section explores the use of multiple integral expansions for optimal and

suboptimal filtering. The estimation problem considered is the general problem stated in

the introduction, and the notations and assumptions established there shall remain in

force. For additional notational convenience, we let f(t) - f(ty xff, s t), h(s)

- h(s, x(s)) and ft E{f(t) I F).

3.1. rxpansion of the optimal filter

In theorem 3.1 below we derive an expression for et as a ratio of two multiple

integral expansions in which the process of integration is y(t), the observation semi-

martinqale, and the inteqrands are deterministic functionals computable from the

-19-



(unconditioned) distribution of the signal process. First we state some preliminary

definitions and a lemma.

Lot

Lt : -exp[J h(s)dy(s) -/2fo h (s)dsl

Lt Is the important process in this calculation. Observe that L', - and

(Lt. Fx . FY) is a martingale on (fi, F, Po), (Fx: - a~x(s) r a e e)). 1, conditioning
t0

argumsnt then shows that the WAllianpur-Striebel formula, (1.2). can be expressed as

% 1f(t)Lt PY)

a t t

The following process, based on Lt, will also appears

L (r) rt * hs Medy ys
t 0 0 I

Nolte that L (r is not a multiple integral of the type defined in 12 since the integran4

. d is not deterministic. L (r) may be properly defined by noticing that

t 5

WrIterative us* of the stochastic Ito integral then specifies Lj for any order r. This

is especially easy to carry out on Mf, F, P 0), on which y(t) is a Urownian motion

independent of the signal (see theorem 1.1).

The following stochastic Pubini theorem for interchanging conditional expectation and

stochastic integration is needed, it is a direct consequence of theorem 5.14 in Liptser and

Shiryayov (11).

Lomma 3.1 tat #(a) be a V'x v r adapted process such that

Vt



B 0 JfT *
2 ()dfl

Then 3{J *(s)dy(s) IF} Y) f~t so ( FY'}dy(s).

ro~ t2,d

Finally, it is convenient to introduce the functions

I (t, a*.. ) - E{f(t)h(sa)...h(S)) n ) 0
An n n

kn(sa,.,s ) ) = Eh(sI)...h(s n) n ; 1

k I-
0*

Theorem 3.1

i) (Partial expansion) if Z(fo h2 Cc)do) r-C and Ef (t)(fo h (GWd)rI <

then

r (r)I. I ( n ) ( 1 n ( t ) ) - E0[f(t ) Lt  IFY

It- )kn ) + It0{f(t) Lt) I F Y I
n-0

ii) (Pull expansion) If (exp f h2 (s)d) < -, and Elf 2 (t) exp f0 h2 (s)dsl <

S(n) (j~~)
t

A n-0 (n(33)

n-0t n

and the expansions converge in L (p).

Proof:

Part i) By applying Ito's differentiation rule to Lt,

dLa - h(s)L du(s)

so that

It  I + r0 h(s)Lsdy(s) * (3.4)

-20-



Iterating (4.4), ws find that for any r

Lt - I+ I.h(s)dy~s) + PO f,, hesI)Mes2 )dy(s 2)dy(s1I

(r)
+ .... + L t

Now substitute this expansion into the Kallianpur-Striebel formula 3.1 for The

denominator, for example, becomes

- rY ) f O ..[ 0 h ( a l ) .. o r ) - d 1 t
~n"1

It 0 
1F(3.5)

+ Z (L (r) IFY)! + 0 t t

4 The hypothesis Z:rf h
2
(.)dmr < of (i allows lama 3.1 to be applied to the terms of

(3.5), with the result,

'.r 8

- [LtIFYI _ I + 0 0 0 1 n-...dy(s 1) + t(L(r) IFY •
n,-i

Since the distribution of the signal process is invariant under the change of measures

from P to PO

z 0o(h(s I)...hMe n) ,. h~ I ~) ...hlenl

J - kn(s ... 's)

Therefore

-- ' r

E {L IFY) I (n) (k + R C r)I Y

IA similar calculation yields

r ()(r)r +
E (f(t)LFt)) + {ft)L IF

n t t

-21-
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Substitution of these expressions into the Yallianpur-Striebel formula then proves (3.2).

