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RADAR WAVEFORM SYNTHESIS FOR TARGET IDENTIFICATION

Abstract

A new scheme for radar detection and discrimination, the ra-

dar waveform synthesis method, is investigated. This scheme con-

sists of synthesizing an aspect-independent waveform for the

incident radar signal which excites an arbitrarily oriented tar-

get in such a way that the return radar signal from the target

contains only a single natural resonance mode of the target in the

late-time period. When the synthesized incident radar signal for

exciting a particular natural mode of a known, preselected target

is applied to a wrong target, the return radar signal will be

significantly different from that of the expected natural mode,

thus, the wrong target can be sensitively discriminated. The

selection of an optimum pulse duration of the required incident

signal for the purpose of shaping its waveform is also studied.

Three kinds of targets, an arbitrarily oriented thin wire, a

sphere and a normally oriented infinite cylinder, have been in-

vestigated. The cases of an arbitrarily oriented wire and a sphere

have been completed and the results are reported in Parts I and 2.

The case of infinite cylinder will be completed shortly and in-

complete results of this case are outlined in Part 3.
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PART I

RADAR WAVEFORM SYNTHESIS FOR SINGLE-MODE BACK-

SCATTERING BY AN ARBITRARILY ORIENTED WIRE
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1. Introduction

In recent years, research on radar target identification and

discrimination utilizing a short-pulse waveform has been conducted

by a number of workers [1-83. One interesting scheme is to irradi-

ate a target with a simple waveform such as an impulse, a step or

a ramp signal, and then analyze the scattered field from the tar-

get in terms of natural resonance mode-s of the target. It is known

that the waveform of the scattered field is aspect dependent, but

the set of natural resonant frequencies extracted from the scattered

field is independent of the aspect angle [9-13]. Using this pro-

perty, a target can be identified if the extracted set of natural

frequencies is compared with the collection of known data on the

natural frequencies of various targets. Two different targets can

also be differentiated if the two sets of natural frequencies are

compared. One of the problems associated with this scheme is

difficulty in obtaining accurate natural frequencies of the target

from a noisy scattered field.

In this paper, an inverse scheme, to be called the radar-wave-

form-synthesis method, is investigated. Instead of analyzing the

field scattered by the target in terms of its natural resonance

modes, this new scheme synthesizes the waveform of the incident

radar signal in such a way that, when it excites the target, the

return radar signal contains only a single natural mode of the

target. It will be shown that when the incident radar signal

synthesized to excite a particular natural mode of a preselected

target is applied to a different target, the return signal will

be significantly different from that of the expected natural made.

The wrong target can thus be sensitively discriminated.

The simplest case of this radar waveform synthesis scheme has

been studied by Chen [14] for the case of a thin wire irradiated

by a radar pulse at normal incidence. For this case, it is possi-

ble to synthesize a required waveform for the incident radar wave

to excite a single-mode return response at all post-incidence times.

When this study is generalized to oblique incidence, difficulties

are encountered in obtaining a realizable required incident wave-

form for exciting a single-mode, scattered field. Furthermore,
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the required incident radar signal appears to be aspect dependent.

This difficulty arises because there exists a finite transit time

for an obliquely-oriented wire, i.e. a finite time for an impulse

to pass the wire. The impulse response of this wire consists of

an early-time, forced response in addition to the sum of natural

modes which describes a normally oriented wire. This early-time,

forced impulse response is difficult to approximate analytically,

and consequently is responsible for problems encountered when

synthesizing an incident radar signal to excite a single-mode,

scattered field at all post-incidence times.

To overcome this difficulty, we have concentrated on the be-

havior of the late-time response of the wire, and have found a

scheme to synthesize the required waveform, for an incident radar

signal of finite duration to excite a single-mode, scattered field

in the late-time period (where the early-time impulse response is

not required, since that period has elapsed). More significantly,

this synthesized incident radar signal was found to be aspect in-

dependent.

Initially the impulse response of an obliquely oriented wire

is approximated analytically. This response is found to consist

of a forced response, which exists only during the early-time

period, augmenting a causal sum of natural resonance modes. It is

next demonstrated that an aspect-independent, incident radar signal

which excites a single-mode return signal after the early-time

period can be synthesized. The aspect-independent, required wave-

forms of the incident radar signals which excite various single-

mode return signals from an arbitrarily oriented wire are then ob-

tained. Numerical examples on required waveforms for exciting

various single-mode return signals, and those on the return signals

from a wire oriented at various angles are given. Numerical ex-

amples are also given to show that when the synthesized incident

signal which excites a particular natural mode of a preselected

target is applied to a different target, the return signal from the

wrong target becomes significantly different from that of the ex-

pected natural mode. The possibility of shaping the waveform of

the required incident signal by adjusting the duration of the
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incident signal, and other features of the radar waveform synthe-

sis method are also discussed.

2. Geometry of Problem

A thin-wire cylinder of length L and radius a is illuminated

by an incident-wave radar signal at angle 0 as indicated in Fig.

i. The electric field of this transient plane wave is assumed to

be

t (z,t) = F(t-zcose/c) (1)

where polarization is specified by constant vector and F(t) is
an unknown waveform function to be determined by the requirement that

E!(z,t) excite a single-mode, scattered field. The component of
Ei(z,t) tangential to the wire surface, in the Laplace transform

domain, is

Etan(z,S) = sine F(s)esz cosS/c (2)

This electric field excites a transient induced current on the
wire, and the induced current subsequently generates a transient

backscattered electric field. The goal is to synthesize an aspect-

independent waveform F(t) for the incident radar signal in such a

way that the backscattered field, or the return radar signal, from
the wire oriented at any aspect angle 0 contains only a single

natural mode of the target.

3. Induced Current and Backscattered Field

The induced current, I(z,s), on the wire can be found as the

solution to Pocklington's integral equation [10)

0 L r(z,z',s)I(z',s)dz' = S(z,s) (3)

with the thin-wire kernel

r(z,z',s) = - , R = z-z + a

(4)
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and the excitation forcing function

S(z's) = -Co sine[s F(s) e-sz cosO/c]. (5)

If the only singularities of I(z,s) in the finite, complex

s-plane are simple poles at natural frequencies s = a +
and it is assumed that no entire-function contribution exists,

then the SEM representation [9,12] for the induced-current solu-

tion to eq. (3) is

N
I(z,s) =L a (s) vl(z) (s-8a) (6)

6=1 a vz ss
where v a (z) is the current distribution of the ath natural-

resonance mode. Coupling coefficients aa(s) are obtained [12]

from the inverse operator to integral equation (3) with the
"class-2" [9] representation

a0( (zS) v,(z) dz ()

dzv(z)f v(z') zz',s dz'

0 V a - -s ( z zS = S a

A development of this result specific to the thin-wire scatterer

is presented in the Appendix; it demonstrates the apparent ap-

proximate nature of that representation for aa(s). Since the

above coupling coefficient is frequency dependent, it leads as

necessary to an early-time response having a forced component which

differs from a pure sum of natural modes. If v. (z) is represented

by the well known approximation

va(z) sin L (8)

a (s) can be evaluated in closed form, and the induced current
I z,s) is determined to be
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4t 4 2 sine S F(s) x

110L 22 log (L/a)1 -s

1 a rL cos/+ji = 2 cose/c2 +  112)j s (- *(s-s* : s-s2 T)
Crl L5 cs0c + aL ar /C a

The backscattered electric field can be determined from the

far-field expression

E S (s) - sA(s)sine (10)

where A(s) is the vector potential in the backscattered direction

maintained by I(zs), and it can be expressed as

A(s) = e I(z,s) Z cs/c dz (11)

R. in eq. (11) is the distance between the wire anda distant obser-

vation point in the cylinder's radiation zone.

The final expression for E S(s) can then be obtained as

E(s) = K e-sR/c

1 F(s) H(s,8) (12)

where

-L sin 2 a

IT [2 log(L/a) - a(

F(s) = waveform function of the incident radar signal.

