AD-A103 862 WISCONSIN UNIV=MADISON MATHEMATICS RESEARCH CENTER F/6 12/1
VISCOSITY SOLUTIONS OF HAMILTON=-JACOBI EQUATIONS.(U)
AUG 81 M G CRANDALL, P LIONS DAAG29=80=C=0041
UNCLASSIFIED MRC=TSR-2259 NL




e

e Y

MRC TECHNICAL SUMMARY REPORT #2259

VISCOSITY SOLUTIONS OF HAMILTON-~JACOBI
EQUATIONS

Michael G. Crandall and Pierre-louis Lions

ADA10386¢2

Mathematics Research Center
University of Wisconsin—Madison

610 Walinut Street
Madison, Wisconsin 53706

August 1981
Received March 25, 1981
2\
%
' \’> Approved for public release
;/>’ Distribution unlimited

SponsorW¥® by

U. S. Army Research Office

P. O. Box 12211

Research Triangle Park

worth Carolina 27709 e

T NIRRT e ey, Sy aver -




UNIVERSITY OF WISCONSIN ~ MADISON
MATHEMATICS RESEARCH CENTER

VISCOSITY SOLUTIONS OF HAMILTON=JACOBI EQUATIONS

Michael G. Crandall and Pierre-Louis Lions

Technical Summary Report #2259
August 1981

u pihk €

ABSTRACT
\“;Loblems involving Hamilton-Jacobi equations - which we take tp/be either
of the stationary form H(x,u,Du) = 0 or of the evolution form ui +
H(x,t,u,Du) = 0 , where Du 4is the spatial gradient of u = arise in many
contexts. Classical analysis of associated problems under boundary and/or
initial conditions by the method of characteristics is limited to local

considerations owing to the crossing of characteristics. Global

analysis of these problems has been hindered by the lack of an appropriate

L 1
notion of solution for which one has the desired existence and uniqueness
properties. In this work a notion of solution is proposed which allows, for
example, solutions to be nowhere differentiable but for which strong :
i uniqueness theorems, stability theorems and general existence theorems, as i
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e discussed herein, are all valid. p\
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Introduction:

VISCOSITY SOLUTIONS OF HAMILTON=JACOBI BQUATIONS

Michael G. Crandall and Pierre-Louis Lions

This paper introduces a new notion of solution for first order equations of Hamilton-
Jacobi type (which we call HJ equations below)., Attention will be focused on the following
two classes of problems:

(0. 1) H(x,u,Du) = 0 in 2, u=¢g on 38,

which will be called the Dirichlet problem for HJ equations; and

u, + Hix,t,u,00) = 0 in 8% x jO,T] ,

(C.2)
u==2z on o% x 10,7} , u(x,0) = uo(x) in 8,

which will be called the Cauchy problem for HJ equations. Here and below 2 is any open
domain in lN, z and u, are given functions (boundary conditions) and H(x,u,p)
(respectively, H{x,t,u,p)) is a given function on @ X R x RF (respectively,

2 x [0,T] X R % RN) which is called the Hamiltonian. The notation Du indicates the
gradient of u with respect to the x variables: Du = (ux +***,u ) + We often take

1

N in which case the boundary condition 2z is replaced by requirements on the

asgr
behaviour of u at * .,
Problems (0.1), {0.2) are global nonlinear first-order problems and it is well-known

that they do not have classical solutions - that is solutions u e C'(ﬂ) or

u e C1(9 x }0,T}) = in general, even if the Hamiltonian and boundary conditions are
smooth. Thus these problems have been approached by looking for generalized solutions -
usually solutions u e w:;: () or ue w;;: (% x J0,T]) - which satisfy the equations
almost everywhere. In this context existence results have been obtained by several authors

~ e«g., A. Douglis (5], S. N. Kruzkov {18,19,20], W. H, Fleming [13,14,15), A. Friedman

(16], S. H. Benton [4] with the most general results being given by P. L. Lions [22].

Ssponsored by the United States Army under Contract No. DAAG29~80-C-0041,
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The question of uniqueness of the solutions secems to be more Adifficult. The problems
(0.1) and (0.2) may have many distinct generalized solutions. For example, if = R,
A>0, and H(x,m,Du) = luxl +Au -1, ons checks eaaily that u 2 1/ is a classical i

snlution of {0.1) while

A
- ae X for x € x

>l s

ol
u(x) =

1 A(zxo-x)
T Ae for x ? Xqe

is a bounded, Lipschitz continuous and piecewise analytic function which satisfies the
equation except at x = X, for all choices of the parameters A > 0 and X, € R,
Similarily, setting 8 = R, uo 0, H(x,t,u,Du) = (ux)2 in (0.2), we have the

classical solution u 2 0 and the plecewise linear function

0 for x| >t 20

t - x| for t ? lxl ,

which satisfies the equation classically except on the lines t = gtx, x =0 . 1In

addition, 1if u,v are generalized solutions of (0.1) or (0.2) then so are min(u,v) and 4
1,*

max{u,v). In fact, if the problems are nonlinear, one expects infinitely many wloc

solutions {(e«g., Conway and Hopf [6]).

The uniqueness problem is resolved in this paper by introducing a new notion of

solution. We call these solutions viscositx,solutlons.(f) This notion of solution is given

in Part I where we also develop basic results needed in the sequel. Later we establish,
for each of the Cauchy and Dirichlet problems, uniqueness results for viscosity

solutions. The question of existence in the class of viscosity solutions is also

treated., This, however, usually reduces to checking that the standard existence mechanism

provide viscosity solutions and passages to limits.

(*)This name rafers to the "vanishing viscoslity” method used in the existence ’
results, and was chosen for want of a better idea.
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The nature of the results is illustrated quite well by the following special case.

Take (0.1) with O = RN and H(x,u,p) replaced by H(p} + u - n{x} where H & czh,
ne BUC(IN)(’), {.e. (0.1) reads H(Du) + u » n{x). In this case we take a viscosity
golution of (0.1) to be a function u € Cb(lN)(') which satisfies

Vyp @ c;(n“), ¢ 20, ¥V eR if max ¢(u~k) > 0 (respectively,

min ¢(u-k) < 0), then there exists x, € {x:0(u~k) = maxe(u~-k)}
(respectively, {x: plu=k) = mlnw(u-k)}) such that

{u=k)
H(- (-—;—— Dw)(xo)] + u(xo) < n(xo) (respectively, ? n(xo)).

(0.3)

Under these assumptions, the results to follow imply:
(1) If u is a classical solution of (0.1), then u satisfies (0.3) (Section I).
(14) If u 4is a viscosity solution of (0.1), and u is differentiable at some

Xq, then H(Du(xo)) + u(xo) = n(xy)1 1in particular, if u 4s locally

Lipschitz then (0.1) holds a.e. (Section I).

(i11) If u,v are two viscosity solutions of (0.1), then u £ v (Section II).

{iv) Let {Hm(p) +u - nm} be a sequence of Hamiltonians of the above form and wy,
be a viscosity solution of the corresponding problem. If Hm +H, u *u,
and nm + n locally uniformly, then u satisfieas (0.3). (Section I).

(v) The problem (0.1) has a viscosity solution u and lu{x+y) - u(x)|

< sup(ln(z#y) ~ n(z)):z e RN}. In particular, u e BUC(I“) and if

' %m") then uwec”¥®Y), 0c¢ac<1 (section IV).

ne

It 1s of interest here that the viscosity solution of (0.1} with H(p) + u - n{x) as
above exists and is unique in such generality. Indeed, the solution may be nowhere

differentiable as is seen by taking H 2 0 and n to be nowhere differentiable. Thus we

have a notion of solution of HJ equations which admits nowhere differentiable functions

and permits a good existence and uniqueness theory. It is akin to the standard

distribution theory, hut "integration by parts™ is replaced hy "differentiation by parts"

(t)
BUC({i) (respectively, C,(2)) denotes the space of bounded and uniformly

continuous {(respectively, bounded and continuous) functions on Q.

3=
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and is done “"inside” the nonlinearity. 1It is extremely convenient (as is the distribution

theory) for passages to limits. The only somewhat related ideas we are aware of may be

found in L. C. Bvans (11}, but there is also a definite parallel with the so-called

"entropy condition®™ for scalar hyperbolic equations of the form uc + I fi(u)x = 0 . See
i

E. Hopf [7], Vol'pert [26] and, especially, S. N. Krulkov [20].

Finally we recall that in the case of a convex Hamiltonian other uniqueness criteria

f are known (A. Douglis {10}, S. N. Xru¥kov [18], P, L. Lions (22]). Some of the current

results were announced in (8].

A few words about the presentation are in order. There are many interesting theorems

in this subject. We have chosen what seem to us to be the most basic to discuss in some

detail and then we make some remarks on variants. To keep the ideas clear we give a

"layered" presentation - some proofs are given in simple cases and then more technical and

general results are presented which subsume the simple ones. However, there is little

redundancy, for we use the arguments given in the simple cases without repetition. Toward

the end of the paper we give proofs in simple cases and refer the reader to previous

L 3 argquments which show how to generalize. A first reading of this paper for the basic ideas

could consist of Section I.1 and I.2 through Corollary I.6, Section 1I.1, Section IV and

Sections V.1, V.2, We mention that some of these ideas obviously generalize to nonlinear

! second-order equations. The extent to which this is true is not yet clear and is being

v pursued by the authors. hnother area for which the current results have implications is

numerical approximation of HJ equations. Here we have obtained error estimates which show

the convergence of a class of difference approximations to the viscosity solution [9].
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1. Viscosity Solutions.

I.1 Notation and Definitions. ’

Let ( be an open set in ' ana F(y,s,p) be a continuous function from
Ox R xR into R. We consider the following equation :
(1.1) F(y,u,Du) = 0 in 0.
whote Du = (uy1,"°,uy"). Wa have in mind that (1.1) inclules both (0.1} and (0.2) of the
introductinon. 1n the first case 2= ( and F = H while in the second (0 =& x }0,T{(,
y = (x,t) and F(x,t,u,p) = Pg,q + H(x,t,p1, °'°,pN).

If X 1is a set of functions on 0, then x*  denotes the nonnegative functions in

X and X, denotes those functions in X which vanish off of a compact subset of (.
D(2) denotes the ¢” functions on ¢ vanishing off a compact subset of O, i.e.

(o) = C:(O). Convergence in C({) means uniform convergence on compact subsets of 0 ,
etc.

To partially motivate the definitions to follow, consider a classical (i.e., C1)
solution u of (1.1). Let ¢y € C‘(D) and  yp(y)u(y) = maxeu > 0 . Then D(gpu)(y) =
s{y)Duly) + u(y)Dv(y) = 0 or

Du(y) = =~ l:fg—; Dy(y) .
It follows that
Flyuty), - S gty = 0

We could do a similar computation at a positive maximum point y of ¢{u - ¥} where

Ve C‘(ﬂ) ag well to conclude

Fly,uty), - S =¥ poo 4 pygry =0

vly)
In the definitions which follow we specialize to ¢ Z k € R .

We need gome more notation. For V¢ e C(O), set
E (W) = {y @ O :9%(y) = max ¢ > 0} (the positive extreme set of V),
and
E_(¥) = {y @ 0 :9ly) = min ¢ < 0} (the negative extreme set of V), f
with the understanding that E*(W) =4 {f Y does not assume a positive maximum value

in U, etc. When necessary, the dependence on ( will be recalled by writing '

E 0O, E_(W;0) .
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We now define viscosity solutions of (1.,1) as well as the corresponding notions of

sub- and super-solations.

Definition I.1. A viscosity subsolution (respectively, supersolution) of (1.1) is a

function u @ C(()) such that for every ve D(O)+ and X @ R

E (¢(u=k)) #* ¢ ==> Ty e E _(¢(u-k)) such that

(1.2)
~k)

u
<
¢ (¥ Dely)) 0,

Fly,uly), -
(respectively,

E_(¢(u-k)) *# ¢ ==>Ty €@ E_{v(u-k)} such that

(1.3)
Fly,uly), - fuly) ck) Dely)) 2 0).
e(y)
A viscosity solution is a u @ C(() for which both (1.2) and {1.3) hold, i.e. u 1is both

a viscosity subsolution and a viscosity supersolution,

It will be convenient at times to speak of viscosity solutions of F € 0 rather than
viscosity subsolutions of ¥ = 0 , etc. The reader should notice at this stage that the
equations F = 0 and -F = 0 are not equivalent in the viscosity sense. For example,
u(x) = (x| 1is a viscosity solution of (ux)2 = 1=0 on R, but it is not a viscosity
solution of -(ux)2 +1=0 on R. (The reader can verify this as an exercise or turn to

Section I.4.) However, we do have:

Remark 1.4. u is a viscosity solution F(y,u,Du) € 0 if and only if v = =u is a

viscosity solution of <F(y, = v, = Dv) 2 0.

According to our "motivation", admittedly meager at this point, classical solutions
are clearly viscosity solutions. Complete consistency of the classical and viscosity
nationa of solution requires that a viscosity solutlion u which happens to be ! also be
a clasaical solution. This {3 indeed the case, as is a consequence of subtler facts

presented in the next paragraph.

-?-




I.2., Basic Properties of Viscosity Solutions.