Part ii). Formally, the proof of the full expansion follows by setting r = *To prove

it rigorously, we first shov that 8 exp( 9. h2(sds) < - implies

Lt . M.s.(P 0) li.(1 + I ft.. fn-h( Me I h(s )dy(sn )... dy(sl)l (3.6)
+ n n1

Denote the finite series on the right hand side of (3.6) by A~ t Then

N42 ,t,1 2E 0(L t-A)t -E 0jf...jfoh(s, ... h(s NO)L dy(s NO)... dy~s I]
%+I

By employing the standard computational rules (2.1), (2.2) for stochastic integrals, this

last expression equals

fIt . f8 E h 2 h 2 M2 1 dH I...ds

provided that it is finite. However,

s1)... (a h 2(s N)L 2

*E(hs )'h (s xlfN' ) E,(exp[2 f14+1 h(.)dy(s))I Wx 1 (3.7)

Now on (11,P 0) x(-) and y(-) are independent and y(.) is Brownian, and hence, given

( s) a N+th(s)dy(s) is a Gaussian random variable with mecan 0 and variance

14+12sds Thus

9 0rJx n ~~yIF I ex 2 h(s)ds .(3.8)

-22-



Therefore, using (3.9) in (3.7)

(3.7) - ~ 12 ( a2s expif NO h 2 ()d*31
0 1 0+

- Z 0 {h2( )h(s 1 h )2 fON+fI.fO l-h 2 (,,h 
2 (,J )doa... da1 )

0

As a result

ft .fNIE 0h 2( Ih csw+ )L ]ds NO*..a
%+i

-X ft ...1)E0 EhZ(s1 )... h (a )]do *..ds
0 11 j I

j-N+I

Since E exp[ ITOh 2 (s)ds] < -, (3.9) tends to 0 as N + -, proving that Lt-

M.s (PO) lim At for all t 4 T, as desired. Lemma 4.1 can now be invoked for every

order n, so that E LI J-EN.lmANIF)

t t 0 N .

- in.s. lii E {A N IFY )

N
m.s.(p )lim[I + ~ n (k )

0 N wt n

A similar proof expends Eo f(t)L IFY) in the series

0( t t I(L

IM+ n L

Finally, to derive the LI(P) convergence, note that

E (dP 2 EL2 E fxp h 2 s)ds1
0LT -0 0 xpT

-23-



Thus

(NIE 0 (L tIFt 0 ( + ItCk)I
iI

(ap)2 E0  (N L)2(1

< 
1

N
Thus, from (3.6), E EL tFY] - (LI (P)) lir [1 + I In(kn)] as claimed. This completes

0 t t N+ft n. I n

*the proof of theorem 3.1.

Let P(a,tIFY) - [1a (x(t))IFY3 denote the conditional distribution of x(t) given
t a t

the observation up to time t.

Corollary 3.1 If N[exp foh
2
(s)ds] <

I (x(t)) + 1 'r(91A(x(t))h(as ... h(s))

p(A,tF)Y n-1

1+ I I' (Eh(s )...h(s))

n- I

A related formula is also of interest. If x(t) has a density q(x,t), x(t) has a

conditional density given by

p(xt :) - 0 (L(t) I Fy, x(t)-xj q(s.t)

tc t I t)FYI

Using the same techniques as above, we can easily derive

E EL(t)IFY,x(t)..x~q(x,t) - (I + I(h(s 1 )... h(s)Ix(t)-xl)

(3.10)
x q(x,t)

for the numerator of p(x,tIFY). (3.10) is often called the unnormalized conditional
t

density.

Remark: These results all have an obvious generalization to the multidimensinal case.

The Bayes formula (4.1) for ft is properly viewed as the ratio of two conditioned

functional integrals, in which the dependencies between x(.) and y(.) are linked in the

Lt term. The expansions of theorem 4.1 in effect calculate these functional integrals by

expanding Lt . The x(.) and y(-) interactions are then separated in the sense that the

-24-
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calculation of the filter is decomposed into two parts, first, computation, off-line and

prior to filtering, of the kernels In and kn, and, second, stochastic integration of

these kernels against the observations. Of course, in actual practice one can only compute

a finite number of terms. In fact, if the kernels are separable or are approximated by

separable versions, a truncated expansion may be realized in a finite dimensinal and

recursive manner, because a stochastic differential system can be constructed to realize

any multiple integral with a separable kernel. Hiovever, caution must be excercised in

approximating the optimal filter by truncations in (4.3), because truncation of the series

in the denominator can be a source of severe instability. Although B{L(t)IFY) > 0 a.m., a

truncation approximation may pass through 0 and ro lead to a singularity of the filter.

thus an independent estimate of the denominator is in general required.