Transfer function H(s,e) in eq. (12) is expressed as

N S2r at -ST2
H(s,G) =( e 1 1

a= a4Ll + (T/ow) 2 s2J a Ot (s-se + s OLs-s)j

(14)

where the incident-wavefront transit time is

T = (L/c)cose. (15)
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It appears feasible at this point to synthesize F(s) required

to excite a single-mode scattered field by requiring ES(s) to re-

present such a field in eq. (12) and subsequently solving for

F(s) in terms of known H(s,e). This procedure was implemented

successfully [14] for the special case of normal incidence. With

obliquely-incident illumination, it becomes difficult, due to the

complex frequency dependence of H(s,e), to evatuate f(t) by numeri-

cally inverse transforming F(s); furthermore f(t) is a very ill-

behaved signal in the early-time period. The latter problem arises

because the above synthesis procedure demands that ES (t,e) con-

sist of a single natural mode at all post-incidence times, includ-

ing the early-time period where the forced impulse response is

poorly behaved and difficult to approximate. If the frequency-

domain synthesis method is abandoned, then these difficulties

are overcome by adopting a time-domain synthesis procedure for
incident signals of finite duration Te' When E (t,e) is not con-

strained in the early-time period 0 < t < Te + 2T, then the

forced impulse response is not encountered and it is found that a

single-mode scattered field can be excited in the late-time period

t > Te + 2T by well-behaved, aspect-independent incident wave-

forms of finite duration.

4. Impulse Response

The impulse response h(t,e) of the wire is first determined

by inverting the transfer function as

N
h(te) L [H(s,8)] = h (t,e). (16)

a=1

h(t,e) is a function of aspect angle e, and h (t,) renresents

that impulse response associated with the a'th natural mode. It

is found that ha (t,e) can be obtained analytically in closed form

by inversion of H (s,e); it is decomposed into an early-time
forced component which is nonzero only for 0 < t < 2T and a natural
component, consisting of a pure natural mode, which exists for all

0 < t < . These results are summarized below.



-7-

During the early-time period O<t<2T the forced response is

3 at

hl(t,e) - ar3 e [toag l (t)- q2l't)] coe Wat

+ 1Wll(t)+0a92(t)] sin wt], (17)

while for the late-time period of t>2T the natural response is

h (t,O) = T3 e a a g1 (2T)-wg 2 (2T)] cos w t
a ~T3 OL 1 2 aa9a

+ [Wgl1 (2T)+aag2 (2T)] sin w Ct] (18)

where

g1(t) = e cos Wat'[f1(t')sin bt'+bf 2 (t')cos bt']dt'

(19)

92(t) f e sin w t'(f 1 (t')sin bt'+bf2 (t')cos bt']dt'

(20)

fl(t) = u(t)-2u(t-T)+u(t-2T) (21)

f2 (t) = tu(t)-2(t-T)u(t-T)+(t-2T)u(t-2T) (22)

b = a , and T = (L/c)cosO.
T

If integrals gl(t) and g 2 (t) are calculated, the impulse

response is expressed in an alternative form as

5 2A-.



-8-

h(t,e) - u(t) Ga (t)-2(-1) au(t-T)G (t-T)+u(t-2T)G (t-2T)J

-2[Bar(S a)f1 (t)-C r(sa)f 2 (t)] sin bt

-2[D ar(Sa (t) +Er (a)f 2 (t)] cos bt (23)

where

G (t) = 2e [A r(S a ) cos Wat-A i(s ) sin w t] (24)

b4s b3 (s 2b 2A~s 2 2 a ~s))
a ca) -17 2 2 ' a a 2 2 22

a2(s a +b) 2a(s 2+b)

zas(,2 b2aa a2(sa JT

b4 4

E (s b +b)

a a 2a2(s a2+b)2

With Bar(a) = Re{B (S))}, etc. The first term of eq. (23) is a

natural mode and the second and third terms represent a forced
response which exists only during the period of 0<t<2T where T=L
cose/c. Thus, the impulse response, h(t,e), consists of a natural

component which is the sum of natural modes and exists for all
times, and a forced component which exists only in the early-time

period of 0<t<2T.

Impulse-response waveforms for the thin-cylinder structure

are indicated in Figs. 2 and 3. Fig. 2 displays the impulse

responses obtained by summing the first 10 natural modes (first

layer of poles) in series (16) for 60' and 30' aspect angles. The

impulse response is observed to depend strongly upon the aspect

angle and to consist of a rapidly-oscillating forced response

during the early-time period 0<t<2T followed by the relatively-

slowly-varying natural response (a sum of pure natural modes) in

the late-time period 2T<t<-. Convegence of the impulse-response

series was checked at 60' aspect by including 999 terms (pole lo-
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cations estimated by an approximate recursion method) with results

as indicated in Fig. 3. The result is observed to be a smoothing
of the late-time response, which is well approximated by the 10-
term series, while the rapidly-oscillating, early-time response

persists with increased frequency. Further convergence studies in-

dicated that the second and third layers of poles provide essen-

tially no contribution to the late-time natural response, while
their early-time nature is also rapidly oscillatory and does not

result in smoothing the total early-time impulse response. Although

adequate convergence of the early-time impulse response could not
be achieved (this may be related to a Gibb's-type phenomenon), it

is noted that convolution of this response with any relatively-

smooth signal, e.g., a step or a Gaussian pulse, will eliminate

the rapid oscillation leaving essentially the envelope of that

response. The latter results are similar to step and smoothed-

impulse responses obtained by other investigators.

The difficulty encountered during initial attempts to synthe-

size an incident waveform. which excites a single-mode scattered
field at all post-incidence times is due to the erratic behavior

of the approximated forced impulse response during its early-time
period. If the scatter-field waveform, given by the convolution

E s (t,e) = f(t)*h(t,e), is required to consist of a single natural

mode for all t>0, then required incident signal f(t) must be such

as to smooth the early-time forced impulse response which is in-

tersected in the convolution; the result is a poorly-behaved re-

quired incident waveform. To overcome this difficulty, a time-

domain synthesis procedure for incident waveforms of finite

duration T e is developed which requires single-natural-mode scatter
field response in the late-time period t>Te+2T but does not con-

strain that response in the early-time period O<t<T e+2T. It is

emphasized that this method avoids the forced impulse response en-
tirely, such that this slowly-convergent component is never required.

5. Single-Mode Excitation

It was demonstrated in eq. (23) that the impulse response can

be expressed as
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N a t
h(t,6) = (t,e) + F an ()e cos (Wnt + n(6)) (25)

n=l

where

C(t,0) = forced response which exists only during the
period of O<t<2T,

Na
an(0) e cos( nt + n(8)) = the sum of natural modes

n=l which exists for all t,

San (0) = aspect dependent amplitude of the nth natural
mode,

n(0) = aspect dependent phase angle of the nth natural
mode,

and a n+jWn = sn = the nth natural frequency. h(t,q) is shown
graphically in fig. 4a.

If the wire is illuminated with an incident signal, El(t),
of duration Te as shown in fig. 4b, the scattered field, ES(t),
should appear like that shown in fig. 4c, consisting of an ir-
regular waveform for the early-time period O<t<Te+ 2T followed by
a pure single natural mode for t>Te+ 2T if the waveform of E (t)
is properly synthesized. This phenomenon can be shown mathemat-

ically as follows.

The scattered field, E s(tG), can be expressed, based on
the convolution theorem, as

E (te) = [Te E (t')h(t-t',6)dt'

Jo

fT E n (t-t')

e El(t ) E(t-t,e) + F an ( e

CO °(Wn(t-t')+On(e)] dt'



Vour th.. .atv. ..ttne Period t r eZ+T the forced response term does
not contribute to the integral because &(t-t',e)-O for O<t'<Te
if t>Te+2T. The property C(t,8) -0 for t>2T has been used. The

scattered field in the late-time period then becomes

E (t,O) = j Ei(to) NO a OeG~~ 0(w ttdtl

... for >e2.(6

Equation (26) can be rewritten as

E5 (t,O) = an(8) e [Ancos(wnt + On (e)) +Bn sin (W n t + n (()))]

n=1l

(27)

where the coefficients An and Bn are defined as

% Te E1 (t')eGt Cos W nto dt'. (28)

in () nsin w n t

It is important to observe that An and B n are independent of the

aspect angle 0. It is possible to choose an optimal E i(t) in

such a way that all the coefficients vanish except one; by so

doing, EA(t,e) will consist of a single natural mode.

6. Required Incident Signals and Return Signals

It is possible to choose an aspect-independent Ei (t) to excite

a single-mode ES(t,e). Consider initially the class of incident

.1'i AW*
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waveforms E (t) constructed as a linear combination of natural

modes (this choice is generalized in Sect. 9) as

N a t
El(t) =, e m (bim cos w mt + c m sin wmt) (29)

m=l

where sm 
= am + jWm is the m'th natural frequency, and bm and cm

are unknown coefficients to be determined based on the requirement

that only a single-mode ES(t,8) be excited.

