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ABSTRACT..

-'When the flow over a submerged , round, Aipright cylinder, situated in a

large ocean, is forced by a train of plane waves, linear theory (Yamamuro,

1981) shows that the response can be abnormally large for certain forcing

frequencies. The aim of this paper is to present a weakly nonlinear theory,

where wave interactions, arising from the quadratic terms in the free-surface

boundary conditions, can yield abnormally large responses.

A specific interaction will be considered between a flow at a subharmonic

frequency and a flow at the driving frequency. The reason for considering

such an interaction derived from a consideration of some experimental results

of Barnard, Pritchard and Provis (1981)
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SIGNIFICANCE AND EXPLANATION

Observations of unusually large response in the wave records at Macquarie

Island, in the ocean south of Australia, have been explained as being due to

the excitation of nearly resonant trapped modes. This phenomenon has moti-

vated much experimental investigation of trapped modes around a submerged up-

right cylinder in water of constant depth. Theories, based on the small-

amplitude approximation, lead to predictions of resonances. However, some

experimental work indicated the presence of subharmonic components in the

wavefield. This paper develops a possible explanation for this by showing

that nonlinear interactions could yield resonance of subharmonic modes.

* -Moreover, a particular set of conditions is presented, in which the amplitudes

of plane waves incident on the obstacle are significantly magnified above it

by subharmonic resonance.

- I

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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WEAKLY NONLINEAR INTERACTIONS AND WAVE-TRAPPING

Yuriko Renardy

.I Introduction.

If a train of plane waves of a certain frequency is incident on a

submerged round sill, situated in a large ocean (Figure 1), linear theory

* (Yamamuro, 1981) predicts that the overall amplitudes over the sill may become

much larger than those of the deeper ocean. Such a phenomenon may be called

"wave-trapping" or "near-resonance", referring to the unusually large

response. The purpose of this paper is to examine a contribution of nonlinear

effects to the wave-trapping phenomenon.

Let the fluid over the submerged sill be denoted by D, and the fluid
"i

outside this region by D2* The total domain for the flow will be denoted

by D - DI u D 2. The boundary conditions at the free surface are nonlinear.

However, the amplitudes of the motion in D2 are assumed to be small enough so

that those conditions may be linearized. An investigation is made of a wave-

trapping phenomenon in which 'small-amplitude' waves enter D, and become

magnified, so that in this region some nonlinear terms are included in the

free-surface conditions. A possible mechanism of magnification is a wave

interaction arising from the quadratic terms in the free-surface boundary

conditions (Phillips, 13.8), and it seems appropriate to restrict attention to

these in an initial investigation. Therefore, if a is the driving

frequency, attention will be limited to interactions, in D,, with waves of

frequencies 0/2 and 20.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7927062.
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Figure 1

The structure of the paper is as follows.

12, 13. In 12, the equations governing the flow are presented. A~n attempt to

satisfy them by a modal decomposition of the velocity potential in the radial

variable leads to an infinite matrix equation. The organization of the solu-

tion method for this set of equations is described in 13. A linear calcu-

lation. (Yamamuro, 1981) shows that, in order to make the velocity continuous

across the sill-edge, the wave-field necessarily contains modes that decay

* away from the sill-edg, and are named "decaying modes". Resonance of such

I modes will not be considered here. Hence the solutions exhibiting large

response are assumed to be combinations of eigenstates, each of which consists

of a principal part, which is wavelike, together with associated decaying

modes.
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14. In order to calculate the amplitudes of the wave motion, it is

necessary to solve a 'homogeneous' problem in D , namely a linearized problem

with no incident waves. This is investigated in 14. The problem posed in D2

is solved from an existing linear theory. The flow structure in D2 is then

used to generate a boundary condition at the sill-edge r - I so that the

problem is reduced to a boundary-value problem in D1. It is found from a

separation of variables that an eigenstate in D,, periodic in time with a

complex-valued frequency 0 , consists of a 'wavelike' mode and an infinite

number of 'decaying' modes. In addition, there are an infinite number of

complex-valued coefficients to be determined from the boundary conditions.