In this paragraph we develop a variety of basic results concerning viscosity

solutions. A matter of concaern will bhe showing that the weak assumptions in Definition I.1

- €.g., the small classes of functions v @ 0(9)+, ¥V £ k € R occuring in the Definition as

well as the "3" in place of "¥" in (1.2), (1.3) - can be strengthened without altering
the notion defined. Before stating results to this effect, we will prove one which
illustrates the convenience of the weakness of the definition.
In order to set the stage for this result, we first give an example showing it to be
totally falge for Lipschitz continuous solutions. Consider the problem
(w2 -1=0 on 1-1,1]
uf{=1) = u(t) =0 .

This problem has a largest Lipschitz solution “max(”) = 1 - |x] and a smallest Lipschitz
solution Yin ® “Ynax ° It has many others. E. g., un(-1) =0 , and un' L] (-1)j on
J=t + j§/2n, =1 + (j+1)/2n[ for 3 = 0,°¢**,4n-1, defines a solution for which

0« u, € 1/2n for each n . Clearly u + 0 uniformly as n * ® , but u 20 is not a

2

solution of (ux) = 1 anywhere. More generally, given any g € C([-1,1]) with Lipschitz

constant 1 and g{(=-1) = g{(1) = 0, it can be uniformly approximated by Lipschitz

continuous solutions of the above problem.

In contrast, for viscosity solutions we have:

Theorem I.2. (Stability of viscosity solutions ). Let {Fz} be a sequence of continuous

functions on 0 x R x RM converging in (0 x R x RM) to Fec(lxgrx RM) and let

[’

u, c{() be a viscosity solution of Pz(y,u‘,Dul) € 0 (respectively, Fy > 0). Let

u, +u in C(0). Then u 4is a viscosity solution of F € 0 (respectively, F » 0),

Proof of Theorem I.2., Assume u, is a viscosity solution of Fz <0, Let ¢ @ D(O)*

and y € E _(¢(u-k)). Then for large £ w(y)(ul(y)-k) >0 so E*(w(uz-k)) #0 and, by

assumption, there exista ¥y @ E+(v(ul-k)) for which

A MBS B it



(uglyg)=k)

(1.5) Fg(yz,uz,(yz). "-———m—;-)-——

DY(y,}) € 0.

Now Yy, @ supp ot and thus there is a subsequence Ygq, convergent to some ; el,
Moreover ¥(u-k) < 1lim max(¥(u,-k)) = lim Py tuly k) € v(y) (u(y) k) so0

y e E _(¥(u~k}). Letting L + » through the subsequence £' 4in (1.5) and using the

assumed convergence Fl +* F we have
F(;,u(;)l -

Thvs u is a viscosity subsolution. The proof for the case Fy 2 0 1is the same or one
may use Remark 1.4. The proof is complete.

The next result summarizes the implications of the sequence of arguments which follow
it and outlines the extent to which the definition of viscosity solution could be
strengthened without changing the class of such solutions. If ¢ € C{() we set

dy) = {y @ 0: ¢y is differentiable at vy},

Theorem I.3. Let u be a viscosity subsolution of F =0, ¢ @ C(O)+ and Y e Cc(®.

Then

(u~y)
L'

(1.6) Fly,u, - Dy + DY) €0 on E (¢(u=$)) 0 dlp) n di¥).

If u is a viscosity supersolution, then
{u~y)
'
while if u is a viscosity solution both (1.6) and (1.7) hold.

(1.7) Fly,u, ~ Dg + DY) 2 0 on E_(v(u-¥)) o d(¢) n d(¥),

We prepare two lemmas. A key ingredient is the following formulation of a result of

L. C. Evans (11],

(*)
Suppy¥ denotes the support of ¢ .




Lemma J.4. Let ¢ @ C(0) be differentiable at vy, € (. Then there exist functions

1
¥, and ¥_ such that W: e Cc(O)' Wt(yo) = ¥lyy), th(yo) - Dw(yo) and ¥ > v, V_< ¢

on Blyg.r) \ {yo) {Y) for some r > 0 .

Proof of Lemma I.4, Replacing ¢ by ¢(y) = ¢(yo +y) - v(yo) ~ Dw(yo) . y(") we can

assume y, = 0, ¢(0) =0, and Dg(0) = 0 . It suffices to exhibit W+ « By
assumption, ¢l(y) = |ylply) where p @ C(() and p(y) * 0 as |yl * 0. Set plr) =

sup{p(y) : y € 0 n B(0O,r)} and
v = 1Y Giaras + 191%
Iyl
m— 1 -
Let B(0,h) ¢ 0. Then ¥ _e€C (B(O,h)), ¥, (0) =0, ¥.(y) 2 lylelyD + iy >
lyloty) ~ (y) for y e B(0,n)\{0} by the monotonicity of 5 , and D¥ (0) =0 . This

V. may be modified outside B(0,h/2) if necessary to achieve ¢+ e c;(O).

+

We next prove:
Lemma I.5. The assertions of Theorem I.3 are valid if also ¥ Z k € R is a constant.

Proof of Lemma I.S5., It suffices to show (1.6) holds for viscosity supersolutions (recall

Remark 1.4). Let ¢ @ c{h' be differentiable at yo € 0 and Yo € E fefu=k)). It
follows at once from Lemma I.4 that there is a ¢_e C;(O)+ such that

V_{yy) = vlyg)s D¥_(y)) = Dplyy) and ¥ <y on supp¢_\(yo} . Then

(1.8) {yg} = B (¥_(u=i0).

Next choose a sequence (Wl}:-1 c D(®" with supports contained in a fixed compact subset
of ( so that Y *¢y_ and Dvl + DY_ uniformly. For large x, wl(yo)(u(yo) -k) >0

so E+(¢l(u-k)) # 0 and, by assumption, there exist Yy e E+(¢£(u-k)) such that

(t)

B(yo,r) denotes the open bhall of radius r and center Yge
(te)
a4 + b denotes the Buclidean inner=-product of a,bh € !M.

-10-
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(u(y‘)-k)

(1.9) F(Y,..u(y,.)o - W Dwz(yl)) €0,

Pas3ing to a subgequence if necessary we may assume Yy converges to a limit y . Clearly

y e E*(W-(u-k)) and then y = y, by (1.8). Sending L to * in (1.9) and using

1
PtV dn C, V_(yy) = vly), DV_(y,) = Doly,) we conclude

(ulyy)=k)

P(yo.u(yo). - -1;7;;7-— Dw(yo)) <0,

whence the result.

Proof of Theorem 1,3, It suffices to consider the subsolution case, Let vy € C(O)+,

vech, Yo € E (¢lu=$)) n d(y) n &lY). Set

~ - uly) < yiy)

viy) = ¢ly) aly) = w"o) x(y)
where X @ D(O)* satisfies 0 ¢ x <€ 1, x(yo) = 1, and X vanishes off a neighborhood
of y, on which uly) > W(yo) + Then

QITM(uly) = ¥lyg)) = X(¥Ivty) (uly) = ¥(y))

which is clearly at most Wyy) (ulyy) = W(yo)), il.e. ¥, © E+(;(u - w(yo))). Since

and § are differentiable at y,; and

wv(yo) - vly)

uly) = %(x) -1 4
uly) - ¥ly,) uly,) - *(yo) + ufy) = ulyy)

w(y0> - ¥y

+ --————“(yo) - “Yo’ + o(ly-'yol)

= 1

we have

~ )
DAy,) = DAyy) = m D¥(yy) o

The result now follows from l.emma 1.5 applied with k = w(yo) and ; in place of ¢

Using the above results it ls now simple to prove:

Rl o TR e




Corollary I.6. (Consistency) ILet u be a viscosity subsolution (respectively;
supersolution, solution) of ¥(y,u,Du) = 0. Then PF(y,u,Du) € 0 (respectively;
F(y,u,Du) » 0, F(y,u,Du) = 0) on d(u).

Proof of Corollary I.6. It suffices to treat the supersolution case. let y, € d{u) .

1

Choose ¥ e cc(O) such that W+(y°) - u(yo), D¢+(y°) = m(yo) ana ¢v+ >u in a
deleted ball B(yg,h) \{y,} . Choose y e D(0)* with suppy ¢ Blyy/h),

0<¥ <1, ¢(y)) =1 (s0 Dvlyg) =0). Then {y )} =~E (p(u=~¥_ +1)). By Theorem

I.3 and the assumption that u is a viscosity supersolution, we have

(u(yo)-0+(yo)+1)
L4 (Yo)

Flygoulygd, < Dely,y) + Dvh+(y°)) = F(yo,u(yo),bu(yo)) >0,
and the proof is complete.
The next two results are concerned with changes of variables.
Corollary 1.7, Let u be a viscosity subsolution (respectively, supersolution, solution)
of (1.1). Then:
(1) If qec‘w), g>0 in 0 , '&ec1(o) and v = g(u-¥), then v is a viscosity

solution (respectively; supersolution, solution) of G(y,v,Dv) = 0 where

Gly,r,p) = Fly, =5 + wiy), =2 L B~ 4 pyqy)y.
gly) 2 gly)
gly)
(14) If ® : 0+ 0 is a ¢! diffeomorphism of the domain ( onto the domain ( , Then
v(®(y)) = uly) defines a viscosity subsolution (respectively; supersolution, solution) of
G(y,v,Dv) = 0 where
- . " - "

G(y,r,p) = H(¢® (y) rrlPDo(O (y))

and pbD¥(y) denotes the action of D®(y) on the cotangent vector p .

We omit the proof of Corollary I.7 as it is an easy exercise given Theorem I.3. To

conclude this section we obtain a partial result concerning nonlinear changes of the

unknown .
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Corollary I.8, Let u be a viscosity subsolution (respectively; supersolution, solution)
of {1.1) and let ¢ e C1(l), $' > 0 everywhere and ¢(R) = R, Then v = ¢(u) is a
viscosity subsolution (respectively; supersolution, solution) of

(1.10) Fly, 8 vy, @) (viov) =0 .

Proof of Corollary 1.8. We treat the subsolution case. lLet u be a viscosity subsolution

of F = 0. Ve claim that, if x; @ E_(v(v=k)) (with v € D(@)", k € R} then there exists

~ + o~
v e c;(ﬂ) , k € R such that

R (ulx)=K) _ vix, )=k
X, & B tvlu=k)), ~—3 Dv(x,) = -Y'(v(xo)) iy D¥lxg)
'P(xo) 0

where Y¥(t) = 0-1(1:) . This obviously implies the Corollary.

Now, to prove our claim, we argue as follows: we have for Ix-x0| small
w(xo)
vix) < 00 (v(xo)-k) + X

(1.11)
(v(x_ )=k)
< v(xo) - v(xo) Dw(xo)°(x-xo) + Ix-xole(lx-xol)

where € @ c(l+,RM) and €(t) * 0 as ¢t * 0+, Thus, for lx—xol small, we obtain since

¥ is nondecreasing

v(xo)-k
u(x) € Y’(V(xo) - [—mo—))w(xo)'(x-xo) + Ix-xOIE(Ix-xol))
- vix,)-k -
€ u(x) = u(xo) - ‘{"(v(xo))( w(xo))w"‘o"“""o' + Ix-xOIC(Ix-xol)

for Ix-xol small enough and E e C(R+,RM), €(t) *+ 0 as t *+ 0+. But the right hand side
member \: of the above inequality is a continuous function differentiable at X and

~ ~ 1 + ~-
therefore by Lemma I.4 we may find k and v & Cc(ﬂ) such that: ulxy) = k > 0

x, € E, ($(u=k))

0
. ulx )=k vix )=k .
=Dy (xy) —< - -Y‘(V(XO))W DY(xq)1  supp¥ < B(xy,h)
\a(xo) 0
{13~
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X where h is small enough in order to have: u(x) € ;(x) on B(xy,h). We may now
conclude since we have for all x:
(1.12) W) (u(x)K) € plx) @00k plxy) (xg)=K) = lxy) (ulxg)X)

and thus Xy e E*(\P(u-k)) .

Remark 1.13. We pause here to consider the case in which { is not an open subset of

; . Indeed, in later sections we will want to use some of the above results when 0 has
‘ the form O= Q x (]0,T]). We claim that all we have done is correct in general if one

. interprets the definitions appropriately. This means: 0(0), c'(0), etc., should denote
restrictions of functions in D(l“), C1(IN), etc. to O (with, in the case of D((),

{x @ O:u(x) # 0} 1lies in a compact subset of ( , etc). The other point is the notion of
"differentiable®. We will say ¢ e C(()) is differentiable at yo © 0 and Dy(yy) =z it
there is an extension of ¥ to 5 e C(IN) such that D;(yo) = z and moreover, for any
extension of ¢ ¢to J e C(IN) differentiable at Yor D;(yo) = z, (In the case
where ¥ has some boundary which is sufficiently smooth, e.g. v = Q x ]10,T), all notions

coincide.) The reader can think through these claims.

1.3. Piecewigse Smooth Viscosity Solutions.

. In this section we consider piecewige C‘ functions and determine oconditions on the

discontinuities of their derivatives equivalent to being viscosity solutions of F = 0

Consider the situation in Pigure 1:

2

e

!’J A ”‘_,,frzyl=f(y2,-..ym)
A ]

. (v 0meyy)

\'4
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which is meant to indicate that ( = 0+ u0_uT is divided into two open parts 0,

and (_ by the surface [ . The unit normal to T at Y, @ T is n(y,) and it points

into O,. A function u e C(0) is givenas u, in 0 uTl and u in O ul . e

+ + -

assume [ is of class c1 and so may be represented by a relation of the typical form
Yy - f(yz,'",ym) near y, e I, where f e c1 . We assume u @ C(() and u, €
C‘(Ot uT). when is u a viscosity solution of F =0 in (0 ? We will use the

following observations:

Proposition 1.9, (i) If u 1is a viscosity solution of F =0 in 0 and (' is an open

subset of O then ulo.(” is a viscosity solution of F =0 in 0' .
(11) If ue c(0), O is the union of relatively open subsets 0, and 0, , 0= 0O v
02 and ulo. is a viscosity solution of F = 0 in 01, i = 1,2 then u is a viscosity
solution of F =0 in 0.

