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ABSTRACT

\problems involving Hamilton-Jacobi equations - which we take to be either

of the stationary form H(x,u,Du) - 0 or of the evolution form +

H(xt,u,Du) - 0 , where Du is the spatial gradient of u - arise in many

contexts. Classical analysis of associated problems under boundary and/or

initial conditions by the method of characteristics is limited to local

considerations owing to the crossing of characteristics. Global

analysis of these problems has been hindered by the lack of an appropriate

notion of solution for which one has the desired existence and uniqueness

properties. In this work a notion of solution is proposed which allows, for

example, solutions to be nowhere differentiable but for which strong

uniqueness theorems, stability theorems and general existence theorems, as

discussed herein, are all valid.
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VISCOSITY SOLLTIONS OF HAILTON-JACOBI 8QUATIONS

Michael G. Crandall and Pierre-Louis Lions

Introduction:

This paper introduces a new notion of solution for first order equations of Hamilton-

Jacobi type (which we call HJ equations below). Attention will be focused on the followilng

two classes of problems:

(0.1) H(x,u,Du) - 0 in A , u - z on

which will be called the Dirichlet problem for H3 equationsl and

t + H(x,t,u,Du) - 0 in x x ]0,T,

(C.2)

u - z on ag x ]0,T] , u(x,O) u 0x) in ,

which will be called the Cauchy problem for HJ equations. Here and below 2 is any open

domain in IN, z and u0  are given functions (boundary conditions) and H(x,u,p)

(respectively, H(x,t,u,p)) is a given function on a x R x RN  (respectively,

X [0,T] x R x RN ) which is called the Hamiltonian. The notation Du indicates the

gradient of u with respect to the x variables: Du - (u,'U) We often take

N%R R in which case the boundary condition z is replaced by requirements on the

behaviour of u at

Problems (0.1), (0.2) are global nonlinear first-order problems and it is well-known

that they do not have classical solutions - that is solutions u 6 C (() or

u e C 10 x ]0,T)) - in general, even if the Hamiltonian and boundary conditions are

smooth. Thus these problems have been approached by looking for generalized solutions -

usually solutions u e w ' (a) or u e Wo' (SI x ]0,T]) - which satisfy the equations

almost everywhere. In this context existence results have been obtained by several authors

- e.g., A. Douglis (51, S. N. Kruzkov (18,19,201, W. H. Fleming [13,14,153, A. Friedman

(161, S. H. Benton [4) with the most general results being given by P. L. Lions [221.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

4



The question of uniqueness of the solutions seems to be more difficult. The problems

(0.1) and (0.2) may have many distinct generalized solutions. For example, if l = A,

A > 0, and H(x,u,Du) - luxI + u - 1, on" checks easily that u l 1/A is a classical

snlation of (0.1) while

Ae for x 4 x0,

uIx ).(2x 0-x)

0 T A for x Ax.,
is a bounded, Lipschitz continuous and piecewise analytic function which satisfies the

equation except at x = x0  for all choices of the parameters A > 0 and x0 e R

Similarily, setting ) R , u 0 , H(x,t,u,Du) - (ux) in (0.2), we have the

classical solution u E 0 and the piecewise linear function

r0 for lx( J t 0

t - lxI for t lxl,

which satisfies the equation classically except on the lines t = tx, x - 0 • In

addition, if u,v are generalized solutions of (0.1) or (0.2) then so are min(u,v) and

max(u,v). In fact, if the problems are nonlinear, one expects infinitely many 
w f

solutions (e.g., Conway and Hopf [6]).

The uniqueness problem is resolved in this paper by introducing a new notion of

solution. We call these solutions viscosity solutions.(t) This notion of solution is given

:.4 in Part I where we also develop basic results needed in the sequel. Later we establish,

for each of the Cauchy and Mirichlet problems, uniquenesq results for viscosity

solutions. The question of existence in the class of viscosity solutions is also

treated. This, however, usually reduces to checking that the standard existence mechanism

provide viscosity solutions and passages to limits.

(t)This name refers to the "vanishing viscosity" method used in the existence

resultq, and was chosen for want of a better idea.
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The nature of the results is illustrated quite well by the following special case.

Take (0.1) with =
N and H(x,u,p) replaced by Hf(p) + u - n(x) where H e c(N),

n e BUC(A")(t), i.e. (0.1) reads H(Du) + u - n(x). In this came we take a viscosity

solution of (0.1) to be a function u e Cb(R)(t) which satisfies

F ' e *C;(R ), 0 ) 0 , V k e R if max O(u-k) > 0 (respectively,

0.3) min o(u-k) ( 0), then there exists x0 e (x:o(u-k) maxv(u-k))

(respectively, fx: O(u-k) mino(u-k)}) such that

H(- ( k Do)(x )) + u(x 4 n(x0 ) (respectively,) n(x)
0 0) ~ 0)0

Under these assumptions, the results to follow imply:

(i) If u is a classical solution of (0.1), then u satisfies (0.3) (Section I).

(ii) If u is a viscosity solution of (0.1), and u is differentiable at some

X0, then H(Du(x0 )) + u(x0 ) - n(x0 )i in particular, if u is locally

Lipschitz then (0.1) holds a.e. (Section 1).

(Iim) If u,v are two viscosity solutions of (0.1), then u E v (Section I1).

(iv) Let (H m(p) + u - nm ) be a sequence of Hamiltonians of the above form and umm um

be a viscosity solution of the corresponding problem. If Hm + H , um + u

and n + n locally uniformly, then u satisfies (0.3). (Section I).

(v) The problem (0.1) has a viscosity solution u and lu(x+y) - u(x)I

4 sup(In(zcy) - n(z)Isz e Rh. In particular, u e BUC(O1 ) and if

n C 'U( W) then u e c"'(0), 0 C a C i. (Section IV).

It is of interest here that the viscosity solution of (0.1) with H(p) + u - n(x) as

above exists and is unique in such generality. Indeed, the solution may be nowhere

differentiable as is seen by taking H 2 0 and n to be nowhere differentiable. Thus we

have a notion of solution of HJ equations which admits nowhere differentiable functions

and permits a good existence and uniqueness theory. It is akin to the standard

distribution theory, but "integration by parts" is replaced by "differentiation by parts"

M;

• (t)

BUC(iil (respectively, Cb(I) denotes the space of bounded and uniformly
continuous (respectively, bounded and continuous) functions on 11

i-3
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and is done "inside" the nonlinearity. It is extremely convenient (as is the distribution

theory) for passages to limits. The only somewhat related ideas we are aware of may be

found in L. C. tvans (111, but there is also a definite parallel with the so-celled

"entropy condition" for scalar hyperbolic equations of the form tt + I fi(u)xi . 0 . See

Z. Hopf [7], Vol'pert [26) and, especially, S. N. Krulkov [201.

Finally we recall that in the case of a convex Iamiltonian other uniqueness criteria

are known (A. Douglis (10]. S. N. Krufkov (18]. P. L. Lions (22]). Some of the current

results were announced in (8].

A few words about the presentation are in order. There are many interesting theorems

in this subject. We have chosen what seem to us to be the most basic to discuss in some

detail and then we make some remarks on variants. To keep the ideas clear we give a

"layered" presentation - some proofs are given in simple cases and then more technical and

general results are presented which subsume the simple ones. However, there is little

redundancy, for we use the arguments given in the simple cases without repetition. Toward

the end of the paper we give proofs in simple cases and refer the reader to previous

arguments which show how to generalize. A first reading of this paper for the basic ideas

could consist of Section 1.1 and 1.2 through Corollary 1.6, Section 11.1, Section IV and

Sections V.1, V.2. We mention that some of these ideas obviously generalize to nonlinear

second-order equations. The extent to which this is true is not yet clear and is being

pursued by the authors. knother area for which the current results have implications is

numerical approximation of HJ equations. Here we have obtained error estimates which shnw

the convergence of a class of difference approximations to the viscosity solution (9].

-4-
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I. Viscosity Solutions.

1.1 Notation and Definitions.

Let 0 be an open set in 0 and F(y,sp) be a continuous function from

0 I t x R into R. We consider the following equation

(1.1) F(y,u,Du) - 0 in 0

4 ~whar Du - (U ,..,uyN. We have in mind that (1.1) incluJes both (0.1) and (0.2) of the

introduction. in the first case I - 0 and F - H while in the second 0 = 1 x ,T,

y - (x,t) and F(x,tu,p) - PN+t + H(xft#P, *'*'PN)

If X is a set of functions on 0 , then X+  denotes the nonnegative functions in

X and Xc denotes those functions in X which vanish off of a compact subset of 0

D(O) denotes the C functions on 0 vanishing off a compact subset of 0 , i.e.

D(0) - C (0). Convergence in C(0) means uniform convergence on compact subsets of 0
c

etc.

To partially motivate the definitions to follow, consider a classical (i.e., C1)

solution u of (1.1). Let V e C (SI) and p(y)u(y) - maxiu > 0 * Then D(Ou)(y) -

ks(y)Du(y) + u(y)DO(y) - 0 or

Du(y) - - w() o (y)

It follows that

V(y,u(y), -U(Y DV(y)) - 0

We could do a similar computation at a positive maximum point y of v(u - 4P) where

4 L C (D) as well to conclude
F(y,u(y), - (u(Y) - 41(y)) D-(y) + D*(y)) 0

D y)+y),y)

In the definitions which follow we specialize to # E k e R

We need some more notation. For * e C(0), set

E+( - y e 0 :*(y) . max * > 0) (the positive extreme set of 4 ),

and

E_(4) = (y e 0 :O(y) = min 4 < 01 (the negative extreme set of I),

with the understanding that + (*) - 6 if * does not assume a positive maximum value

in 0, etc. When necessary, the dependence on 0 will be recalled by writing

-6-



We now define viscosity solutions of (1.1) as well as the corresponding notions of

sub- and super-solutions.

Definition I.1. A viscosity subsolution (respectively, supersolution) of (1.1) is a

function u e C(O) such that for every s6 D(O)+  and k e R

E+( (u-k)) a -- > a y e 9+(O(u-k)) such that

(1.2)

F(yu(y), - '(u(X)-) O(y)) 4 0,
P (y)

(respectively,

E_ PP (u-k)) a *)y e E_ W(u-k)) such that

(1.3)

Fly,u(y), - (u(y)-k) D(y)) > 0).
0(y)

A viscosity solution is a u e c(O) for which both (1.2) and (1.3) hold, i.e. u is both

a viscosity subsolution and a viscosity supersolution.

.t will be convenient at times to speak of viscosity solutions of F 4 0 rather than

viscosity subsolutions of P = 0 , etc. The reader should notice at this stage that the

equations F - 0 and -F - 0 are not equivalent in the viscosity sense. Vor example,

u(x) - Ixi is a viscosity solution of (u.)2 - I - 0 on a, but it is not a viscosity

solution of -(ux) 2 + I - 0 on R. (The reader can verify this as an exercise or turn to

Section 1.4.) However, we do have:

Remark 1.4. u is a viscosity solution F(yu,Du) 4 0 if and only if v - -u is a

viscosity solution of -F(y, - v, - Dv) > 0.

According to our "motivation", admittedly meager at this point, classical solutions

are clearly viscosity solutions. Complete consistency of the classical and viscosity

notions of solution requires that a viscosity solution u which happens to be CI also be

a classical solution. This is indeed the case, as is a consequence of subtler facts

presented in the next paragraph.

-7-
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1.2. Basic Properties of Viscosity Solutions.

In this paragraph we develop a variety of basic results concerning viscosity

solutions. A matter of concern will be showing that the weak assumptions in Definition 1.1

- e.g., the small classes of functions # e V((P)+, 4 k 6 R occuring in the Definition as

well as the "3" in place of "V" in (1.2), (1.3) - can be strengthened without altering

the notion defined. Before stating results to this effect, we will prove one which

illustrates the convenience of the weakness of the definition.

in order to set the stage for this result, we first give an example showing it to be

totally false for Lipschitz continuous solutions. Consider the problem

(NO)2 _ I 0 on ]-1,1[

u(-) - u(1) - 0

This problem has a largest Lipschitz solution U...x(x) - 1 - lxi and a smallest Lipschitz

solution umin - -umax I It has many others. E. g., un(-1) - 0 , and un' - (-) on

1-1 + J/2n, -1 + (J+1)/2n[ for j - 0,***,4n-I, defines a solution for which

0 ( un 4 1/2n for each n . Clearly u + 0 uniformly as n + " , but u Z 0 is not an n

solution of (ux)2 . I anywhere. more generally, given any g e C(I-1,1]) with Lipschitz

constant I and g(-1) - g(1) " 0, it can be uniformly approximated by Lipschitz

continuous solutions of the above problem.