Recently, attention has focused on the unnormalized conditional density and the

corresponding 'unnormalized' conditional moments, which are just the numerators of the

Rallianpur-Striebel formula. Z. Wong [22] has given a class of Markov signals for which

analytic expressions of (3.10) are available. Again truncation of (4.10) will in general

yield functions that attain negative values. For this reason, cummulant expansions

n
p(x,tIFY) - eIl(gnCx))

have been studied as an alternate source of approximate filters (see fterno (1]). We will

not pursue these issues further, but instead turn to other theoretical developments based

on there 3.1.

3.2 Best rth order filters

Finite sums of multiple integrals provide a natural class of causal functionals for

the design of suboptimal filters. We introduce the following definition:

. Definition 3.1

r;' ) y r~t M (a(t) -1 t l n (t))Ia n(t,....) 6 L (,tn 0 4 n -C r}

~n-I

-25-
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ii) The best rth order estimate of fC. at time t is an element NOt 6 Y Ct) such

*1 r

that

for all b~t) e Y r~t)* The kernels of ?(t), denoted by a,(t), ait,.,r(t). are

called the optimal kernels. A process FCt) 6 Y r(t), t 4 T, satisfying (3.11) for t 4

is Called the best rth order estimate of f(.).

Notice that the best lst order filter is simply the linear filter, and thus, in the context

of multiple integral expansions, best quadratic (2nd order) , cubic, quartic, etc. filter.

are the natural extensions beyond linear filtering.

In this section we characterize the set of optimal kernels as the solution to a system

of linear integral equations. The construction of these equations and the proof of their

validity utilize the expansion formulae of theorem 3.1 and the multiplication formula for

multiple integrals of theorem 2.1. Suppose for the instant that the full expansion (3.3)

holds for the optimal filter and that f(t) I (a (t)) is an element of Y (t)y not
0t n

necessarily the best. If on is to be a good approximation of i ~t), we want

orr

n.0

Nn tcerl thate et hatd sid o (312 an beo reroiten as mtiple wintga

f(t) f(t)a

or

F Cm) n, ij~ Ie CtM(.2

Now notice that the left hand side of (3.12) can be rewritten as a multiple integral

expansion by applying the multiplication formula. In fact

(3.13)
(t) +n-21 a(t ) O0lM kn

q ( m, n- Oe C ,-i in i

-26-
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where : - ((mni)Ilm+n-21 J, 1 4 min(m,n), a ( r). Thus, one way to pick am

approximation f would be to choose the kernels a n t) so that qj(t) matches Ij(t)

for as many orders j as possible. In fact, this is a prescription for the optimal

kernels.

Theorem 3.2. Assume fh 2  s)d)2r < - and f 2 (t)( h
2

()d)2 r -

4 r
Then a best rth order estimate exists. It is given by F(t) - i t )) iff

n-0

gj t,s I, .... aj - S fltlhlel .o.hM j

(3.14)
( - (ts I .. j..sl)

for 0 j 4 r.

Remark. The equations at (3.14) comprise r + 1 integral equations for the r + I

optimal kernels as(t) 0 4 J 4 r. This can be seen from the definition of qj(t) and a

and will be illustrated explicitly in the examples to be discussed.

Before proving theorem 3.2, we first establish some preliminary lemmas. The first

deals with existence of estimates.

Lemma 3.2. If E[ft h 2 ( 8 )dslr < -, then the best rth order estimate exists and is unique.

Proof From lemma 2.2 E[Ik(s)] M4V al2  for k • r. Therefore Yr(t) is a mean-

square-closed (Hilbert) space of random variables. The lemma follows by the projection

theorem.

j Of the next two lemmas, the first introduces the optimal estimate to compare

suboptimal estimates, and the second verifies a technical identity.