That is, the property of being a viscosity solution is purely local. Part (i) of the
Proposition is completely trivial and we leave part (ii) as a very simple exercise.

To continue, assume u € Cc(0) is a viscosity solution. Then uy is a visoosity
solution in 0*. But uy lie in C‘(O*), 80 u, are classical solutions by Corollary

1.6. Let ve DO, y, @ E.(¢lu-k)). If yo e 0, u 0 we then have
0 + [1] +

Dw(yo)

oy ) T °

Flygoulyy), = (ulyy)=k)
by the opening remarks of this section. It remains to consider ¥y el , and we assume

Figure 1. Let

T -{Tenusn(y)'f-o}
Yo 0

be the tangent space to I to Yo and Pps By = I - pp be the orthogonal projections

(t)
ulo. means the restriction of u to 0O' ,

-5
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‘. on Ty, spanin(y )}, i.e. p.y = (nlyy) * yinly)) . Since u,, u_ agree on
, Py Du lyy) = Pgp Du_(yg)e When yq @ E (¥(u-k)) n T we clearly have:
+ @ - - -
. Tyo 9T (t) W(yoﬂ)(u(yoﬂ) k) satisfies DTO(O) 0o,
v(y°+an)(u+(yo+an)-k) - W(yo)(u(yo)-k)

1lim €0
ato a

: Ay, +an) (a_ly +an)=k) = wly_)(uly)=K)
; lim — 0 .0 >0,
N ato a

¢ These relations amount to:

1
tuly,) =k
X BTN PrPWAY,) = PpDu, (vg) = pyDu_(yy) o
- (uty ) =k) - .
Plyg) Dyly,) * nly,) 2 Du (y,) * nly,)
§ (ulyy)-k) N -
R - -—-;G;-)-—W(yo) * nlyg) € Du_(ys) * nly,).
= Hence
L]
’ (ulygy)=k) .
Py Dyly,) = pybu_(y,) + &nly,)
. for some £ e (Du(y,) * nlyg), Du_(yg) * nlyg)l
s § :
N
b e
1': We conclude that the condition
1 vy, erl, v&e (buly) *nlyy), Da_lyy) * ntyg)l
2 (1.14)
é Flygeulyqy). p,rDut(yo) + En(yo)) <0
4

implies u is a viscosity subsolution of F = 0 . Similarly

vyoeT, vie(bu(y) *nlyy, Duly)) * nlygl ,
! (1.15)
Flygsulyy)s Py Dut(yo) + En(yo)) >0
-16~
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implies u is a viscosity supersolution of ¥ = 0 . Note that if, e.g.,
Du_{yg) * n(yo) > Du+(y°) . n(yo) then (1.15) is an empty condition, etc. In fact,

(1.14), (1.15) are necessary as well as sufficient. We prove:

Theorem 1,10, Let 0, 0,, 0_,T, u, u, be as above, Then u is a viscosity solution of

F=0 4in ( if and only if u, are classical solutions in 0* and (1.14), (1.15) hold.

Proof. The sufficiency has been shown. We consider the necessity. First let

£ = DU_(yy) * ;(yo) - Du_(yo) . ;(YO)' In this case u is differentiable at y, and
Du(yo) = P, Dut(yo) + E;(yo)- By Theorem 1,2 we have
Flygeulyg), Dulyg)) = Plyg,ulyg)s poPu,lyg) + &nlyg)) = 0
so (1.14), (1.,15) hold. Next assume that Du_(yo) . ;(yo) > £ Du+(y°) . ;(yo) « We
claim that then there is a Y e C1(0) such that W(yn) - u(yo), ¥ >u in a deleted
neighborhood of y, and DW(yO) = Pp Dut(yo) + E;(yo). If this is so, choose v & D),
0< <1, v(yo) =1 and ¢(y) <1 for y # Yy ®° that 1 > ¢{(¥=-u) » 0. Then
fyo) = E _{olu-¥+1)) and by Theorem I.3
Flygsuly ) sDblyg)) = Flyp,ulyg) ipgPu,(y) + Enty ) <0 ,
80 we have (1.14). The case in which (1.14) is an empty requirement is similar. It
remains to exhibit ¥ . By Proposition I,9 and Corollary I.7 we may localize and change

variables. Hence agsume Yo = 0 and T is Yy = 0 . We have

u ly eteey) ir y, >0
u(y1,"‘,ym) -
u_(y,,"',ym) if y1 <0,
and 3 3

- +
.5;_ (O‘YZ"..'ym) - -5;— (0'Y2'...'Ym) { = 2'ooo'm ‘
i i

3u+ du_
s_— (Olol'..'o) < 5 < 3- (0100..'10) .
Yy Yy

S

PRTEe =




-

" el o

WL
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Let ¥ ly,/* ey ) 2 u (0,y . ®yy,) with strict inequality if (y,,***sy ) # (0,°°°,0)

2
0
in some neighborhood of (0,*°**,0), ¢0(0,°°',0) = ut(o,o,-~~,0), g;: (0,0°°,0) =

du
H (0,°°°0) for i = 2,°**,m, ¢  exists by Lemma I.4. Then set W(y1,'°',ym) -

0

i
*o(yz,"'.ym) + Ey1 . Clearly ¥ has the desired properties and the proof is complete.

To illustrate this result, consider the example solution u =0 for (x| >t >0
u=¢t - |x| if Ix| €t of u, + (ux)2 = 0 in the introduction. lLet [ be x =0,
+>
n(e,t) = (1,0). Then F((x,t),u,(py,py)) = py + (p,)z, u, =t -x and u_=1¢t + x in

the appropriate domains. We have
PT“t(O:t) = (0,1)
- ry
D“+(°'t) *n(0,t) = =1< 1= D\l-(olt) * n(0,t)
but P(pm (0,£) + En(0,e)) = 1 + £250 for -1 < E< 1 so (1.14) fails.
We remark that the conditions (1.14), (1.15) were anticipated by Oleinik {24] in a

special case. Moreover, an alternative way to obtain these results is given in Section

I.5.

1.4. Differential Inequalities in the Viscosity Sense.
In this section we treat some elementary inequalities in the viscosity sense. The

first result concerns the one dimensional case.

Proposition 1.19, Let T > 0 and g,h @ C([0,T])., Assume g is a viscosity solution of

(1.16) g' €h
in 10,T(+ Then

{(1.17) glt) S gis) + [Entvar for 0 Cact .
s

-18-
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Proof. It is enough to show (1.,17) for s = 0 and for this it suffices to prove that for

€>0

(1.18) glt) S$g(o) + [Enmas +e+et, oOo<esT,

Assume (1.18) is false and let t eo]o,'r[ be the least t for which equality holds in
(1.18). Set W(t) = g(0) + /S his)as + € and note W(0) > g(0), WE) < g(¥). Choose

§ > 0 such that ¢(t) > q(:) on (0,8] anda ne c'((o,r))+ such that n' < 0 on

{6,T] and n(T) = 0 . Then there is a t, @ E (nlg=¥)) and t, € 18,T({. By Theorem 1.3

0
nh (e )
-;TE;T (gltyi ~ W(to)) + W'(to) < h(to).

Since n'(to) < 0 we have
' -
¥ (to) h(to) < h(to)

which is a contradiction.

Remark 1.19., It follows from Proposition I,11 that (1,16) holds in the viscosity sense if

and only if it holds in the sense of distributions.

Corollary I.12. let T >0, YE@R and g/h @ c({0,T})s Let g be a viscosity solution

of

(1.20) g' +Yg€h on jo,T{ .

Then

(1.21) e ta(t) € e %g(s) + [T e Thim)at  for O0CsSEt<T.

8
Proof., By Remark 1,19, (1.2) holds in the sense of distributions and then it is known that

(1.21) holds. (Of course, one could prove (1.,21) directly by adapting the proof of the

Yt

Proposition or by using Corollary I.7 to find (eYtg)' € e h in the viscosity sense.)

In the next result we show that u is a viscosity subsolution of
]
(1.22) 5;'1'“("1'72""":;1) - g(y1,"',ym)
exactly when the corresponding statement holds for the functions of one variable

r?* u(t,yz,-.-:ym) obtained by fixing (yz,-..,ym) .

=10=




Proposition I.14: Let u,g @ C(0). For z = (y,,**%y,) @ M-t let

0, = {rs(r,2) @ 0).  Let wu (x) = ulx,z), g,lr) = glr,z) on Oz . Then the following

are equivalent:

M~1

For each z @ R v, is a viscosity solution of .
(1.23)
r £ .
u €g, in Oz
u is a viscosity subsolution of
(1.24)

?
5y—"u(y1:" .ym) = g(y','".ym) in 0.

Proof. We show (1.24) implies (1.23). Let 2z, e 1 be such that 0z 6. Let

0
neD0 ), xeR and r, e E (N(u_ =k):0_ ). Using Lemma I.4 in the usual way we may
z, 0 + z, z,
assume {to} - E‘_(n(uz -k):Oz )o Pick y @ D(B(z°,1))# such that ¥(z,) = 1 . Set

0 0
we(z) = o(z/€)s For € > 0 and small, n(y‘)wc(yz,"°,ym) e D(O)+ and there exisgts

(r .z, € E+(nv(u—k):0). By assumption,

n'(re)

(1.25) - -;T;:T (ulr iz )-k) € glr ,zcde

Clearly z  * z4 and r. * r, as ¢ + 0, Thus the result follows by letting € + 0 1in
(1.25).
It remains to show that (1.23) implies (1.24). However, this amounts to checking the
definitions and is left to the reader.
The next result is concerned with more general directional Aerivatives.
M

Theorem I.15, Let v:0 * R be continuously differentiable . Denote by Y(T,y,) The

golution of

ay
-V, ,

(1.26)
Y(O.yo) " Yg ¢

o~

[
i
:
4
!
H
%
i
1




Proof., If V(yo) =0 , then Y(T,yo) y

which is defined on a maximal interval of existence Iyo « (By assumption

Y(Iyo,yo) c0). Let u,g€@C(0) and u be a viscosity solution of
(1.27) (Du} = v<g in 0.
Then for vy, € O,s,t € Iyo and s € t one has
(1.28) ul¥(t,y ) = ul¥ls,yg)) € f‘g(v(r,yo))dt .
s

0 and there is nothing to show. If
v(yo) # 0 , we may rotate coordinates so that V(yo) - (V'(yo),o,"',O). Without loss of
generality we also assume Yo = 0. Consider the change of variables ? defined near
Yo = 0 by
°(y1,"',ym) = (;1,"°,;m) C==> (Yl’.'.’ym) = Y(;1,(0:;21'°':;m)).

Then, with the notation of Corollary I.7 and H(y,r,p) = p * Vy) - g{y), we have

~

Gly,rop) = pDO(® " (y)) * w3 gy - g0y

-1 *
=p, - gt ().

(0f course, this is merely the statement that 3/3y1 = Ve (3/3y1,--°,3/3ym)). Thus, by
Corollary I.7, u(0_1(y)) is a viscosity solution of

3 _q A

o u € g(¢ 1(y)).

3y1
Propositions I.14 and I.11 then yield

- - -1
u(? 1(tlol‘..lo)) - u(é® 1(9101"'10) < ftg(o (t,0,°°*,0))dr
8

for s €t and |s|,lt| small. But this means

a(1(t,0)) - u(¥(s,0)) < [Saty(r,0nar .

s
While this inequality is only established for |s|,lt| small, it is then trivially

extendable to t,s € I, , s < t,




Corollary 1,16, Let U be convex, u @ C(() and L@R. If for every ve@ I 0O and

k @R .

(1.29) (“wk) lwl $L on E(elu-k))

then fu(y) = u(y)| €Lly -~ y| for y,y e 0.

i Proof, Fix y,y @ Owith y #*y, Put V= (ly - yl)-1(; ~y) . PFrom (1.29) it follows

that u is a viscosity solution of Du * V&L {n (0 . By Theorem I.15

uly, + tV) = uly, + sv) < f"‘ MAT = M(t-s)

whenever s €t and y,, y, +tv, y +sve 0. sac Y -y,t-ly-yl, 8 =0 to
0 0 0 0

obtain u(y) - u(y) < Lly - yl. Since we may interchange y and y , the proof is

complete.




I.5. Characterization of Points in Some E_(v(u-%)).

s o S

According to Theorem I.3, if u 18 a viscosity solution of F € 0 , then

F(y,u, -L%!LDWDW) €0 on E_(elu~¥)) n dly) n d(¥) .
One is naturally led to ask: What are the points y belonging to some

E+(\0(u-0)) n da(y) n A(Y) and what are the possible values of -(-(%i)mw) + DY at such

points? We prove:

Theroem I.17. Let u @ C(0) and Yo € 0, ae R'. Then the problem

Yy © E feu=¥)) 0 () nath) ,

(1.30)
(u(yo) - Wyo))

‘”Yo) D\P(Yo) + DWYO) =a

has a solution ¥ e c(O0)? , ¥V ecC(0) if and only if there exists 5e C‘(O) such that
a(yo) = u(yo) ’ E ? u near Yo and DE(yO) = a., If E, is replaced by E_ 1in (1.30)

and 5 >u is replaced by E € u , the statement remains true.