In contrast, for viscosity solutions we have:

Theorem 1.2. (Stability of viscosity solutions ). Let fFr} be a sequence of continuous

functions on 0 x R x RM converging in C(O x R x RM ) to F e C(O x R x R) and let

- u e C(O) be a viscosity solution of F (yu£,Du£) ( 0 (respectively, Fi ) 0). Let

i q in C(O). Then u is a viscosity solution of F 4 0 (respectively, F ) 0).

Proof of Theorem 1.2. Assume ut is a viscosity solution of FL 4 0 * Let p e D(e)
+

and y e B4 (o(u-k)). Then for large I (y)(u(y)-k) > 0 so E ((u -k)) * 0 and, by

assumption, there exists y. 9 E.(W(u,-k)) for which

-8-



(u (yo)-k)

Now y, e supp PCt) and thus there is a subsequence y.,, convergent to some ye 0.

Moreover ;(u-k) 4 lrn rnaxCP(u -k)) - lila -(y -u~y)k) 4 P(y)u(7)-k) so

y e E +(;(u-c)). Letting t+ 10 through the subsequence L' in (1.5) and using the

assumed convergence F, P we have

-(u(y)-k) D()

Thtvs u is a viscosity subsolution. The proof for the case F 0 is the same or one

may use Remark 1.4. The proof is complete.

The next result summarizes the implications of the sequence of arguments which follow

it and outlines the extent to which the definition of viscosity solution could be

strengthened without changing the class of such solutions. if o e c(0) we set

d(,P) - ly e 0: o is differentiable at y).

Theorem 1.3. Let u be a viscosity subsolution of F - 0 e C(Q) +and 0 eC(0).

Then

(1.6)F(y,u, - - p + D*) 4 0 on E ( p(u-*~)) o d( p) n d(*4).
+

If u is a viscosity supersolution, then

(.)F(Y,U, - (u-*- W~ + D*() ' 0 on E (,P(u-*)) n d(o) n d*

while if u is a viscosity solution both (1.6) and (1.7) hold.

we prepare two lemmas. A key ingredient is the following formulation of a result of

L. C. Evans (11].

Supp denotes the support of r
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Lemma 1.4. Let P 8 C(0) be differentiable at y. e a. Then there exist functions

@ and b such that I e CI(0), (y0) - (y0 ), D*(y 0 ) - DP(y0 ) and *> *_<p

on B(y0 ,r) \ {y0) 
(t) for some r ' 0

Proof of Lemma 1.4. Replacing o by p(y) " O(y0 + y) - (y 0) y0 ) °(tt) we can

assume Y0 = 0 , w(0) - 0, and D(0) - 0 * It suffices to exhibit *+ . By

assumption, P(y) = Jlyl(y) where P e c(0} and P(y) + 0 as lyJ 0. Set P(r)

sup{P(y) : y e 0 n B(0,r)} and

+ (Y) =f21ly 5(s)ds + Ill2

lyl

* Let B(O,h) c 0. Then *+ e c (B(O,h)), +(0) - 0 , '+(Y) > lYI) yl) 2 hi >

lylp(y) - (y) for y e B(0,h)\fO) by the monotonIcity of P , and DIP+ (0) - 0 * This

*+ may be modified outside B(0,h/2) if necessary to achieve e+ e Cc(0).

We next prove:

Lemma I.S. The assertions of Theorem 1.3 are valid if also * E k e R is a constant.

Proof of Lemma 1.5. It suffices to show (1.6) holds for viscosity supersolutions (recall

Remark 1.4). Let v e CW?)+  be differentiable at yo e 0 and y0 e E (o(u-k)). it
1 4

follows at once from Lemma 1.4 that there is a *_ e C (0) such that
c

1 .(y0) = (yO), D*_(y) DP(y 0 ) and '< 0 on supp_\Iy 0 Then

((8 YOI E +(*-l u-k)).
0 + -

Next choose a sequence (,p c D(C) +  with supports contained in a fixed compact subset

of 0 so that ' p, and * D*_ uniformly. For large 1, 01(y 0)(u(y0 ) - k) > 0

so R +Op(u-k)) * 0 and, by assumption, there exist yj e E+(p(u-k)) such that

B(y0 ,r) denotes the open hall of radius r and center y0.
(tt)

a . b denotes the tuclilean inner-product of a,b e .

S-10-



C 1.9) P(yy.u(yf), -%1y)

Passing to a subsequence if necessary we may sUMe y, converges to a limit y .Clearly

y e z + (*_(u-1c)) and then y - yo by (1.8). Sending 4 to - in (1.9) and using

, in C, *'(y, , D,(y 0 , ,,(y 0 ) we conclude

Muy 0)-k)

P(y01u(y0 ). - 0 Oy)
S(y) D y)) ( 0

whence the result.

Proof of Theorem 1.3. it suffices to consider the subsolution case. Let SC(O)

ie C(O), Y0 e +(.+(u-0)) n d(W) n d(). Set

- - ~ ~(Y ~) - *(v) x
uly) - (y0 ) Xy)

where X e D(O)+  satisfies 0 A X 4 1, X(y0) 1 , and X vanishes off a neighborhood

t of ye on which u(y) > *(yo) 0 Then

ol,) (u(y) - 40(y0 )) - X(Y)O(y)(u(y) - (y))

which is clearly at most v(y)(u(yO ) - *(yOy)), i.e. yo e Z+(O(u - *(yo))). Since

and * are differentiable at yo and

u(Y) - (y) -1+ 40(y0) - 0(y)

u(y) - y u(y O ) - V(yo) + uly) - u(y O)

'(iyo) - il(y)
-( Yo) - *(y) + o(ly-Yo1)

we have

- I
D (y0) - D P(y 0) - u0- (yO M

The result now follows from Lemma 1.5 applied with k - '(y0) and in place of -P

Using the above results it is now simple to proves

-11-
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Corollary 1.6. (Consistency) Let u be a viscosity subeolution (respectively)

supersolution, solution) of F(y,u,Du) = 0. Then P(y,u,Du) 4 0 (respectivelyl

F(y,uDu) ) 0, F(y,u,Du) - 0) on d(u).

Proof of Corollary 1.6. It suffices to treat the supersolution case. Let Y0 e d(u).

Choose *+ e Cl (0) such that +(y) u(yO), DO+(y0 ) 0 Du(Y 0 ) and 4+ > u in a

deleted ball B(y 0 ,h) \{y0
} 

. Choose -p e V(O)+ 
with suppp c B(Y0,h) ,0

0 • V 1, P(y0 ) 1 (so DO(y0 ) - 0). Then {y0 } E_(O(u - + + 1)). By Theorem

1.3 and the assumption that u is a viscosity supersolution, we have

Y(u(Y0 )+(Y 0 ) + )

F(Y0,U(Y 0 - S (y0) DP(Y 0 ) + D* +(y 0 )) F(Y0 u(y 0 ),Du(y 0 )) 0

and the proof is complete.

The next two results are concerned with changes of variables.

Corollary 1.7. Let u be a viscosity subeolution (respectively, supersolution, solution)

of (1.1). Then:

(M if q e c (0), g > 0 in 0 , 4 e c (0) and v - g(u-*), then v is a viscosity

solution (respectively; supersolution, solution) of G(y,v,Dv) = 0 where

r -rDg(y)G(y,r,p) - F(y, --y) + 4(y), + + D*(y)).

g(y) 2 g(y)

(ii) If 4 0 + 0 is a C
1  

diffeomorphism of the domain 0 onto the domain 0 , Then

v(f(y)) u(y) defines a viscosity subsolution (respectively; supersolution, solution) of

G(y,v,Dv) - 0 where

G(y,r,p) - H( (y),r,pD4(- (y))

and pDO(y) denotes the action of D0(y) on the cotangent vector p

We omit the proof of Corollary r.7 as it is an easy exercise given Theorem 1.3. To

conclude this section we obtain a partial result concerning nonlinear changes of the

unknown.

-12-



Corollary 1.8. Let u be a viscosity subsolution (respectively; supersolution, solution)

of (1.1) and let 4 e C (a), 4' > 0 everywhere and O(R) = R. Then v - O(u) is a

viscosity subsolution (respectively; supersolution, solution) of

(1.10) Iy v), (0 1)'(v)Dv) - 0

Proof of Corollary I.S. We treat the subsolution case. Let u be a viscosity subsolution

of F - 0. e claim that, if x0 e E+(W(v-k)) (with s e V(Q)+, k e R) then there exists

e c (a)+, Z e R such that
c

(Wx 0 )-k) v(x )-k
x. e E+ ((u-k)), - DN) - Dip (x

ON0 0

where T(t) 0- (t). This obviously implies the Corollary.

Now, to prove our claim, we argue as follows: we have for Ix-xol small
- ( x0 )

v(x) ( x (v(xo)-k) + k

(1.11)
(VlXol-k)

( v(xO) - (Xo) DO(X 0 )(x-x 0 ) + Ix-x0 6(Ix-x0 1)

where C e C(3 ,R") and C(t) + 0 as t + 0+. Thus, for Ix-xoJ small, we obtain since

' is nondecreasing

v(x )-k

v(x )-ku 4 ( vX) -u( '(x0) 0 0)w ) )D+ I 01lx-x 0+1)) IZl-x1

( 0(x) u(xo ) - ,'(V o(x o - + -
0

for Ix-x01 small enough and Z e C(R+,R"), C(t) + 0 as t + 0+. But the right hand side

member u of the above inequality is a continuous function differentiable at x0  and

1 +therefore by Lemma 1.4 we may find kc and e c (.1) such that: u(x O ) - 0 ) 0,

8 E C(s(u-Ic))

_ ( U(x )- v(x )-c
- - , T'V(Xo))' "x ) D P(Xo), Sp c (oh-of supp ( x(X0 h)

0 O 0 0

-13-
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where h is small enough in order to have: u(x) C u(x) on B(x,,h). Ie may now

conclude since we have for all x:

v(x)(u(x)-k) Cox(~)kOx0)ux0)k ~ (~j(1.12) - )  - ~(0 (~0 k

and thus x0 e z (S (u-k)).

Remark 1.13. We pause here to consider the case in which 0 is not an open subset of

RN. Indeed, in later sections we will want to use some of the above results when 0 has

the form 0- A x (]0,T]). we claim that all we have done is correct in general if one

interprets the definitions appropriately. This means: D(0), C1 (0), etc., should denote

restrictions of functions in D(P), C'(0), etc. to 0 (with, in the case of D(0),

Ix e O:u(x) * 0) lies in a compact subset of 0 , etc). The other point is the notion of

"differentiable". We will say o e c(0) is differentiable at y0 e 0 and D1I(y0 ) = z if

there is an extension of 0 to e C(ON) such that D (y 0 ) z and moreover, for any

extension of i to e C(MN ) differentiable at Y0, D;(y0) - z. (in the case

where I has some boundary which is sufficiently smooth, e.g. 0 x ]0,T], all notions

coincide.) The reader can think through these claims.

1.3. Piecewise Smooth Viscosity Solutions.

In this section we consider piecewise CI functions and determine conditions on the

" ,discontinuities of their derivatives equivalent to being viscosity solutions of F = 0

Consider the situation in Figure 1:

'-.

w'1

-" .H r: y = f (Y2 ' " "Ym )

(Y 2 ' ' ' Y O

u=u_ n( 0yo

U=U+

yl

-14-



which is meant to indicate that 0 0+ u 0 u r is divided into two open parts 0+

and 0_ by the surface F . The unit normal to r at y e er is n(yO ) and it points

into 0+. A function u e c(O) is given as u+ in 0+ u F and u_ in 0 u r . We

assume F is of class CI and so may be represented by a relation of the typical form

Y- . f( 2 "',,'YM) near y 0 e F, where f e c . we assume u e c(O) and u. e

C I(0 u r). When is u a viscosity solution of F - 0 in 0 ? We will use the

following observations:

Proposition 1.9. (1) If u is a viscosity solution of F - 0 in 0 and 0' is an open

subset of 0 then uJ 0
( ) is a viscosity solution of F - 0 in 0'

(ii) If u e c(0), 0 is the union of relatively open subsets 01 and 02 , 0 - 01 u

02 and ulO , is a viscosity solution of P - 0 in 01, i - 1,2 then u is a viscosity

solution of F - 0 in 0.

