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ABSTRACT

In this paper the author introduces the operator ((P) : p (I)A with
n

higher order accuracy for approximation to the differential operator D,

where X denotes centered difference operator, P denotes averaging

operator,

n
P(1) C (l-I) m, C - - - C

m-0 m 2m+1 C- CO

A class of new many-knot spline basis 2kn :- (Pn(10) 'k was suggested. The

smoothing formulas
Ii )f(t)dt annd" i~~

k,n h -d k,n hkn i kn

are discussed. Acces:vton F"r
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SIGNIFICANCE AND EXPLANATION

I. J. Schoenberg studied B-splines and established some smoothing

formulas for fitting data. In particular the smoothing approximation

S f = f4 (where Nik are B-splines and f is an arbitrary function)
k iik

4has been successfully used in curve fitting. The paper proposes a new class

of spline function denoted 9i,k instead of Ni,k. The new approximation

S k,nf = f1 i,k achieves higher order accuracy. To construct i,k' en

first introduce the averaging operator Pn (), Pn(X - C (x-1)M,

Cm =- jC O -1, and then define -0k :" [PI()] Ni,. The

smoothing formulas for function f are given by fk h - (  )fdt

and Sk fik,

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.

211i



A NEW WAY FOR CONSTRUCTING HIGHER ORDER
ACCURACY SPLINE SMOOTHING FORMULAS

Donq-Xu QI

The modern mathematical theory of spline approximation was introduced by

I. J. Schoenberg in 1946. In the paper [6) he studied so-called "B-spline

basis". A B-spline basis can be normalized in various ways. One of them is

the so called normalized B-spline, see [2], denoted by Nik for the B-spline

function of degree k - I having support (xi, Xi+k). The spline smoothing

formula for degree k - I to an arbitrary function f can be represented by

S f - f N *OThis approximation has been used in curve fitting
k fii,k'

successfully [1], [4].

in order to improve accuracy of the smoothing operator Sk, the author"k'

-l in this paper suggests a new spline basis denoted instead of Nik.

Thus, a new way for the construction of spline smoothing formulas is

introduced. I prefer calling S k,nf = f aii,k,n a smoothing operator with

grade n and order k. In here when n -0, i,k,0 is Just Nik and SkO

is the same as Ske Since Sk,nf e k + 'k' this is a class of many-knot

splines.

Concerning higher order accuracy spline smoothing formulas,

I. J. Schoenberg [1946] has already discussed in [6] and Z. S. Liang studied

the many-knot spline smoothing [41. My main attempt in this paper is to

suggest a new way for constructing them.

Department of Mathematics, Jilin University, Changchun, China.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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1. The smoothing operator

Denote the centered difference operator by Ah, defined by

ih

Xt(x) gh h( (
h 2itxj)fx~ 2

For simplicity let h - 1, and A :m A1 "

The B-spline of order k with equally spaced knots are denoted by Nk,

and it can be represented by

Nk(X) (XDl)k 8 (x) , (1.1)

Nik* N- k(0-i), (1e2)

where D-  is the integral operator, 8 is Dirac 8-function.

It is our purpose to find a more exact difference approximation to the

operator D. I would like to choose following ready-made identity.

Fact 1.1 ([51 p. 43)

log(y + /1 +y 2 )"1+Y (l)m 22m) 2m+1
lo- Y _~ (2m+1)I y 0 (.3)

M-0

Fact 1.2 The following expansion

x - sh x CM(ch x -1) m  (1.4)
m-0

holds. Set

(2m+1)I1 :- (2m+l)(2m-1)...3.1

then

CM 2m1-i M-1 (-1)" (2m+1)1! CO
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A Proof From (1.3)

iU

+ Y2 + ml m 2m+1logy- 2m+1

m-0

2t - shx, then ch + - 2 + ). Thus
?2

~2m+1

x x

- 2 ch 1 sh% C (2 sh
2 2 mm0

= sh x 7 C(ch x - 1) m

m-O

Introduce operators E and M a defined by

SaE f(x) := f(x + a)

1 a a
Ua f(x) : M (fix + -) + f(x - -)), I :" U1

and notice the relationships between those operators (see [3], p. 230)

D D
E-e, ch-=I"

2

D D 1 1

2 hD e2 -e2 E2 D 2S2 sh - -e - -

D
Use - and I instead of x and 1 in (1.4)

2
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D D Im

D 2 sh 2= C (ch -"

4m0
m-O-

n
- I C 1P- 1),&(1.5)

where

Dmm
R 2 sh C (ch D - m  (1.6)
n 2 n+ 2

Define as the first part of (1.5), i.e.,

n

-(n) : 1- I)X p i)A
M=0

where

(P ) - C (P - I2 - (-)- m )J) 2 (1.7)
m=O JO m=J i.0

In the general case, define

j(n) . = Pnlih)*h . (1.8)
h n

This is a collection of operators approximate to D. Beyond doubt Pn(1) 1,

P0 (I) - I.