Substituting representation (29) in eq. (28) leads to

N
N N 2
A M1 bm + M2 cm  (20)
m=1 m=1

N N3 b+ M4
Bn =E Mnm bm+ M C (31)

m=1 mrn1

where

nm cos Wnt' cos Wmt'
M2 e

nm -(n- m )  c n m dt'

3 sinw t' cosw t'
r~m fon m

nm sinw t' sinw t'
rim n m

(32)

It is observed that the M s are explicit functions of incident

radar pulse duration Tei and Te is a parameter of freedom which

can be varied to obtain a desirable E (t) waveform.
The unknown coefficients bm and cm can be solved for from

eqs. (30) and (31) as
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bi A1

b 2  A A 2

* P42nm i nm

bN AN! (33)

1B 1

C 2  34B2B• 3I 4
nim Mnm

cN BN

b. Ai
In eq. (33), matrix [Mnm ] is of 2Nx2N order, while [ ci ] and B
are two column 2N matrices. 3.

To obtain a single-mode scattered field (e.g. the j'th mode),
it is required that B =I1 and Bn=O for n#j and A =0 for all n. bIm
and cm are easily determined from eq. (33), and Ei(t) is subsequently

obtained from representation (29). With this E (t), the scattered

field, E S(t,e), will be

E S(t,e) = aj(G)e 3 sin(wjt + j(e)) (34)

It is noted that with this synthesized E (t), the scattered field,
E (t,e), remains single-mode for any aspect angle 0, even though
the amplitude a.(6) and the phase angle 4j(8) vary with 0. In

other words, when this synthesized E (t) illuminates the wire, the
return signal contains only a single natural mode for any aspect

angle of the wire.
Numerical results computed according to this scheme are shown

in figs. 5 to 10. It was found that when the duration of the in-
cident signal, Te, is one period of the first natural mode, the

required incident signal also becomes predominantly single-mode.

That is

......... '-
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1 2r 21t
TiF T.21ncL 2.16 (.Ft~~~~~~ 1 l l 0a9 1(cL

leads to a desirable waveform for the incident signal. Fig. 5

shows the required waveforms for the incident radar signal to

excite a return radar signal from an arbitrarily oriented wire

containing only the first, the second and the third natural mode,

respectively. For the first-mode excitation, the required incident

signal consists of one cycle of the first natural mode and some

small components of higher-order modes as shown in fig. 5a. For

the second-mode excitation, the required incident signal consists

of about two cycles of the second natural mode and some small com-

ponents of other modes as shown in fig. 5b. This required wave-

form looks like a distorted second natural mode. For the third-

mode excitation, the required incident signal consists mainly of

about three cycles of the third natural mode as shown in fig. 5c.

it is emphasized that these required waveforms are independent of

aspect angle, or valid for any aspect angle of the wire.

Fig. 6 shows thfie returnrad ar signals from a wire oriented at

various angles, 0=150, 450, 600 and 890, when the wire is il-

luminated by the incident radar signal of fig. 5a which is synthe-

sized for the first-mode excitation. It is observed that the

return signal for each case of aspect angle remains that of the

first natural mode, even though the amplitude and the phase angle

vary with the aspect angle. Also the late-time period starts at

different time for different aspect angles. These changes in the

amplitude, the phase angle, and the starting point of the late-

time period with the change in the aspect angle are not important

in the practical detection of the return signal; the most important

and desirable feature of the return signal is for it to remain

single-mode. A single-mode, return signal can be easily identified

if it is displayed visually. It is noted that the return signal

during the early-time period changes irregularly with 
the aspect

angle, and it is not shown in the figure for the sake of clarity.

Fig. 7 shows the return radar signals from a wire oriented

at various angles of 150, 450, 600 and 890, when the wire is
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illuminated by the incident radar signal of Fig. Sc which is
synthesized for the third-mode excitation. Again, the return
signal remains that of the third natural mode for any aspect angle.

7. Target Discrimination

Wihen the synthesized incident signal for exciting a particular
natural mode of a particular target is applied to a different
target, the return signal from the wrong target is expected to
be significantly different from that of a single natural mode.
Thus, the wrongtarget can be sensitively discriminated. Two
numerical examples are given.

Fig. 9 shows the return radar signals from three targets, the
right target (wire), a wire 5% longer than the right target and
a wire 20% longer, when they are illuminated at 300 aspect angle
by the incident radar signal of fig. 5a which is synthesized for
exciting the first natural mode of the right target. It is observed
in fig. 9 that the return radar signal from the right target is
a pure first natural mode; that from the 5% longer target displays
a slightly distorted waveform and a shifted frequency from that
of the first natural mode of the right target; and that from the
20% longer target shows an irregular waveform. Based on these
return signals, it is easy to discriminate the wrong targets from
the right target.

Figure 10 shows the return radar signals from the same three
targets of fig. 9 when they are illuminated at 600 aspect angle
by the incident radar signal of fig. 5c which is synthesized for
exciting the third natural mode of the right target. The return
radar signal from the right target shows a pure third natural
mode, that from the 5% longer target displays an irregular ampli-
tude variation and a shifted frequency, and that from the 20%
longer target shows an irregular waveform. Again, the wrong tar-
gets can be easily discriminated from the right target.

8. Pulse Duration and Waveform of Required Incident Signal

In Section 6, it was indicated that the waveform of the
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required incident signal for exciting a single-mode returnft signal can be controlled by adjusting the pulse duration,
Te of the incident signal. Through extensive numerical cal-

culation, it was found that when Te is equal to or greater

than T1, the period of the first natural mode, the aspect-

independent, required incident siglial for exciting a single-

mode return signal consists mainly of that wanted natural

mode, as shown in fig. 5. However, when T e is less thanT.
the required incident signal starts to have an irregular wave-

form and a high amplitude. This phenomenon can be observed
in fig. 11, where six waveforms for the aspect-independent,

required incident signal for exciting the first natural-mode

return signal from an arbitrarily oriented wire are shown

for signals possessing six different durations, T e = 0. 25 TI,

0.5 T,0.75 TI, Tl, 1.5 Tl, and 2 Tl. it is observed that for

the first three cases, T e< Tl, the waveforms of the required

incident signal are radidly oscillatory and of high amplitude,

while the-last three cases T e > TV, have quite realizable wave-

forms of mainly single mode. It is noted that to eliminate any

possibility of creating irregular waveforms for the cases of

T e < T, due to numerical error, the required incident signal. for

the case of Te = 0.5 T, was convolved with the impulse response

of the wire, and the'numerical result on the return signal

turned out to be a pure first natural mode of the wire.

With this example, it is easy to conclude that the optimum

pulse duration for the incident signal should be a period of the

first natural mode or longer. However, it is found that with

an incident signal of longer pulse duration the sensitivity of

discrimination between different targets decreases. This is

easily visualized because as the pulse duration of the incident

signal is increased, the situation approaches to the case of the

continuous wave excitation of the target and the return signal

will contain only the excitation frequency.

Therefore, in the selection of an optimum pulse duration for

the incident signal the following three factors should be considered:

(1) the pulse duration should be equal to or longer than a period

of the first natural mode of the target, (2) an incident siqnal of



-17-

longer pulse duration may be implemented with less difficulty,

and (3) the sensitivity of target discrimination decreases with

the increase in the pulse duration.

9. Uniqueness of Synthesized Waveforms

The uniqueness of incident field waveform E (t), syn-

thesized to excite a backscattered field consisting of a

single natural mode, is considered here. It was demonstrated

in the last section that Ei depends strongly upon its dura-
tion Teo so the question of uniqueness must be considered

for that class of waveforms with Te specified. Numerical re-

sults in Sections 6-8 are all based upon the natural-mode

expansion (29) for Ei(t) with N-10 (N = number of terms re-

tained in impulse-response series). Eq. (28) provides 2N

linear, algebraic equations for the 2N amplitude coefficients

in the series representation of Ei. For finite N, this solu-

tion requires the backscatter field to consist of the single

n=j mode, while those modes having lcn<j, j<n<N are not ex-

cited. Modes having n>N are not constrained; this tranca-

tion is justified by the negligible contribution of such modes

to the late-time impulse response. The question naturally

arises whether a different choice of basis functions in the

expansion for E (t) will lead to the same synthesized wave-

form. It is conjectured that Ei is unique among the class

of waveforms expanded in a complete basis set (the natural

modes are believed to be complete, although they are not

orthogonal) for N infinite. In practice, N can be truncated

at some finite value if the series converge adequately rap-

idly.