That is, the property of being a viscosity solution is purely local. Part (i) of the

Proposition is completely trivial and we leave part (ii) as a very simple exercise.

To continue, assume u e c(0) is a viscosity solution. Then u* is a viscosity

solution in 0t. But uI lie in CI(0t), so u, are classical solutions by Corollary

1.6. Let v e D(0)+ , y0 e E±(v(u-k)). If y0 e 0, u 0 we then have

F(You(y0 ), - (u(yo)-k) -(y ) 0

by the opening remarks of this section. It remains to consider y0 e F , and we assume

Figure 1. Let

T - (T e :m n(yo 0 T 0)

be the tangent space to F to yo and PT' PN - - PT be the orthogonal projections

uI O. means the restriction of u to 0'

~-15-
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on Ty 0  spancn(y0 ) , i.e. pNy - (n(y0 ) y)n(y 0) Since u+, u agree on r

p.1 Du+(y.) T DU-(YO). When yO 0 E( 'Cu-k)) n r we clearly have.

T Y T + O(T) l(y 0+T)(u(y 0+T)-k) satisfies D-O(O) - 0

A(y 0+an)(u(y 0 +an)-k) - O(y0 )(uly 0 )-k)
lim 0

C140

fy0+Cn)u(y0 +)-k) - olY 0 )(u(y0)-k)
lim Ay000 0 > 0

ca+0 +

These relations amount to:

(u(y0 k)

(0 Dl.Iy 0) •n y0) D u,.Y0 • *(0

(u(y0)-k)
DA0) O Y0 • (y0 > Du (y 0  •M y0

Hence

(u(y 0 )-k)S (y 0 D(y 0 ) p PTDU-(y0
) + E(y0

for some e (Du 0 + (y0My Ouly0  M 0

We conclude that the condition

V y0 e F, v e (Du~(y0  • nly 0), Du(y 0) n(y 0)]

F(Y 0 ,u(Y 0 ), pTDu t(y0) + n(Y0 )) ( 0

implies u is a viscosity subsolution of F - 0 . Similarly

. 0 0 e r, v C e (Du.(y0 ) •(yo), Du+(y o) •(y 0)]

F(Y0 'U(Y 0
)
' PT DuI(y 0 ) + &n(Y0 )) ; 0

-16-
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implies u is a viscosity supersolution of r , 0 • Note that if, e.g.,

DU.(Y 0) n(y0 ) > Du+(y0  n(y0) then (1.15) is an empty condition, etc. In fact,

(1.14), (1.15) are necessary as well as sufficient. We prove:

Theorem 1.10. Let 0, 0, o-,r, u, u be as above. Then u is a viscosity solution of

F - 0 in 0 if and only if u* are classical solutions in 0 and (1.14). (1.15) hold.

Proof. The sufficiency has been shown. We consider the necessity. First let

SDU +(Y) * ny 0 ) Du.(Y.l * nlY0). In this came u is differentiable at y0  and
+ y0  l(y 0)" ny)

DU(y 0 ) - PT Du (Y) + Wy 0 ). By Theorem 1.2 we have

F(y0 ,u(Y0 ), Du(y 0)) - V(Y0 ,u(Y0 ), PTDUIt(yo) + ny,))- 0

o (1.14), (1.15) hold. Next assume that Du.(y 0 ) I n(y0) > t > Du+(y0 l n(y0 ) We
10

claim that then there is a * C1 (0) such that (y0) " u(y0 ), 4 ) u in a deleted

neighborhood of y. and D*(y 0 I - PT Dut(Y0) O + n(y 0 ). If this is so, choose 0 e (O0),

0 0 < 1, O(y - 1 and V(y) < 1 for y * y0  so that 1 > P(*-u) ) 0. Then

(y0 - F+(v(u-*+1)) and by Theorem 1.3

F(Y0 ,U(Y0 ),D*(Y 0 )) - F(YOU(YO),PTDUI(yD) + n(y0 )) 4 0

so we have (1.14). The case in which (1.14) is an empty requirement is similar. It

remains to exhibit 4 . By Proposition 1.9 and Corollary 1.7 we may localize and change

variables. Hence assume y0 = 0 and r is y1 - 0 We have
'£ I

•~~ "f;(Y1,'.',Yml if Yl > 0
+1

m u_(Y '.',ym )  if yI < 0

4 and 3u u

V ' 2'"' " (O'y2'''"Y i - ,

au Du
i 1

17 1-
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Let 40 (y 2 .,y) M t M0y ,***,Py with strict inequality if (y 2#..#y ) ( 011*10)

(0'...0) . U3* 0
in some neighborhood of (, 0) (,0)-u(0O0OiO,)0 1-. 0,~0

aut ±
t(0,***0) for i -2,*,,m. 0' exists by Lemmna 1.4. Then set j1y I .,y) M

0 ( 2..'Y )+ &Y 1 . Clearly I'has the desired properties and the proof is complete.

To illustrate this result, consider the example solution u - 0 for lxi > t > 0

*u t - lxi if lxi 4 t of ut + (U X) 2 0 in the introduction. Let r be x =0
2, u- t x n

n(0,t) - (1,0). Then F((xtt)fu#(P1 1 P2)) - P2 + (PI)',u n t + x in

the appropriate domains. We have

C u (Oft) =(0,1)*T t

Du (0,t) nCO,t) -- 1 < 1 D u (0,t) *n(0,t)

but F(p Tut (O't) + Cn(0,t)) - 1 + > 0 for -1 < < 1 so (1.14) fails.

We remark that the conditions (1.14), (1.15) were anticipated by Oleinik [24] in a

*special case. Moreover, an alternative way to obtain these results is given in Section

* 1.5.

* 1.4. Differential inequalities in the Viscosity Sense.

In this section we treat some elementary inequalities in the viscosity sense. The

first result concerns the one dimensional case.

Prowoition 1.11. Let T 1 0 and q,h e CU[O,T]). Assume g is a viscosity solution of

in 10,T[. Then

(1.?)g(t) 16 g(s) + ft h(T)dT for 0 4 a4t 4T

8I



Proof. It is enough to show (1.17) for s - 0 and for this it suffices to prove that for

(1.18) g(t) 4 g(0) + ft h(s)ds + e + Ct , 0 4 t 4 T
0

Assume (1.18) is false and let t e ]0,T[ be the least t for which equality holds in

(1.18). Set VIt) - g(0) + ft h(s)ds + 6 and note *(0) > g(O), 1() < g(i). Choose
01

0 such that 0(t) > g(t) on (0,8) and Y e c([0 T])+ such that ' < 0 on

(8,T) and n(T) - 0 * Then there is a t0 0 R(flg-)) and t0 e ]8,T[. By Theorem 1.3
+0

t qr'(t0)

, q~ (9 l(to " (to) + 01(t )  h(to)

0

Since 1'(t 0 1 < 0 we have

11.t0 ) - h(t0) < h(t0)

which is a contradiction.

Remark 1.19. It follows from Proposition 1.11 that (1.16) holds in the viscosity sense if

and only if it holds in the sense of distributions.

* Corollary 1.12. Let T > 0 , Ye R and g,h e C[O,T)). Let g be a viscosity solution

of

(1.20) g, + Yg 4 h on ]0,T[

Then

,. (1.21) eYtg(t) ( e Y(s) + t e'h(T)dT for 0 ( a ( t < T

4 Proof. By Remark 1.19, (1.2) holds in the sense of distributions and then it is known that

(1.21) holds. (Of course, one could prove (1.21) directly by adapting the proof of the

2. Proposition or by using Corollary 1.7 to find (eYtg)1I 4e th in the viscosity sense.)

In the next result we show that u is a viscosity subsolution of

(1.22) u(y 1Y1 y2 ,'',ym) - g(y1 1,.',ym)

exactly when the corresponding statement holds for the functions of one variable

r * u(ry 2 F...y ) obtained by fixing (yt2 '*,y m) •

-19-
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Proposition 1.14. Let u,g S C(O). For z - (y 2 1'."y ) 6 Re 
-  

let

0z - (r:Crz) e 0). Let u Zr) - u(rz), gzlr) - g(rz) on 0. * Then the following

are equivalent:

For each x e R I 
, u is a viscosity solution of

(1.23)

U' g. in "

r u is a viscosity subsolution of

(1.24)

a r 1- m) ,ym) in 0.

Proof. We show (1.24) implies (1.23). Let z0 e Re- l 
be such that 0 z * . Let: 20

n e (00)+, k e R and r0 e E+ ((u z-k):0 z). Using Lemma 1.4 in the usual way we may
00 0

assume - r 0 E + MrIu z-k)t0 ). Pick p e 0(B(z01 1))+ such that PCzn) - I - Set

Pc (z) (z/). For C > 0 and small, n( I -(y2V'**wy m) L D(0) +  
and there exists

(r C z E e E+ (rvp(u-k)t0). 1y assumption,

nl(r )
(1.25) - -- (u(r- ) £)-k) ( g(r z

Clearly z2 E and r. 
+ 

r 0  as 6 4 0. Thus the result follows by letting C + 0 in

: (1.25). 0 0o

It remains to show that (1.23) implies (1.24). However, this amounts to checking the

A definitions and is left to the reader.

The next result is concerned with more general directional Aerivatives.

-I

Theorem 1.15. Let v:0 R 14 be continuously differentiable * Denote by Y(T,y 0) The

solution of

I dgy . V (Y),
d_

(1.26)

Y(0,y 0) - y0 ,

-20-



which is defined on a maximal interval of existence I YO (By assumption

YI FO c 0 ). Let u,g e C(O) and u be a viscosity solution of

(1.27) (DU) *V 4 g in 0.

Then for yo e 0,9,t e I YOand 9 t one has

(12)u(Y(t,y 0) - M ' u(~~ 0 ) ( g(y(,Z,y 0 ))dT

Proof.* If V(y0  - 0 , then Y(t,y0  y0  and there is nothing to show. if

*~ 0 , we may rotate coordinates so that V(y 0) (V I(y 0 ),,, Without loss of

generality we also assume yo 0. Consider the change of variables t defined near

Yo.0 by

=(y 1 O..uYm) <.> (yi1 ,,y 3 ) =Y(yl 1(O'y2 ,%**y m)

Then, with the notation of Corollary 1.7 and H(y,r,p) - p I V~y) - g(y), we have

G(y,r,p) -pD*(O ) go(1
()

=p 1  g($ ())

(of course, this is merely the statement that /y 1 =V *(/y 1 ,/y). Thus, by

Corollary 1.7, u((b (y)) is a viscosity solution of

-w-u 4 g(O Cy)).

ayl
Propositions 1.14 and 1.11 then yield

uC)- (t,0,*,0)) - u(9 - (s,0,*-,0) 4 Nog( (TO,,0*#))dT

for s 4 t and Isf,ItI small. But this means

u(I(t,0)) - u(Y(s,O)) 4 ftg(y(tr,o))dT
5

While this inequality is only established for IsI,ItI small, it is then trivially

extendable to t,s e 1. , a (t.

-21-



Corollary 1.16. Let 0 be convex, u S C(0) and L e R . If for every 'e V(O)+  and

her

(1.29) (u-k) IDVI 4 L on E+{C(u-k))

then Iu(y) - u(y)l C LIy - yI for y,y S 0.

Proof. Fix yy e 0 with y * y. Put V (ly - yI) Cy - y) From (1.29) it follows

that u is a viscosity solution of Du * V ( L in 0 . By Theorem 1.15

u(y0 + tv) - uly 0 + av) f' Mdt - Mt-s)
whenever s 4 t and y0, y0 + tv, YO + OV e C. Set y = yo t - ly - yI a = 0 to

obtain u(y) - u(y) C LIy - yl. Since we may interchange y and y , the proof is

complete.

I E-
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1.5. Characterization of Points in Some E(pu*)

According to Theore 1.3, if u is a viscosity Solution of F 4 0 ,then

F(y,u, - (-* DPl ) 0 on E (.0 Il) n d(o) n d(*J)

One is naturally led to asks What are the points y belonging to some

E +(O(u-*~)) In dVsP) n d(4i) and what are the possible values of -( (')) + D*l at such

points? We prove:

Theroem 1.17. Let u e C(O) and y. e 0, a e 30. Then the problem

(1.30)

0 ~(0 ) (y ) + DI'(y 0) a

has a solution 0 e C(0) e '16C(0) if and only if there exists '1 6 c (0) such that

V = u(y0  ,* u near Y. and DO(y) a. If E is replaced by E in (1.30)

and i,)u is replaced by *Cu , the statement remains true.