Lemma 3.3. Let z, v e L 2 MFYP). Then

2 t 2 A 2 A 2
Elz - flt)) C E(v - f(t)) iff E(z - f(t)) 4 Z(v- f(t))

Proof. Simply noteI2A 2

E(z - f(t)) = K(z - f(t)) + 29(z - f(t))(f(t) - f(t))

A 2+E(f~t) - EMt))

(X A 2 A2

-K(z - f(t)) + :Cft) - f(t))

-27-

A.,



Lema 3.4. Let c(t) + I I(c (t)) e Y (t) and assume that (f' h2(u)da)t ( -,
n=1 fl r

z r f2 MT() h2 (s)d) r < -. then

2 WCIt)% (r) IF)} - 0 (3.15)

o {c(t)o {f(t)L(r) IF ) - 0 ( (3.16)

Proof From (3.5)

- KrL(F1) I - x I(kn)

n-1

and therefore, (c(t)Lr) - " EL F

(3.17)

- Sc(t)[1 + r In(kn
n-i

Since y(.) is Brownian w.r.t. P.,

R 0 c~t) + I In(k)IM - COWt +.1 :(clt)[ +-

(3.1 )
i ~r 9nln ts

c ) -th(a) ...h ( )]d o ... ds ,

-j i ft f n( 1 nI

Rowever,

o (c(t) I F]) . E(t) P ct)
0 t 30 ct dP 0 - ot

- co(t) + . "'" n- 1  n ) E[hl ).*h(S )l]ds ...ds (3.19)I0 t .. f O n I n 1 n n I

by lema 2.2. Applying (3.18) and (3.19) in (3.17) yields

[O(c(t)Eo{LtIF})) - 0

t

(3.16) is established in analogous fashion using a version of lemma 2.2 for expressions

f(t) In(cn), n 4 r, under the condition ~f 2(t)(O h2(s)ds)r )

t n. (

-28-
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Proof of theorem 3.2 Because of lmma 3.3 it suffices to show (3.14) holds if and only if

3[~) A2 A 2

for all C(t) C Y (t). since
r
A 2 Zcttj +&jt12 2Z~~)Ft1it_~)

this will occur if and only if

3C(c(t)-(t)) (F(t)-t (0) - 0 v c(t) C Y r t) *(3.20)

Thus, we will demonstrate (3.20). Begin by noting that

cI

j Et!OIFYI - (B CS-IFYJ)1' - (z ItIFYD)1

*= dP t y0

E{K~ It1(~t~tN(Mo(rt)IF~tI 1oFY)(t)tt1F 3.21
0

Z at)-(t)FF(t))f(t)o~I~ - oZ()LIP1

[ Foext no te ozm (3.3) that~m oft depnd o.n lntes ko Io at mostodr ij +n or. Th

0 2r

t tIt) - ?(l2  L IY) - 3 (t) (3.21)

fo= t)2 €t) € ) EL q -zCt)

0 * 0-+ t

where t -e q 1 (t) r - 3ttt-l| ar detmine 
2 

by the -ltltio fmla.Usngth

parthia l exonsm f tr3 hs that they npe sion mot) -+

f (fzt(L l a r in ] (3al s M ) I (k + Z L IF.Y)

0 el t)tt )- t J-0 tl {Tt :- 0 { t F }

- j t t

whr th q o(t) r -+ <) < rtare(dtermine by othemltlicatio foml.Usn•h

partialtexpanon* of3 theore 3.1t) wetens o ee s tha the express o~ e Rt J +L I .

t ) (tit)[ IFY apern in (321 equals
01 t' t !- Lt

2 )
t:

-29-
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r 2r

3r (2r)

- + !+ 1 . rFY (3.22)
J-2r+ 

1

- ,,(ftL(
2r) IFY)

0 t t

Since y(-) is Brownian on (,PO), multiple integrals of different orders are orthogonal10
. on (1,P 0 ), and so if (3.22) is used in (3.21) we find

( (3.21) - [c (t)-aolt)l(9olt)-t,] +
8o

*r a J-
+ I f ... f (c -a) I ()g -1 )dst .. do1

+ %((c(t)-i(t))A(t)tL (
2 r) IY)

- :{(c(t)-F(t) Ef(t)L (2r) IF] (3.23)

The last two terms of (3.23) are zero by lemma 3.3. Thus, it is clear that (3.23), and

hence (3.20), is zero iff

This completes the proof.

The technique of theorem 4.2 extends to other problems as well. Suppose, for

instance, that a filter

t alIt) - a.;It) + -I (.;It))
t

of order q is availablet al(t) need not be the best qth order filter. Let r > q,

and, rather than ask for the best rth order filter, let us seek the "best rth order

corection" to al(t), i.e., the mean-square minimizing a(t) of the form

-30-
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aCt) - a'(t) + r Zj Ct))-q+1

where aj(t), j - q + 1....,r are free to be chosen. Define the kernels qj(t) as

before, but with aj(t) replaced by a;(t) for 0 4 j 4 q.