Proof. We first observe the sufficiency. Let ie C‘(O) and E € u near Yo °

Choose vy € c'(O)" with a strict maximum value of 1 at Yo and suppy c {3 < ul. Then

(u(yo)-i(yom)

yer+(¢(u-W+1)) and - ’“yo)

D\O(yo) + Di’(yo) = Da(yo) since Dglyy) = 0.

The necessity is equally simple, Since Yo e E*(w(u-%) nd{y) n &(¥) implies

1

uly) < \F—(-;T (w(yo)(u(yo) - W(yo)) + Wy)

near y; and the right-hand side ia differentiable at Yy with the derivative

(u(yo) - WYO))

- —_7_(-;;)-—— DV’(YO) + D"(Yo) .

we may majorize it near Yo by a ﬁe C‘(O) which agrees to first order at Yo (Lemma

I.4). This completes. the proof.

-23=-

EP VR AT L ST




Remark (1.,31), By Lemma I.4 we may equally well characterize the pairs (y,,a) for which

(1.30) has a solution by the condition

max{(uly) ~ tuly,) +a* (y - yo)).O)

lim

Iy = ¥,1 0.
Y, 0

Corollary I.18. Let u & C(U}. Then
~ ‘ -~ -~
A, = {yo el:avec (0y, Viy,) = uly,) and ¥ > u near yo}
is dense in 0. similarly, the set A_ defined as above with I' ? u replaced by u ? ;

is dense in 0.

Proof. If y, e 0 and € >0, choose v e c;(())+ so that v(yy) > 0 and
suppy c B(e,yo). Then E (¢(u - (u(yo) = 1)) is nonempty and it follows from Theorem

I.17 that it is ocontained in B(yo,e) n A* . whence the result.

Remark.1.32. One cannot expect A, to be much more than dense (e.g., of full measure,
second category, etc.) since A, 0 A_ = d(u) may well be empty.

We may also use these results to reformulate the notion of a viscosity solution as

follows:

Let u e C(() and Yo © 0 Set

(aly)-uly )-as (y=yg)) "

D+u(y0) - {a e RN: lim Ty=y 1 = 0}
bae Y™
and
- (uly)-uly,) - as{y=y,))_
D uly,) = [a e R: lim 9 9 = 0}.

Y, ly=y,|

+ - k4
where r = max{(r,0), r = -min(r,0). In general, D u(yo) are empty, but by Corollary
1.18 each is nonempty for a dense set of y, e 0. The next result is an immediate

consequence of the above consideratinns:




4
Propogition I.19 Let u € C{ ). Then:
~. (i) u is a viscosity solution of F € 0 1if and only if
(1.33) Fly,u(y),a) € 0 for every ye 0 ana a e pluly).
(ii) u is a viscosity solution F ? 0 if and only if
(1.34) F(y,u(y),a) >0 for every ye ( and a e D uly).
N (iii) u is a viscosity solution of F = 0 if and only if (1.33) and (1.34) hold.
‘ One can use Proposition 1.19 to give another proof of Theorem 1.10.
1
o
b -, ’
.
=
5
e 1
h
]
3
“

.o g

.

-
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! II. Uniqueness for the Dirichlet Problem in IN.

In paragraph I1.1 we Lreat the simple case
(2.1) u + H(Du) = n(x) tn ®Y,
After this the general case
(2.2) H(x,u,Du) =0 in R,
1 which involves technical assumptions, is discussed.
Ir.1. Equation (2.1).
' We consider two problems
(1) u + H(Du) = n(x),
(2.3)
(1) v + H(Dv) = m{x),
where
(2.4) Hec®) , ne (@), me sucE).

The main result concerning (2.3) is:

Theorem II.l. Iet (2.4) hold. Let u,v e Cb(lp) be a viscosity subsolution and a

viscosity supersolution of (2.3)(1i) and (ii) respectively. Then

(2.5) TSN IR [P V0 IR

L) LM

Remark 2.6. It follows from (2,5) that n € m implies u € v. It is also an immediate
consequence of the theorem that if u,v are viscosity solutions of their respective

problems, then Ff(u-v)l < In-m)? N
L (R") L (R")

« In particular, bounded vizcosity solutions
of (2.,1) are unigue.,

Proof of Theorem II.1. The basic arguments are best illustrated by first running through

the proof under the stronger assumption

(2.6) u{x) * 0 and vi(x) * 0 as Ix| *+ = ,

(t)
r* (r”) denotes the maximum of r (respectively, -r) and 0 .

=26~
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The condition (2.6) is natural if H(0) = 0 and n,m + 0 at ® , After the proof is
sketched for the case (2.6), we give the general argument.

Cage 1: u,v >0 as [ » »

If u(x) € v(x) everywhere there is nothing to show. Hence assume u(§) - v(;) >0
for some x. Let v e D(R)Y, 0 <y ¢ 1 and ¢(0) = 1 . Define

(2.7) M= max (¢(x-y)(u(x)=v(y)).

RN"RN

The maximum in (2.7) is assumed and M > 0 gince w(;-;)(u(;)-v(;)) = u(;)-v(§) > 0 while

P(x=-y)(u(x)=v(y)) * 0 as I[x| + |ly] ** by (2.6) and v @ D(IN)- Notice also that for

xerY

u(x)=v(x} = v(x=x)(u(x)=-v(x)) €M
80
(2.8) Hw-n)™1 o <m,

T
Let M = w(xo-yo)(u(xo)-v(yo)), kq= V(YD)' ky = u(xo). We then have

Xy e E+(¢(' - YO)(u(') - k1)) and Yo e E_(¢(xo ~ vl - kz))-

It now follows from Theorem I.3 and the assumptions that

(u(xo)-v(yo)

u(x_ ) + H (-
0 w(xo-yo)

(Dw)(xo-yo)) < n(xg)

(u(x )-V(yo))

0
} (Dw)(xo-yo)) > m(yo)

V(yo) + H(- on-yo

where we used D (v(x~y)) = -Dy(w(x-y)). Subtracting the above inequalities yields
. - ‘ - - - .
(2.9) u(xo) v(yo) n(xo) m(yo) - n(yo) m(yo) + n(xo) n(yo)
Choosing ¢ to be supported in B(0,a) (so Ixo-yol <a), (2,9) and 0 € ¢ € 1 imply

M < l(n-m)+l + on(a)

L")

where the modulus of continuity on of n 1is given by
{2.10) P, la) = sup{In(x)-nly) |t |x=y| € al,

Since n @ BUC(IN), we have Dn(a) 0 as a * 0 and the result follows.
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Case 2. The general case.

Let v @ IXRN)’ be as above: 0 € ¢ < 1, ¥(0) = 1 and supp¥ € B(0,&). We are first
going to prove, via a truncation argument, that

(2.11) M= sup ¥ (x-y) (u(x)-v(y)) € Hn-m®1 o

+ Dn(ﬂ)
x,yE€R L (R)

where Dn is given by (2.10)., The result then follows as before. (The difference between
this case and the previous one is that we cannot write "max" in place of "sup" in
(2.11)},) We may agssume M > 0 .

Let € > 0,

2 2
-£ -
M, = max P(x~y) (e 1x] u(x)-e elyl viy)),
er”
and Xy
2 2
-eix| ~€ly |
M= ¢(xc-ye)(e u(xe) -e v(ye)).

Let us first prove that Me *M as € +0, Since u and v are continuous it is clear
that
1lim LA >M> 0.,

S;O
Hence, for € small, Me ? M/2 « Moreover, Ixe-7e| € a, and one then easily deduces

that
(2.12) Tx ), Tyl <c
for some C independent of € . Now
2 2
~elx| -ely
Me 2 w(xe-yc)(e u(xe) -e v(ye))
2
etlx 2=y 1%
< flx -y Hulx, ) - e viy )
et %=1y 1%
< w(xc-yc)(u(xe)-v(ye) + (1 -e Yty )
2
ehx t -1y 1%
<M+ 1i1-e Hvtyite
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However, lc(lxclz-lyc|2)| = tl(xe-ye,xc#ye)l < /¢ 2ac by (2.12). Therafore, by the

above, lim M_<¢ M and we have Me’" as € ¥+ 0,
e+0

We next prove (2.11). By 2
T eCixl =ly 15
% @E (o =y.)e (u(*) - W,('))).*,(x) =e viy,)

2
etlyl®-1x 1%

) a2
S e = w0y = e ulxg)

1 Yo @B _(plx, - ‘e~

¢ and Theorem I.3 we have

(D) (x -y .)
ulx.) + H(=(ulx )=k,) W* 2¢eulx ix ) € n(x.}
; (2.13)
2 2
: ellxl® = ly 15
; k1 - e v(ye)
k- and (D) (x =y )
-k = ——————— >
. ' viyg) + H(-(k, viye)) PR + 2eviy )y ) 2 mly,)
M (2.14)
2
. elly 12-1x g%
. k2 = e u(xe) .
;' Set
% A= -(ulx,) -v(y))w.
- € € e Telx )
Ay ]
) 2 2 (Dv)(xe-yc)
3 (2.15) Ge - =(1 - exp(E(lxel -Iyel MIviy) e + 2eu(x )x,
24
- . (o¥) (x_~y.)
§ 2 2 €’e
.a 35 = (1 = exp(c(lyel -lxtl Nalx ) TEyE + 2evly dy, »
;3
o
L]
H
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Subtracting the inegualities of (2.13), (2.14) yields

Mg+ HOY, + 80 - HY, +§) S n(x) - my,) < |(n—m+|L.('N) + 0 (a).
The proof 1is completed by showing that Xc remains bounded aa € + 0 while 58 and
§.+ 0, for then letting € + 0 above yields (2.11). Since M > W2 > 0 for
€ small, w(xe-ye) is bounded away from zero, proving Ae remains bounded., Similarly,
5€,5€ tend to zero for €x., €y _ and E(Ixelz - Iyelz) tends to zero by (2.12) and the
remarks thereafter. This completes the proof.
Remark 2.16., The proof (especially Case 1) is vagquely reminiscent of the proof of
uniqueness of entropy solutions of oconservation laws in S. N. KruZkov [21].
Remark 2.17. The proofs given used only that n is uniformly continuous and m is
continuous. Similarly, we could have used uniform continuity of m and continuity of n.
Boundedness of n and m is irrelevant, although the result is not very interesting if
n~m is not bounded above. We do not know if the result holds without uniform continuity
of at least one of n and m . It is also possible, for example, to replace the
boundedness assumptions on u and v by |ul, lv] € c(1 + |x|p), 0<p< 1 if either

R 1is bounded and uniformly continuous or u and v are Lipschitz continuous. We

conjecture that one can take p = 1 if u and v are Lipschitz continuous.

1I1.2. The Equation H{x,u,Du) = n(x).

It will be assumed throughout that H(x,r,p) satisfies

(2.18) For each R > 0 , H 1is uniformly continuous on RN x [~-R,R] x B(O,R),

and

For each R > 0 there is a continuous nondecreasing function

(2.19) YR: [0,2R] * R such that YR(O) = 0 and

(H{x,r,p) - H(x,s,p)) ? YR(r-s) for x € RN, pe R“, -R € g < r <R,

We will need to restrict the nature of the joint continuity of H. The ocondition
(2.20) lim sup{|HM(x,r,p) -H(y,r,p)|:|x-y|(1 + |p|) € €, [r| € R} =0 for all R > 0,

€40
and the stronger requirement

gk

]
E
f
b
i
?
i
)
:




A .

1im sup{|H(x,r,p) = Bly,r,p)l:Ix=ylip| € R, lx-yl € €, [r] € Rz} =0
[141]

{2.20")

for all R1, R2 >0 .

will be used.

We may now state our main result.,

Theorem II.2. Let u be a Pounded viscosity subsolution of H(x,u,Du) = 0 and v be a
hounded viscosity supersolution of H(x,v,Dv) = m(x) where m & cb(lp). let (2.18),

(2.19) hold, R_ = max(lul

o - N’ ] and Y = YR as in (2.19). Then:

vl )
L (R LR 0

(1) 1f (2.20") holds we have

(2.21) WD osmte
L (R) L (R)

(11) If (2.20) holds and u,v e BUC(R'), then (2.21) holds.

1,*

(141) If u,v @ W' (R) , then (2.21) holds.

Remark 2.22., Remarks analogous to (2.6) and (2.17) apply to Theorem II.2.

Remark 2.23. It is not possible to relax the assumptions (2.20), (2.20.) in an essential

way. This can be seen in the linear case H(x,r,p) = r + b(x) * p , where (2.20) is
equivalent to the Lipschitz continuity of b . See Section V.4 concerning this remark.