The eigenfrequencies 0 and the coefficients have been determined

simultaneously by finding the zeros of an expression in the depth variable. A

collocation method is used and consists of applying that expression at N

values of the depth variable and including the first N modes of each eigen-

state. This yields an N x N matrix, whose zeros can be found by the

following method. The condition number of the matrix is computed over a grid

of complex frequencies and those with relatively large condition numbers are

taken to be approximations to the 9's. This method was, however, time-

consuming and an alternative, non-standard, method was devised. The method is

an iterative scheme, based on the smallness of the response of the decaying

modes compared with that of the wavelike modes.

15. The solution to the homogeneous problem provides a set of orthogonal

functions, a combination of which can be used to form an expression for the

surface elevation. The total sill solution is then written as a suitable

combination of the orthogonal functions, superposed on the linear solution.

In 15, an example of such a nonlinear interaction is constructed. The example

chosen here displays subharmonic resonance and was motivated by previous work

-3-
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on edge waves (Guza & Davis, 1974; 14inzoni & Whitham, 19771 Rockliff, 1978).

The interaction involves three modes: two cos 29 modes at the forcing

frequency, and a cose mode at half that frequency. It is found that near-

resonance occurs for two ranges of forcing frequencies. One range occurs near

an eigenfrequency of the cos26 mode, and the other occurs near twice an

eienfrequency of the cos8 mode.

-4-
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12. Formulation of the 2roblem.

It is assumed that the motion is inviscid and irrotational. The domain

of the flow above the sill (r 4 1) is denoted by D, and that outside the

sill region (r ) 1) by D2. The amplitudes of the flow in D are assumed

to be sufficiently small so that the free-surface boundary conditions may be

linearized and applied at an equilibrium level. Such a linearization is not

*assumed in DI. The geometry of the problem is shown in Figure 1.

Cylindrical coordinates r,e,z are used: r is measured outward in units of

the sill radius a , and z is measured vertically upward in units of the

undisturbed water depth d above the sill. The depth outside the sill is

denoted by D - d/6 . The velocity potential 0(r,8,z,t), which is in units

of d 2, satisfies Laplace's equation, namely,
1 2

+ + + 1 Mzz 0. (2.1)rr r r
r d

Let n(r,e,t) denote the surface displacement and x denote the horizontal

coordinate in the direction 0 = 0. A train of plane waves is assumed to be

incident from the positive x-axis and is represented by the real part of

-i(kx + Ot)n n I e (2.2)

where k is the positive real root of

(KD/a) tanh (KD/a) = Da2/g. (2.3)

The free-surface boundary conditions are:

at z = n(rd,t), 0 ( 9 ( 2w, r ) 0, a kinematic condition

Oz = ;/a + (d2/a)(V * (Vhn) (2.4)

where P (a/ax), 3/ay), and a dynamical condition
h
d 2 ( + (g/d)1 + a u + (. V(u+ 12 - 0 (2.)

tt z at(2.6)
where

u d 2 020 rl/a, O./ar, z /d). (2.6)

-5-



The small-amplitude approximation of condition (2.4) to second order is found

-i(Phillips, 13.1) to be, for z2-0, 0(48(42W!, r ;0 0,

a a 3 2
+ * (g/d)#* i (0 + -gd~ T uu )/d 0. (2.7)

The possibility of a resonance, in which the right-hand-side becomes of the

* same order as the combined expression on the left-hand-side, will be inves-

tigated for the sill region. The possibility of a similar kind of resonance

through condition (2.5) will not be considered. Under these assumptions, the

4free-surface boundary conditions to be used are: for z - 0,

+2

z (tt (/d)z)- -rt(u u )/d 0 for D

#*t + (g/d)# - o (2.8)

and

Tit 0 0 for D *(2.9)

As mentioned in 11, only flows of frequencies 0, 20 and a/2 will be

investigated, so that condition (2.8) can be expressed in the following form:

~ i~t 1/2 1iat -~21ot fofPhillipe +f ,0 e +f (r, + * ,

+ (g/ #) (2.0)
tt0 for D2

Here, the asterisk denotes the complex conjugate of preceding terms. Thes-

(i - 1,2,3) are complex functions of * and are determined. Once f is

known and substituted into equations (2.8) and (2.9).