Theorem 3.3. Let the hypotheses of theorem 4.2 hold. Then a(t) Is the best rth order

correction to a'(t) if and only if

g9(t,8 1 8...s) - 3(f(t)h(s I)*.h(sj)}, q + 1 4 j 4 r * (3.24)

Proof. As before, it suffices to show that (3.24) holds iff

Z(c(t)-a(t)) (a(t)-1(t)j - 0

r
for all c(t) - a'(t) + J(c j(t)). By the same calculations as in theorem 4.2

S0 (cltl-e(t) a[(tlto{LtFy) - Zo{f(t)LtIF)I)

r r 2r
7 1~ ( c -a4) F IItq Mt-1 (t))I + I I(q -L I

0-. , 1:j, c.0°  t
jq+1 ~ 0' J-r+1

+ 3r Ij(q t))+a(t)o (L(2r) FY] - E (f(t)LC(2rIFYM}
I tr+ 0 t t 0 t tr.2r 1

- f a...f J-1(c -a)(t's,*s" )[gj-Ltj t,s1 *..,s )dsj ...ds
J-q+1

This equals zero iff gj IL for q + 1 4 j ( r.

Remark Clearly, an analogous result holds for the case in which an arbitrary subset of

(a 1 r. is given and the remainder are chosen as to optimize the mean-square filter) j 0
error. Thus, if a,, j c (j 1 ,..q.jl} {O,1,...,rl are given, then the {aj(t)},

i i {11...'jq are optimally chosen iff 9j - L91 for every j c {0,1,...,r) -

An a first example of theorem 3.2 let us compute the kernel equations for the best

linear estimate F(t) - Ct) + ftoa t,s)dyls). From (3.13),
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go ;(t) -ao(t) + fta,(t,o)Z(h(o)do

q (t~s) - a (t's) + Pf a (t,o)z~h(s)h()Idi + a (t)Xh(s)

The kernel equations are then

a Mt + rf a (t, o):h(a) do Ef t)

ao(t)Zh(s) -a 1 (t,s) + 1 0-a(t,o)9(h(e)h(o)3da MONOt~~s

or, eliminating %o(t) from the second equation,

*a Mt)+ fta (t, o)zI h(a) Ido Ef (t)

a1 t's) + foa (t,o)cov(h(s),h(o))do =cov(f~t),h(s)I (3.25)

(3.25) is, of course, the well-known Viener-Hopf type equation for optimal linear

* filtering. Before examining higher order examples, we will discuss the salman filter.

3.3 The lKalman filter

Consider the filtering problem in which h(t,x) - R(t)x and x(t) is a Gauss-tMarkov

process arising as the solution of the system

dx(t) - F~t)x(t)dt + G(t)db(t)

whore xo- constant or a Gaussian m.v. independent of the Brownian motion b( *). The

celebrated XAlman-Bucy theorem states that the optimal state estimator q( t)

3(x(t) IFY) satisfies the equation

A(O) -(3.26)
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where P(t) is the solution of a deterministic Riccati equations. It follows that x(t)

is, in fact, a linear functional of y(.); if O(t,s) denotes the state transition matrix

of F(t) - P(t)HT(t)H(t), the solution to (3.26) is

x(t) - *(t,O)x 0 + ft (ts)P(sHT(sldyls) ( (3.27)

This simple, linear structure is not an immediate consequence of the expansion formulae of

theorem 3.1, because, even in this case, both numerator and denominator series will be

truly infinite sums. It is therefore of interest to see how (t) can be derived from the

general expansion. We will show that this can be done using theorem 3.2 and moment

equalities for Gaussian random variables.

The most common proof of the Kalman-Bucy filter invokes the stochastic differential

equation for the conditional moments (cf. Fujisaki, Kallianpur, Kunita [2]). In this

approach, the equation for x(t) requires knowledge of x
2
(t), that for x2(t) knowledge

A

of x3(t), and so on, thus leading to an infinite, coupled set of equations. To derive

the Kalman-Bucy theorem, it must be independently argued that the conditional distribution

of x(t) given Fy  is Gaussian. Because of identities between different moments of
t

Gaussian m.v.'s, this allows the moment equations to be truncated at n - 2 and leads to

(3.26) and (3.27). By way of contrast, the derivation here will not require explicitly

knowing the conditional density. For other methods of deriving the Kalman-Bucy filter, see

Van Schuppen [201.