Fact 1.3 If k is any nonnegative integer, then the sum of all

coefficients of items (Ph ) in the expansion (P n('h) equals to 1.

Notice (1.6), the first term in Rn  for any h

I hD 2 n+1 -3(n+l) 2(n+1) 2n+3
-1 -- )2 Cnh D . (1.9)

This implies the following:

-4-
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4 Theorem 1.1 Assume that f C2n+3. Then

i w( n )  - Df(x) " 2-3(n+l) f(2n+3) h2(n+l)

ne. n+1
where t e Ix -- hx+ hI

2 2

Definition We call the operator Ah ) a smoothin2 operator with

grade n and deqree t

it is to be noted that (A h  D is just as with I. Jo Schoenberg's.

Here it is the smoothing operator of grade 0 and degree k.

Fact 1.4 From Theorem 1.1, if g e P2n+1 on [ab), then
-(n) -1 + 1

nn+1
D g g, all x e [a +----2 h, b -- h).

h 2ea+ h 2



2. A class of many-knot splines

s has been already pointed out, the B-spline Nk with equally spaced

knots (h - 1) is the result of the O-th grade smoothing operator applied to

the Dirac 6-function

Nk _ (D 1 )Nk_ - (D-1)k6 . (2.1)

Now we use the smoothing operator j(n)D- of grade n for the

6-function repeatedly. We can define a class of spline functions which as

more knots than Nk

k~n n k(2.2)
fken z- Pnlp)) Nk12)

and

i,k,n I ) k,n (-i)

k-i

if k, then (x) k- which has knots
k,n (k-I) I

C 2 n,k- n+lk-j j 0,1,...,2(n+i)k, n > 0

We often take t - k if without note.

The following facts can be proved easily in the same way as the

. , corresponding facts for Nk.
,-l

Fact 2.1:

(1) 0 (X) 0 (-X):
k,n k,n

(2) A k,n(x) - 0 for all IxI > (n+--2

( 3) D12k,n(W (A()'k-m,n(x), 0 < lm < k

(4) D 2(X) = ((n))£(xk+m-1/(k+m-l)}, > 0;

(5) ,x + J)i=i, J 0 (x)d=i,
k,n -m k,n (~x 1

-6-
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(6) fl can be represented by the convolution integral
k,n
l~ ( .) - f..' a k_,nl-t)g 0nWt dt

knk-l,n O,n

k,n k,n

'I kn M e Q e k,n (x)dx

=sin(&/2) P ]k

C/ 72cos )

(8) Integration by parts:

_ lk,n(X)f(x)dx (E(n)D-1)kf(O).

From the above mentioned facts we have the following theorems:

Theorem 2.1 Assume f is a continuous function or with discontinuity of

the first kind on [a,b], and is extended with period b-a to (-0,0), then

lim dh(-tjf(t)dt 1(flx l + f~x-0))
h+O h 2 ~xO

If f is a function whose derivatives of order t is continuous or is a

discontinuity of the first kind on [a,b], then

dli d£ 1 () f(A)

_-- Ih(x-t)f(x)dt (f (x+O) + f (x-O))
h O dx

where

h h k,n(

This Theorem shows that the many-knot spline function 6 converges
h

weakly to the Dirac 6-function.

Theorem 2.2 Given the function f, define its many-knot spline

smoothing function by
, -(n)-1 = (n)Dk(

k,n Ah k-l,n D

-7-i _7_



Then

f - . -(-)f(t)dt ( (2.4)
k,n h -- kn (h

Theorem 2.3 If f e c ( then
"= j' i (t~l) i2 - '(t ) i 2 (21.5)

j If~l (x)I 2dx j If ()I dx.(*5
-~k,n -.

Proof Take the derivative of order I for (2.4), and the integration by

parts, and notice that

Lin- xP (cos x),I 1
x n

If f is a discrete valued function Yi - f(xi), xi X. + ih, then a

numerical smoothing formula is as follows:

S '"(i.) • (2.6)
k,n j k,n h

Formula (2.6) can be efficiently applied to the problems of curve fitting for

discrete data.

