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In this paper the author introduces the operator

higher order accuracy for approximation to the differential

s= pn(u)A

R R g T R A |

with

operator D,

where B denotes centered difference operator, U denotes averaging
operator,
m
Pylw = X cm(u-l) Ca™ " 2me1 Cm-1’ G0 =1

m=0
A class of new many-knot spline basis Qk

smoothing formulas

L
n := (Pn(u)) Nk was suggested.

The

1 > =t
fen ™ | 8 (FOE(t)at and Si,nf ) £9 .
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' Q SIGNIFICANCE AND EXPLANATION
i

I. J. Schoenberg studied B-splines and established some smoothing
formulas for fitting data. 1In particular the smoothing approximation
s, £ = ) £N,

has been successfully used in curve fitting. The paper proposes a new class

(where Ni,k are B-splines and f is an arbitrary function)

of spline function denoted & instead of Ni,k‘ The new approximation

;‘ i,k
i s f = z £.9Q achieves higher order accuracy. To construct £, _, we
. k,n ii,x n i,k
3 ; first introduce the averaging operator Pn(u). Pn(x) = z cm(x-1)m,
= m=0
=i = - m = 2 =
2 Cm P cm-1’ c0 1, and then define 1k [Pn(u)] Ni,k' The
. 1 =t
. - - Q —_—
J smoothing formulas for function f are given by fk,n b f:, k,n( " YEdt
o
‘ - Q .
L}. and s, f Zfi e
!
f.‘
-3
%;
.‘
@
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A NEW WAY FOR CONSTRUCTING HIGHER ORDER
ACCURACY SPLINE SMOOTHING PORMULAS

Dong-xu 01"
The modern mathematical theory of spline approximation was introduced by
I. J. Schoenberg in 1946. In the paper [6] he studied so-called “B-spline
basis"., A B-spline basis can be normalized in various ways. One of them is
the so called normalized B-spline, see [2], denoted by Ni,k for the B-spline
function of degree k - 1 having support (xi, x1+k). The spline smoothing
formula for degree k - 1 to an arbitrary function f can be represented by

Skf = z fiN This approximation has been used in curve fitting

successfully (1], [4].

i,x’

In order to improve accuracy of the smoothing operator Sy the author
in this paper suggests a new spline basis denoted instead of N .
1,‘(,1‘1 1lk

Thus, a new way for the construction of spline smoothing formulas is

introduced. I prefer calling § f = Z £ a smoothing operator with
k,n ii,x,n

. = Y
grade n and order k In here when n 0, 1,k,0 is just Ni,k and Sk'o

*
is the same as Sye Since Sk'nf € v, + wk, this is a class of many-knot

splines.

Concerning higher order accuracy spline smoothing formulas,
I. J. Schoenberg [1946) has already discussed in [6] and 2. S, Liang studied
the many-knot spline smoothing [4]. My main attempt in this paper is to

suggest a new way for constructing them.

Department of Mathematics, Jilin University, Changchun, China.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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1. The smoothing operator

Denote the centered difference operator by 3;, defined by
3 PTG .
ht(x) = f(x 2) f(x 2)

FPor simplicity let h = 1, and 3 ;= 31.
The B-spline of order k with equally spaced knots are denoted by Nk,

and it can be represented by

—-1k
N, (x) = (3p™") &(x) , (1.1)
Ny (%) 1= M=), (1.2)

1

where D~ ' is the integral operator, § is Dirac S-function.

It is our purpose to find a more exact difference approximation to the
operator D. I would like to choose following ready-made identity.