Proof. We first observe the sufficiency. Let IJ e c1 (0) and 4'~ u near Y

Choose II e C1 (0) + with a strict maximum value of 1 at y. and SUPPO c ('Cu). Then

(u(y 0 )-*~(y0)1
YO e E +(6P(u- j + 1) and - D.-1y0 ) + 011(y 0  = 011(y) since DI~ 0  0.

The necessity is equally simple. since y 0 e E+(IoI-1') n d(lp n d(4') implies

U(y) 4 7 _Y) (y 0 (u(y 0  -( 0) + 11(y)

near yo and the right-hand side is differentiahle at y, with the derivative

(u(y) - 11y 
0 )

O ~ DIP (y 0 ) + D*1(y 0

we may majorize it near y. by a 4'e c (0) which agrees to first order at y. (Lemma

1.4). This completes. the proof.

-23-



Remark (.31). By Lemma 1.4 we may equally well characterize the pairs (yo,a) for which

(1.30) has a solution by the condition

max{(u(y) - (u(yO ) + a (Y - yO)),O}
l i m ly - Y o l Iry"0

Corollary 1.18. Let u e C(O). Then

+ O:a ; e c (0), ;(yo) - u(yO ) and 4 u near y}

is dense in 0. Similarly, the set A. defined as above with 4 ) u replaced by u )

is dense in 0.

Proof. If Y0 e 0 and 9 0 , choose e C (0)+ so that P(y) > 0 and
c

suppp c B(E,y 0 ) . Then E+((u - (u(y 0 ) - 1)) is nonempty and it follows from Theorem

1.17 that it is contained in B(y0,C) n A+ , whence the result.

Remark.1.32. One cannot expect A+ to be much more than dense (e.g., of full measure,

second category, etc.) since A+ n A_ - d(u) may well be empty.

we may also use these results to reformulate the notion of a viscosity solution as

follows:

Let u e c(O) and yo e 0. Set

+ (u(y)-u(y0 )-a (y-y0 )) +

DU(Yo) - (a f RN: lir - 01
an Y ~yo ly-y o I

and

Du(y [a e N lim (u(y)-u(y 0 ) - a°(y-y 0 )) 0
0Yyo Iy-y01

where r = imax(r,0), r - -in(r,0)o In general, Du(y 0 ) are empty, but by Corollary

1.18 each is nonempty for a dense set of y0 e 0. The next result is an immediate

consequence of the above considerations:

-24-



Proposition 1.19 Let u e c( . Then:

i) u is a viscosity solution of F 4 0 if and only if

(1.33) F(y,u(y),a) 4 0 for every y e 0 and a e D+u(y).

(ii) u is a viscosity solution F > 0 if and only if

(1.34) F(y,u(y),a) > 0 for every y e 0 and a e D-u(y).

(iii) u is a viscosity solution of F - 0 if and only if (1.33) and (1.34) hold.

One can use Proposition 1.19 to give another proof of Theorem 1.10.

14

l -

-25-



II. Uniqueness for the Dirichlet Problem in F?

In paragraph 11.1 we treat the simple case

(2.1) u + IH(Du) w n(x) in RN .

After this te general case

(2.2) H(X,u,Du) - 0 in

which involves technical assumptions, is discussed.

11.1. Equation (2.1).

We consider two problems

() u + H(Du) - nlx),

(2.3)

(ii) v + H(Dv) - m(x),

where

(2.4) H e cfl) no eBuc (0) , m e Buc (0)

The main result concerning (2.3) is:

t Theorem 11.1. let (2.4) hold. Let u,v e Cb( N) be a viscosity subeolution and a

viscosity supersolution of (2.3)(i) and (ii) respectively. Then
< (m+l (t)

(2.5) '(u-v) I ( 1(n-m) I '

Remark 2.6. It follows from (2.5) that n I m implies u 4 v. It is also an immediate

consequence of the theorem that if u,v are viscosity solutions of their respective

problems, then I(u-v) I I(n-m)| . In particular, hounded viscosity solutions
(RN) L (,)

of (2.1) are unique.

Proof of Theorem 11.1. The besic arguments are best illustrated by first running through

the proof under the stronger assumption

(2.6) u(x) * 0 and v(x) * 0 as lxi

(It)

r + (r) denotes the maximum of r (respectively, -r) and 0

-26-
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The condition (2.6) in natural if H(0) = 0 and nm 0 at - . After the proof is

sketched for the case (2.6), we give the general argument.

Case 1: Uv + 0 as ixh .

If u(x) < v(x) everywhere there i nothing to show. Hence assume u(x) - v(x) > 0

for some x. Let o e V(R) , 0 4 P 4 1 and 0(0) - 1 . Define

(2.7) M - max (O(x-y)(u(x)-v(y)).
RN xN

The maximum in (2.7) is assumed and M > 0 since (x-x)(u(x)-v(x)) - u(x)-v(x) > 0 while

P(x-y)(u(x)-v(y)) + 0 as lxi + yIj + m by (2.6) and • e V(RN). Notice also that for

x e RN

u(x)-v(x) - (x-x)(u(x)-v(x)) 4 M

so

(2.8) I(u-v) IC M.

Let M - o(x0 -y0 )(u(x 0 )-v(y0 )), k,- v(y.), k2 - u(x0 ). We then have

x0 e zE+(0(* - y0 )(u(*) - k 1)) and y0 e E-(O(x0 - .)(v(*) - k2 )).

It now follows from Theorem 1.3 and the assumptions that

U(x) + H (u(x 0 )-v(y 0  (X n(x)0 p(x O-yo 0 )(u(xO0)- v (yO0

v(y ) + H (-  x0 -y 0 ) (DO)(x0-y0) Y m(y

where we used Dx(O(x-y)) = -Dy (s(x-y)). Subtracting the above inequalities yields

(2.9) u(x 0 )-v(y 0) < n(x0) - m(y0) M n(y0) - m(y0 ) + n(x 0) - n(y0)

Choosing P to be supported in R(O,) (so Ix 0 -Y0 1 C a), (2.9) and 0 0 4 1 imply

4 C '(n-m)+ L + ' ()

where the modulus of continuity P of n is given by• n

(2.10) 0 n(a) - sup{In(x)-n(y)I:lx-yl 4 a).

Since n e BUC(R N), we have P (a) + 0 as a + 0 and the result follows.-- n

-27-
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Case 2. The general case.

Let s e D(SN)
+ 

be as above: 0 C s C 1, 0(0) I and suppP c B(0ea). We are first

going to prove, via a truncation argument, that

(2.11) M - sup N s(x-y)(u(x)-v(y)) C I(n-m)+ + Pn(a)

x,yeR L (3

where Pn is given by (2.10). The result then follows as before. (The difference between

this case and the previous one is that we cannot write "max" in place of "sup" in

(2.11).) We may assume M > 0

Let C > 0

2e 2
Me = max O(x-y)(e u(x)-e v(y)),

and x,yeRN

-C1x 12 -cly CI2

Me -P(x -ye )(e u(x¢) - e v(yr)).

Let us first prove that Me * M as C + 0 . Since u and v are continuous it is clear

that

lim M M > 0

Hence, for £ small, M£ > M/2 . Moreover, ix -yeI 1 , and one then easily deduces

that

(2.12) /C Ixl , /E lye C C

for some C independent of C . Now

-N x.l
2  -lyEl

2

M£ =,(x -y,)(e u(xe) - v(Y))

e(Ixl 
2 -Iyl 2)

P (x -y )(u(xc) - e v(y))

1(Ixl2-1yl 12)

k o(x -ye)(u(xe)-V(ye) + (1 e )v(y)

t(ll Ix1-Y~l2

M + 11 - a IIv(yd)I.

-28-
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However, Ic(Ix cI2 -tC )I cI(x CYEIx kYC )I C 20C by (2.12). Therefore, by the

above, i. M 4 M and we have M. + N an c+0

We next prove (2.11). By 2 IOI ,1y 2)

rx~ c a -0 ye )aecl~(U(.) - * I (X v(ye)

2C(~- £.2 W~yl 2_Ix I
Ye *_ ~ )e (v(*) - * 2 ()0M, 2( -(

i and Theorem 1.3 we have

u(x) + H(-(u(x £)-kl + 2Cu(x )X n(x)

(2.13)

a n v (y ) + H( (k -v (y Di) N e + 2 e(y )y ,) ) m (y )

(2.14)

C (x)

J2 2 (DtP)(x c yc)

3c - I epCl _I )~ (Do) (x C-ye) +2ev(y )y£
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Subtracting the inequalities of (2.13), (2.14) yields

M C+ MY C + 6 ) H(T C + a€ C n(x )  m(y) C I(n-m+lL+, ' (0).M KY . + pn(s).

The proof is completed by showing that X. remains hounded as C + 0 while 6 and

6 0 , for then letting C + 0 above yields (2.11). Since M ), M/2 > 0 for
£C

E small, P(xc-yc )  is bounded away from zero, proving AC remains bounded. Similarly,

6 ,6£ tend to zero for Cxc, £y and C(lx 6 2 - ly I2) tends to zero by (2.12) and the

remarks thereafter. This completes the proof.

Remark 2.16. The proof (especially Case 1) is vaguely reminiscent of the proof of

uniqueness of entropy solutions of conservation laws in S. N. Krulkov (21].

Remark 2.17. The proofs given used only that n is uniformly continuous and m is

continuous. Similarly, we could have used uniform continuity of m and continuity of n.

Boundedness of n and m is irrelevant, although the result is not very interesting if

n-m is not bounded above. We do not know if the result holds without uniform continuity

of at least one of n and m . It is also possible, for example, to replace the

oundedness assumptions on u and v by Jul, IvI 4 C(1 + IxJp), 0 < p < I if either

H is bounded and uniformly continuous or u and v are Lipschitz continuous. We

conjecture that one can take p - I if u and v are Lipschitz continuous.

11.2. The Equation H(xuDu).- n(x).

It will be assumed throughout that H(x,r,p) satisfies

(2.18) For each R > 0 , H is uniformly continuous on RN x [-R,R] x B(0,R),

and

r For each R > 0 there is a continuous nondecreasing function

(2.19) YR: [0,2R] * R such that YR(0) - 0 and

wil (n(xrp) t (xrsp)) Y(r-s) for x e 0, p e RN, -R 4 s 4 r 4 R.

we will need to restrictj the nature of the oint continuity of H. The condition

(2.20) lim sup(IH(x,r,p) -H(y,r,p)l:lx-yl(1 + Ipl) • C, Irl • R} = 0 for all R > 0,
C+0

and the stronger requirement

-30-



f lrn sup{IH(x,r,p) - H(y,r,p)I:lx-yllpl C R1 , Ix-yI 4 C, Irl R} " 0
C+O 2

(2.20*)

for all Ri f R2 > 0

will be used.

We may now state our main result.

Theorem 11.2. Let u be a bounded viscosity subsolution of H(x,u,Du) - 0 and v be a

bounded viscosity supersolution of H(x,v,Dv) - m(x) where m e Cb(RN). Let (2.18),

(2.19) hold, R. max(Rui ) llv () and Y Y YR as in (2.19). Thens

(i) If (2.20 ) holds we have

(2.21) y ((u-v) +) 1() Im I

(ii) If (2.20) holds and u,v e BUC(3?), then (2.21) holds.

(iii) If uv e w ('m(t) , then (2.21) holds.

Remark 2.22. Remarks analogous to (2.6) and (2.17) apply to Theorem 11.2.

Remark 2.23. It is not possible to relax the assumptions (2.20), (2.20 ) in an essential

way. This can be seen in the linear case H(x,r,p) - r + b(x) * p , where (2.20) is

equivalent to the Lipschitz continuity of b . See Section V.4 concerning this remark.

Proof of Theorem 11.2.