Proof of Theorem II.2.

with the notation and assumptions of Step 2 in the proof of Theorems I.2 we have, in
the same way,

s +
(2.24) Hixulx), Y, +8) = Hly ,viy), A, +8) < Im IL'(-V) '

where Xe, SS,KE are given by (2.15). Rewrite (2.24) as

(Bixg,ulx ) A 480 = HIx_ vy ), A+8.)) + (Hix vy ), A+ 8))
= Hiy iy ) A H,)) & (HUy ,viy ) A 48,0 = Hly vy ) A S,))

+
< im0
Ly
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By (2.19) and Yy = YR , this implies

0
+
(2.25) YM) < im' 8 +A_+B
€ L.(lu) [ 4 €
where
A, = |H(xe,v(yc),le*5€) - H(ye,v(ye).Xe+6c)l.
(2.26)

By = IRy viy ) A 48,0 = iy ,viy ) A +8)

As we showed before, &_,8, » 0 while A  remains bounded. Thus, by (2.18),

B, *0 as € ¢+ 0, We need to estimate A, . To this end we reintroduce the support

of ¢ explicity by replacing v by ¢u(x) = ¢(x/a) where v e D(B(1,0))% 0 € ¢ « 1,
¥(0) = 1, D/(0) = 0. Since v{((x, = ye)/u) remains bounded away from zero as € v 0 we

see from (2.15), (2.12) that

lim sup({A_ + §.1) <'—;
€+ 0
for some K . Since Ixe - yel €a,

lim sup A, < sup{ 1H(x,r,p) - H(y,r,p)slx-y| € @, |r}] € Ry, Ix=y|lp| € K}
e+ 0

= A(a),

Then (2.24) implies Y(M) ¢ IM'0 o A@) . If (2.20") holds, A(a) *+ 0 as a +0
L)

and this proves (i).

To establish case (ii) we will prove that ¢ can be chosen so that

lim lxe-yel < ax(a) for some x(°) satisfying x(0+) = 0 . Then for € small,
€40

lxe-ye(lkeﬂicl € Kkc{(a} and the result follows as above. Assume v & BUC(RN) and let

Dv be the modulus of continuity of v . Recalling the proof of Theorem 1.1 we have

sup(u(x)=v(x)) < sup ¢ (X3F) (u(x)-v(y)) < Um u_<

€40
x -yt
€ Um o () ((ulx )=vly ) + W _  lexp(2ac/e) = 1))
€+0 L (l?
xe-yc -
¢ Um ¢ (—5=)lulx)=vix)) +p (@) + dvl o Jexp(2ac/e) - 1]).
€+0 L (R)

i, - s




Without loss of generality we assume L sup(u{x)=v(x)) > 0 , The above inequality then

implies, with new constants c,,c, independent of small & and €,

x_=y M
€ ‘e 0
>1 - i
v ) ? 1 cz(pv(c) + c,o €)

a M+ (a)+c, arE
0 v 1

b provided that € is small enough {depending on a). If we choose to be decreasing,
radial and v(x) = 1 - lxl2 in 1 ¢ 2lx|2 < 2, the above inequality implies
. 2 2
a“e, o (a) + c1a/E) > Ixg=y,l
when ¢, (p (@) + c1cu’3) <Y, and we are done.
For the final case (ii1i) we use the gpecilal case of the following lemma in which w

is Lipschitz continuous:

Lemma I1I.). let w be continucus on B?, e c'(l?) and xq e E+(w0). Set
= - - ‘
pw(l) max{lw(xo) w(x)l:lxo x| € A},

and

Poacn) = maxlID0(x) - D8Cx) [ lx x| < A} .

Then for A > 0 with w(xo) > Dw(x)

g

108 (x,)] B () wixg)
. (x.) < =
"%’ THixy) 3 wlxg)-8_ (%)

+ w(xo)pD.(A) .

[ J
In particular, if Dw el (B(xO,R)) for some R > 0 , then

._;“-"

lDO(xo)l
: wix,) —zr——— < fpwl .
07 9xy) L'(a(xo.n))

L g

We first complete the proof of the theorem and then prove the lemma, Recall (2.25),

. JI. {2.26) and that
pd(x )
xt + 6s = -(u(xe) - 01(xe)) _3T;:T + D¢1(xc)

2
2 ecixi®-ly 1%

S oy /), ¥y = e '

where &(x) = e

/E(lxel + ‘ye|) Cc and x e E+((u-¢1)°). It follows from Lemma II.3 that the first

33~
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term on the right above is bounded by

2 2
ECx1"=1y 1)
ipul + N2¢ce \

o
L (R) L (B’1,xe))

which is bounded independent of €,a . The term D‘Ji1(xe) +0 as € + 0 uniformly in

@ . Thus (2.18) implies 1lim A_ = 0 uniformly in €

e , and the proof is complete.
avo

Proof of Lemma IX.3.

Let A> 0,9 (}) < wixg) and set x = |00(x0)|'100(x0). Set

2oy = O (x +Ax) = (9(x;) + AD(x;)x)

= 0(x0+Ax) - (O(XO) + AIDG(XO)I) .

Then
w(xo + Xx)o(xo+lx) < w(xo)o(xo)

implies

° 2

u(xo+Ax)(0(xo)+A|D°(xo)| + A9 (2)) < w(xO)O(xo)
or -
IDf(x, )1 wix,) (wix,)-w(x +ix))
0 0 a 0 2
W(xo) “"0) < = X + w(xo)a (N,

w(xo+kx)

where the manipulations are justified by w(x0+Xx) > w(xo) - pw(k) > 0 « The result now
- - 2
- < -
follows from w(xo) w(xo+kx)| DW(X) ' w(x°+hx) > wix,) DU(X), 1378 (X1 < PDe(X) .

The final assertion follows from the relations pw(k)/k <lpwl
L (B(xo,R))

for A < R,

DD°(0+) = 0 , and letting A + 0 in the inequality.




|
III. Uniqueness for the Dirichlet Problem in @ .
In this section we turn to the uniqueness question for
H(x,u,Du) = 0 in Q,
(3.1)
u(x) = z(x) on 11
, in the case where % is an open subset of R and 3% # ¢ . 1In this section the
' restrictions (2.18)-(2.20.) on H are to bes understood by replacing RN by @ . The
, main result is: i
P
B Theorem III.1. let u,v @ cb(ﬁ) and (2.18), (2.19) hold. Let u,v be viscosity
, solutions of H(x,u,Du) = 0 and H(x,v,Dv) = m in @ where me cb(ﬁ). let
-
Po = max(bal o fvl ) ana Y = YR from (2.19). Then
. L () L (?) 0
(1) 1If (2 .20') holds and ulm or vIan is uniformly continuous and
X -, Iim  (fu(x) =~ u(xOH + [vix) - vix 1) =0
. xefl
. N >
T e X xo
A' uniformly for x, e 3% , then
; (3.2) o, Cmaxt®t v, )
. L () L () L (39)
,_ (i1) If (2.18), (2.19), (2.20) hold and u,v € BUC(S-U Then (3.2) holds.
o 32
-4 (111)  If (2.18), (2.19) hold and u,v € W' ' (?) , then (3.2) holds.
%
_", Remark 3,3. Remarks analogous to (2.6), (2.17) are valid here.

Proof of Theorem IXI.1. We give the proof only in the case when I is bounded. The

general case follows from a combination of the arguments given below and in the proof of

Theorem II.

-

v
- -

b =35~
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reduces to

Let ”a"" = Ax/a)

] dow u,vec,(h =Bucl) since @ is compact. with M

clearly have

P (3.4)

Without loss of generality we may assume l(u-v)+| - > l(u-v)+l - . Then (3.2)

L (M L (3R)

+
-, cm'r
L (R) L (R)
as in the end of the proof of Theorem 1I.2 and

M = sup ¥ _(x-y)(u(x)=v(y)).
a x,yen a

= tu-n) "1 o we therefore

0 L (D)

M, < L < %(xa-ya)(nowv(a))
ell,

where pv is the modulus of continuity of v and x

a'Ya

wa(xa-ya)(u(xu)-\r(ya)) =M,

From (3.4) and the choice of vy we deduce

lxa-yal € ad(a) where 6(0+) = 0 as in the proof of Theoerm II.2(ii). Finally, as
a ¥+ 0 all limit points of Xyr¥q lie in E+((u-v)) ¢ R . Therefore, there is a

compact K < @  such that Xet¥y e K for a sgmall. It follows that

vol® = ¥ql, "u(xa ~°*)e (9)+ for small & . From the assumptions we conclude:

H(xu,u(xa). =(ulx) - v(ya))

(Dwa)(xa-ya)

Hiy oviyy)e = (ulx)) = viy,)) )y ? miy,)

PulXy¥y)
which implies (recall the proof of Theorem I1I.2)

YM ) S Im ) + sup
(] -
L () )x-y | <ad(a)

<
x| RO

lpl € c/a

IH{x,r,p) - Hly,r,p)|.

-
for some ¢ . Moreover, if Du,Dv @ W () we may replace |[p) € c/a by |p| € c. The

argument concludes in the usual way.




O

I

Remark 3,5. The condition (2.19) can be weakened to H(x,r,p) - H(x,s,p) > YR 6(x--s) for
’

-R<s<r<R, peR and xe 9 = {x: distance (x,32) > 6} with the conclusion being
u€v if m>0 and u<€<v on 3N,

All the above results require that H(x,r,p) be strictly increasing in r . Moreover
uniqueness fails without some monotonicity in this sense. An extreme example is H S 0 ,
We treat one case without strict monotonicity in r via an adaptation of a device of S. N,
KruZzkov [18].

For simplicity consider the example
(3.6) H(Du) = n(x) in & .
where we assume

H(0) = 0 , H is convex, continuous and H » 0 ,

(3.7)
nec) , n>0 in &, 2 is bounded.

Proposition III.2., Let (3.7) hold and u,v € c(ﬁ) be viscosity sub- and supersolutions,

respectively, of (3.6). Then

1u-v) *1 ® < tu-v)*e ® .
L (31) L (3Q)

Proof let Y e C.(l) satisfy ¥' > 0, ¥" > 0 everywhere and ¥Y(R) = R . let ¢ = ?-1 .

By Corollary I.8, \; = (), v = #(v) are viscosity sub- and supersolutions, respectively,

of

(3.8) v,—:—wT H(Y' (W)Dw) = F-:T) n{x) in 2,
The Hamiltonian

~ 1
H(x,r,p) = ﬁ,— H(Y'(r)p) - LTSy n{x)

is locally Lipschitz in r and a computation yields

-~ " ,n
H = —lﬂ')—z [(oH) (P (r)p)¥"(x)p - H(Y' (r)p)] + —Aﬂi n{x) .
(' (x)) (¥'(x))

21
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Since H is convex DH(q) * g - H(q) ? -H(0) = 0 and we deduce

M yn
W, D,
('(r))

Therefore H satisfies the conditions of Theorem III.1(i) and we obtain

Ve - Sy <@y - denTE
L () L (30)

Since Y can be replaced by ¥,(r) = 0¥(r) + (1-0O)r for any 9 e 10,1]) , we deduce

+ +
10, (w) - 8,71 < o) - & (v
8 8 L7 @) o 8 1" (39)

1

where 09 - (Ye)- . To oonclude, we observe that 09(r) + r locally uniformly as

6+0 .
Remark 3.8. It is worth noting that uniqueness of (viscosity) solutions of (3.6) may fail

if we assume only:

H(0) = 0 , H {is convex, ocontinuous and H 2 0

(3.9) . 1
nec), n>0 in §, 9 is bounded.

Actually it is enough for n to vanish at one point to imply in general the nonuniqueness

as it is shown in the following example: let 9 = [=1,+1], H(p) = lplz, n(x) = x4 . ]

Clearly alx) = 1.2 lxl3 is a et solution of:

3 3
2

= lxl4 in 2, u=0 on | .

1
3
u is a solution of the same equation which is also in C

lat |

On the other hand, if we let u(x) =
1/3
’

- % lxl3 for |x| > ﬁo and u(x) = % ixl3 for

1

[x] €t , where t, = 2-

< NI R

except at it t; where the discontinuity of u' is such that u 1is still a viscosity

solution. Therefore in this example we have two different viscosity solutions,

As remarked in the introduction, all the above uniqueness results are new. No
uniqueness criteria (even for generalized solutions in w1’¢(9)) are known except in the
case of a convex Hamiltonian. In the convex case, A. Douglis {10] and S. N. XruZkov [ 18}

have intrnduced the class of semi-concave functions, that is functions u such that

-38~
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gfg €¢s in D‘(ﬂs) for all 6§ > 0 and for all x : x| = 1 with 06 defined in (3.5)
ang X denoting an arbitrary direction. Uniqueness in this class is proved by the above
authors. P. L. Lions [22] (see also [23]) extends these results to the class of functions
satisfying:
8u € g in 0'(96) for all 6> 0 .,

All these results require convex Hamiltonians and some degree of regularity of the
solutions.

To conclude this section, we obgerve that in the convex case any Lipschitz subsolution
is a viscosity subsolution and any Lipschitz, semi-concave supersolution is a viscosity

supersolution. (This implies, by the way, that the uniqueness results of Douglis and

XruZkov are completely contained in ours).

Proposition III.3d: 1let H(x,r,p) be a continuous Hamiltonian, oconvex in p .

oy
) () satisfy: H(x,u,Du) € 0 in 2 then u 1a a vis."sity subsolution

.. Let ue wloc

of H(x,v,Dv) =0 .,
{(i1) Let u be a locally bounded semioconcave function satisfying:
H‘xl“lDu) 0 in Q ’

then u is a visocosity supersolution of H(x,v,Dv) =0 .

Proof of Proposition I1II.3.