Fact 1.1 ([5]) p. 43)

(] 2“ 2
log(y + Jﬁ + yz) - /‘ + yz ) (-1)m.3__gggl_ y2m+1

. (1.3)
m=0 (2m+1)1
Fact 1.2 The following expansion
o
x=ghx J C(chx-1n" (1.4)
m
m=0

holds. Set

(2“‘4'1)!' = (2“’.’1)(2‘“"1).-.301 ¢

m n mi
2wt -1 = Y Gaennir So = '
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Proof From (1.3)

o«
logly + /1 + yz) - “ + y2 Z (_1)m _ml 2my2m+1

n=0 (2m+1) 11
VAR
-1+ yz E Cm?my2m+1 .
m=0

= /1 +y%, x=21o0g(y + /1 + y2). Thus

Let y = gh 5, then ch

N X

2m+1
x = 2 ch

NIx

mzo Cm2 (ah E)

@ m
X X 2 x
=2chXen Emzo c (2 sn® 3)

= gh x z C(chx-1)m .
m
m=0

Introduce operators E and ua defined by

Eaf(x) fix + a) ,

1 a a
uaf(x) = E‘ (£(x + 5) + f(x - 3))0 U = |-|1 ’

and notice the relationships between those operators (see [3], p. 230)

E = eD, ch % = U ,

(N[

b 2 1 _21
2 2 _ 2

2 gh % =@ - e =E =D =3 ,

Use and I instead of x and 1 in (1.4)

D
2




D D m
D=2sh3 ) Cylch 5~ 1)

m=0

P VIS

my
- ) C (- 18
m=0

_ _h,."._

n

‘ me

| =y cm-1"T+r_ , (1.5)
m_om n

where
[

R =282 J c(nl2-n™. (1.6)
n 2 m 2
meen+

- - - .

Define B'™ ag the first part of (1.5), i.e.,

n
my ry
Fn) &= ) c u=-D"8=p (0B ,

=0

where
1,

n n n
P (W) = |} c (v~ n™= ) 273 Y "'”m-j‘m)cm % (3)32 . (1.7
n m=0 $=0 m=j 3™ a0

In the general case, define

(n) e W
'Eh : pn(uh)'Eh . (1.8)

Po(l-l) = I,
Fact 1.3 If k is any nonnegative integer, then the sum of all
coefficients of items (uh)j in the expansion (Pn(uh))k equals to 1.

Notice (1.6), the first term in R, for any h

- + ’
1 hD, 2. n+1 -2 3(n 1)Cn*1h2(n+1)02n+3 . (1.9)

c_ . DizT (7)1}

n+t'21 '2

This implies the following:

"
rJ

This is a collection of operators approximate to D. Beyond doubt Pn(l) = 1,
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Theorem 1.1 Assume that f @ c2"*3, then

-3(n+1)c f(2n+3)(€)h2(n+1)

=(n)
Ah f(x) = Df(x) - 2 1

+ +
where £ @ [x - 251 h, x + 251 hl.
)l a smoothing operator with

Definition We call the operator (K;n)b'1

grade n and degree £.

It is to be noted that ‘K£0)D-1>k is just as with I. J, Schoenberg's.

Here it is the smoothing operator of grade 0 and degree k.

Fact 1.4 From Theorem 1.1, if g€ P, .4 oOn [a,D], then

Mg g, all xe(a+9-§—‘~h.b-5'-§-1h1.

n D
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2. A class of many-knot splines

As has been already pointed out, the B-spline Ny with equally spaced
knots (h = 1) 4is the result of the O~th grade smoothing operator applied to

the Dirac S-function ‘

N o= B m = (@ hRs . (2.1)

Now we use the smoothing operator Z(n)0-1 of grade n for the

S-function repeatedly. We can define a class of spline functions which as

more knots than Nk:

[}
“k,n = (P (W)'N, (2.2)
and
ni,k,n(.) = Qk,n(.-i) *
k=1
If L =Xk, then & (x) = (3‘“))k{—:1-——} which has knots
’ k,n (k=1)1

E;n'k) = - (_!.‘.t;—)—l-‘:.i' j = 0'1,000,2(1\'"1))(' n>0 .

We often take £ = k 1if without note.

The following facts can be proved easily in the same way as the
corresponding facts for N,.