The dependence of Ei upon basis functions in its expan-

sion with N-10 was studied using rectangular pulse, impulse,

and pure sinusoidal basis functions. Figure 12 indicates re-

sults for E (t) synthesized to excite a single mode (n-l)

backscatter field and constructed from the various basis

functions. The signal duration was chosen as Te - TI, and

it is observed that Ei obtained with each alternative basis
set is similar to the result of the natural-mode expansion.j
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Each of these E (t) waveforms will excite the same n=l mode
backscattered field, but will not excite those modes with

l<n<10. These Ei waveforms may excite different higher-

order modes with n>10, which have not been constrained. As

N is increased, the Ei(t) waveforms obtained with different

basis sets become more nearly equal, and in the limit N--

provide a unique representation for Ei.

10. Conclusion

It has been demonstrated that an aspect-independent,

optimal incident radar waveform Ei of finite duration T cane
be synthesized to excite a thin-cylinder-target backscatter

field which consists of a single natural mode of that target
in the late-time period t>Te+2T (T = target transit time).

By constraining only the late-time target response, a time-
domain synthesis technique was developed which does not re-

quire knowledge of the forced, early-time impulse response.
The optimal signal duration was found to be near Te = T1
(TI = period of first target natural-resonance mode), in

which case the Ei waveform is very nearly equal to that of
the desired single-natural-mode return signal. Incident

signals of shorter duration become poorly behaved with rapid,

high-amplilade oscillations, while long duration signals
will result in loss of target resolution ability. It was
demonstrated that a target-identification scheme based upon
illuminating the target with a waveform synthesized to excite

a single natural-resonance mode backscatter is capable of
sensitive target discrimination, since the response of a
wrong target with 5% length deviation differs identifiably

from a single-mode signal. Since the narrow-band spectral

content of optimal incident waveforms very nearly overlaps

that of the response they excite, then this target identifi-

cation technique should possess inherently good signal-to-

noise ratio characteristics, as well as enabling the use of

narrow-band filters and amplifiers. Optimal, synthesized in-

cident waveforms of specified, finite duration are unique when

represented by expansions in complete basis sets in the limit

where all terms in the impulse-response series are included.
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Appendix: Mode Amplitude of Induced Current, a (s) - Derivation
of Eq. (7). a

The time dependent amplitudes of the resonant mode for the in-

duced current, a (s), as expressed in eq. (7) is derived here.

The substitution of eq. (6) in eq. (3) leads to

N (s) (s-s)
a s  r(z,z',s) (z') dz' S(z,s) (Al)

a=l

Defining fLf r(Z,ZS) (z') dz' -M (z,s) (A2)

we can rewrite eq. (Al) as

Nac(s) (s-s) - 1 M (z,s) S(z,s) (A3)
at=l

Multipling eq. (A3) with v8 (z) and then integrate it over z from 0

to L:
N L
a (s) (s-s MX (Z'S) V(Z) dz s(z,s) v,(z) dz

a=l Jfo (A4)

After defining fL
J d ME (z,s) 'v,(z) dz Ms (s) (A5)

and

f L S(z,s) Va(z) dz S (s), (A6)

we can rewrite eq. (A4) as

N -i

a (s) (s-s ) M (s) = S (s) (A7)
a=l

Equation (A7) can be rearranged as

a (s) (s-S M ( s ) + N= a sa)- M$a(S) = ( s ) (A8)

a 8
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The L.H.S. of eq. (A8) appears to have sinqularities in the s-

plane at s , s o ... , while the R.H.S. of the equation is analytic.

To clear this difficulty, let's expand M (s) and M (s) into

Taylor series' around the respective poles.

M(S) M s=s S  ) M (s)

(s-s 2 M (s +.... (A9)
as 2 a Ss

where

L ), (z) dz [L I(z,z',S v(z') dz 0 (AlO)

because if va(z') is the 8th natural mode, no excitation is

needed to excite it, and va(z') should satisfy eq. (3) with

S (z,s)=O.

SV I S L  L

[ M8(s = s~z) r~z~',s v(z') d[_2M B]s=s = L 2 o(sls)

MB~sdsz d L r r (z,zls) V Wz) dz
a ss 0 0 s s -- s B

(A12)
Thus, eq. (A9) becomes

M(S) = (S-s M (s + I (s [2s2 M (s +

ML() s- MA13=s8  .

(AI3)
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By expanding M (s) around s=s a we can similarly show that

M (s) = (s-s I Mg (s)SS + 1 (s-s ) 2U M a(s) s+

If we assume that 
(A14)

(z') = sin JTZ )(A15)

we can show after a tedious integration that

f [ r(zizIs S=S V a (z') dz' = KVa (z) (A16)

where K is a constant. We can then show that

(s v (z) dz [JLV r(z,zhs z') dz

M=S s ls0 s s=s

Kf v B(z) v (z) dz = 0 for ac* (A17)

Similarly, we can approximate

2 
1

s' M (s)J 0 for a * (A18)

Thus,

M (s) -0 if a#a (A19)

Equation (A8) can now be simplified to

as (S)]s~s 2.. (s)

(A20)
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The first term of the L.H.S. of eq. (A20) usually dominates,

especially near s=s Therefore, a (s) can be approximately

determined as

S(S) 0 S(z's) V a(z) dz

which is the result of eq. (7) .
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impulse response of a wire

h(t,e)

o t fig. 4a

Ei(t) required incident radar signal

0 t fig. 4b

single natural mode

E S(t) after t > T + 2T

'- 'e tu fig. 4c

-T e + 2T_.
e

fig. 4. Waveforms of the impulse response of a wire, the required

incident signal and the return signal with a single natural

mode in the late-time period.
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required waveform for the
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'4-I.

m.".4
-H 00

-- 1

0 - t .0 6.0. .0 . 0. .. o .o 60 ,0 1 0 X 10

t/t(L/C) t/ (L/C)

fig . 5. Required waveforms f or the incident radar signal to excite a return

radar signal from an arbitrarily oriented wire containing only the
first, the second and the third natural mode, respectively.
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fig. 6. Return radar signals from a wire oriented at various angles,

-15, 45, 600 and 89, when it is illuminated by the incident

radar signal which is synthesized for the first mode excitation.
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fig. 7. Return radar signals from a wire 
oriented at various angles

of 15*, 450, 600 and 890, when it 
is illuminated by the 

incident

radar signal which is synthesized 
for the second mode excitation.
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radar signal which is synthesized for the third mode excitation.
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fig. 10. Return radar signals from three targets, the right target (wire), a

wire 5% longer than the right target and a wire 20% longer, when

they are illuminated at 60° aspect angle by the incident radar signal

which is synthesized for exciting the third natural mode of the

right target.
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fig. 12. Required incident radar signals for exciting the first
natural mode backscatter from an arbitrarily oriented
wire of length L. These signals are constructed with
natural modes of the wire, pure sinusoids with natural
frequencies of the wire, pulse functions or impulse
functions. The pulse duration of the signal is equal
to a period of the first natural mode of the wire.



PART 2

RADAR WAVEFORM SYNTHESIS FOR EXCITING SINGLE-

MODE BACKSCATTERS FROM A SPHERE



1. Introduction

Techniques of using a short radar pulse to identify the radar

target have been studied by a number of workers [1-6]. Typical
scheme consists of illuminating the target with a radar pulse and

then identify the target by identifying it with its natural modes

that are extracted from the return signal. One of the problems
associated with this scheme is difficulty in obtaining accurate

natural frequencies of the target from a noisy return signal. In

a recent study by our group, an inverse scheme, called the radar

waveform synthesis method, has been investigated [7]. instead of

analyzing the return signal from the target in terms of its

natural mode, this new scheme synthesizes the waveform of the inci-
dent radar signal in such a way that, when it excites the target,

the return radar signal contains only a single natural mode of the
target. It can be shown that when the incident radar signal syn-
thesized to excite a particular natural mode of a preselected

target is applied to a different target, the return signal will be

significantly different from that of the expected natural mode.

The wrong target can thus be sensitively discriminated.

In this paper, the geometry of a perfectly conducting sphere

is used as the radar target. We aim to synthesize suitable inci-
dent radar signals which can be used to excite various single-mode

backscatters from the sphere. To solve the problem, the scattered

field from the sphere excited by an incident signal with an arbi-

trary waveform is determined in the spectural domain. The back-

scattered field is then determined. An approximate impulse res-

ponse in the time domain is obtained by summing up an infinite
number of natural modes based on the Singularity Expansion Method.