With the notation and assumptions of Step 2 in the proof of Theorems 1.2 we have, in

the same way,

(2.24) H(xcu(xC),YC + 6 ) - C(y ,v(yC), XF + aC) 4 Im+i N

where j C are given by (2.15). Rewrite (2.24) as

,(H(xu(x ),% +6 ) - "(x ,v(yC ), C+6C )) + (H(x ,v(yC ),A + C

- H(ycv(yC),A C +4C ) + (H(y ,v(yC),A + ) - C(y Cy),A C C

4- Im + I ,

L (ft
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By (2.19) and Y- Y , this implies

(2.25) R M ) C Im + I~m + Ae + B e

where r e A IH(x,,VC ),x +6 C M Hy 'v(ye ),A C+6 )1'
( 2 .2 6 ) B A £ C ,I( c ) A C + 6 C ) " H ( y v y C C) ) E Z ) I

B I" H(yc,v(yE:).A,£+6 €) - H~y,v(yI).+ cl

As we showed before, 6 ,6I + 0 while A. remains bounded. Thus, by (2.18),

Be + 0 as C + 0. Wb need to estimate AC To this end we reintroduce the support

of 0 explicity by replacing 0 by s (x) s(x/a) where s e V(B(1,0))+ 0 4 V 4 1,

P(0) - 1, D(O) - 0. Since V((xc - y,)/a) remains bounded away from zero as C + 0 we

see from (2.15), (2.12) that

lir Sup( W£ + 8 1) < K

for some K . Since Ix. - y E a

lim sup AC 4 sup{IH(x,r,p) - H(y,r,p)sIx-yI 4 a, Ir 4 Rol Ix-YIIPI K} I
- A(ca) .

Then (2.24) implies Y(M) 4 IMI + A(a) . If (2.20*) holds, A(a) 0 as a 40
L (W)

and this proves (i).

To establish case (ii) we will prove that o can be chosen so that

lim Ix C-y I < aa(a) for some c(.) satisfying K(0+) - 0 . Then for C small,

fxc-ycA C C( K.Ma) and the result follows as above. Assume v e BLC(R) and let

P be the modulus of continuity of v . Recalling the proof of Theorem 1.1 we have
V

sup(u(x)-v(x)) 4 sup 0(X-Y)(u(x)-v(y)) 4 lim M 4
a - Ca e40

4 lim 0( e)((u(x )-v(y + 'vI lexp(2acrc) - 11)

4 lim '(----)(u(x )-v(x)) + Pv(a) + IV, lexp(2*c,/)
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Without lose of generality we assume 0 - sup(u(x)-v(x)) > 0 * The above inequality then

implies, with new constants c1 ,C 2  independent of small a and C ,

- t0
M 0 ) ), I - c 2 (P (a ) + c a ")

MO +v ()+cI a 2 v

provided that e is small enough (depending on Q). If we choose to be decreasing,

radial and O(x) = I - bxl
2  

in 1 4 21x12 4 2 , the above inequality implies2  
(lPv 
(
a
t
) + C I Ix -Y l2

2when c2(P(a) + c1ar) 41/2 and we are done.

For the final case (iii) we use the special case of the following lemma in which w

is Lipschitz continuous:

Lemma 11.3. Let w be continuous on e 9 S C1 (Ve) and x e E+(wO). Set

w (A) max{lw(x 0 ) - w(x) IsIx0 -xl }

and

PDOM max(IDO(x0) - D(x)l:tx0 "xI ( A} .

Then for X > 0 with w(x ) P (A)

It*(Xo)I P ) w(x
w(x) --- - -- 0 v(x )P (A)

0 W (x ) A w(x0 )-P M 
+  

0)DO

In particular, if Dw e L (B(x0 ,R)) for some R > 0 then

ID (xo )I
w(x) -- 2--C IDwI0 O 0L7l9(x0,R) )

We first complete the proof of the theorem and then prove the lemma. Recall (2.25),

(2.26) and that

A + -- (u(x) - (x +)) D(x
£~~ ~ £ O (x)

where O(x) - e 2((X-Y )/
a ) * I e 2

rc(Ix J + lye ) ( c and x e E+((u-1 )4). It follows from Lemma 11.3 that the first
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term on the right above is bounded by 2_ 2

IDul + 12ce I

which is bounded independent of C,a * The term D I(x ) + 0 as C + 0 uniformly in

(I . Thus (2.18) implies lir A 0 uniformly in £ , and the proof is complete.
a+0

Proof of Lemma 11.3.

Let > 0 P (A) < w(x 0 ) and set x - IDO(x 0 ) 1 Dt(x. Set

2
Aa #(A) O(x 0+Ax) - (0x ) + ADID(oxa

= O+ 0+Ax) - 0 (xO ) + A I0(X 0 )1)

Then

W(x0 + )xlo(x0+Ax) 4 W(X0 )(x O )

implies

WlXo )(O(X 0 )+AIDO(x 0 )1 + X3 O(X)) 4 W(Xo)O(Xo)

or

0£0
ID6(x0)I W(xo  (Wx )-w(x0+Ax) )

W< + V(Xo0 )a 2# ()
.k:,wl 0 ) 4 I0 wlx 0 +A.)

where the manipulations are justified by w(x 0+AX) ) - ) > 0 . The result now

follows from w(x ) w(x0 +x)I - P (A) , W(x +Ax) > w(x w DO(A)

The final assertion follows from the relations P w(A)/A iiD for X 4 R,
L (B(x 0 ,R))

P..o,(0+) - 0 , and letting A + 0 in the inequality.

-34-

tS



'31

III. Uniqueness for the Dirichlet Problem in Q

In this section we turn to the uniqueness question for

SH(xu,Du) - 0 in

u(x) - z(x) on an,

in the case where n is an open subset of IP and ail * * In this section the

restrictions (2.18)-(2.20*) on H are to be understood by replacing RN by n . The

main result is:

Theorem 111.1. Lat u,v e C b() and (2.18), (2.19) hold. Let u,v be viscosity

solutions of H(x,u,Du) - 0 and H(x,v,Dv) - m in n where m e Cb (). Letib

0= max(lUl , IVlL() ) and y - YR0 from (2.19). Then

i) If (2.20) holds and uI n or vian is uniformly continuous and

lim (fu(x) - UNxO 1 + (v(x) - v(x I) - 0
xen 0 0

x + x0

uniformly for x0 e an , then

(3.2) lY(u-v) + )1 4 max(Im4 + Iy((u-vt )I )
L (n) L (0) L (80)

(ii) If (2.18), (2.19), (2.20) hold and u,v e BUC(O) Then (3.2) holds.

(iii) If (2.18), (2.19) hold and u,v e w1(0) , then (3.2) holds.

Remark 3.3. Remarks analogous to (2.6), (2.17) are valid here.

Proof of Theorem 111.1. We give the proof only in the case when n is bounded. The

general case follows from a combination of the arguments given below and in the proof of

Theorem II.
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Without loss of generality we may assume I(u-v)+ I > I(u-v)+l + I Then (3.2)
L (0) L (M)

reduces to

Iy((u-v) +t)I < (m + I
L (2) L ()

Let P(,x) = Ax/4) as in the end of the proof of Theorem 11.2 and

Me= sup SP (X-Y)CU W)-v (y))

Now u,v e - BUC(A) since is compact. With M0 = l(u-v)+l we therefore
L (0)

clearly have

(3.4) M0 4 Ma aXa)(Mo+v (a))

* where P is the modulus of continuity of v and xaya y

P(Xa -Ya(UXa)V(ya)) = Ma . From (3.4) and the choice of 'a we deduce

I xa-YCa1 ( aG6(a) where 6(0+) - 0 as in the proof of Theoerm 11.2(11). Finally, as

.* a + 0 all limit points of xa ya lie in E+((u-v)) c 0 . Therefore, there is a

compact K c 9 such that Xa,y a e K for a small. It follows that

"- ya ),PQXa - .) e ( )+ for small a . From the assumptions we conclude:

(D ) y-Ya )

Hi(Xa,u(Xa), -(u(xa) - (y) a a 0

(DPa )(xa -ya
H(yafv(ya) , - (u(xa) - vmYa)) (a(x-y) y

which implies (recall the proof of Theorem 11.2)

(M a )  + sup )IH(x,r,p) - H(y,r,p)I."-: L (9 x-y J 'a6l(a)

_,-|Irl R e
Ipl G c/a

for some c . Mreover, if Du,Dv e wD() we may replace Ipl 4 c/a by Ipl 4 c. The

argument concludes in the usual way.
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Remark 3.5. The condition (2.19) can he weakened to H(x,r,p) - H(x,s,p) yR,6(r-s) for

-R 4 s 4 r 4 R, p e R and x e fl - {x: distance (x,30) > 6} with the conclusion being

u v if m '10 and u v on ail.

All the above results require that H(x,r,p) be strictly increasing in r . v*oreover

uniqueness fails without some monotonicity in this sense. An extreme example is H 3 0

We treat one case without strict monotonicity in r via an adaptation of a device of S. N.

Kruekov [181.

For simplicity consider the example

(3.6) H(Du) - n(x) in (2

where we assume

H(O) - 0 , H is convex, continuous and H ) 0
(3.7)

n e C(f) , n > 0 in f, ( is bounded.

Proposition 111.2. Let (3.7) hold and u,v e C() be viscosity sub- and eupersolutions,

respectively, of (3.6). Then

i(u-v)+ I L I(u-v)+ .I
,L (312) L (3()

Proof Let Tec C(R) satisfy Y' > O, Y" > 0 everywhere and Y() - R Let Y

By Corollary 1.8, u = O(u), v = 9(v) are viscosity sub- and supersolutions, respectively,

of

(3.8) Y H('(w)Dw) = n(x) in (2

The Hamiltonian

H(x,r,p) rr n(x)

is locally Lipschitz in r and a computation yields

a - "Cr) [(DH)(Y'(r)p)Y"(r)p - H(Y'(r)p)) + Cr) n(x)
r 2 2
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Since 4 is convex DH(q) * q - H(q) ; -H(O) - 0 and we deduce

3H4 Y"(r)
3r (0(r))2 n(x).

Therefore 1 satisfies the conditions of Theorem III.1(i) and we obtain

NOW - 0(v))+I ' 4(O(u) - t(v))+ I
L (0)

L (C)) L (3Dl)

Since Y can be replaced by TYe (r) - eY(r) + (1-O)r for any 8 e ]0,1] , we deduce

I ( 48 ( u ) - f* ( ) I ( ) 1 ( 4 (u ) - f (v ) ) 1 3

where 0 - . To conclude, we observe that 4e(r) + r locally uniformly as

Remark 3.8. It is worth noting that uniqueness of (viscosity) solutions of (3.6) may fail

if we assume only:

H 1(0) - 0 , H is convex, continuous and H A 0
i (3.9)

n e C(§), n ) 0 in C , C) is bounded.

Actually it is enough for n to vanish at one point to imply in general the nonuniqueness

2 4
as it is shown in the following example: let 0 = [-1,+1, H(p) ipi , n(x) - x

- 1 1 3 C1

Clearly u(x) - - - lxi is a C solution of:
3 3

1;12 - x 4  in 0, =0 on 3 •

On the other hand, if we let u x - 1 for xi > to  and u(x) j ixl3  for
3(X 303

lxi ( tn, where t0 = 2 - 1 / 3, u is a solution of the same equation which is also in C1

except at ± to where the discontinuity of u' is such that u is still a viscosity

solution. Therefore in this example we have two different viscosity solutions.

As remarked in the introduction, all the above uniqueness results are new. No

uniqueness criteria (even for generalized solutions in W1 '0(1)) are known except in the

case of a convex Hamiltonian. In the convex case, A. Douglis (101 and S. N. Xruikov [18]

have introduced the class of semi-concave functions, that is functions u such that
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a2u
u C in D'06) for all 6 > 0 and for all X t l I with 17 definc.d in (3.5)

ax2

and X denoting an arbitrary direction. Uniqueness in this class is proved by the above

authors. P. L. Lions [221 (see also [231) extends these results to the class of functions

satisfying:

Au ( C8  in 0'(0) for all 6 > 0

All these results require convex Hamiltonians and some degree of regularity of the

solutions.

To conclude this section, we observe that in the convex case any Lipschitz subsolution

is a viscosity subeolution and any Lipschitz, semi-concave supersolution is a viscosity

supersolution. (This implies, by the way, that the uniqueness results of Douglis and

Xrulkov are completely contained in ours).

Proposition 111.3: Let H(x,rp) be a continuous Hamiltonian, convex in p

Let u e w1" (') satisfy: H(x,u,Du) < 0 in R then u is a vis..ity subeolution

of H(x,v,Dv) - 0

(ii) Let u be a locally bounded semiconcave function satisfying:

H(x,u,Du) ) 0 in '2

then u is a viscosity supersolution of H(x,v,Dv) - 0

Proof of Proposition 111.3.

(i) We first remark that if u is a locally Lipschitz subsolution of:
J.

H(x,u,Du) 4 0 in '2

then an easy argument shows that we have:

0 H(x,u ,Du ) ( f 0(x in '2

where f. * 0 uniformly on compact sets of $1 and u = u PC with p-

p ), upp p c B I, 1 1 (Observe that H(Du C 4 H(Du) PC if H is convex).
L
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C - CN4ow since u is C * u is obviously a viscosity subsolution of the equation:

H(x,v,Dv) - fC x) in C0 (for any 0 < e ( 0 ). Thus we conclude by a simple

application of Theorem 1.2.