Fact 2.1:

(1 ﬂk A% = Qk’n(-x)t

’

(2) 8 (x) =0 for all Ix| » Ant1)k !
k,n 2
m - (AN

(1) o' () = (B PR R Y

(4) "8 (x) = (K‘“’)‘(xf+“"/(k+m-1)|}, m> 0
n

{(5) Z ﬂk n(x + j)y =1, —- ﬂk'“(x)dx = 1;

gmmm
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(6) ﬂk n can be represented by the convolution integral
’

B ,al®) = fj, By, n"t)8y p(e1dt

1 igx
(M 8 0 = [0 (Bre’TVaE

2% k,n

14

-iEx
a8 = [, e oax

’

sin(§/2) E .k
= [—2/2_ Pn(COB 2)]

(8) Integration by parts:
= (R0 -1k
. ﬂk'n(x)f(x)dx (A*'p ) T£(0).

From the above mentioned facts we have the following theorems:
Theorem 2.1 Assume f is a continuous function or with discontinuity of

the first kind on [(a,b], and is extended with period b-a to (-%,®), then

Lim [, 6 (x-t)E(e)ae = 3 (E(x0) + £(x-0))
n>0

If £ is a function whose derivatives of order £ is continuous or is a
discontinuity of the first kind on [a,b], then

1
um [0, 45 6 (xtitma = 3 (£ P o) + P w0,
dx

h+0

where

X
Q (E

1
S x) = 8 ) -

This Theorem shows that the many-knot spline function 5h converges

weakly to the Dirac S§-function.
Theorem 2.2 Given the function £, define its many-knot spline

smoothing function by

- L &(n) -1k
fon B D £y = BTDOTE (2.3)

-7=
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Then

1 -t
fen =7 Jom O RO (2.4)

L
Theorem 2.3 If f eC (-2,%), then
2 L
f:. |f,i ;(x)lzdx < f:,, 119 o fax . (2.5)
’
Proof Take the derivative of order £ for (2.4), and the integration by

parts, and notice that

IELE—E Pn(cos x)] €1 .

If £ 4is a discrete valued function y; = f(xi), Xy = X + ih, then a

numerical smoothing formula is as follows:

cm —
S nf gyjﬂk.n( h) . (2.6)

Formula (2.6) can be efficiently applied to the problems of curve fitting for

discrete data.
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3. Examples

In this section some discussions which are helpful for applications in

practice will he given.

From (2.2), with ¢ =k, n =1, k = 1,2,3,4, we show the particular
representations as follows:
(1, Ixl <3 .
%. le-';' '
91,1"‘""%' %"""' ’ ,
-+ Ixl =1,
L (VI ixl > 1 3 |
(0.2, Il <3 .
-g%-;—gglxl. %‘|x|<1 '
a, (o0 = -2 2l 16X <3,
L_oLixl, Felxc2
L o . Ix| >2 3
462 878 2 1
232 " 432 % Ixl <5
%%% - %%%1 Ix] + %%% xz, % < Ixl ¢ 1,
%%% - %%% jx| + %%% xz, 1€ |xf < % '
93'1(x)-ﬂ-%+%|xl T RN I
%%% - %%% Ix| + %%5 xz, 2 € |x| < % '
- 2%3 + z%; ixl - 2%5 xz, % < |x|] <3 ,
L 0, Ixl >3 ,
-9
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|
o
(
' 7920 _ 20556 .2 |, 13059 | 3 x| <2
: ( 7776 " 7776 7776 ' 2
! 8444 3144 14268 2 . 8867 , ,3 1
RS o e - SSeeeagy p———— —‘
; 7776 " 7176 (Xl - 7556 X tqgme x0T, 3 < ixl <1,
25212 53448 36036 2 7901 , ,3 3 .
TR g eGSR P ——— eg——— ‘ -
7776~ 7776 (Xl * 56 X - 355 117, 1 € x] < 2 ¢
| 4152 11328 7956 2 1661 , .3 3
mm— oy cog———— tmagma— - oome— - €
. 7776 " 7776 Xl * 756 X -5 ¥, Skl <2, ,
» 22440 28560 11988 2 . 1663 , ,3 5
4,1 7776 * 7776 1*| ~ T556 X * 753¢ X7, 2 < Ix| < 2 ¢
9060 9240 3132 2 353 3 s
e oy cumm—— ——— - —— - €
7776 " 7776 X1 * 733 X - g IxIT, F <kl <3,
. 1308 1128 324 2 31 3 ?
' “7776 * 7776 1l e Xt kT, 3<xl <3,
¢ 64 48 12 2 1 3 7
. TSR wn empm—— A ——— - ee—— —‘
7776 ~ 7776 X! * T3¢ 7776 1X17e 7 S Ixl <4,
» \ o, Ix} >4 .