(1) wWe first remark that if u is a locally Lipschitz subsolution of:
H(x,u,Du) € 0 in &,

then an easy argument shows that we have:
[ -
H(x,u ,Du ) € fe(x) in 05

where f_ + 0 uniformly on compact sets of 2 and u.=u*p.  with p = lﬁ p(é).
€

p e ll(l“), supp p € By, Ipt y =1 (observe that H({Du ) € H(Du) * p. if H is convex).
L

~39-
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4 Now since u°% 1is c., o s obviously a viscosity subsolution of the equation: -
Hi{x,v,Dv) = te(x) in Qe (for any 0 < € € eo). Thus we conclude by a simple
0
~, application of Theorem 1.2.
(11) Let u be a locally bounded semi-concave function satisfying:
H(x,u,Du) > 0 on 9 . Without loss of generality (restricting if necessary our attention
to each 06 , and making a translation) we may assume: u € H".(ﬂ) , u is concave on R
' )
. or more precisely: —;—' €0 in D' wx:ixt = 1 (This implies that u is concave on
' 3
every convex subset of Q).
i Now let ¥,k be such that E_{v(u-k)) # ¢ , p e D+(ﬂ) + k@R andlet x,e
, E_(v(u-k})). Obviously, there exists p > 0 small enough such that on B(xo,p) we have:
. w(xo) De(x_ )
"i > — - - - L] - -
u(xo) k + (%) (u(xo) k) = u(xo) w("o) (u(xo) k) *(x: xg) + I xolt(x)
where €(x) *+ 0 as |x-xol +0 . Since u is concave on B(xo,p), this inequality
Dy(x_)
implies that u is differentiable at Xg and Du(x,) ® = ———— (u(x,) - k)« To conclude
e - 0 w(xo) 0
. we just have to prove that H(xo,u(xo),nu(xo)) >0 . But by assumption
v
) ax e Q, X X+ U is differentiable at x, and
b H(x ,u(x ),Dulx )) >0 .
- And since u is concave, we have l‘m(xn) hd m(xo) (all limit points of Du(xn) are
, superdifferentials of u at x, and therefore reduce to Du(x,)).
F X 3
e :
Y 4
3,
M E
, 2 Y
i 1
Y
» 1
N 3
™
1
-40~-
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IV. Existence of Viscosity Solutions of the Dirichlet Problem,

In this section we establish that the most common method of obtaining generalized
solutions of HJ equations actually provides viscosity solutions. This is done in paragraph
IV.1 and roughly means that we could take all known existence theorems and generalize
(using Theorem I.1 in the process) and restate them as results concerning viscosity
solutions. Of course we will not do this - we refer the reader instead to [22] for a
complete treatment of general results of this sort and references to the earlier
literature. However, it seems worthwhile to illustrate the situation by giving very

general new results for a simple model problem, which we do in paragraph 1IV.2.

IV.1 The Method of Vanishing Viscosity and Viscosity Solutions of HJ Equations.

The vanishing viscosity method for obtaining solutions of
(4.1) H(x,u,Du) = 0 in 2, u=z on M
conglsts of approximating the problem by ones of the form

(a) -ebuc + He(x,ue,Due) =0 in Q,

(4.1)s
(b) u, =2z on n

where € > 0 , H z. are adequately smooth and converge locally uniformly to H,z

el
respectively. One attempts to prove (4.1)c is solvable for € > 0 , and to obtain

precompactness of the family {ue:O <e< 1} in (M (or cifi))). Typically this is done

[_J
by obtaining (perhaps local) estimates on ue and Du, in L . See {[18) and 1V.2 below

in this regard. We prove:

Proposition IV.1. Let u, e Cz(ﬂ) be a solution of (4.1)e(a) where Hc + H as

€
n

u 1is a viscosity solution of H(x,u,Du) = 0 . If also ue - ze on 91, zc +z

€ +0 in C(92 x R % Rn) . Assume En +0 and u. *u in C(R) and n * * ., Then

in C(39) and U *u in c(fl) then ulan =z ,
n

-41-
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Proof. Llet ue *u in C(R) as in the asgsumptions. Fix ¢ e 1K9)+, k e RN
n

E*(w(u-k)) # ¢ . Then for large n there exists X e E*(w(ue - k)) and, passing to a

n
subsegquence if necessary, we may assume xn + x€ E+(w(u-k)). By a simple computation
have on suppy
1
0= v (sp(-EAue + H(x,ue,Due)))

Dw'D(w(ue-k))

2
14

hl - Ay
= -€ v A(p(u k) + €lu k) " + 2€

(uc-k) 2 3 u_~k
wz e ™ + Hix,u, " D(v(u k) -

-2€ Dy).

Evaluating this ldentity at € = € X=X, and using (A(w(ue-k)))(xn) <0,

(Dw(ue-k))(xn) = 0 (because X e E+(w(ue =k)) we conclude

n
2
Aw(xn) iDe(x )1
€ (u (x_)=k) =————— = 2€ (u_ {(x_)=~k)
n en n w(xn) n en n wlxn)z
Dlen)
+ R(xn,uc (xn), - (ue (xn)-k) TR y <0 .
n n n
DY (x)
Since x *xe E+(¢(u-k)) we find, letting n *+ » , H(x'“(X)'-(“(x)-k)—G?;T ) € 0.

and assume

we

Thus u 1is a viscosity subsolution. Similarly, it is a viscosity supersolution and the

result follows.
Remark 4.2, We could replace u € cz(n) above by u, e wi;g(ﬂ), p >N, via Bony's
maximum principle ([5].
Remark 4.3. If we obtain a viscosity solution of (4.1) in this way and one of our
uniqueness results applies, it follows that u, converges to this unique solution as

€ + 0 . This is known in some particular cases via arguments using considerations of

control theory or differential games (W. H. Fleming (14,15), A. Priedman [16)).

Remark 4.4. This result also shows that the optimal cost function U of the control

problem assnciated with (4.1) (or the value function in the case of differential games

S. H. Benton (4], W. H. Fleming (13,14,15]) is indeed a (or the) viscosity solution.
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) Indeed, in these contexts it is easy to show “t converges to u , and the Theorem
b
applies.
IV.2. A Model m“‘tiono
;‘ We will assume
1 (1) gec),
: (4.4) (11) f:;% * R is an increasing homeomorphism of R onto R , ;
N |
. (ii1) n € BIC(R ). i
1 and consider the model problem ;
(4.5) Bu) +H(DW =n 4in R . i
It simplifies the discussion to follow to assume
)
(4.6) H(0) =0 , B(0) =0,
vwhich amounts to changing n by a constant. We will consider solutions of approximate
problems of the form
(4.7) 'M“e + Be(“c’ +Eu + Hc(D“e) =,
% -, under assumptions given later. Before doing so we obtain the key estimates we need. This
! also motivates Proposition IV.3 concerning (4.5). ‘
' !
: s
lemma IV.2. let F & C(l“), F(0) = 0 , and Y be an increasing homeomorphism of -
~ 2 N - N - - N [
. R, Y(0) = 0 . Assume v,v @ C°(R) L (R'), F(Dv), F(Dv) e L (R') and
5 (a) -€bv + Y(v) + FIDV) = m € C (R
X (4.8) . . . A .
) {b) -€Av + Y(v) + F(DV) =m € C (R ).
S . R
A Then for v e {+,-}
M
;% v v SV ‘v, .
{ (4.9) lY(v)l,N<lml,N.lY(v)l, ‘lml.N
; Y L (R) L (R) L (m) L (R)
_r‘ . and
L ) “ 4 ~1 ~ o+ -1 -
', (4.10) Tvev) 1 - < sup{ly (s+di(m-m) t N -y (8)):|8] € Iml N }.
v L (R) L (R L (R)
4
- -43-
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Sketch of Proof. If x @ B, (v) then A4v(x) €0 and F(bDv(x)) = F(0) = 0. Hence, from

(4.8), Y(v(x)) € m(x), and we would have (4.9) with Vv = + , If E+(v) = ¢ hut

2
v > 0 somewhers, one chooses x, € g+(.-llx| v)

'2

makes the assoclated computation and uses
”"A €C tolet A + 0 and reach the same conclusion. PFor this we need to obgerve
that Dv e L (R') because ve L (R) and =-clv = m-F(Dv) - Y(v) € L (R) by
assumption. To understand (4.10), let x @ !+(v-v) « Porming the difference of (4.8 ) (a)

; and (b) and using A4(v-v)(x) € 0, P(Dv) = F(Dv) at x one finds

YIVOD) = Y(vix)) € mix) - mix). Witing vix) = vix) + Kv-)'1 _ e have
! L (R)
1
'3 Yoer)-y ) € tam*t w0, r o= vl
. L (R) L (R)
' But then
._i - ~ -
ey v ¢ @m0 -y e
- -~ L (R)
and we have (4,10). 1If E+(v-v) = ¢ but v-v > 0 somewhere, approximate by xy e
! 2 -
' E*(ox| ! (v=v)) and let A + 0 . This completes the dlscussion of Lemma IV.2.

The main result concerning (4.5) is:

. Proposition IV.3. Let (4.4), (4.6) hold. Then (4.5) has a unigue viscogsity solution u e

cb(l!“) « Moreover,

, (4.11) 1B’ N S mn'r N rVvels-l,

k L (R) L (R)

. (4.12) If me BUC(R') and v is the viscosity solution of B(v) + H(DV) =m , then

1 *t o < aupl18T (st nem Tt ) = BT e lel St )
& L (R L (R} L(R)
:." (4.13) 1I1f Du'pn are the moduli of continuity of u,n , respectively, then
p,(r) € sup(8™ (s4p _(r)) = 87 (e)elsl S Iml _ ).
L (R)

Sketch of Proof of Proposition IV.3. The uniqueness of viscosity solutions of (4.5)

follows from THeorem II.2. The Hamiltonian H(x,r,p) = B(r) + H(p) = n(x) clearly

~

satisfies (2.18). For (2.19) we note that

-

l-l(x,r,p) - ﬁ(x,n,p) = B(r) - B(s) > YR(r-l), R Cg<r <R




‘4 with Y (1) = inf{8(s+T) ~ B(s):lal < R} for T > 0. Finally, (2.20") reduces to the

f uniform continuity of n .

L ]
~ For the existence, let Be' “c’ n, €@ C be approximations of B,H, n such that
C
Be' BéeL(R).Bé>0, BC(O)-O,Be*B in c(R) as € Vv 0,

{(4.14) n e BUC(RN) and n_ * n uniformly as ¢ ¥V 0,

€

Hoe L), B (0) =0, and H_*H in c(®) as €40,

1 It is then nearly trivial that

(4.15) -eAue + Be(“e) + e, + He(Due) =n,

a
. has a solution u. e cz(RN) nL (IN). One can simply solve the associated truncated

i problem in B(0,R) for Yer subject to Yep * 0 on x| =R . Then
18 (u_) +¢€u__| € In_} follows as in Lemma IV.2, Using H_e t” and interior
€ €R €ER ® €
L (8(0,R)) ®
estimates we conclude -t:Au(;R is bounded in L (B(O,R)) as R * ® and by compactness

2
there is a sequence Rn’ ® and u, e C;(BN), A“e eL (RN). such that \xR > u. boundedly
' @) while 8u__ » Au weakly in 12 (*™). Then (4.15) mpue: u ec .
loc enn € loc €

Using Lemma IV.2 we conclude

in ¢

- v v
‘ (4.16) 18 (u)) +eu) | < ind .
: € e L) €@

Since Be + 8 locally uniformly and B{(R) = R, (4.4) implies u, is bounded in
Ln(lt"). Moreover, ue("!y) solves (4.,15) with n. replaced by ne('*y). By Lemma

IV.2) we therefore have

b % (417) lu txayd=ugx) ] < supll (B +e1) (s (Iy1))=(B_+e1) (o) 1tlal < In 0 '}
\: where Dne is the modulus of continuity of ﬁs‘ It is easy to choose n, Zo“:.h:t
B b Dne < Dn , and we assume we have done so. Moreover, since Be + €I * 8 1locally

" uniformly, (B  + t':I)"1 s 87! locally uniformly. It thus follows from (4.17) that (“e}
v 3 . is equicontinuous. Then there is a sequence en +0 and u e BUC(IN) such that v *u
N locally uniformly. In view of Proposition IV.%1, the existence assertion is proved, "

-
- -
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we have in Pact gshown (4.13) in the process of constructing u . It follows equally

well from (4.12) by noting that if u is the solution u of B(u) + H(Du) = a , then

v{*) = u(*+y) 1is the solution of B(v) + H(DV) =uw , m(°) = n(*+y). One similarly
verifies (4.12) by the construction, however let us observe that it essentially follows
from Theorem II1.2. Indeed, if u + H(Du) ~n =0 and v + H(Dv) - n = m-n , Theorem
II.2 implies

+ +
Y_((u=v) ) € Nn-m) | '
R L.(IN)

R = max(lul . vl )

L &) )

(T = int{B(s+t) - B(s):ls] < R},
which is equivalent to

(w-v)* < aup{8-1(5+l(n-m)+l . y) - B-‘(a)=|s| < max(md N Inl )

L) ) wh

The estimate (4.11) follows from the construction. This ends the sketch of proof.
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V. Uniqueness for the Cauchy Problem.

We consider the Cauchy problem for HJ equations. More precisely, we consider the

problem
(a) u_ + Hix,t,9,Du) =0 in a4 x10,T]
(5.1) (b) ulx,t) = z(x,t) on a2 x Jo,T)
(c) ulet,x) = uo(x) on q.

V.1, Viscosity solutions of (5.1).