(ii) Let u be a locally bounded semi-concave function satisfying:

H(x,u,Du) ) 0 on 0 * Without lose of generality (restricting if necessary our attention

to each and making a translation) we may assume: u e w1  0), u is concave on

or more precisely: --u  0 in D( x) vx:slxi I (This implies that u is concave on
a 2

every convex subset of 0).

Now let O,k be such that E_(s(u-k)) e * , D+ (n) , k e R and let x0 e+!

E_(-(u-k)). Obviously, there exists P > 0 small enough such that on B(x ,P) we have:

P(xO  Dpx O

u(x 0 ) > k + (u(x0)-k) - u(x 0 - )-k)'(x-x0 ) + Ix-x0iCix)0F P(X (u0 N a 0

where C(x) + 0 as Ix-x01 + 0 . Since u is concave on B(X0,P), this inequality

D (ux0 )k T onld

implies that u is differentiable at x0  and Du(x0 ) DP(x0 ux k). To conclude

we just have to prove that H(x 0 ,u(x0),Du(x 0 )) > 0 . But by assumption

a xn e 9, xn - x 0 , u is differentiable at and

H(XnU(Xn),Du(xn)) > 0

And since u is concave, we have Du(x n ) Du(x ) (all limit points of Du(xn ) are

superdifferentials of u at x0  and therefore reduce to Du(x 0 )).

-40-

! -



IV. Existence of Viscosity Solutions of the Dirichlet Problem.

In this section we establish that the most common method of obtaining generalized

solutions of HJ equations actually provides viscosity solutions. This is done in paragraph

IV. and roughly means that we could take all known existence theorems and generalize

(using Theorem 1.1 in the process) and restate them as results concerning viscosity

solutions. Of course we will not do this - we refer the reader instead to [221 for a

complete treatment of general results of this sort and references to the earlier

literature. However, it seems worthwhile to illustrate the situation by giving very

general new results for a simple model problem, which we do in paragraph IV.2.

IV.A The Method of Vanishing Viscosity and Viscosity Solutions of HJ Equations.

The vanishing viscosity method for obtaining solutions of

(4.1) H(x,u,Du) - 0 in , U x on 3

consists of approximating the problem by ones of the form

(a) -CAu + HC(x,u,Du ) 0 in 0,
(4.1) C

(b) ue . zC on a

where C > 0 , HC, zE are adequately smooth and converge locally uniformly to H,z

respectively. One attempts to prove (4.1) C is solvable for C > 0 , and to obtain

precompactness of the family fu :0 < C < I} in C(0) (or C(f))). Typically this is done

by obtaining (perhaps local) estimates on u and Du€ in L . See 1181 and IV.2 below

in this regard. We prove:

Proposition IV.1. Let u e c2(f() be a solution of (4.1) (a) where H. H as
C

C 0 in C(n x R x Rn ) . Assume C + 0 and u. + u in C(n) and n * Then
n n

u is a viscosity solution of H(x,u,Du) - 0 * If also u. Z on e, z '

in C(Q) and u. + u in C(a) then ut30  z
n
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Proof. Let u. * u in C(Q) as in the assumptions. Fix s e V()+, k e RN  and assume
n

E +((u-k)) * Then for large n there exists x e E (O(u - k)) and, passing to a
nn n

subsequence if necessary, we may assume xn + x E + ((u-k)). By a simple computation we

have on suppp

1 (p(-CAuC + H(x,u ,Du )))

= -C - ((u -k) )) + c (u -k. Ai + 2e D 2P*D (Ue-k)

SP 2

JI (u *k ) 1U.-k

-2C IDV1 2 + H(x,u, D(O(u -k)) i- p

Evaluating this identity at C = -fI x. and using (A(v(u.-k)))(x) 0"£ n

(W (u -k))(x 0 (because xn e z+( (uW -)) we conclude
n

dV'(x I IDW'X )12
CnU (x n-k) 4p(x n  2cn (u (x n)-k) 2

n n n ( x i n

D (x n
._£ ; + HxlnU (xn) (u¢ (N)-k) n

n'- + n~~u 'n' C n n 0(x nn n n

Since x b x e E+ ((u-k)) we find, letting n H , (x,u(x),-(u(x)-k) ) ( 0.
n OW

Thus u is a viscosity subsolution. Similarly, it is a viscosity supersolution and the

result follove.

Remark 4.2. W* could replace u5 e c 2 ( ) above by uC e W 2 ,p(Q), p > N , via Bony's
boc

maximum principle (5].

Remark 4.3. If we obtain a viscosity solution of (4.1) in this way and one of our

uniqueness results applies, it follows that uE converges to this unique solution as

C + 0 . This is known in some particular cases via arguments using considerations of

control theory or differential games (W. H. Fleming (14,15], A. Friedman [16]).

Remark 4.4. This result also shows that the optimal cost function u of the control

problem associated with (4.1) (or the value function In the case of differential games (see

S. H. Benton (41, W. H. Fleming (13,14,15]) is indeed a (or the) viscosity solution.
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Indeed, in these contexts it is easy to show uc converges to u , and the Theorem

applies.

IV.2. A Mdel .Euation.

We will assume

(i) R e c(nW)

(4.4) (ii) Ukbt + R is an increasing homeomorphism of fl onto It

(iii) n e Bux( ).

and consider the model problem

(4.5) O(u) + H(Du) - n in RN .

It simplifies the discussion to follow to assume

(4.6) H(0) - 0 , 0(0) - 0

which amounts to changing n by a constant. We will consider solutions of approximate

problems of the form

(4.7) -CAu C + 0 C(u C ) +Cu + HC(Du C nC

under assumptions given later. Before ding so we obtain the key estimates we need. This

also motivates Proposition IV.3 concerning (4.5).

Loemma IV.2. Let F e c(RN), F(0) - 0 and Y be an increasing homeomorphism of

2N ~R, Y(0) - 0 asume v,v e c (AP) L(e), ?(Dv), P(DV) e L(2") and

() -CAv + Y(v) + F(Dv) m e

Then for v e {+,-

(4.9) Iy(v)V lml I ly(v) V ImV I
L (it") L",(i) L MN) LC D,)

and

(4.10) I(v-v) I sup{ IY'1 (s+I (a-S+1 I ) -+1Y 18)): Id l
,.D) L. )-3- L )
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Sketch of Proof. If x e z+(v) then Av(x) I 0 and F(Dv(x)) - F(O) - 0. Hence, from

(4.8), Y(v(x)) C m(x), and we would have (4.9) with v = + . if E +(v) - * but

v - 0 somewhere, one chooses xA e + (Aixi v) makes the associated computation and uses

AXIAI
2 

4 C to let A 4 0 and reach the same conclusion. For this we need to observe

that Dw e L'(,") because v e L(- ) and -cAv - m-F(Dv) - y(v) e L (a ) by

aseumption. To understand (4.10), let x e E+ (v-v). Forming the difference of (4.8) (a)

and (b) and using A(v-v)(x) 4 0, F(Dv) - F(Dv) at x one finds

Y(v(x)) - Y(v(x)) 4 m(x) - m(x). IWiting v(x) = v(x) + I(v-v)+Il we have

y(114r)-YOLJ) C I(m-m) I -W =vx, r - Iv-v)1

7L(3N) L (R )

But then

r 4 Y-(Y() + I(m-m)l ) . y-(Y())
S)(

and we have (4.10). If E (v-v) - * but v-v > 0 somewhere, approximate by xX e2 - "+

E + 9AN
2 

(v-v)) and let X + 0 . This completes the discussion of Lemma IV.2.

The main result Concerning (4.5) is:

Proposition IV.3. Let (4.4), (4.6) hold. Then (4.5) has a unique viscosity solution u e

CbIN) . Moreover,

(4.11) '0(u)'J L Invl , V e (+,-)(4.1), .), (R.) L'(R)

(4.12) If m e BUC(OP) and v is the viscosity solution of O(v) + H(Dv) - m , then

I(u-v)
+ 1  

a suP(lo- (s+l(n-m) + i ) - S (s)):5 6 C Im , } .L(R) CR) L(,")
(4.13) if s ,p are the moduli of continuity of u,n , respectively, then

up n

-u (r) C eup(5'(8+n (r)) ( - ): 8 C Im .

Sketch of Proof of Proposition IV.3. The uniqueness of viscosity solutions of (4.5)

follows from THeorem 11.2. The Hamiltonian '(x,r,p) - O(r) + H(p) - n(x) clearly

satisfies (2.18). For (2.19) we note that

H(x,r,p) - (x,s,p) O 0(r) - 0(s) Y R(r-s), -R C s 4 r 4 R

-R
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with y R(T) - inf{B(s+) - O(s):lsI 4 R) for T ) 0. Finally, (2.20*) reduces to the

uniform continuity of n

For the existence, let O# H, n E C be approximations of OH. n such thatr ,
B€  e L (R), O' 'A 0, Oe(0) -0 , Se + 0 in C(il) as c + 0,

(4.14) n e BUC(R ) and n£ + n uniformly as C * 0,

H e LW(KtN), Hc(0) - 0, and H. + H in C( RN ) as c + 0

It is then nearly trivial that

(4.15) -CAu + (u ) +C u + H (Du) n

2 N UNhas a solution u e c (a3) n L(a) . One can simply solve the associated truncated

problem in B(O,R) for U£R subject to U£R - 0 on Jxi - R . Then

I (u CR) + cu RI - In' I follows as in Lemma IV.2. Using H C e LG and interior
L C11(0,R))

estimates we conclude -EAuER is bounded in L (B(O,R)) as R + 0 and by compactness

there is a sequence R + a and uE e cI(it), Au e L (,"), such that u + u boundedly
1 Nn e b 2C Rn C

in C loc (I ) while Au CR Au C weakly in Lloc (RN ) . Then (4.15) implies .i ee C"(R").
5 n

Using Lemma IV.2 we conclude

(4.16) I(B£(u) + Cu )In.
L c(zR) L I (R1 )

Since 0, + B locally uniformly and O(R) R 1 , (4.4) implies u, is bounded in
L (RN ) . Moreover, u c(y) solves (4.15) with nc replaced by nc (4y). By Lemma

IV.2) we therefore have

(4.17) lu c(x+y)-u (x)1 4 supIl( c+CI)-l(s+p (CyI))-(OC +e )- ( s)111sI 1 Incl " N }

c L (R)

where P is the modulus of continuity of nc. It is easy to choose ne so that

Pn Pn I and we assume we have done so. Moreover, since B + CI + B locally

uniformly, (0 + i)- I + C-1 locally uniformly. It thus follows from (4.17) that {u I

is equiontinuous. Then there is a sequence c + 0 and u e BUC(V N) such that u, + u
n n

locally uniformly. In view of Proposition IV.1, the existence assertion is proved.
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We have in fact shown (4.13) in the process of constructing u • It follows equally

well from (4.12) by noting that if u is the solution u of B(u) + H(Du) -n , then

vi*) - u(*+y) is the solution of B(v) + H(Dv) - m , m(o) - n(*+y). One similarly

verifies (4.12) by the construction, however let us observe that it essentially follows

from Theorem 11.2. Indeed, if u + H(Du) - n = 0 and v + H(Dv) - n - m-n , Theorem

11.2 implies

Y y((u-v)(I(-ML )I
R LIE(a)

R"max(lul ,Ivl )

Y R(T) - inf(B(s+T) - 0(a)u:s8 1 R).

which is equivalent to

(u-v)
+ 

4 sup{-1 (s+lI(n-M)I - 1 (s):sI 4 maxllml n0
L(W) L (it) LI

The estimate (4.11) follows from the construction. This ends the sketch of proof.

-

,I
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V. Uniqueness for the Cauchy Problem.

We consider the Cauchy problem for HJ equations. More precisely, we consider the

problem L (a) ut + H(x,t,uDu) = 0 in R x 10,T]

(5.1) (b) u(xt) = z(x,t) on 32l x 10,T]

(c) u(t,x) - u0 (x) on n.

V.1. Viscosity solutions of (5.1).

The notations

(5.2) T x 10,T) QT 10,T[

will be used below. The notions of viscosity solutions of (5.1)(a) in QT or is

contained in Section it - (in particular, recall Remark 1.13). Let us restate them

explicitely for the particular equation (5.1)(a).