In the interest of computational simplicity, we will consider only the most simple

case:

dx(t) = db(t) x(O) = 0

(3.2a)
dy(t) - x(t)dt + dw(t) y(0) - 0

where b(.) and w(.) are independent, standard Brownian motions. The techniques work

also for the qeneral case.
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Theorem 3.4 .(t) - 0 a(t,s)dy(s) where a(t,s) satisfies the Wiener-Kopf equation

a(ts) + a(ta) ain(s,)da - . t ) a

Before presenting the proof we must recall the following moment identities (Miller (161,

Marcus-Willsky [14]).

' Lema 3.5% Let Iz1 ...,zk] be a jointly Gaussian random vector. Then

k

EIzI,.... Xki = z3x2 ... zk + c cov(z.,S 13! It z ]

Proof of theorem 3.4. Since y(.) is continuous and Gaussian, the set of polynomials in

y(-) is dense in L 2c,FY,P), (Kallianpur [8]). Therefore, it suffices to show that

a(t,s)dy(s) is the best rth order estimate for every r, 1 4 r < . Since

ECJ 0 b2,s)ds)r <

E b
2
(t)(fa b

2
(sds)r < -

for all r and t, theorem 4.2 applies. That is, if gj(t,...), 0 j < are defined

* so that

a(t,s)dy(s) r X(k) 1 I(q 1i-O i-O

a(ts)dy(s) is the best rth order estimate if and only if

StSl,.. j ) Z={b(t)b(sI)...b(sj)} 0 r j < r

From (3.14), we may easily calculate

q0(t) - 0

qj(t,...) - J(a(t,.) S(t)kl( .. (.) (3.29)

+ aCWt..) 0 (t)k J)(..-) > 0
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However at,)Otk..)s .e)

;L &(ts )E( b(s
i WS j W) I2 IT

j
- a(t.s93 A ( T s1Me

(n aft,.) 0 1(t)k J+ )( 1 .1 a fIt a(t~o)Z{b(o)b(s,) ...bMe )do (3.30)

The kernel equations (3.29) become

0 ENO~t (3.31)

*1aft's) + fta(t,a ORbWo~bs) )do Is Ub(t)b(s)} (3.32)

Sa(t.sQM{ U b(s )) + fta(t~o)Zfb(o) 11 bW ))do

- 3b(t)b(a .. b , j ), 2 (.3

(3.31) is true by definition, and (3.32), by hyvothesis. It remains to prove that

(3.33)jp J )o 2 all hold. However, a direct application of lemmla 3.5 shows that

IU{b(c) Ri b(s 1 ) min(o,o1 )3( It W~e
L-I i.-I I 1

for every J. Using this, the left hand side of (3.33)j becomes
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-I(alt'i )  + Io alt, (lin o,ei )do) R( 11 blst

10i
-l ,, mn~tnlsi.t)( It b(s ))

1i

- 3{b(t)b(lS) ... bs )

where the first equality employs the hypothesis on a(ts), and the second employs lemma

3.S again. Thus (3 .3 3
)j is true for all j , 2.

3.4 Quadratic Filters

he a further example of the technique of section 3.2, we will present the optimal

kernel equations for the quadratic case (r - 2) and sketch a theoretical approach to

their solution. To guarantee validity of the discussion, assume throughout the hypotheses

of theorem 3.2 for r - 2.

Deriving the optimal kernel equations is simply a matter of calculation. Let

F(t) - a ,,,M,.),,. + a , a t, 1 0 ,.)dys,)dy(s) and let g(t,..,) be

defined from SO, a,, a2 in the manner indicated at (3.13). Thus

qO(t) - %o(t) + al(t) 91 k, + a2 (to-) 02 k2  (3.34)

"1 (t,s) - aI(t.s) + a0 (t)kI(S) + (aI(t,.) 01 k 2 )(s)

(3.35)
+ (a(t,.) e 1 k )(s) + (a 2 (t,.) a2 k 3 )(s)

q2(tsvs 2 ) - a2(t,a,. 2 ) + aO(t)k2(8Cse 2 ) + (a1 (t) a kI)(SlS 2)

+ (aI(t'.) 01 k3 )(ste 2 ) + 2(a 2(t.) 01 k 2 )(ais 2 ) (3.36)

2+ (a2(t,.) 02 k 4 )(sieS
2 )