That impulse response is further approximated by the sum of finite

numbers of damped sinusoids yielding an accurate result in the
late-time period.

It is then demonstrated that a proper incident signal can be
synthesized in such a way that when it excites the sphere, or when

it convulutes with the impulse response, the return signal contains

only a single natural mode of the sphere in the late-time period.
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A method of synthesizing requLred incident signals for exciting

various single-mode backscatters is presented. Numerical examuples

are given to show the required incident signals for various single-

mode excitations and the resulting return signals which exhibit

single natural mode of the sphere.

When an incident signal synthesized to excite a particular

natural mode of a sphere is applied to a wrong sphere with a

slightly different radius from that of the right sphere, the re-

turn signal from the wrong sphere is found to be significantly

different from that of a natural mode of a sphere. The wrong

sphere is, thus, sensitively discriminated from the right sphere.

This indicates the applicability of the radar waveform synthesis

method for radar target discrimination.

2. Theory

The geometry of the problem is shown in fig. 1 where a radar

signal propagating in the +z-direction is incident upon a per-

fectly conducting sphere which has radius a and has its center

located at the origin of the coordinates. The electric field of

the incident radar signal is assumed to be

E(,t) xF(t - ') ut -) (1)
c c

where F(t) is an unknown waveform function to be synthesized in

such a way that Ei(r,t) excites a single-mode backscatter from the

sphere. The Laplace transform of eq. (1) can be expressed as

Ei (,s) = F(s)e-a x e-yR cosO (2)

where y = s/c. When the unit vector x is written in terms of

spherical vector components, eq. (2) becomes

r'(r,s) a F(s)eYa [sine cosO R + cose coso 0 sino$leYR coso

(3)

Since E (r,s) satisfies the wave equation,

v x x E + O, (4)
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fl i(_,s) can be expressed in terms of spherical vector wave func-

tions (see Appendix) as follows:

=(,s)  F(s)e-Ya (an b (5)i~~~ A nhr oaMln + n eln) 5

where

1 1 aP (cose)

oln si1 in(YR)P (cos)cosO - in (YR) n 36 sino#

(6)

el nn+l in(YR)Pl(cosB)cos R

aapt (cose)
+ [ R in  cnO

____n_ -r *yR i n(YR)l Pn (cos6)sino; (7)

The superscript (i) for ! and It functions stands for the use of

in(YR) which is the first kind of the modified spherical Bessel

function of order n. Pl (cose) is the associated Legendre functionn

of order n and degree 1. These functions are detailed in Appendix.

The coefficients an and bn in eq. (5) can be determined by

comparing eqs. (5) and (3) after e- YR cose in eq. (3) is expanded

into spherical harmonics [8]

a n 2n+l , b (_)n+l 2n+l

n (-l) n(n+l) b n n(n+l) (8)

Therefore, the incident electric field f'(rs) can be ex-

pressed as
ir's) - F(s)e-Ya (l)n 2n+l In-(i) In 1

n, n~n-l) Moln -eln] (9)

Similarly, the scattered electric field from the sphere

s(_rs) can be expressed in terms of spherical vector functions as

.~: ai -1n
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rs( ,s) = I's)e YZI (_I) n  2n ] Cn t n I
n= n(n+l)

(10)

where 4(k) and I el have the same expressions of A and en

oln eln oln l

as given in eqs. (6) and (7) except with their in(YR) function

replaced by kn(YR) function which is the second kind of modified

spherical Bessel function. kn (YR) function is needed to give

attenuating behavior of the scattered field as R approaches to

infinity.

The coefficient en and dn in eq. (10) can be determined

based on the boundary conditions on the spherical surface

E +Es 0 and Ei + E= 0 on R =a,

to be

in(Ya)
cn  (11)

a
d [R in(YR)] R=a (12)

n = R kn(YR)]R=a

The final expression for the scattered electric field is

The__ fia exnpress1ion

'Ya D f2n+l i n (Ya) olnfs(' s) F(s)e-Ya (-1nl ____a

[aR k (YR))(n ) .(k) (13)
n JR=a

The backscattered electric field in the far zone of the

sphere should be in the x-direction, parallel to the direction of

the incident electric field, and can be found from
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-9s [Es (14)6 e= , (=14

Since as R approaches to infinity,

1 Ra 1 ) 1 -YR,

kn(YR)--,iz e and (R kn (YR))-O 2 e Re

and

(cos)- I- n (pp(cose) (-1)n

sine )] =- n(n+l), L"n - =(+1),

as R4-, O=ff and =7 S(k) and I(k) functions become

-(k) = (k) -YR O ln"M l eT 2 y] e L p -n (n+l .
oin ein I* Y 2

Thus, the backscattered electric field becomes

- y(R +a) in (Y a)'_Rkn (R)] R=a Rin (yR)] R=ak (Ya)
P, (S)=^ - 1FF(s)e - i(2n+1) n 5R Ri- )R__ a

(s)~k =- a) x-Azs IN~ (Y 1( R)]R= aJ

(15)

Using the following Wronskin,

in (x). ' [x kn~) - kn (x)L [x in (x)] G)16

eq. (15) can be simplified to be

(s) ( e 2n+l (17)

x'() F (s) ----- Y7 kn (Y a)[DI(R n(YR))] Ra

The backscattered electric field fs given in eq. (17) can be

developed further because the modified spherical Bessel functions

can be expressed with truncated power serieses as follows [9].

i, I l L I



Ck e - T en+ (1+!)(2C)1 (19)

n()l 7 $1 (n 0!n- C

If eqs. (18) and (19) are substituted in eq. (17), we have the

final expression for ts(s) as

Ia -Y(R.-a)FC)X- (2n+l)c 2n0

"S(s) = x -R0 e 4-s) fn(Ogn() (20)

where
(n+a) ! I n-8 21

fn(:) = 6!(n-8)! (21)

gn(  = (n%) (22)

= Ya and Y = s/c.

R= distance between the observation point and the

center of the sphere.

The backscattered electric field can also be expressed as

S(s) = -x a -s(R_-a)/c F(s)H(s) (23)

where
n~l (n~l)2n

H(s) = n ng)c with C aS (24)

In eq. (23), F(s) is the unknown function describing the waveform

of the incident radar signal, and H(s) is the transfer function of



-7-

the sphere. The transfer function H(s) as expressed in eq. (24)

is a poorly converging infinite series and its evaluation for large

value of C requires sophisticated Watson's transformation [10] or

extensive Fourier-numerical method [11]. To synthesize an incident

radar signal which excites a single-mode backscatter from a sphere,

it is necessary to obtain a reasonably accurate impulse response

which is the Laplace inverse transform of H(s). This is done in

the next section.

3. Impulse Response

The impulse response h(T) is obtained by inverting H(s). In

the process of inverting H(s), the roots of fn( ) and gn(1) func-

tions in eq. (24) are computed based on Muller's algorithm. There

are n roots for each fn(c) function and n+l roots for each gn()

function, as can be seen easily from eqs. (21) and (22). If these

roots are plotted in the s-plane (or the 4-plane), they can be

grouped into branches of roots as shown in fig. 2. Except those

roots lying on the negative real axis, all other roots are in con-

jugate pairs. These roots indicate the locations of the simple

poles of H(s) in the s-plane. It is noted that the roots in one

branch come from either fn () or gn(4) but they do not belong to

the same index n. For example, the first branch (and other odd-

numbered branches) of roots come from gn(C) functions of various n,

and the second branch (and other even-numbered branches) of roots

come from fn () function of various n. Through numerical calcula-

tion, we found that this kind of regrouping the roots in the s-plane

provides an interesting information; asymptotically, the roots be-

longing to the same branch have a simple arithmetic relation be-

tween their locations on the s-plane, and the residues of H(s) at

these roots (or poles) possess a simple geometric relation between

their complex amplitudes.

For simplicity, we can designate the roots with the symbol,

Cii' where the subscript i represents the ith branch and the sub-

script j means the jth root of the branch. Also we can use j=O

to designate those roots lying on the negative real axis. In

general, we can express
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ij C ij + J-ij i ij " Jwij and iO , 0 iO'

The transfer function H(s) contains only simple poles located

at these roots and the residues of H(s) evaluated at these poles

are given by

LRes H(s) ]at ij =a i j ~a i j a i ' ,ijRes H(s)] aat .*.aij-,ai j

Some lower-order roots and the corresponding residues of H(s) are

tabulated in Table 1.