.- 8-



3. Examples

In this section some discussions which are 
helpful for applications in

practice will be given.

From (2.2), with I - k, n - 1, k - 1,2,3,4, we show the particular

representations as follows:

1I

6 '
1 1

0 ~ 1X15>

2. 1  Ixl

1,l (X) 6'_ 2

- 1''I l - '

0 , lxi 1

50_ lilx

"k 42_.9 1 xI, 1I < I ,
36 36

" 42 49x, Ixl < 2 ,
- 6- 2 lx

* 02,(x) "- 22 + lx" •x

2,1'3- 3 2l

I x) 2 1o , x lxi ( 2 s

462 878 2 lxi <
4 3 2  4 3 2 x ,

858 1584 Ix, + 206 2, 1 Ix, <1
432 432 432 2

471 810 Ix, + 319 2 1 lx, 3

432 432 432 2 ,

(x)627 654 169 2, U ,(x) = ----- lxl -- x , - l xi ( 2 ,

3,1 432 432 432 2

141 114 xj + 23 2 5

432 - 432 1x: x , 2 (lxl (5
9 + 6 1 2 5+3 -I 1Il - - x , -4 Ixl < 3 ,

-432 432 432 2

0, Ixl- 3 ,

l"-9-



7920 20556 x2 13059 3 Ixl 1
7776 7776 7776 li 2
8444 3144 14268 2 8867 3
7776 776 lx1 7776 x+ 7776 X' < IXl < ,
25212 53448 Ix 436036 2 7901 3 3
7776 7776 7776 " 7776 1( ixj <2
4152 11328 7956 2 1661 3 3"'7776 -7776 '1+7776 x - 7776 'X j <9 1I < 2 ,

a 4(X) 22440 + 2560 1Ix _ 11988 x2 + I63 X13,  2 < Ixf < --- xi+ x
7776 7776 7776 + 7776 2 p

9060 9240 x 3132 2 353 3 5
7776 - 7776 776 " 7776 4 , 1Ix < 3 ,
1308 1128 324 2 31 3 77776 3 4 jxi <j~x 4yyIi~ 3 i l
64 48 12 2 1 3 4
7776 776 1X1 +7776 x -7776 X - Il < 4',

0, lxi 4

From (2.2) the following tables are qiven:"-I

Table 1:

x N ,1(x)

0 7

1 1 1

±1 1,

Table 2:

S (2,1x)
0 N(x) 1 2

0 1 7 100
6 72

1 1 1 35
-2 2 2 72
+ 1114-1 12 72

- 1

q -10-
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Table 3

x N (x) '~(X)- 313 3,1 23, 1 (x)
t -2 3 , 3

3 40 270 1848
0 288 1728

1 1 25 156 970 878
2 2 48 1 288 1728 432

1 4 8 80 172
B 48 288 1728 4323 1 12 105 147

S -288 172-8 432

S±2 1 20 22
288 1728 + 432

2 1 172-8 432

Table 4

x N4 (x) 0 4 (X) 0'1X) 0 (X)

4, 4,1 4
_Jt - 2 1= 3 - 4 2"4

2 210 1392 9332 63360 f1370403288 1728 10368 62208 0 2592
±1 23 144 902 5647 35307 14349 645

2 48 288 1728 10368 62208 + 10368 259
1 40 176 545 808 6772 8222
6 288 1728 103-68 6220 8 10368 2592

3 1 39 480 4359 1771 321±*2 48 0 1728 10368 62208 10368 2592
2 1 8 26 256 752 1340

288 1728 10368 62208 * 10368 2592
5 16 155 265 3231728 10368 62208 + 10368 2592

±3 1 24 28 30
10368 62208 10368 2592

17 1 1 12 62208 " 103-68 2592

From (2.6), set n - 1, £ - k, k - 3,4. We obtain

3,1 f(x) 3 y + 
2 + 4yi

6 (x ) "yL + ___ i4y L  3 38_.. Yl4,1 7776 1 7776

I i -11-



Assume four points in the plane are given:

(1.02315, 1.02315) (1.00514, 1.00514)

ad1 U1 ,I)

83,1f 8,

1.6 0.65648 1.11870 O .C1804 1.13213

1.8 0.89167 1.08685 0.83711 1.09813

2.0 1.02315 1.02315 1.00514 1.00514

2.2 loOS685 0.89167 1.09813 0.83711

294 1.11870 j0.65648 1.13213 0.61804
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