From (2.2) the following tables are given:

Table 1:
x N, (x) 91'1(x)
7
0 1 -6°
1 1 1
23 2 2
1
1 Ty
Table 2:
. 92,1""
f 0 Nz(x) L= L =2
: 7 100
° 1 3 72
L1 1 1 35
-2 2 2 72
+ 1 - L -4
- 12 72
3 1
hd 2 72 1

AY ~

{ . c fU w«&”ﬁ(&w,w-&%.w et A S0 B LK




e d o

e cudlet v,

el T

Pt o

' - dde -

%

-*

TTN e T

T PO B R e AT NI SN rutrraIne il 1

SEFTY N g “~.
Table 3
i Q
x Na(x) ] 33’1():) - 3;1(")
D t=1 !l ga2 | a3 t=3
0 3 | a0 270 1848 0
4 ) 48 ! 288 1728
s 1 1 P25 L 156 970 S 878
2 2 . 48 } 288 1728 432
1 fo4 8 80 - 172
t1 LB a8 288 1728 MY
£ 3 L1 _ 12 105 s 147
2 48 288 1728 432
s 2 | 1 20 _ 22
288 1728 + 432
5 | ; 1
7 0 | ; 1728 VT
Table 4
N Q x Qr Qe
x 4(x) | 4'1( ) . 4',():) Li(x)
L=11 =2 | a3 L =4 L=y
! 1
0 2 210 ¢ 1392 | 9332 63360 0 _ 13704
3 288 | 1728 | 10368 62208 2592
£ 1 23 144 902 ‘ 5647 35307 _ 14349 | _ 645
2 a8 288 1728 | 70368 62208 + 10368 2592
£ 1 1 40 176 545 _ _808 _ 6772 | 8222
6 288 | 1728 | 70368 62208 ¥ 10368 | 2502
s 3 1 o | .39 |_ _as0_ | 4359 ¢ 111 321
2 48 1728 J 10368 62208 10368 2592
) _a _ .8 _ _26 256 g <1520 _ 1340
: 288 |~ 1728 ' T {0368 62208 10368 . ~ 2592
+s 1 I | 155 _ 265 ' 323
1728 | 10368 62208 + 10368 . 2592
3 [ 1 _ 24 g 28 _ 30
: ! . 10368 | ~ 62208 10368 ~ 2592
;2 1 oA 9
2 ; . 62208 + 10368 . 2592
From (2.6), set n =1, 2 =k, k = 3,4, We obtain
5 —4
Sy, fx) =y, + 57 8y
4 -4
Saf%) =¥, * 555 8y, -5 Ay -

-11
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- Assume four points in the plane are given:

(0,0), (1,0), (1,1, (o, .

‘l [
(1.02315, 1.02315) - (1.00514, 1.00514)
(1)
'
{
X
=
t x(€) | y(&)  x(&)  y(t)
! : :
1.6 | 0.65648 | 1.11870 | 0.£1804 ! 1.13213
i i |
1.8 | 0.89167 | 1.08685 | 0.83711 1.09813
2.0 E 1.02315 | 1.02315 1 1.00514 1.00514
{ | é
2.2 | 1.08685 { 0.89167 ' 1.09813 i 0.83711
) i .
2.4 | 1.11870 | 0.65648 . 1.13213 ; 0.61804
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