The notations
(5.2) gy = A x 10,7 , o) =& xlo,7l
will be used below. The notions of viscosity solutions of (5.1)(a) in Qq or Qg is
contained in Section Il - (in particular, recall Remark 1.13). Let us restate them
explicitely for the particular equation (5.1)(a).
Definition 5.1. Let K € C(? x [0,T) X R X R'). Then a viscosity subsolution
(respectively, supersolution, solution) of u, + H(x,t,u,Du) = 0 on Q: is a function

ue C(Q:) such that: V¢ @ D(Q,g)+, keRr
E+(¢(u-k),92) # ¢ ==> a(xo,to) e E+(w(u-k).Qg) such that

(5.3)
(u(xo,to)-k) (u(xo,to)-k)
- —;T;ZTEET- ¢ (xg0t5) + H(xo'to'“(xo'to)’ - ‘;7;;7;;7- Dulx,t,)) <0
(respectively,
E_(olu-k),0) # ¢ == T (xg,t;) € E_(sluk),0))  such that
(5.4)
(u(xo,to)-k) (u(xo,to)-k)
PRy 1) ¥ (Xgoty) + H(xo,to,u(xo,to), - Py st Du(xo.to)) 20 ;

respectively (5.3) and (5.4).)

One defines viscosity subsolutions, etc., in Qp by replacing Q: by 2 everywhere
above. A viscosity subsolution (etc.) of (5.1) isa ue C(ﬁT) which is a viscosity
solution of (5.1)(a) in Qn such that u €z on M x {o,T), wu(x,0) < uo(x) in &

(etc.).

¢ A A By
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Owing to the special form of the equation (S.1)(a) with respect to the domain QOpn we

have:

Proposition V.I. Let u & C(QT)

be a viscosity subsolution (respectively, supersolution,
solution) of (S5.1)(a) in Q:. Then u is a viscosity subsolution (respectively,

supersolution, solution) of (5.1)(a) in Qp

Proof. It suffices to treat the subsolution case. let v @ D(Q,r)"', k@R, u be a
viscosity subsolution in Q,: and (x,,ty) e E (v(u=k),Qn)e If 0 < ty; < T we choose
X @ D{(0,T)) such that 0 < x <1 and x(t)) = 1. Then xv e DIg)* ana (xg,ty) €
E+(x¢(u-k),Q:). By Theorem 1.3 and X'(to) = 0 , the inequality of (5.3) holds. If

o
to = T we choose xcecuo,'r]) so that 0<xc<1, X. 1 on

" (o,r-2¢], x, =0 on

[T~€,T] and x:: €0 . Again X¥ e 1)((;22,)+ Moreover, y(u~k) > 0 at (xo,'r) implies
xesﬂ(u-k) has a positive value for € small., Let (xe,te) e B+(xew(u-k),Qg). Passing to

a subsequence if necessary, we assume (xe'te) + (;,g) e E+(w(u-k),9r). Then, by Theorem
I3, (ulx_,t_)=k) (ulx_,t)=k)

£_£ (X_,t,) = =y ()
vixo.t)  “t'¥ere X(t,) Xelte

(ulx ,t )=k

W(chte)
Now =-(ulx,t )-k) XI(t,) > 0 so we deduce the inequality of (5.3) with (x,t) in place

+ H(xc’te'“(xc’te)' - Dv(xe,te)) <o .

of (xg,ty) in the limit. This completes the proof.
Remark 5.5. In the general context of Section I, if ( c O1 n0 u 30 we roughly have that

if ue c(l,) is a viscosity subsolution of F = 0 in ( and Fly,r,ptAV(y)) is

nondecreasing in A for y @ 01\0 and V(y) the exterior normal to (¢ at y , then

u 1is a viscosity subsolution in 01 . However, we will not make the assumptions precise.
We will freely use the assertions of Section I onncerning viscosity subsolutions,
etc., in Q: and QT. In this connection we again recall Remark (1.13) as well as the

fact that if u e C‘(Qg) and u and Du extend continuously to all of Qp + then ue

c'iop), ete.

-48=

R _—

~ae

i

o

ekt




4

"

DAY

2 .

.

-

-

V.2 Uniquenesas of Solutions of the Cauchy Problem.

We first formulate the various assumptions we will use in what follows:

necdx (o1 xRx ) is uniformly ocontinuous in

(5.6)
f x to,T) * {-R,R] X B(O,R) for each R > 0 ,
For R > 0 there is a YR € R such that
(5.7) H(x,t,r,p) - H(x,t,s,p) > YR(r-s) for xel, -R<g€r <R,
n
0<t<T and peR .
1im sup{|H(x,t,s,p)-H{y,t,s,p) |tix~y}(1+|lp]) € a, 0 < £t <7, (s <R} = ¢
ato
(5.8)
for any R > 0 .
1im sup{|H(x,t,s,p)=H(y,t,s,p) |:|x-y| € a, |x-ylipl € R, 0< ¢t <T, |s] <R} =0
at0
(s.8%)

for any R > 0 .

These conditionsg are obvious analogues of (2.18)-(2.20.). See section V.4 concerning their

necegsity.

The main unigqueness result is:

Theorem V.2. Let (5.6) and (5.7) hold. Let u e Cb(aT) be a viscosity subsolution of

U, + Hi{x,t,ua,Du) = 0 in QT and v @ cb(ﬁT) be a viscosity supersolution of Ve *
H{x,t,v,Dv) = g(x,t} in Q. where g e cb(aT). Let R, = max{ul .(Q ),lvl _(Q )) and
L L
Y=Y  asin (5.7). set 390 =23% x (0,11 (& x {0}). Then: T T
Ro o-r

L ]
(i) If (5.8 ) holds and uf , vl e Buc(d Q0 ) and
2, 3,95 0%

QT
lim ) Iu(x,t)-n(xo,to)l + lv(x,t)-v(xo,co)l =0
(x,t)EQT
(x,t)*(xo,to)
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. uniformly for (xo,to) e 3°QT s+ then
f (5.9) e wn'r . e tuntr A I
L (Q‘l‘) L (QOQT) 0 L ()
(1) If (5.8) holds and u,v € BUC(,), then (5.9) holds.
: (111) If Du,Dv e L (g) , then (5.9) holds.
1
1
; Remark 5.10. Remarks parallel to (2.6), (2.17) are valid here.
1
15 Much of the proof of Theorem V.2 consists of straightforward adaptation of the
- i arguments given in earlier sections and we will not repeat these. Instead we treat a )
. }
. simple model case to exhibit the only new features. To this end, assume Y € R , 1
i -
(5.11) H{x,t,u,p) = Yu + H(p)
- and .
(5.12) Q= RN and ufx,t), vix,t) * 0 as |x| * ® uniformly for 0 € t < T. .
) We will write H in place of H above. Now choose P,(X) = vix/a), Wa(t) = Y(t/a)
+
k-, where v @ D@D, Ve D(IO,T)T, w(0) =1, W(O) =1, 0S¢, ¥ <1, supps < B(O,1),
‘ suppy c [-1,1). (In the case of (x,t) dependence of H we would require ¢(x) = 1 =
L]
) IxI12, w(t) = 1 - t? near x = 0, t = 0,) Set
" (5.11) my(t) = max (ulx,t) = v(x,t)).
i N
ey xeR
.
p 3¢, +
e Finally, let ne (]0,T[) and assume
Y (5.12) E, (N(m -k):]0,T[) * 4.
[ Now define *
t+s
(5.13) L sup n(—z')wa(t-swa(x-y)(u(x,t)-v(y,s)-k).
N
Vg X, YER
0<t, s¢<T
4" Clearly My > n(mo-k) on [0,T] and
v (5.14) M, * max nimk) as a+o0.
B (0,1
-50=-
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Let L0 e R, t“,s“ e {0,T] be such that

taﬂu
(5.15) u, = n(—u—)wq(:q-au) (X V) (9%, € )=VIy 8 )=K) «

Because |xu'ya| €a and u,v* 0 at * uniformly ((5.12)), we may assume (using

and ta'sa *t .to as a + 0, Moreover,

subsequences if necessary) that Xor¥y hd xo,x0 0
by (5.14),
(5.16) to e E+(n(mo~k))

and so to >0 . Then

n((-na)/zwa(usawa( '-ya) and n( (ta+‘ )/zwu(ta-- wa(xa-')

are in D(QT)* for @ small and using the agsumed proprties of u,v we find

t +s
(T8 g e e
- 3 2 8 | (ulx_,t.) - viy ,8) = k)
ta+sa wa(ta-sa) a’“a a’"a
2“(—2—-)

(u(xa,ta)-v(ya,su) - k)

¢(xa—ya)

Y ulx .t ) + u(- (Do) (x,v,)) € 0,

or

—

t +s |
(=) e sy |

a'"a "a
- - - (vly_,s. ) = ulx_,t ) +k)
t,*8, Volta=sq) a'"a a'"a
(=)

(u(xa,ta) - V(Yn'sa) - k)

+ Yv(yu,sa) + H{ - wa(xa_ya) (Dwu)(xq-y“)) > g(ya,sa).

Combining these inequalities we find

t _+s
a &
(=)
t +s
a a
n(——)

(u(xa.ta)-v(ya,sa)-k) + Y‘“‘”u'tu)'V(’a"a))

€ -aly,esy) ¢ lg(.'s")-lz.“(ln) )
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Now let a + 0 to find

n'(c )
- —;TEET (u(xo,to) - v(xo,to)—k) + Y(u(xo,to) - v(xo,to))
(5.17)
< lg(e,t )}
R AT A

We also claim that motto) = u(xo,to) - v(xo,to), which is in fact clear. Let us review
the outcome of the above that we need. If m, is given by (5.11), ne (]0,T(), and

(5.12) holds, we have produced to e E+(ﬂ(m0(t)-k)) such that (5.17) holds, which is

Nt (t,) -
- ——— (m (t )=k) + Ym (t.) € lg(e,t ) | .
h(to) 00 00 0 L"(.N)

By Corollary I.12 we conclude,

etho(t) <mg(0) + [fe 1g¢+ 0071 g a8
0 L)

which completes the proof.

V.3. The Cone of Dependence

We are out to show that if u,v are two viscosity solutions of
(5.18) u, + H(x,t,u,Du) = 0 in RN x 10,T)
with u(x,0) = v(x,0) on some ball |x] € R, then -~ under natural assumptions - u = v
on the cone |x|] € R -~ Lt where L is a Lipschitz constant for H(x,t,r,p) in p . We
assume
H e C(RF x {0,T] X R X RN) and H(x,t,r,p) is nondecreasing in r

(5.19)
N N
for (x,t,p) € R X% [0,T) X R .

The main result is:
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Theorem V.4, Let u,v € c(ly X {0,T)) Dbe viscosity solutions of {5.18) on QT -

RY x [0,7]. Let (5.19) hold and

(5.20) u(x,0) € v(x,0) on Ix| € R,
(5.21) C = max(fpul . dovl ), m = max(lul P 1’2 I )
and L (QT) L (QT) L (QT) L (QT)

(5.22)( |H(x,t,r,p) - H(x,t,r,q)| € Lip-ql for lpl, Iql € ¢, Irl € m, |x|] <R - Lt,
and 0<t<rT,

Then

(5.23) uafv on Ix} € R -1t, 0<¢<T,

Moreover, this is correct if C = ® in (5.22), u,v e c(é&), and H(x,t,r,p) is

continuwous in (x,t} uniformly for |r|{ €m, p € RN .

This result is a consequence of the following proposition:

Proposition V.5. Let (5.19) hold and u,v € c(ﬁT) be viscosity solutions of (5.18) on

Qpe Let Ae c1(§T) , A>0 , A =0 for |x| large and
(5.24) -A, > LIDAl in (supph)®  (the fnterfor of supph).
Assume (5.21) and that (5.22) holds for (x,t) e (suppl\)o . If u(x,0) € v(x,0) on
{(x,0): A(x,0) > 0}, then u < v on suppA. Moreover, the result is valid if C = =
(5.22), wu,v e C(éT) and H(x,t,r,p) 1is continuous in (x,t) uniformly for
rl <m, per .

We prove the Theorem from the Proposition and then prove the Proposition.

Proof of Theorem V.4, Consider

Ax,t) = g(Ry = Lt - Mxl“’“)

]
where geC (R), g(r) =0 4if r €0, qg'(r) >0 if r > 0. One has

1
supph = {(x,t): 0 € t € R/L, x| € (X'1(R° - ')

SO
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1
{x:A(x,0) > 0} = {]x] < (X"Ro)'*a}. We choose 1,a so that

i
+a

') " <R or 1<

(5.25) ( e,

Ro

whence (5.20) implies wu(x,0) € v(x,0) on sguppA(*,0)., Now g'(R0 - Lt - Xlxl‘+a) >0 on

(auppA)o and

LIDA] = LA(14a) Ix1%" (Ry - Lt = Alx | 1+

1+a
-At =L g'(Ry - Lt = x| ).

If
a
(5.26) X(1+a)a° <1
we have -l\t > LIDA| on (auppA)0 « The proposition implies u € v on suppl . We will

be done once we show that we can choose ) = A(a) , R, = Ro(a) so that (5.25), (5.26)

hold and A(a) » 1, R (@) *R as a+0 . Put (1+za)n;+“ = R'"™® . Then (5.26), (5.25)

become a
+a)

(@)
R R
(1+0) R

1
(142a) /(14300

1
1+ _a
so we may use A(a) = 1/((1+2a) R ). The proof is complete,

Proof of Proposition V.S. Iet wa'wa be as in the proof of Theorem V.2 and u,v,A as

in the Proposition. We assume

2
M= max A (u-v) > 0
suppd
0<t<

and will reach a contradiction.