The transfer function H(s) can be expanded into an infinite

series as

H(s)~ aO
= +iA (25)

The summation of the second term of eq. (25) starts from i=2 be-

cause there is no root of the first branch lying on the negative

real axis. The upper limit of the summation over i, N, is dictated

by the maximum number of the branches needed to be considered.

Numerically it was found that a reasonably accurate solution can be

obtained with N less than 3.

The impulse response can then be obtained as

h(T) a ~ 2 Re(aije ij)T + (as) a A~e i0 T

(26)

where X = t/(a/c) is a normalized time, and each term of eq. (26)

represents a natural mode of the sphere.

Examining Table 1, one can observe a simple arithmetic relation

between the values of roots (or the locations of poles) belonging

to the same branch if j is bigger than 10. That is,

;ij - ij- - ;i -* constant, if j > 10. For example,

A 1 =-0.035 + jO.98 and A; -0.078 + jO.96 for j > 19.
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Similarly, there is a simple geometric relation between the

residues at these poles of the same branch if j is bigger than 10.

That is, a ij /aijl = R - constant, if j > 10. For example,

R1 = 1.09 e j l .18 and R2 = 1.19 e j 1 " 2 2 for j > 19.

In view of these simple relations, the infinite sum of the

modes in eq. (26) can be divided into two parts; the first part is

the sum of the first 10 or 20 terms and the second part is the sum

of the rest of the terms. For example, we can sum the modes coming

from the poles of the first branch, i-l, as

[h(T)]l = (i)2 Re alje + () 2 Re a lje " lj

(27)

Now the simple relations between roots and residues for large j can

be used to approximate the last term of eq. (27) as an infinite geo-

metric series which is then summed up to be

0]-0 -lT 1 a ,19T AC1  (lAClT) 2+. AC (R 1 T°

2 Re a1 je = 2 Re 1 ,19e  eA I + (RAe ..+

= 2 Re a1 19e l 1 --T Re (28)
1,19 ( -R l )

The fact that A1 contains a negative real part has been used, and eq. (28) is

valid for c > 0. For T=0, the impulse response can be shown to be infinite,

directly from eq. (24) based on the initial value theorem.

If numerical values of al,19 , l,19' R1 and 4 are substituted in eq. (28),

we have

2 Re [J ale lj T]_-

0 ij

89 .34e 
797TEcos (19.32T -0.4852-1.09e- 00 3 5Tcos(18.34. -1.66)] (29)

1 + 1.19e-0.07T_2.18e'0.03Tcos(O.98 + 1.18)
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The first term of eq. (27) can be easily summed up numerically,

and when it is combined with eq. (29) the part of the impulse res-

ponse, h(T), which is contributed by the modes of the first branch

poles, can be computed as a function of time. It was found that a

reasonably good result can be obtained just considering the contri-

bution from the poles of the first branch.

A numerical example is given in Figs. 3 and 4. Fig. 3 shows

the impulse response computed from the sum of the first 19 pairs

of the poles of the first branch, or the first term of eq. (27).

It shows a strong oscillatory response in the early-time period,

but no creeping wave peak is observed. This result is wrong,

judging from the existing results. However, if the term given in

eq. (29), which represents the contribution due to the rest of the

poles of the first branch, is added to the contribution from the

first 19 pairs of the poles, a surprising result is obtained; the

strong oscillatory -esponse during the early-time pariod is can-

celled and a sharp peak representing the creeping wave contribution

appLars at T =t(c/a) =5.25, as shown in Fig. 4. It is noted that

an impulse at t0O is added in Fig. 4, as it should be. The impulse

response shown in Fig. 4 agrees with the existing results. An ap-

proximate impulse response based on Fourier-numerical method [11]

is included in Fig. 4 for comparison. If the contribution from

the poles of other branches is considered, the accuracy of the im-

pulse response during the early-time period can be improved. It

is noted that if more than 19 pairs of poles in the first branch

are considered without the compensation of a corresponding correc-

tion term, the oscillatory response in the early-time period be-

comes stronger instead of weaker. This is due to the fact that

the amplitude (residue) of the mode increases with the order of the

mode (Table 1). For many practical applications the result of

Fig. 4 is sufficient,

For our purpose of synthesizing an incident radar signal which

excites a single-mode backscatter from a sphere, ill is desirable

to obtain an approximate impulse response in the form of a truncated

sum of natural modes. To do so, it is necessary to approximate the



correction term of eq. (29) with two damped sinusoids which pos-

sess the forms of natural modes. This step was accomplished nu-
merically by the cut and try approach. We found the two damped

sinusoids, 1.34 e -2.0T cos (18.89lT + .4838) and

.127 e- 55T COS (19.50T - .7159), can approximate the correction

term of eq. (29) quite well for T > 2. Since we aim to synthesize
a required incident radar signal for exciting a single-mode back-

scatter in the late-time period, we do not need the information
on the early-time behavior of the impulse response. The approxi-

mate impulse response constructed with the first 19 natural modes

of the first branch and two damped sinusoids which approximate the
correction term of eq. (29) is shown in Fig. 5. This approximate
impulse response approximates the true impulse response quite

accurately for T > 2. Thus, it will be used in the synthesis of

the incident radar signal for exciting a single-mode backscatter

in the late-time period.

4. Excitation of Simple-Mode Backscatter

The approximate impulse response of a sphere can be represented

by the first 19 natural modes from the first branch of poles, two

damped sinusoids which approximate the correction term of eq. (29)

for -r > 2, and a term which compensates the error for the early-

time period of 0 < T < 2. Symbolically, we can express the impulse

response h(T) as

h(T) = a ne nCOS (WnT + On) + C(Tr) (30)

In eq. (30), the first 19 terms of the summation,
GnT

a. an e COS (W n T + Y , represent the sum of the first 19 natural

modes from the first branch of poles. The last two terms of the

summation, a~ ne COS (W nT + 0 n), represent the two damped

sinusoids which approximate the correction term of eq. (29) for

T> 2, i.e.,

..............................
Now" ~



- I_

-12-

a20 e 20 Cos(w20T + ,20) = (S) 1.34 e .0 cosIS.89C * .488

a21 e T cos(w21  + 21) = 0.127 e "- cos(19.SOT - .7159).

The term (t) exists only during the period of 0 < T < 2, and is

the term to be added to the summation term of eq. (31) to yield an

accurate impulse response for that period of time because with only the
summation term of eq. (31) it does not give accurate result for h(T)

during that early-time period. The function C(T) is difficult to
determine but it is not needed if we only aim to produce a single-

mode backscatter in the late-time period.

We now aim to synthesize an incident electric field E i(T) of

duration Te in such a way that when it illuminates the sphere, the

backscattered electric field Es (T) consists only of a single

natural mode in the late-time period of T > T e + 2. The backscat-

tered electric field Es (T) can be expressed, based on the convolu-

tion theorem, as

E S(T) =o e E1 (')h(T - T )dT'

Te Ei(T-) an en COS(Wn(TT-)+n)+(- )1 d

(31)

If the normalized observation time T > Te + 2, the term E(T--V)

does not contribute to the integral because (T) = 0 for T > 2.

Thus, eq. (31) becomes a|
Es(T) = feEi(t ") an e n( cos(wn +¢(n )On) Ir

an e Ancos(wnT+On ) + Bn sin(wrT + On ) (32)

for T > T e + 2.
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where the coefficients A and Bn are defined as

= 
nE(

) e 
dTi (33)

B nj osin wn-

Based on eq. (33), it is now possible to choose an optimal E i(z)

in such a way that all the coefficients vanish except one; by so

doing, ES(T) will consist of a single natural mode.

5. Required Incident, Signals and Return Signals

It is possible to choose an E i(T) to excite a single-mode ES(T).

Consider an incident electric field Ei(T) constructed from a linear

combination of 21 damped sinusoids, 19 natural modes and two damped

sinusoids approximating the correction term of eq. (29), as that

appeared in eq. (30):

21

El(T) = E e m (bm cos m T + cm sin w mT) (34)
m=l

where c. = am + jmm is the m'th natural frequency and C20 and C21

are the equivalent values of the two damped sinusoids, and bm

and cm are unknown coefficients to be determined based on the re-

quirement that only a single-mode Es(T) be excited.

Substituting representation (34) in eq. (33) leads to

21 21

Sbm + E M2 c (35)
n =E nm + nm mm=l m=l

21 21Bn  
M  b +E M4

n M2 nm nm CM (36)
m=l m=l

where

L
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nmos n cos m

(2 -(c-)T' Cos W -r sin W T'
rm e dT"

M3  sin w T' COS W Tnm Jo n m

M4  sin w TI sin w T
nm n m

(37)

It is observed that the Mi 's are explicit functions of incident
nm

radar pulse duration Te, and T e is a parameter of freedom which

can be varied to obtain a desirable Ei (T) waveform.