The boundary condition on rigid surfaces is one of zero normal velocity,

i.e.

4 W 0 for z -- 1, r < and z - -1/, r > 1 (211)

fo2D

and

#r- 0 for r - 1, -1/6 < z < -1. (2.12)

-6-
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At the sill-edge, the velocity is assumed to be continuous, a condition

that is equivalent to the * and * being continuous there. At large
r

distances from the sill, the wavefield is assumed to consist of the incident

wave, and waves that either decay or radiate outward.

-7-



13. Formof 'resonant' solutions.

The problem formulated in §2, with (2.8) and (2.9) as the free-surface

conditions, is essentially a superposition of two problems. Hence the

solutions are expressed as * L + N . The L satisfies the linearized
L N L

free-surface conditions, namely,

L tt + (g/d)*Lz = 0 at z = 0 , 0 4 8 ( 2w, 0 < r < , (3.1)

and is forced by the plane waves represented by (2.2) and (2.3). The N is
N

constructed to make the total velocity potential f satisfy the nonlinear

free-surface conditions (2.8) and (2.9), and is not forced by the plane

waves. Both tL and tN satisfy the conditions (2.11) and (2.12) at the

solid walls. The fN interacts with fL through the free-surface conditions

and the solutions of interest are those in which tN becomes comparable with
1N

L

The linear solution 0L has been calculated (Yamamuro, 1981) by a

separation of variables for the regions 0 < r. < 1 and r > 1, and the

velocity is made continuous throughout the flow.

The 0 are expressed as a linear combination of orthogonal functions
N

that satisfy equation (2.1) and conditions (2.8), (2.11), (2.12), and the

radiation condition that the flow be non-growing at large r . Let the part

of IN in D, be denoted by 0N1 and that in D2 by 0N2" 0N2 is to

satisfy linearized conditions and to consist of flows of frequencies 0, 0/2

and 20. Separation of variables then yields

N2 e ' i o t I cosmO(B H (1)(aA r/D)coshA (Sz+1)
m=O mOm 0 0

+ B K (aX r/D)cosX (6z+l)/K (ak /D)) + (3.2)

n,1 mn m n n m n

+ {similar expressions for flows at frequencies 0/2 and 20)

-8-



where (PA0 , ±iA 1, ±IA2,''} are the roots of the dispersion relation (Davis

& Hood, 1976)

2tanh A D2/g. (3.3)

(1)Notations for the Bessel functions H (x) and Km(x) are those used by
n

Abramowitz and Stegun (1972). The complex coefficients B are yet to be

determined. However a boundary condition for N is first constructed by
N1

the elimination of the Bn.

At r = 1, the condition that N and aN/ar be continuous is:

1/3r for - I < z < 0

N2 /ar = N (3.4)
-0 for -1/6 < z < -1,

and

N2 = N1 for -1 < z < 0 (3.5)

The expression (3.2) is substituted in equation (3.4). In what follows, the

discussion is focused on flow at one of the three frequencies (0, 0/2 or

20) denoted by W. The orthogonality of the set {cosh A 0(dz+1),

cos A (6z+l): n = 1,2, ° °.} over -1/6 < z < 0 is used and integration
n

over z yields the Bmn in terms of N1/Dr at r = 1. These equations

are then used in equation (3.5) to eliminate the Bmn* A boundary condition

results for 0 (Z), the coefficient of cos m8e- iwt  in %N at r = 1:

( =(z')k (z,z')dz' for -1 < z < 0 , (3.6)
-i

where

' H m(aA/D) cosh A 0(6z+I) cosh A 0(6z$+1)
W (z,z') = H'(aA0/D)(aA0/D) h(A0 )

(3.7)
C K(a /D) cos A (6z+l) cos A (6z'+l)m n n n+ K'(aX /D)(aX /D) h(i n

n=1 m n n n

-9-



Thus, the remaining problem is to solve for * using equations (2.1),
N1

(2.11) and (3.6). The details are given in 14. For each of the frequencies

w (0, 0/2 or 20), the corresponding flow in *N1 is constructed as

follows. The spatial variation of *Ni is constructed to be that of the
-in t

solutions 4n (r,z)cos m~e m + * which satisfy the "homogeneous" problem

for 1N1 ' i.e. condition (2.8) is replaced by the linearized form. The set

{n (r,0): m fixed, n - 1,2,*00} can be shown to be orthogonal for

0 4 r 1 1 by the application of Green's theorem (Jeffries & Jeffries,

15.081) to the domain Di. Thus tN1 can be written as

a a

* - cos me I (a  e- Ot/2 00(rz )m-0 n-I mn
(3.8)

+ Bam e-t (r z) + Ymne2 iat n(rz)} + *

mn 0mnt "imnt

where 0 am(r,z)cos me e -i , , n(rz)cos m~e and

-iymnt
Ymn (r,z)cos me e are the solutions to the homogeneous problem for

w equal to 0/2, 0 and 20 respectively. The complex coefficients n,

B and Y are determined by condition (2.8), in which the orthogonality
mn Mn

property of those functions is used. For example, the 0 are determined byin

a (-U2/4 + Q2) f12 (r,O)rdrinn(2/ + n a2oi)1 n
mnan 0 am

f 2w 2. (r,O~cos me det  (3.9)

= m1 n (r,O) 0~ ----- rdr.

0 um 2Cos me dO
0 and)lrosm dO dTe leeutos nwih

Similar equations hold for Bm and Y These equations in which

and f* interact will be referred to as 'interaction' equations.
&N

~-10-



it can be seen that the 'response' I% I is inversely proportional to

1-2/4 + n2 so that in actual computations involving a particular

geometry, only the one aM, whose Q.. is the closest to 0/2, is

expected to be important. Similarly, at most one 0., and one Ymn are

expected to be significant enough for inclusion in the interaction

calculations.

We note in passing that the Longuet-Higgins eigenfunctions, referred to

as 'free modes' in his paper (1967), cannot be used here for the construction

of *N1 because then the range of integration on the left hand side of

(3.9) would extend to infinity and the integrand would grow almost

exponentially with r

-p11-
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14. The homogeneous problem on D1.

This problem consists of equation (2.1), with the boundary conditions:

at z - 0, #tt + (g/d)l " 0 (4.1)

at z - -1, # 0 (4.2)

at r - 1, condition (3.6) holds and w is assumed to be the frequency of

the flow in D2.

Separation of variables yields solutions of the form

•(r,z)cos me e , where

4(r,z) - A J (akr/d)cosh k(z+1)
m m

(4.3)

+ A I m(ak nr/d)coskn(z+1)/I (akn /d)
n n n

and AM, Amn, k, kn are to be determined. Equations (4.1) and (4.2) yield

a dispersion relation between k, kn and 9 , namely

k k

} tanh { 2 da/g. (4.4)
ik ik

n n

The Am, Amn, k and kn  are related through condition (3.6), which yields

the following equation:

A L(k,z) + A L (k ,z) - 0 for -1 < z < 0 (4.5)

_ n=l n1

where the operators L(k,z) and Ln(knz) are defined in the appendix. The

wave numbers A and A n, appearing in the operators L and Ln, correspond

to the fixed frequency w of the flow in D2. They are known through the

dispersion relation

{ } tanh { } 2/g (4.6)
ix

n n

-12-
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where W = 0, 0/2 or 20. A matrix equation that expresses the An in

terms of An and also yields the , is constructed by satisfying equation

(4.5) at N values of z and neglecting the coefficients Amn for n > N.