Definition 5.1. Let H e c(n x 10,T] x R x Be). Then a viscosity subsolution

(respectively, supersolution, solution) of ut + H(x,t,u,Du) - 0 on 0 is a function

0 0 +
u e C( such that: v i e ) , k e R

EQ) Mu->)3(xo,t O) e E+( (u-k),QT) such that

(5.3)
(ulxoto)-k) (u(xo'to)-k)

0 0  1t(Xo'to) + H(xo'to'u(Xo0 t 0  K 0,(Xot0 ) DU t0 )) ( 0

(respectively,

N (V(u-k),Q T) * * ==) 3(X0 t) e E (O(u-k),QT) such that

5._ x0t_0)-k) (ux0,t 0)-k)
.t(Xo,to) + H(x0,t0 ,u(x0,t0 ) ( Du(x0 ,t0)) )0

respectively (5.3) and (5.4).)

0
One defines viscosity subsolutions, etc., in QT by replacing QT by QT everywhere

above. A viscosity subeolution (etc.) of (5.1) is a u e C(QT) which is a viscosity

solution of (5.1)(a) in QT such that u 4 z on an x [0,T], u(x,O) U (X) in n

(etc.).

-47-



owing to the special form of the equation (5.1)(a) with respect to the domain QT we

have:

Proposition V.I. Let u e C(QT) be a viscosity subsolution (respectively, supersolution,
0

solution) of (5.1)(a) in T . Then u is a viscosity subeolution (respectively,

supersolution, solution) of (5.1)(a) in QT

+I
Proof. It suffices to treat the subsolution case. Let o e V(QT) , k e R , u be a

viscosity subeolution in and (xo,t O ) e E+(C(u-k),QT). if 0 < to < T we choose

0 +x e V((OT)) such that 0 4 x 4 1 and X(t 0) 1. Then xo e D(QT) and (x0 t0 ) e

0E + (x(u-k),Q T). By Theorem 1.3 and X'(t 0 0 0 the inequality of (5.3) holds. If

to - T we choose X e C ([O,T]) so that 0 ( ( 1 , Xi- 1 on (0,T-26], X1 = 0 on

(T-C,T] and x, ( 0 . Again XV e D(Q )+ moreover, P(u-k) > 0 at (x0 ,T) implies

fX(u-k) has a positive value for C small. Let (x,,t) e E+(X O(u-k),QT). Passing to

a subsequence if necessary, we assume (xct €) + (xt) E + ((u-k) Qr) Then, by Theorem

1.,(u(X € Ct )-k ) (u(X C€ t C )-k)

OxC~t )  t C¢t¢ X(t ) X(c
+

(u(x Ct C)-k
+ H(xclteou(xc'tt), - (x,t¢) DC(xtt ))0 .

Now -(u(xt )-k) X(t ) ), 0 so we deduce the inequality of (5.3) with (x,t) in place

of (x0 ,t0 ) in the limit. This completes the proof.

Remark 5.5. In the general context of Section I, if 0 c 0 nO u 30 we roughly have that

if u e c(0 1 ) is a viscosity subeolution of F - 0 in 0 and F(y,r,p+AV(y)) is

nondecreasing in A for y e 01\0 and V(y) the exterior normal to 0 at y , then

u is a viscosity subeolution in 01 . However, we will not make the assumptions precise.

We will freely use the assertions of Section I concerning viscosity subsolutions,

etc., in 0 and T In this connection we again recall Remark (1.13) as well as the

fact that if u cI(Q ) and u and Du extend continuously to all of T , then u e
T

C (QT), etc.
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V.2 Uniqueness of Solutions of the Cauchy Problem.

We first formulate the various assumptions we will use in what follows:

H e C(fl X [0,T] x R x RN ) is uniformly oontinuous in

(5.6)

x (0,T] x [-R,R] X B(O,R) for each R > 0

For R > 0 there is a YR e R such that

(5.7) H(x,t,r,p) - H(x,tsp) YR(r-s) for x e 0, -R < S 4 r 4 R,

Ot4(T and pe R.

l rm sup{IH(X,t,s,p)-H(y,t,s,p)I:Ix-yl(+lpl) C C, 0 4 t < T, lei • R) 0
" (5.8) o

for any R > 0

1 im sup{IH(x,t,s,p)-H(y,ts,p)l:lx-yl 4 L, lx-yllpl R R, 0 4 t 4 T, li 4 RI = 0
a+0

(5 .8")

for any R > 0

These conditions are obvious analogues of (2.18)-(2.20*). See section V4 concerning their

necessity.

The main uniqueness result is:

-4

Theorem V.2. Let (5.6) and (5.7) hold. Let u e Cb(QT) be a viscosity subeolution of

ut + H(x,t,u,Du) - 0 in QT and v e Cb(QT) be a viscosity supersolution of vt +

H(x,t,v,Dv) - g(x,t) in QT where g e C Let R0 - max(IUl L(Q IVI L (Q nd

Y Y yR as in (5.7). Set 30Q T  an x [0,T] (5 x {0). Then:

() If (5.8*) holds and ula QT, vi 0QT e Buc(3 0 9) and

lim lu(x,t)-ulxo,to ) + tvlx,t)-v(x0 to)t 0 0
(x,tleQT

(x,t)0(Xo0tO )
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uniformly for (x0,t 0) e 
3
0QT , then

(5.9) IeYt(u-v)+I -CeYt(u-v+I + fTeYS *g(,s) I da

L(QT) L (3OQT 0 L(f)

(ii) If (5.8) holds and u,v e BUC(QT), then (5.9) holds.

(iii) If Du,Dv e L (Q T then (5.9) holds.
!V

Remark 5.10. Remarks parallel to (2.6), (2.17) are valid here.

Much of the proof of Theorem V.2 oonsists of straightforward adaptation of the

* arguments given in earlier sections and we will not repeat these. Instead we treat a

* simple model case to exhibit the only new features. To this end, assume Y e R

(5.11) IH(x,t,u,p) - Yu + i(p)

and

(5.12) = Re and u(x,t), V(x,t) + 0 as lxi + a uniformly for 0 4 t ( T.

We will write H in place of H above. Now choose a(x) - a(x/a), 4(t) *(t/O)

where o e D(aN)+ , e' D([0,T]) +
, s(0) = 1, *(0) = 1, 0 ( P, I 1 , supp#P c B(0,1),

supp* c [-1,11. (In the case of (x,t) dependence of H we would require p(x) = I -

lxi 2
, *(t) - 1 - t

2 
near x = 0, t - 0.) Set

S05.11) m(t) max (u(x,t) - v(x,t)).

Finally, let n e (]0,T[) + and assume
(5.12) E+l(m 0-k):]0,T[) * 0.

Now define

t+s(5.13) M = sup n(--)* (t-s)l (x-y)u(x,t)-v(y,s)-k).

x,yea
N

O(t,s(T

Clearly M a nlm 0 -k) on C0,T] and

(5.14) Ma  max nl(mo-k) as a + 0.
C0,T 0
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Let x Gya e RNa tO, a e (o,T] be such that

(5.15) Ma - n -- ) *a(ta-s a) a(xa-Ya)(u(xta )-v(ya sa)-k).

Because Ix 0 -ya 1 a and u,v + 0 at - uniformly ((5.12)), we may assume (using

subsequences if necessary) that xay a + XoX and tasa + to,t 0  as 0 , 0. Moreover,

by (5.14),

t e E (Nm -k))
0 + 0

and so t0 > 0 . Then

fn((o.s )/2)I*-) (*-y0 ) and n((t +*)/2)* (ta-) a(Xa-*)

are in D(QT)+ for a small and using the assumed proprties of u,v we find

2 + a a~s: Mxa t a - ( a s) a k)

(u(x 't )-v(ya ,s) - k)
a a (xaka) (Doa ) (xaOy a )p) C O,

or t +s
2n t' +--9-- O(t-s O L

[ t+s a ) (V(Ys ) - u(Vc 'aaa + k)

+ Yv(y (u(xata) - v (xyas) - k) g(Y a

Combining these inequalities we find

2 u~ t)-v(y as )-k) + ytufx ,t )-v(y as)
tQ+s aL at a a a aL a a2

n(2

-g(yQ ,s ) Ig(*,s )-I N

5L (
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4 Now let a +O0to find

~TT(u(xc0 ,t)- v(x01 t )-k) + Y(u(x 0 1 t0  - v(xOt 0)0~o

(5.17)

(lg(-,t 0)J (R

we also claim that mo(t0 ) - u(x0 ,to) - v(x,,t0 ), which is in fact clear. Let us review

the outcome of the above that we need. If Na is given by (5.11), n e (10,T[), and

(5.12) holds, we have produced t 0 e E +(T1(m 0 (t)-k)) such that (5.17) holds, which is

nl'(tO

- k ( Cm C t 0)-k) + vn' C t 0) 4 Iq("t) 0

By Corollary 1.12 we conclude,

e t ) 4 0 + fteYsig(- 'a I E
00 L (it)

which completes the proof.
ik

V.3.* The Cone of Dependence

We are out to show that if u,v are two viscosity solutions of

*(5.18) ut + H~x,t,u,Du) - 0 in RN - 10,T)

with u(x,0) v(x,O) on some ball lXI 4 R , then - under natural assumptions -u =v

on the cone li R - t where L is a Lipschitz constant for H~x,t,r,p) in p *We

assume

H e C4'N (0,T] R R)and H(x,t,r,p) is nondecreasing in r

(5.19)NN

for (x,t,p) e R1 x [0,T) 11N

The main result is:
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Ar

Theorem V.4o Let u,v C(N x [0,T)) be viscosity solutions of (5.18) on QT

RNx[0,T] . Let (5.19) hold and

(5.20) u(x,0) 4 v(x,0) on lxI 4 R

(5.21) C = max(IDul a , 0DvI a , - max(Rul , ova a

L (QT) L(Q) L (QT L(QT)

5.22) IH(x,t,r,p) - H(x,t,rq)l C Lip-qj for Ipi, Iqi C C, Irl m , lxi ( R - Lt,

and 0 I t C T.

Then

(5.23) u 4 v on lxi 4 R - Lt, 0 4 t 4 T.

Moreover, this is correct if C = in (5.22), u,v e C(QT), and H(x,t,r,p) is

continuous in (x,t) uniformly for Irl ' m, p e R

This result is a consequence of the following proposition:

Proposition V.5. Let (5.19) hold and u,v e c(Q5T ) be viscosity solutions of (5.18) on

Let A e cQ) , A ) 0 , A - 0 for lxi large and

(5.24) -At > LIDAI in (suppA)0  (the interior of suppA).

0Assume (5.21) and that (5.22) holds for (x,t) e (suppA)0 . If u(x,O) C v(x,O) on

[(x,0): A(x,0) > 01, then u 4 v on suppA. Moreover, the result is valid if C = a in

(5.22), u,v e C(QT) and H(x,t,r,p) is continuous in (x,t) uniformly for

Irl m, p eA
N  •

We prove the Theorem from the Proposition and then prove the Proposition.

Proof of Theorem V.4. Consider

A(x,t) = q(R0 - Lt - Ajxj 1+Q

where g e c (R), g(r) = 0 if r 4 0 , g'(r) > 0 if r > 0. One has

II
suppA = {(x,t): 0 4 t 4 R/L, 1xI 4 W (R - Lt)) }

so
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x:A(x,0) > 01 - fixi < (A 1,R) 14J. 0 choose AA so that

(5.25) (A, 1R0 ) I+0 4 R or 1 4 )RI+0/R 0

whence (5.20) implies u(x,O) C v(x,l) on suppA(.,O). Now g'(R 0 - Lt - AIxi 1+  > 0 on

(suppA)0 and

LIDAI - LA(1+) lxlg'(R 0 - Lt - Xlx 1
l+ )

-At L L g'(R ° - Lt - AIxI +).

if

(5.26) X(I'+)R* < I
0

0we have -At > LIDAI on (suppA) . The proposition implies u 4 v on suppA . We will

be done once we show that we can choose X A(O) , R . R 0(a) so that (5.25), (5.26)

1+0 14*hold and X(o) + 1, R0(a) + R as a 4 0 • Put (1+2a)R . R Then (5.26), (5.25)

become 0

1 0 A < 2)

(1+21) 1/(I+ ) Ra (1+c) R
a

1 0

so we may use AX() - 1/((1+2o) 1 + R ). The proof is complete.

* Proof of Proposition V.5. Let ',a be as in the proof of Theorem V.2 and u,vA as

in the Proposition. We assume

2
M max A (u-v) > 0

suppA
0<t<T

and will reach a contradiction.