The unknown coefficients b and cm can be solved for from

eqs. (35) and (36) as

b A

M 1 1 M 2 "

nm nm

b 2 1  A2 1

_ - ------ (38)C 1-1B1 I

c 2  B2

M I 3  M 4.

nm nm

L I
c21 821.

In eq. (38), matrix Mnm] is of 42x42 order, while [ci and

are two column 42 matrices.

To obtain a single-mode scattered field (e.g., the j'th mode),

it is required that Bj=I and Bn=0 for n~j and A =0 for all n. bm
and c. are easily determined from eq. (38), and E (T) is subse-

quently obtained from representation (34). With this E' (T), the
Sscattered field, E (T), becomes single-mode and can be expressed as

J t ... .__t . . ... -, --



C-)s-
Es (T) a. e T (w ' + (39)

Some numerical results on the required incident signals for

exciting various single-mode backscatters and resulting single-

mode return signals are shown in Figs. 6 and 7. Figure 6 shows

the required incident signal for exciting the first-mode backscatter

( 1 = -0.5 + jO.866) and the return signal which indeed shows the

first natural mode in the late-time period of T > 9. The duration

of the required incident signal is set to be one period of the first

natural mode,

1 = - 7.26.

The waveform of the required incident signal is found to contain

a rapidly oscillatory component in the initial stage. However,

the return signal contains only the much slower varying, first

natural mode in the late-time period. This phenomenon is different

from the case of a thin wire where the required incident signal

for single-mode excitation consists mainly of the wanted natural

mode [7]. The reason is that the natural modes of a thin wire are

nearly orthogonal while that of a sphere are not orthogonal due to

their large damping coefficients. It is noted that the return

signal was obtained by convoluting the required incident signal

with the approximate impulse response given in eq. (30). The early-

time part of the return signal exhibits an irregular waveform and

is not shown in the figure for the sake of clarity.

Figure 7 shows the required incident signal for exciting the

third-mode backscatter (C3 = -0.843 + j2.7S8) and the return signal

which contains only the third natural mode in the late-time period

of T > 9. The required incident signal has a duration of one period

of the first natural mode, and its waveform consists of a rapidly

oscillatory component superimposed on a slowly varying component.

The third-mode return signal was created by the numerical convolu-

tion of the required incident signal with the approximate impulse

response.

The required incident signals for exciting the first and the

third-mode backscatter appear to be somewhat irregular in waveform.

I1I~ L.. ~ _________________
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However, they can be constructed with 21 natural modes of appro-

priate amplitudes and phase angles as shown in Table 2. It

appears that higher amplitudes for higher-order natural modes are

needed to construct the required incident signal.

The relation between the signal duration and the waveform of

the required incident signal was also studied. It was found that

when the signal duration is shortened, the waveform of the required

incident signal resembles that shown in Fig. 6 or Fig. 7 but it

contains a more rapidly oscillatory component in the initial stage.

S. Target Discrimination

To show the capability of target discrimination of this method,
two numerical examples are given in Figs. 8 and 9. Figure 8 shows

the return signals from two spheres, the right sphere and a wrong

sphere which radius is 10% smaller than that of the right sphere,
when they are illuminated by the required incident signal for ex-

citing the first-mode backscatter from the right sphere as that

shown in Fig. 6. It is observed that the return signal from the
right sphere is a pure first natural mode while that from the

wrong sphere shows distortions in its waveform. Figure 9 shows the

return signals from the same two spheres when they are illuminatedI
by the required incident signal for exciting the third-mode back-

scatter from the right sphere as that shown in Fig. 7. The return

signal from the right sphere is a pure third natural mode while

that from the wrong sphere exhibits an irregular waveform. From

these two examples, it is evident that the wrong target can be sen-

sitively discriminated from the right target if the incident sig-

nals are properly synthesized for single-mode excitation. It is

noted that if the wrong target were a thin wire or some other non-

spherical object, the return signals from the wrong target would he

entirely different from the natural modes of a sphere, and the dis-

crimination of the wrong target from the right target would be tri-

vial in that case.

6. Conclusion

It has been demonstrated that by expressing the backscattered

field of a sphere in terms of its natural modes, it is possible to
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synthesize an incident radar signal of appropriate waveform in

such a way that when it illuminates the sphere, the return signal
contains only a single natural mode of the sphere in the late-time

period. When that synthesized incident signal is applied to a

wrong target, the waveform of the return signal will be signifi-

cantly different from that of natural modes of the sphere; thus,
the wrong target can be sensitively discriminated from the right
target. Since a single-mode radar return contains a narrow fre-

quency band it may lead to improved signal-to-noise ratio and can

be processed by narrow-band filters and amplifiers.

*t -- a-
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Appendix: Solutions of Wave Equation in Terms of Spherical Vector
Wave Functions.

Consider the wave equation for the Laplace transformed f field:

... 2 -a AIV x Vx E+ Y E = 0 (Al)

where Y = s/c.

To solve eq. (Al), we consider first the corresponsing scalar wave

equation,

V2g _ y2g = 0 (A2)

Assuming g(R,0,0) = gl(R)g 2 (e)g3 (0), and by the technique of vari-

able separation, gl(R),g 2 (0) and g3 (0) can be shown to satisfy

the following equations.
2

R2d29+2Rdg,+[-Y Y2 R2 _ n-~~ g1  0 (M3)dR 2 l_

I d in d2)+ [n(n+l)]m2(4

d (s d -26ml g 2 = 0 (A4)22

d 93 2d7 + m g3 = 0 (A5)

The solution for gl(R) is given by

l n+ (YR) n (YR)

= = (A6)g(R) ~ {Kn+ (YR) kn(YR)

where In+ (YR) is the first kind of modified Bessel function of

order n+ , Kn+ (YR) is the second kind of modified Bessel function

of order n+ . in (YR) and k n(YR) can be considered as the first and

second kind of modified spherical Bessel functions of order n.
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The solution for 92(e) is

92(e) - pn(cose)t 
)

where PM (cosa) is the associated Legendre's function of order n andn

degree m.

The solution for g3 (e) is

Cos mDA

93{e) = tsin m(

Therefore, the general solution for g(R,O,O) is

cos mg , n (YR) m(cC0 o) (A9)
n m .kn(YR )  sin mJ

It is possible to construct from g(R,0,0) two possible solu-

tions for E which satisfy eq. (Al) and Maxwell's equations as fol-

lows. The first solution for f is

14 (R,e,) - V x (tg) (AlO)

and the second solution for f is

(R,e,o) - V x (R,e,o) (All)

These two solutions can be shown to satisfy eq. (Al) by direct sub-

stitution.

The substitution of eq. (A9) in eq. (AlO) gives

qi n (,YR) pm 0 0  sin m

gmn s kn 1kn (YR) J Cos m J
m

i (YR) = n(C os m m
n s (A12)

{kn(YR) J ~ sin moJ
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The substitution of eq. (A12) in eq. (All) leads to

# = n+l) (i(YRf) I- m C ) Cos m4

kmn k n (YR)I n sin m I

f R ( Y R ) P r(c o s 0) C o1+ 1 ~ inR n

TTW R (YR) sin m

+~ J!.. a fRin Y p m .cose) si (A13
TRsin -RR kn (YR)J n fcos mj

The subscript e and o stand for the even and odd i and functions.

The general solution for t is any combination of even and odd

and I functions of any m and n.

It is noted that these solutions deviate from the conventional

Mie series [8] in that the present solutions use modified spherical

Bessel functions while Mie series uses ordinary spherical Bessel

functions.

'I If_ .i_& _
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fig. 1 A perfectly conducting sphere of radius
a is illuminated by a radar signal propa-
gating in the + z-direction.
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fig. 2 Natural frequencies of a conducting sphere; the poles are

grouped into branches in the S-plane

Table 1: Poles of the first and second branches shown in the above figure

and the corresponding residues.

poles of 1st resduesat poles of 2nd residues at 2
branch Jr | branch r 2

2]0 a r " a a war

6 - , 14 1.7 -1.000 10. 36#.000 0.