Convergence with N was checked numerically. One way of obtaining the Ws

is to search through the complex plane by computing the condition number of

the matrix over a grid in the complex plane. If a grid point yields a near-

singular matrix, then that complex number can be taken to approximate an

4 An alternative, less time-consuming method is now described.

* J4.1. iterative scheme.

The scheme is constructed to take advantage of the largeness of IAMt,

representing the response of the wavelike modes, as compared to 1A.1

representing the response of the decaying modes, and of the property that

lAmnl is smaller for larger n : i.e. the wavefield contains little of the

modes that decay very fast away from the sill-edge. Equation (4.5) is

multiplied by each of the functions in the set {cosh k(z+l), cos k (z+1):n

n = 1,2,*''} and integrated over -1 < z < 0. Since the elements of that

set are orthogonal to each other, the resulting equations take the form:

for m = 0,1,2,**"
A MAX(k,XX ) + A A Xs(k ,X,X ) 0 (4.7)
m n s-i m

. and for p - 1,2,666

Ap Y(kpk n) + I hYsk k''An) # -A Y(k,k ,A, n ). (4.8)
Mip p p n as p n m p n

The functions X, Xp and Y are defined in the appendix.

-13-
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The iteration proceeds as follows. The first iterate for k, denoted

by k is calculated from the following reduced form of equation (4.7), in

4 which all decaying modes are neglected:

J (ak/d)HI(aA/D)f(k)h(A)A - k J'(ak/d)Hm(aA/D)(g(A,k)]2 - 0 (4.9)

where A is known. The corresponding eigenfrequency 1(0) is calculated from

k(0)thk 0 )  d (0)2/g, (4.10)

after which the k(0),a are calculated from equation (4.4). Next, the
n

equations (4.8) are used to express Amn/A m  for n - 1,2," Then, on

using these relations to eliminate the Amn's, equation (4.7) takes the form:

x (k) + S6h(A)x (k,k )H'(aA/D) - 0 (4.11)
12 n M

* where xlk) represents the left hand side of equation (4.9) and contains no

decaying modes, x2(k,kn) involves the decaying modes, and the notation is

defined in the appendix.

The nth iterate k(n) (n - 1,2,0*°) is calculated by a Newton's

method from equation (4.11) in which the term x2 (k,kn) is calculated at the

known (n-1)th iterate, i.e.,

x (k(n)) + 8 h(A) x2 P(n1)k (n1) )HI(aA/D) - 0 • (4.12)

The corresponding (n) and kin) are then calculated, as for the zeroth-

iterate from equation (4.4).

A numerical check of the scheme was performed as follows. The O's were

compared with the eigenfrequencies for the domain D denoted by n because

they were expected to have similar values. The n 's generalize the
D

frequencies of the 'free modes' investigated by Longuet-Higgins (1967) using

shallow-water theory, and were calculated in a similar way to the O's. The

only difference was that in equation (4.11), A was also an unknown. There-

*: fore, at each step of the iteration, the two equations, (4.11) and

k tanh k - 5 A tanh A - 0 , (4.13)

*were solved simultaneously for k and A by a Newton's method.

-14-
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15. Example of a near-resonance.

A particular set of conditions in which the foregoing theory yields near-

resonance will be presented. In order to simplify computations, the

parameters 6 and d/a will be chosen to be small. The smallness of d/a

ensures the smallness of the effect of the decaying modes in the flow in D1

so that in the 'interaction' equations, such as (3.9), the decaying modes will

, be assumed to be negligible. However, the decaying modes will not be

neglected in the computation of the Ws since these are required to a high

order of accuracy. Furthermore, the smallness of 8 ensures that some of the

Q's will have very small imaginary parts, so that if the flow is forced near

such an eigenfrequency, near-resonance is possible.