(Nor properly, 0 in (3.34) - (3.36) should be 9(t).) According to theorem 3.2 f(t)

is optimal quadratic iff go' gt, and 92, are respectively, If(t), If(t)h(s) and

Wf(t)h(es)h(s2 ). Reoalling the definition of Q(t) from section 2 and kj -

Ch(el) ... hsj) , we derive for the optimal kernel equations:
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Zf(t) - aO(t) + f a,(ts)Eh(s)ds + r 4, a2(t,81,s2 )h(s 1IhWs 2 )do2ds1

(3.37)

Ef(t)h(s) - aI(t,s) + a0 (t)Eh(s) + A aI(t..)zh(a)h(s)da

+ j a2 (t's o)Zh(a)dq + ft 1: a2 (t,al' 2 )Bh(a)h(a2 )h(s)ds

(3.38)
Ef(t)h(a )h(a2 ) - 2telS ) + a 1)h l~~2 )  al(t,sl)Eh(s2 )BM sIM 2 a2 (t's1 ,s 2 ) + a 0(Wth(s Ih~ We 2 + ts R~

+ a (t,s2 )h(s ) + f a (t,o)Eh(ohls)hls2 do

+ f [a2 (tsl,c)Eh(a)h(s2 ) + a2 (t,s2 ,a)Eh(o)h(s)]da (3.39)

r fO a2(to,,a)l{hl(sl)h(s)h()h(2)}do2do "

These equations deserve some elementary remarks before we set about solving them.

First, the optimal kernels are all interrelated in the general case. We cannot solve for

a0  and a, independently of knowing &2. Likewise, if a0 - c., a, - cl are the kernels

of the best linear estimate, they will not, in general, be the lower order kernels of the

best quadratic estimate. Secondly, the equation (3.37) - (3.39) can be used for other

suboptimal designs in the spirit of theorem 3.3. Thus, if a0  and a , are given, and we

seek the best quadratic correction to a0 (t) + ro a1 (t,s)dy(s), this will be found by

solving (3.39) for a2  in terms of a1  and a0 . The methods developed for solving the

full set of equations will also apply to the best correction problem.

As a system of integral equations, (3.37) - (3.39) looks complicated an,! contains

unusual features. Nevertheless, we will show that solving the system can be reduced to

two, familiar tasks -- solving a linear estimation problem and solving a Fredholm integral

equation. The method behind this reduction is simply to eliminate a0  and a, to obtain

an equation for a2. The basic steps are: 1) eliminate a0 (t) from (3.38) to derive the

integral equation (3.41) for all 2) solve this for a, in terms of a2 using the

solution to the linear filtering problem, (see 3.42)1 3) use (3.42) to eliminate a1  from
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(3.39) and derive (3.43), an integral equation only involving the unknown &20 andt 4)

turn (3.43) into the Predholm equation (3.45). The central equation is thus (3.45). Once

it is solved for a2 , a, and a0  are found by using (3.42) and (3.37) respectively.

Let R : L2 ([0,tI) L2 ((0,tJ) be the operator defined by

(RO)(s) " covfh(s),h(o)J0(a)d* . (3.40)

The first step is easy; simply solve (3.37) for a0 (t) and substitute the result in

(3.38). We then derive

(I + Rla 1 (t,.)(s) - covIfltl,h(s) - f0 Uh(a)a2(tsa)da
i al (3.41)

covh(s),h( o,)h(o2 )a 12)do2d al

The next step, solving this for al, thus requires inverting I + R.

SLe mma 3.6

i) h(s),s ( t, has a beat linear estimate h(s) = *(s) + o

(As a convention, set a(s,o) - 0 for 0 ( a ( a 1 t)

ii) (I + RI - 1 - Q where Q is the integral operator with kernel

q(S 1 0s 2) - m(se's 2 ) + Q(s2'a) - It c'(0S)0(a's 2 )d o

-10 ( 1 Th s l 2 ( t "th t h s

Proof. we are assuming E[Jft h2 (s)ds.4 < w. This guarantees that h(s) exists, and, as

in (3.25),

0Cs 1 ,a 2 ) + f 1 L(s1,o)covh(s 2 ),h(l )]da  cov[h(s1 ),h(o))
02

0 4a 2  a I t

ii) is standard. See, for instance, Gessey [31.