Set
M, = max ¢Q(x-y)Watt-a)h(x,t)ﬁ(y,a)(u(x,t)-v(y,u))

%0y

- Wa(xu-ya)¢a(ta-sa)ﬂ(xa,t“)ﬂ(yq,sa)(u(xa.ta)-v(ya,sa)).
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0
Clearly M, *M > 0 and so ¢t ,8 >8>0 and (x,ety)e (yges,) @ suppA- for a

small. Thus
- v D¢ DA
IR (u- a
- W—: (u~v) T -(lhi)- + H(xq.ta.u.(u-v)( = —;:- ” <90

Ya

*:x A (u~v) wau DA
+ Ta (v-u) ~ 3 Lt H(ya,sc.V.-(u-v)( vy - -*")) 20

where the reader can keep track of the correct arguments in each term. Subtracting these

‘ yields

3A ) AV _ 34 ( a-v__
. 7t *arta K(xa,ta) e Yarsd) Rix .t )

D DA
x’a X

D¢ DA
: H(xa.ta,u,(u-v)( v A )) - H(yu.s“,v,-(u-v)( :aa - _*_ )) €0 .

Since u(xc,ta) 4 v(yq,sn), (5.19) allows us to replace v by u in the third argqument

0
of H above. Now, since (xu,tq). (Ya,sa) > (xo,to) € (suppi) and

(Dgoa)(xa-ya) DA(xa,tq) N e

t) - ) *
Hutx ,t,) = viy ,8.)) V(X ) A(xu.tc)

(Dwa)(xa-yc) M(ya.sa)), e

»

[(ulx_,t_y=v(y -8 ) -
a’"a aa IAE Myu.ua)

by (5.21) and Lemma II.3 we may let a + 0 above and use (5.22) to conclude

~ - 2;—2 {xqotg)(u=v) (xg,t ) - ZLIDA(xo,to)l(u-v)(xo,to) <0

N which contradicts -At > LIDA} on (suppl\)o. This passage to the limit is valid if
A cC<®, If C == it is valid under the assumption that H(x,t,r,p) is uniformly

. continuous in (x,t) for |r| €< m, pe RN-

“ Remark 5.27. There are many possible variants of these results, including continuous

dependence of solutions of u, + H(x,t,u,Du) = g in the cone of dependence on u{x,0) in

i Jx] € R and g in |x| € R-Lt. But it is obvicus how to obtain these,

-

Remark 5,28. Results in the gpirit of Theorem V.4 are given in A. Friedman [16]), S. N.

-

Kruzkov [20] and P. L. Lions (22]. However, these all deal with generalized (w"')

-

solutions obtained via the vanishing viacosity method rather than intrinsically

characterized solutions.
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Remark 5.29. The assumption C < ® in (5.21) is a stringent requirement - but certainly a

necessary one in general. Typical existence theorems provide w' .~ solutions in any case

(e.g. [13}, [16]), [22]),

V.4. Examples of Nonuniqueness.

Let b@C(R). If the solutions of

Aax
i bi(x) ,
(5.30)

x(0) = X,
are "too"™ nonunique, then bounded viscosity solutions of
ut#b(x)ux-o, t>0, x@eR,
(5.31)
u(x,0) = ug(x),
will also not be unique.

Let us make this precise. Assume for every Xg € R we may choose a solution x =
x(t,xo) of (5.30) defined for t € R in such a way that: x(t,xo) is continuous in
(t,xg), x5 hd x(t,xo) is a homeomorphism of R for each t € R and x(t,x(t,xo)) -
X(t+T,xo) for t,t,xo @R (i.es;, X is a "flow" or one parameter group). We claim that
then
(5.32) u(x,t) = uo(x(-t,x))
is a viscosity solution of (5.31). The {nitial condition is clearly satisfied. Let
¢ edm x(0,=n%, xeRrR ana (x,£) e E (¥(u-k)). Then, by (5.32),

P 0%, ) (ulx, E)=k) = ¢1x,E) (ug (X(=E,X))=k) > P0x,t) (ug (X (=t ,%))=k)
for all t and x . Put x = X(t-t,x) in this inequality to find
Pix, ) (ulx,E)=k) > P(X(t~t,X),t)(ulx,t)-k)
for all t . This implies that ¢t * \P(X(t-;:,;),C) is maximized at t = t and so

%:w(x(t-i,;),t) " 9 (%, E) + b)Y, (X, E) = 0 .
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Multiplying this relation by (u(;,E)-k)/«P(;,E) we find u is a viscosity subsolution
of u,  +bu, =0 . Similarly, it is a supersolution and so a solution.

Nonuniqueness arises when X may be chosen in more than one way. In (3] examples of
this may be found. The simplest have the following structure: There are classes F of
continuously differentiable homeomorphisms of R such that for f£,g @ F one has

£067 %)) 2 g'(g (x)). If £ % g and b(x) = £'(£”V(x)), then

Xy(toxg) = £t + €71 (xg)), Xplt,xg) = glt + g™V ixy))
are distinct flows with the desired properties. More complex examples in higher dimensions
are also given in [3].
While this example is for the pure Cauchy problem, it may be regarded as a Dirichlet
problem in a half space. To get the Hamiltonian to be increasing in the unknown, set
=Yt

v a=e u in (5.31) so that it bscomes

vt + YV + l:(x)vx - 0

v{x,0) = uo(x) .
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VI. Existence of Viscosity Solutions for the Cauchy Problem.

A8 in Section IV, we will restrict ourselves to a few remarks, Two of the basic ways
to produce solutions of the Cauchy problem are the vanishing viscosity method and numerical
approximation. If the method of vanishing viscosity converges, the result will be a
viscosity solution (Theorem VI.1). This fact may be used in a straightforward way to
obtain many new existence and uniqueness theorems. This is indicated by the very general
results stated for the simple model problem of Paragraph IV.2. The relationship to the
nonlinear semigroup theory is touched on in Section VI.3. Convergence of numerical schemes

to viscosity solutions is discusged in (8].

Iv.1 Vanishing Viscosity and Viscosity Solutions.

Avoiding useless repetition, we rely on the reader to adapt the proof of Proposition

IV.1 and establish:

Proposition VIi.1. Let u_ be a solution of

€

Uep t‘-Auc + He(x,t,ut,mc) =0 in QT’

(6.1)

u. =g on 982 x [0,T)], ue(x,o) = qun  (x) in {i ’

€ € 1]

with uet—_' u

z, * 2z in c(32 x [0,T]) and Upe * Uy in oy, 1t tn* 0 and ucn*u in c(Q,),

then u 1is a viscosity solution of

= N
eﬁxj e C(Q,r) and u e cb(Q'r) + Assume He * H in C(Q'r X RXR),

(6.2) u, + H(x,t,u,Du) = 0 in Ql.‘ .

If the convergence u, *u {8 in C(é,r), then u also satisfies
n

(6.3) u=g on 3R x (0,71, ulx,0) = uylx) in 8.




¢
L&
K8

Vi.2. A Model Problem.

Let
(6.4) e c(x) , uye suce)

and consider the problem

(1) u, +HDu) =0  in R ox o, =@

(6.5) N
(11) u{x,0) = uo(x) in R

Our main existence result for (6.5) is:

Theorem VI.1, Let (6.4) hold. Then there is a unique u e C(J) n cb(ﬁ,r) for all T

which is a viscosity solution of u, + H(Du) = 0 and Q and satisfies

(6.6) 1im Ju(*,t) = u_ ()} -0 .
tt0 0 L'(IN)
Moreover,
(6.7) lutx,t)=uly,t)| < sup lu () = ug(E4y=x)| for x,y e R, e20 .
N
Eex

>0

Finally, if s(t):at’c(l“) hd BUC(IN) is dafined for t 2 ¢ by S(t)uyg = u(*,t), then 8

is a strongly ocontinuous nonexpansive semigroup on BUC(I") such that

for u,v eBUC(lN) .

(6.8) '(S(t)uo - §(t)v Vo

+ +
YV e S M) Y

0 LY

The existence of u satisfying (6.6), (6.7) is easily established by the vanishi
viscosity method, and we will not carry this out. (The proof of Theorem IV.3 indicate
main points.) The uniqueness and the estimate (6.8) follow from Theorem V.2. The
uniqueness implies the semigroup property S(t)}S(T} = s(t+t) for ¢,T ? 0 as usual.
remark that (6.7) also follows from (6.8) and the translation invariance of this model
problem as reflected in

vo(xw) - uo(x) =) (s(t)vo)(x'o-y) - (s(t)uo)(x).

ng

8 the

Actually, Theorem IV.1 follows directly from Theorem IV.3 and nonlinear semigroup

theory, as recalled next.




-

Vi.3. An m-Accretive Operator.

Several authors, in particular Aizawa [1) and Tamburro [25], recognized that nonlinear
semigroup theory provides solutions to the Cauchy problem for HJ equations. We just
sketch this here in our new context for our model problem.

Let H e C(R'). Define an operator a in BUC(®Y) by u e suc(®) is in D(A) 1if
there is an g e BUC(RN) for which H(Du) = g in the viscosity sense and then set
Au = g. It follows from Proposition IV.3 that for each mn € BUC(I“) and X > 0 the
problem u + AAu = m has a unique viscosity solution u € D(A). Denote this solution by

w=Jm, J, = (I+ XA).". It also follows from Proposition IV.3 that

+ +
(1 NomTm) L $ M)

L) L RY)

(6.9)
(14) NI,m~7,n)0 < Um-n)1 s
R RN L RY)

for m,n € BUC(IN). The oondition (4.9)(ii) is the definition of "3 (s accretive” in
BUC(IN). The fact that also R(I+AA) = BUC(IN) is by definition "A 1is m-accretive"
in BUC(IN). Clearly D(A) 1is dense in BUC(IN). By the Crandall-Liggett Theorem (see,
e.g., [2),(71,(11]1), the functions uszlo."] +* BUC(lN) defined for € > 0 by

(1) ue(O) = uy

(6.10)
ue(u-e)-ue(t)
€

(i1) + Aue(tﬂ:) =0 for t >0

converge in BUC(IN) uniformly on compact t=sets as € ¥+ 0 to a limit
-[t/€
I1im u_(t) = lim (I+€A) [e/ luo

= s(t)uo
(X2] €+0

where S(t) is a strongly continuous nonexpanaive semigroup on BUC(IN) « We claim
S(t)uy is the viscosity solution of (6.5). Indeed, let u = S(tlu;,, ke R, v e D"
and E‘_(v(u-k)) # 0. Set uc(x,t) - uc(t)(x). Since u, + u locally uniformly,
E*(w(ut-k)) 2 $é for € sufficiently small, (The disonntinuities af ue(x,t) at
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t = jE are no problem.) Moreover, if ("e'tc) e l+(v(ue-k)) we may assume

(xe,tc) + (xo,to) e E+(¢Wu-k)). (Pass to a subsequence if necessary or choose ¢ so that
E_ (¥(u-k)) = {(xo.to)}.) We have

(6.11) ¢(xe,t€)(ue(xe,tc)-k) > w(x,t)(ut(x,t)-k).

Since xg e E+(¢(°,t€)(ue(',te)-k),RN), the definition of A and (4.10)(ii) yield

us(xe,te)-uc(xc,te-e) -(ue(xe,te)-k)

(6.12) - +H T Delx,,t.)) €0 .

Now, by (6.11)

\P(xe,te)(ue(xeyts) - \\e(xe'te-e)) -

J Plxeotedlu (x ot k) = ¥(x ,t_-€)(u (x ,t ~€)=~k)
{6.13)

-(W(xe,te) - v(xe,te-c))(uc(xe,te-s)-k)

L > -(v(xe.tc) - ‘F(xclte"t))(ue(xe'te"e)‘k)o

Using (6.13) in (6.12) yields
) 1 (w(xe,te)- (xe,te-e))
‘p(xelte) €

(ue(xelte-e)'k)

(ue(xe,te)-k)

+ H(e —=—2f
w(xe,te)

D*P(xe,te)) <o .

Letting € + 0 we find

(u(x_,t )=k) (ulx.,t.)=k)
0’0 R
T gty e orte) * u(- FEy DY lxy,ts)) < 0

and u is a viscosity subsolution. Similiarly, it is a supersolution and the claim is

proved.




v b - e

Uy ~ P

m T

We make some further remarks below which heipr to clarify the relationship between the
notions of viscosity solutions and accretivity. (Only the reader who is familiar with
accretivity in spaces of continuous functions and its characterization via duality we see
the remarks in this light.) Assume H @ C(f x n"), gec(R) and ue cb(n). If u is a
viscosity solution of
(6.14) H(x,Du) € g(x) in Q
and vy e C‘(ﬂ). then the results of Section I imply
(6.15) H(x,D¥(x)) € g(x) on E, (u-¥}.

The converse also holds. To see this, recall (Proposition I.19) that (6.14) is equivalent

to

(6.16) H(x,a) € g(x) for xe N and ae D+u(x).

Moreover, a € D¥(u(x)) is equivalent (since u is bounded) to the existence of

vec'®n C,(R) such that u(x) = ¥(x), D¥(x) =a and ¥>u on @ \ {x}. Then

{x} = E*(u - (¥~1)) and from (6.15) (applied to Y-1 1in place of ¢) we deduce (6.16).
Arguing similarly with supersolutions one concluded that H(x,Du) = g in the

viscogity sense if and only if (g - H(x,DYy))(u-y) 2 0 on E+(u-‘P) U E_(u-y) for every

Q
b e c1( ) n cb(m.
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