Set
H = max a (x-y)c'(t-s)A(xt)A(ys)(u(xt)-v(ys))

a Oa(x.ylal(ta -9)A(x at)A(y asa)(u(xaIt a)-v(ya))
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Clearly M. M > 0 and so t,,s )6 0 and (xat), (y,s) e uppA0  for a

small. Thus
Va SA (u-v) ,xa Ox

(v-v) - - - + H(xct-u,(uv)()) _ 0
at A 0 A

+ a 3U A (u-v) +~ HDALaC~v-uv

where the reader can keep track of the correct arguments in each term. Subtracting these

yields
- A u-v A u-v

- (xa a a (x Qt Tt- aYCSA )  x +

Dx DxA D 0 D A
H(xa+t-,uU-v ) - i(y,.s V,-(-)( - o.

Since u(xatta) v(y aQ ), (5.19) allows us to replace v by u in the third argument

of H above. Now, since (xata), (YapSa (Xot O ) e (suppA)
0  and

S (x - y a) aDAnxdt

a a a a a(x-Ya) + A(xtC ) 

I~u~ 't)-vy'isOP MP() (c,-c,) DA(y Q as

CL a x (y-s))I aS )
: I(.cx.%(, vcy.e ,a C ,L

by (5.21) and Lemma 11.3 we may let a + 0 above and use (5.22) to conclude

aA
S- 2 (x0 ,t0 )(u-v)(x 0 ,t0  - 2LIDA(x0,t0 )(u-v)(x0ft 0 0

000
which contradicts -At > LIDAI on (suppA)O. This passage to the limit is valid if

C < * If C it is valid under the assumption that H(x,tr,p) is uniformly

continuous in (x,t) for Ir 4 m, p e RN

Remark 5.27. There are many possible variants of these results, including continuous

dependence of solutions of ut + H(x,t,u,Du) - g in the cone of dependence on u(x,0) in

1x1 4 R and g in lxi 4 R-Lt. But it is obvious how to obtain these.

Remark 5.28. Results in the spirit of Theorem V.4 are given in A. Friedman (16], S. N.

Xruzkov (201 and P. L. Lions (22]. However, these all deal with generalized (W

solutions obtained via the vanishing viscosity method rather than intrinsically

characterized solutions.
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4 Remark 5.29. The assumption C < - in (5.21) is a stringent requirement - but certainly a

necessary one in general. Typical existence theorems provide W solutions in any case

(e.g. (131, [16), (221).

V.4. Examples of Nonuniqueness.

Let bG C(M) . If the solutions of

Cdx

(5.30)

x(0) = x 0

are "too" nonunique, then bounded viscosity solutions of

Sut + b(x)u x - 0, t>0 , x e R,

-* (5.31)

u(x,O) . Uo(X),

-- ,will also not be unique.

Let us make this precise. Assume for every x0 e R we may choose a solution x -

X(t,x 0 ) of (5.30) defined for t e R in such a way that: X(t,x0 ) is continuous in

-, (t,x0), x0 + X(t,x 0 ) is a homeomorphism of R for each t e R and X(t,X(T,x 0 )) =

X(t+T,x 0 ) for t,T,x 0 e R (i.e., x is a "flow" or one parameter group). We claim that

then

* (5.32) u(x,t) - u0(X(-tx))

* is a viscosity solution of (5.31). The initial condition is clearly satisfied. Let

4% C e (t x (0,W)) +
, k e R and (x,t) e E+(+(u-k)). Then, by (5.32),

P(x,t)(u(x,i)-k) - P(x,)(u0 (X(-i,x))-k) ) O(x,t)(u 0 (X(-t,x))-k)

for all t and x • Put x = X(t-t,x) in this inequality to find

V(x,i)(u(;,i)-k) 0 V(X(t-4,;),t)(u(x,i)-k)

for all t . This implies that t 
+ 

O(X(t-i,x),t) is maximized at t - t and so
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774

Multiplying this relation by (u(x,i)-k)/iP(x,;) we find u2 is a viscosity subsolution

of ut + bux . 0 .Similarly, it is a supersolution and so a solution.

Nonuniquenee arises when X may be chosen in more than one way. In (31 examples of

this may be found. The simplest have the following structures There are classes F of

continuously differentiable homeomorphisms of R such that for f~g e F one has

f'(f- (x)) 3g'(q- (X)). If f * g and b(x) - f Cf Cx)), then

X1 (t'xO) - f(t + f- I (xO)), 2 2 (t'K 0 ) - g(t + lX)

are distinct flows with the desired properties. More complex examples in higher dimensions

are also given in [3].

While this example is for the pure Cauchy problem, it may be regarded as a Dirioblet

problem in a half apace.* To get the Hamiltonian to be increasing in the unknown, set

v - u in (5.31) so that it becomes

v~ t + v +b(x)vx 0

v(x,0) u Wox.
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VI. Existence of Viscoeity Solutions for the Cauchy Problem.

As in Section IV, we will restrict ourselves to a few remarks. Two of the basic ways

to produce solutions of the Cauchy problem are the vanishing viscosity method and numerical

approximation. If the method of vanishing viscosity converges, the result will be a

viscosity solution (Theorem VI.1). This fact may be used in a straightforward way to

obtain many new existence and uniqueness theorems. This is indicated by the very general

results stated for the simple model problem of Paragraph IV.2. The relationship to the

nonlinear semigroup theory is touched on in Section VI.3. Convergence of numerical schemes

to visosity solutions is discussed in (8].

IV.1 Vanishing Viscosity and Viscosity Solutions.

Avoiding useless repetition, we rely on the reader to adapt the proof of Proposition

IV.1 and establish:

Proposition VI.1. Let u€  be a solution of

r u t 
" Au  

+ H,(x'tu,,Du,) " 0 in QTV

u- z on 30 x [0,T], u (xO) u0 x) in

with ut U e C(QT) and ueCb(QT) . Asume et H in C(QT x R x R),

Z' X in C(O x 10,T]) and u * u0  in CA. If Cn ) 0 and u. + u in C(QT),
oe n

4. then u is a viscosity solution of

(6.2) ut + H(x,t,u,Du) - 0 in QT"

If the convergence u. + u is in C(QT) , then u also satisfies
n

(6.3) u- a on x5) [0,T, u(x,0) - u0(x) in

! -58-
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VI.2. A Model Problem.

Let

(6.4) H e c(0) , u0 e suc(0)

and consider the problem

(i) u + H(Du) - 0 in i t" - jO,-- Q
(6.5) (ii) u(x,0) t u0 (x) in R

Our main existence result for (6.5) is:

Theorem VI.t. Let (6.4) hold. Then there is a unique u e C(C) n Cb( T) for all T > 0

which is a viscosity solution of ut + H(Du) - 0 and Q and satisfies

(6.6) tim Iu(*,t) - u o() - 0
t+0 L(RN)

Moreover,
(6.7) lu(x,t)-u(y,t)l ( sup lu0 () - u0(&4y-x)l for x,y e lN, t 0

Finally, if S(t):SUC(I?) - BUC(R N) is defined for t ) 0 by S(t)u 0 - u(*,t), then

is a strongly continuous nonexpansive semigroup on BUC(3?) much that

(6.8) I(S(t)u 0 - S(t)v 0 )+ILM(R N ) ( l(u -v 0 ) I e(.N) for u v 0 e BUC(R* )

The existence of u satisfying (6.6), (6.7) is easily established by the vanishing

viscosity method, and we will not carry this out. (The proof of Theorem IV.3 indicates the

main points.) The uniqueness and the estimate (6.8) follow from Theorem V.2. The

uniqueness implies the semigroup property S(t)S() S(t+T) for tr N 0 as usual. We

remark that (6.7) also follows from (6.8) and the translation invariance of this model

problem as reflected in

v0 (x+y) = u0 x) -> (S(t)v0 )(x4y) - (S(t)u0 )(x).

Actually, Theorem IV.1 follows directly from Theorem IV.3 and nonlinear semiqroup

theory, as recalled next.
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V .3. An m-Accretive Operator.

Several authors, in particular Aizawa [I) and Tamburro [25), reogqnized that nonlinear

semigroup theory provides solutions to the Cauchy problem for HJ equations. We just

sketch this here in our new context for our model problem.

Let R e C(O ) . Define an operator A in BUC(CN) by u e BUC(U N ) is in D(A) if

there is an g e BUC(R") for which H(Du) = g in the viscosity sense and then set

Au = g. It follows from Proposition IV.3 that for each *n e BUC(uN ) and X > 0 the

problem u + AAu = m has a unique viscosity solution u e D(A). Denote this solution by

u Jm - Jx . (I + AA)
"

. It also follows from Proposition IV.3 that

(i) I (JXm-Jn) + ( ( +I-n)
L W") L(R)

(6.9)

(ii) I)(J m- ) A O I(m-n) L.(RN)

*for m,n e BUC(RN). The condition (4.9)(11) is the definition of "A is accretive" in
BUC(B ) • The fact that also R(I XA) - BUC(EN ) is by definition "A is m-accrettve"

in BUC(RN). Clearly D(A) is dense in BUC(EN). By the Crandall-Liggett Theorem (see,

* ' e.g., [2),[73,[11]), the functions u,:[0,61 + BUC(UN ) defined for £ > 0 by

r (i) uC(0) (0 u0

.. (6.101

- e u (t+C)-u etWL (i+) Au (t+C) 0 for t > 0

converge in SUC(UN) uniformly on compact t-sets as 6 + 0 to a limit

Ti hm u (t) - lim (I+CA)
" 
We - S(t)u0

where Sit) is a strongly continuous nonexpansive semigroup on BUC(RN) . we claim

S(t)u0  is the viscosity solution of (6.5). Indeed, let u - S(t)u0 , k e a, % e D(Q)

and E+ ((u-k)) 0 0. Set u C(x,t) - u (t)x). Since ue + u locally unLformly,

E+(P(u -k)) * for E sufficiently small. (The dteontinuities of u (x,t) at
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t - JC are no problem.) moreover, if (xftc) a 3e(Ou -kM) we may assume

(x .t O)+ N E+ ((u-k)). (Pass to a subsequence if necessary or choose v so that

3. + (O(u-k)) - {(Xot )}.) we have

(6.11) p N C It C)Mu CNxCt C)-k) ) A~x,t) (u (x,t)-k).

Since x€ e s+(.(*,t )(u (*t)-k),RN), the definition of A and (4.10)(1i) yield

u C (xCt )-uC (xCt-€ ) -(u (U C N t C)-k)

(6.12) C + H i  Neft d D(xC t C 0

Now, by (6.11)
P(x¢ ,t ) Mu N (I t )  u¢ (x ,t €- e) )=

N(x ,t )(u Cx ,t )-k) - (x,,t -C)(u x ,t,-C)-k)
CC C C C C C C C

(6.13)

S-(,(xCt € )-C x,te-C))(u x ,t C-)-k).

Using (6.13) in (6.12) yields
S ( C t(x ,t )- (x C,t-))

Axe__ C C CCC

+ H(, C Cu (xC -D(xItC
.(x ,t) C

-- Letting e 4 0 we find

- (u(xo , )-k) N t + H (u(xo t )-k) D ON A 0

P(xo It 't0)p

and u is a viscosity subsolution. Similiarly, it is a supersolution and the claim is

proved.
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we make some further remarks below which he lp to clarify the relationship between the

= notions of viscosity solutions and accretivity. (Only the reader who is familiar with

accretivity in spaces of continuous functions and its characterization via duality we see

the remarks in this light.) Assume H e c(Q x R N), g e C(M) and u e C b(). If u is aba

viscosity solution of

(6.14) H(xDu) 4 g(x) in n
i1

and * e C 1(0), then the results of Section I imply

(6.15) H(x,Dt(x)) 4 g(x) on E+(u-*).

The converse also holds. To see this, recall (Proposition 1.19) that (6.14) is equivalent

to

(6.16) H(xa) 4 g(x) for x e n and a e Du(x).

Moreover, a e D+(u(x)) is equivalent (since u is bounded) to the existence of

* e c1(n) n Cb (0) such that u(x) - *(x), DW(x) - a and * > u on 0 \ {x}. Then

Sx} - E+(u - (*-1)) and from (6.15) (applied to 0-1 in place of *) we deduce (6.16).

Arguing similarly with supersolutions one concluded that H(x,Du) = g in the

viscosity sense if and only if (g - H(x,Dt))(u-*) ) 0 on E +(u-*) U E_(u-0) for every

Se c I( ) n C ()

16b

I
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