The experimental scales of Barnard, Pritchard and Provis (1981) were

examined for the presence of near-resonant nonlinear interactions but were

found not to yield them. However, a choice of scales which do are:

d - 2cm, d/a - .005, 8 .002, Inli M .01.

In this case, the maximum amplitudes of the decaying modes is at least an

order of magnitude less than that of the wavelike mode. Although these scales

* are unusual, there may be other realistic combinations where the nonlinear

theory is applicable.

An interaction of three modes will be considered: the

i (cose -it/2 + *) and (cos 28e - t + *) modes in * and the

(con 28e- tat + ) mode in L . In the sill region, these are represented as

follows:

L - A J (akr/d) cos26 cosh k(z+l)e + * + decaying modes (5.2)
L 2 2

: e~-iat/21
-N " a cos e J (aVr/d)cosh v(z+1) + * + decaying modes

r (S.3)
e'~i ot2

+ B cos 20 e J (a~jr/d)cosh P(z+1) + + decaying modes

2-15-
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where

k ta2h k do2/g, V tanh V - d 2 /g, (5.4)

P tanh V - da /g.

22
Irepresents the 0 defined in 14 which lies closest to 0/2 for the

cos20 mode and 02 is the 0 which is closest to 0 for the coe26 mode.

The free-surface boundary conditions (2.8) and (2.9) yield

OR 1i 2
' a I -i 1 (A2V + BV2)155

BR2  2 (5.6)

where

2 fJ
R (d5l/ - d 2/4g)cosh V (aVr/d)rdr (5.7)

20 2
2 2 2 fo

The functions V 11 V2  and V3  are defined in the appendix. The response for

the linear forcing A2  can be calculated from a method described in (Yamamuro

1981). A trivial solution is a = 0 and B - 0. The questions to be

resolved are whether there are any other solutions, and if so, under what

conditions.

Eliminating B from equations (5.5) and (5.6) yields

• a/i = i (A2VI/V 2 + i a
2 V2V3/(RIR2)) (5.9)

Let

0 Iie I
a - Idle , f =-V 2 V3/(RIR2 ) = Ifle

and

g i A 2V 2/R 1 = Igle 2 . (5.10)

Then

101 [cos 8 Cos + Ig(cof2 1/2/ (511)

and

-16-



12(/212 + sin-l (l2 IfIsin el/tgt). (5.12)

Next, B is evaluated via

B - i a2V3/R 2  (5.13)

In order that there be nontrivial solutions, two conditions must be

satisfied. First, Jat2 must be positive and from (5.11), the conditions

that must be met are:

(a) cos2  - + Igi2  0

(b) if cos$I + (cos2 8 - 1 + Igl2) 2> ,

there is at least one nontrivial jai. If

cose1 - - 1 + Igi 2 ) 1/2>. ,

then there are two solutions for Jat. Secondly, equation (5.12) shows that

2
tat2 1f1/Ig| must be less than or equal to I

If f2 is close enough to 0, then k is approximately P so that the
2

total velocity potential in the sill region is, approximately,
iiat/2

a cos e e O e I (aVr/d)cosh V(z+1)

i (5.14)

+ (B+A )cos2e -iotJ (akr/d)cosh k(z+l) + *.
2 2

This approximation may be used for the present example. In this case,

computations revealed two ranges of forcing frequencies 0 , in which near-

resonance occurs. One range lies near 2n1 and the other is near 2 In

most of these ranges, the wave amplitudes were calculated to be rather high so

that instabilities may occur, after which the present theory may not be

applicable. However, at the upper end of the range near 20,, the amplitudes

were found to be small enough so that the present steady-state theory might be

observable in practice.

-17-
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