Introduction. Pulmonary oxygen toxicity in man is heralded by the onset of symptoms primarily referred to the upper airway (retrosternal discomfort, feelings of chest tightness and coughing on deep inspiration). Much has been made of the dose/response importance of quantified decrements in vital capacity as evidencing parenchymal injury (1), yet such decrements also can be interpreted in terms of airway irritation. Early indications of pulmonary parenchymal injury generally involve manifestations of increased lung water content (2). We have made comparative studies of lung water content (V\text{\textsubscript{LW}}), pulmonary capillary blood flow (Q\text{\textsubscript{p}}) and pulmonary diffusing capacity (D\text{\textsubscript{lCO}}) with vital capacity (V\text{\textsubscript{C}}) and onset of symptoms during the development of early pulmonary oxygen toxicity in man.

Methods. Fourteen male volunteer subjects aged between 21 and 38 were included in the study. Four subjects were heavy smokers. Each subject underwent a series of measurements performed during air breathing, 100% oxygen breathing over six hours at normal atmospheric pressure (1 ATA); six hours breathing humidified 100% O\textsubscript{2} at 2 ATA; six hours breathing 100% O\textsubscript{2} dry at 2 ATA; and six hours breathing 100% humidified O\textsubscript{2} at 2.25 ATA. In addition, each subject was studied at 24, 48 and 72 hours after each 2 and 2.25 ATA exposure. Studies on individual subjects were spaced so that no effects of any exposure would be cumulative with respect to other exposures. The protocol was approved by the Clinical Investigation Committee and informed consent was obtained. Duplicate measurements of V\text{\textsubscript{LW}}, Q\text{\textsubscript{p}} and D\text{\textsubscript{lCO}} were made using a rebreathing technique with simultaneous gas analysis by quadrupole mass spectrometry (2,3). Vital capacities were obtained by spirometry, using in each case, the best of three measurements. Each battery of studies was repeated at 30 minute intervals throughout each exposure, and at 24, 48 and 72 hours following hyperbaric oxygen exposures.
Results. No symptoms of pulmonary oxygen toxicity were reported during control exposures, but began to develop from the fourth hour of exposure at 2.0 and 2.25 ATA. In each case, symptoms developed first in the four smokers, being the only subjects to report respiratory discomfort during the 2.0 ATA humidified O₂ exposure. Twelve subjects, including the smokers, developed symptoms during the dry O₂ exposure at 2 ATA, again from the fourth hour on. Six subjects developed symptoms during their 2.25 ATA humidified O₂ exposures. The severity of symptoms progressively increased with the exposure.

Despite careful measurements of V̇, we found no consistent decrement caused by the O₂ exposures. Variability of measurement in each subject was ± 2%, so that we felt confident of detecting a 5% decrement as predicted from previous work (1).

Only in the final hour of the dry O₂ exposure at 2.0 ATA and that of the humidified O₂ exposure at 2.25 ATA was any increase in V̇ detected. This was seen in the same 4 subjects, 2 of whom were smokers, and was of the order of a 50% increase (673 ± 248 to 960 ± 328 ml). No such increase was seen in the remaining subjects. Moreover, in those subjects whose V̇ increased, the increase persisted for at least 24 hours following the exposure, but returned to control values by 48 and 72 hours.

Pulmonary diffusing capacity was diminished in all subjects throughout each hyperbaric oxygen exposure (28 ± 4 ml/min/mm Hg down to 19.2 ± 1.5). This was primarily caused by reduced CO uptake by hemoglobin because of the increased number of competing O₂ molecules. However, in those subjects who developed an increase in V̇ in the final hour of the 2 ATA dry O₂ exposure and the humidified O₂ exposure at 2.25 ATA, Ḋ was further decreased to 16 ± 1.2 ml/min/mm Hg. Again, in the same subjects, a reduction in Ḋ when compared with control values was seen during the 24 hour post exposure studies, but not at 48 or 72 hours.

Measurements of Q̇ showed no consistent differences with respect to controls during or after any of the hyperbaric exposures. Values ranged between 3.6 ± 1.0 and 8.9 ± 0.8 L/min.

Discussion. The pathophysiology of early pulmonary oxygen toxicity centers around injury to the Type II pneumocyte with a progressive disruption of surfactant structure, and a concomitant increase in intracellular and interstitial water content. We reasoned that the measurement of V̇ and Ḋ during the onset of early pulmonary O₂ toxicity would provide a more insightful, yet non-invasive, indicator of the underlying pathophysiology than a decrement in V̇ since this would be caused by acute airway irritation, as by a reduction in pulmonary compliance, our studies were originally designed to determine the contribution of an early accumulation of lung water to the observed decrement in V̇. Because of previous authoritative reports of a dose/response relationship between hyperbaric oxygen exposure and diminution in vital capacity (1), we were surprised to find no such relationship in our studies.
The rebreathing technique for the determination of V_{tiss} is fraught with great variability, so that quite large increases must be present to be reliably detected. Inherent in the method is the requirement for complete gas mixing within the lung within several rebreathing breaths. Further, the technical problems associated with the technique are compounded by the hyperbaric O_2 environment. Hence, a consistent increase in V_{tiss} in the same subjects over at least 4 separate measurements, persisting at normal atmospheric pressure over at least 2 further measurements 24 hours, and subsequently returning to control values in the following 4 to 6 measurements, indicates that water does indeed accumulate in the lungs of normal man during the earliest stages of pulmonary O_2 toxicity. Symptoms develop well in advance of objectively measurable and reversible pathophysiology, therefore represent the earliest reliable indicator of impending pulmonary O_2 toxicity.

References.

Publications and Papers Presented:

The research reported here has been supported under the Office of Naval Research contract N00014-76-C-0923 with funds provided by the Naval Medical Research and Development Command.