This lemma can now be applied to solve (3.41) for al(t,s)$

a1(t,s) - covjfjt),h(s)] - q(s,o)cov(f(t),h(o)jdo

(3.42)

- j r'(t's,. 1 2 )s 2 (to 1,o 2 )do 2 do,

.'
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where

* rl(t,sa,,o 2 Y cov~h(s),h(a1 )h( 2 )1

+ (q(s,c 2 )Zh(a 1 ) + q(s,a1 )Bhfa2 ))

+I .t
2 f; q(s'a)covfh(*),h(q1)h(v2 ] ] da

In deriving r', advantage was taken of the (assumed) symmetry of a 2 (trsls 2 ) in sit

82. Now, using (3.37) and (3.42), we may eliminate a0  and a1  from equation (3.39).

The result is

a2 (t'sirs 2 ) F(tsi 1 s 2 )

'" i t

[r [r 1 (mia)a2 (t's 2 'O) + r 1 (su'al) 2 (t's 1 'O)ldO (3.43)

-ft 0 r 2 (t's11 s 2 # a,o 2 )a 2 (t' a1, 2)d 2 a,

where

(t,sls2) = cov[t(t).h(s I).h(s 2 )]

- f0 cov[h(sI )h(s 2 )h(o)1 (covtf(t),h(a)

- J0 q(v a 2 )cov[f(t),h( o2 )Id 2 do

r(sa) - cov[h(s),h(a)j

r2(te.2o - tcavth(s,),h(s2 ),h(o1 )h(o2 )1

- covth(aI),h(s2 )jcov(h( O),h(a2 )j1

-" f0 cov~h(sl).h(s2 ),h(n)lr'(tn,°1,o 2 )dn

It remains to solve (3.43) for a . This is simply a linear inteqral equation for

a2 . However, its middle term, involving a tensor contraction between a2 and r,, Is not

standard, and the usual linear integration theory does not apply directly. Despite this,
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it is possible to rewrite (3.43) as a Predholm integral equation and thereby to reduce the

task of calculating a to a familiar problem. First notice that (3.43) may be rewritten

in the form

a2 ($itsa2  - (s11s 2) (Ra 2 (as2 ,*)C 1 MaI- a2 st

- r~f r(8 1.s1a1,o2)a (a11 2)do2da1,

or

[I+ R)a 2C(a2 P -)(s I Vais 2) -R 8*M

(3.*44)

f~ Jo r 2 (s1 s2,a11 21a2 (a 2 2 odo

In these equations, the argument t has been omitted for simplicity. Now apply (I + R)

to both sides of (3.44). Again, an equation of the form

[M + Ra 2 (sir-Ma 2 linear terms in a 2

* Iis obtained, but this tim there are no partial tensor contractions of the form Ra(s1 1 .)

(S.) on the right hand side. With a final application (I + RI - I - Q to both sides

the following Fredholm equation for a 2  in derived.

a 2 taf ( t.1s2+st t Y-~ 4' 2' ' 2a(tod 2d~ (3.45)

4 where

P it'ips t~all rtl(s)toI tsIJo2 )(s,,o)r(t,o, 8 )]do 2do,

1 2 2 2 1

*Y(t,sfs 2 P 011 0 2  Y I (t,81,8s2 #0,1 a 2 0 q(s8'u)y 1 (u's2 'oV a 2 )du

y(t,sits2 1 alto)= r (t,$1,s2 1 a .02 ) - q(s2 a1 )q(sj,o2 )

+ Pf q(s 2 ,u)r 2(t'SIOUVO o2 )du
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*! 4Remarks., The viewpoint here is not recursive. Rather t is fixed throughout and integral

operators are defined and inverted on L2([O,tJ) or L
2
{(O,t]

2
1, and at a later time t

the whole operation would have to be repeated. This poses an interesting question for

further research. What structure on the moments th(s), Uf(t)h(s), etc., would allow a

recursive solution to the quadratic kernel equations, in the sense that a(t + dt, el's 2 )

could be constructed in a simple way from a(tsls 2 )? A related question is also

important. When are the solutions a1 and a2  separable functions? If separability
2

occured, then, as mentioned above, the stochastic integrals I I(a1  and 1 2 (a ) could be

realized as the outputs of stochastic differential systems. Certainly, if F and y of

the Fredholm equation for a2 are separable, a2 will be separable, but due to the

complicated manner in which the moments Ef(t), Ef(t)h(s), etc., combine to produce F

and y, this does not lead to easy conditions. This issue is not pursued further.

A
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