7 -1,21 1.8 -2.784 .52-6.139 1,54 -17.4 -25.#4
i -1.o27 17.38 -6.8759 -1.06 -2.99 1.21 -15.49 -208.3

19 -1.321 1834 7 .74 -. 5 -42.07 10 .77 2 I14, -132.1

10-1.38 9.5276 615 3.428 I-32301 9 .177 I250.30 .9
1. -..1.434 1.50642 .7776 1.93 -3.3,3 1.41 .-278;.. 14.4

12 -1.48301 .48-7710 .41.34 22 i-3.459 116,075 -627 .6 -,8..
3 I-1.28 1.46 I-1.13 -14.09 |-3,71 1? 0.9 |-60.465 -807",.6
4 I-1"5727 1 34 7.00 -24.65/-3.6?129I.98"' 9194 -396.4t

15 /-1.413 14.42 I 2.770 -3178-3.734 3.94 88.:8 92.5

16 -1.65 l 15.40 l14.89 27.57 I-3.827 14.89 1-697.2 1313,
"1 ,t.92.1 16.38 |-21.84 '26.61 |-3.912 |15.85 J-1771. -259.0

38 -:1.'727 |17.36 1-35.97 -11.001-3.993 J16.81 1-425.9 -2096.
19-1.762 |18.34 I-3.843 -40.83 -4.071 |17.77 2165. -.13.25.
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fig. 4 The impulse response of a conducting sphere of radius a computed

from the first 19 poles of the first branch and the correction

term of eq. (29), The impulse response shown by the dotted line

is obtained with the Fourier-numerical method.
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o ---- first 19 natural modes and correction term

.e

r.N.

U

g-l

'= ti/(a/c)

fig. 5 Approximate impulse response for t>2 constructed with I
the first 19 natural modes of the first branch poles
and two damped sinusoids which approximate the correction
term.
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Required Incident Signal for
~the First-Mode Excitation
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T' Incident Signal - 4

C! Return Signal
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fig. 6 Te required incident signal for exciting the first

natural mode of a sphere, and the return signal whichcontains only the first natural mde.
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Required Incident Signal for

the Third-Mode Excitation

Incident Signal --

~Return Signal
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o. Return Signal

a
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f ig. 7 The required incident signal for exciting the third

natural mode of a sphere, and the return signal which

contains only the third natural mode.
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Table 2. Natural Modes Used to Construct the Required Incident

Signals for Exciting the First and the Third Mode Backscatters.

21 ar
Ei(T) -Za ne Cos(w n + *n), o<T<7.26.

E (T) for First-Mode Excitation Ei for Third-Mode Excitation

n Natural Mode Components n Natural Mode Components

1 .2703 e 'STCos(.866T-91.860) 1 .2624 e - 5TCos(.866T+171.10)

2 .1085 e- 702-Cos(1.807T+128.11*) 2 .2972 e- 702TCos(1.807T+138.72 °)

3 .1245 e-'843TCos(2.758T+90.38°) 3 2.743 e- 843TCos(2.758T-83.66°)

4 .1394 e-' 9 54 TCos(3.715T+46.480) 4 .3245 e-'9 54TCos(3.715T+68.75o)

5 .1639 e- 1048TCos(4.676T-5.450) 5 .2945 e- 1048TCos(4.676T+21.090)

6 .2184 e-"129T Cos(5.642T-62.50 ) 6 .2880 e-"129T Cos(5.642T-48.450 )

7 .3265 e- 1201TCos(6.61T-114.95o) 7 .4556 e- 1201TCos(6.61T-120.050)

8 .4909 e- .267TCos(7.58T-161.20 ) 8 .8078 e- 1267TCos(7.58T-172.15 °)

9 .6914 e- .327TCos(8.55T+155.260) 9 1.264 e- 1327TCos(8.55T+143.81 °)

10 .9013 e- 1.382Cos(9.527T+112.82°) 10 1.752 e- 1382-Cos(9.527T+102.090)

11 1.108 e- 1434TCos(10.5T+69.4°) 11 2.233 e- 1434TCos(10.5T+59.56°)

12 1.304 e- 1483TCos(11.48T+22.870) 12 2.687 e- 1483TCos(11.48T+13.750)

13 1.507 e -"528TCos(12.46T-26.370) 13 3.151 e- 1528TCos(12.46T-35.070)

14 1.839 e- 1572TCos(13.44T-78.36*) 14 3.895 e- 1572TCos(13.44T-86.900 )

15 2.337 e- .613TCos(14.42T-128.730 ) 15 5.025 e- 1613TCos(14.42T-137.11*)

16 3.010 e- 1653TCos(15.40T-173.660 ) 16 6.560 e- 1653TCos(15.40T+178.250)

17 3.634 e Cos(16.38T+148.540 ) 17 8.011 e Cos(16.38T+140.79)

-1.727T 0 -1.727T
18 3.794 e COa(17.36T+125.69) 18 8.443 e Cos(17.36T+118.210)

-1. 762r 1 72

19 4.933 e- Coa(18.34T+156.140) 19 11.00 e-"762T Cos(18.34T+148.720)

20 9.203 e-20 TCos(18.891T-58.560) 20 20.45 e-20 TCOS(18.891T-65.54°)

21 0.193 e-' 5 5TCos(19.50T-79.670) 21 .0437 e-'55TCOS(19.50T-86.750)
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First-mode Excitation

C

I-

C

- right sphere

wrong sphere

C?

to
Id
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C.

.- 00 -- t/ (a/
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r0.0 s.0 10.0 15.0 20.0 26.0 50.0 t6.0 40.0
t/ (a/c)

fig. 8 The return signals from the right sphere and a wrong sphere which

radius is 10% smaller than that of the right sphere when they are

illuminated by the incident signal synthesized to excite the first

natural mode of the right sphere.
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Third-mode Excitation

a
C!0

9
a

right sphere

....... wrong sphere
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a. 0. 5.0 1O.0 16.0 2 0.0 25.0 30.0 36.0 40.0

t/(alc)

fig. 9 The return signals from the right sphere and a wrong sphere which

radius is 10% smaller than that of the right sphere when they are
illuminated by the incident signal synthesized to excite the

third natural mode of the right sphere.
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1. Work in Progress

The study on the radar waveform synthesis for exciting a single-

mode backscatter from a normally oriented, infinite cylinder is

in its final stage. The results obtained up to date are briefly

outlined below.

A radar signal propagating in the +x-direction is incident on

an perfectly conducting, infinite cylinder of radius a with its

axis located along the z axis. The electric field of the incident

radar signal, in its Laplace transform, is assumed to be

-i-ya yrcosEi( ,s) = y F(s)eae (1)

where F(s) is an unknown waveform function to be synthesized in

such a way that E1 (f,s) excites a single-mode backscatter from

the cylinder, and y = s/c.

The backscattered electric field can be obtained, through a

long theoretical development, to be

ES (,s) = -Y F(s) 4re-Y(r. - a)H(s) (2)

where r® is the distance between the observation point and the

cylinder and H(s) is the transfer function. H(s) can be expressed

as

00 in ()e - 2

H(s) = * n ! (3)
n=o Kum Z~1

where In(O) and Kn(E) are the derivatives of the first and the

second kind of the modified Bessel functions, nl for n=O andnJ
ln=2 for n > 0, and E - ya - s(a/c).

The impulse response of the cylinder is obtained by inverting

H(s). To invert H(s), the first step is to find the poles of H(s)
or the roots of Kn(O). The roots of Kn(M are shown in Fig. 1.
The next step is to perform the integration around the branch cut

of H(s) along the negative real axis on the s-plane. By so doing,

the impulse response of the cylinder h(t) can be expressed as
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nor
00n+1n t) + o 1D fe-t 2- '()

h(t) - Z 2 Re(a nie ) + n nI dn
nf'o i-l n=o o 2 2 .2

J[Kn (E) + n I n (E)]

(4)

where ni is the ith root of the Kn() function and ani is the

residue of H(s) at Eni* The first term of eq. (4) is the sum of

all the natural modes and the second is a line integral which comes

from the integration around the branch cut.

Numerically, we have found that the sum of a finite number

of natural modes plus the numerical integration of the line inte-

gral of eq. (4) given an approximate impulse response which is

quite accurate for the late-time period. Preliminary results of

the approximate impulse response of the cylinder is shown in Fig.

2.

We are in the process of calculating the required incident
signals for exciting various single-mode backscatters. Once these

required incident signals are obtained, the return signals can be

obtained by convoluting the incident signals with the impulse res-

ponse of the cylinder. We expect to complete these calculations

in the near future.

2. Future Plans

The following topics will receive major attention in the fu-

ture.

1. We will initiate the study on the radar waveform
synthesis for exciting single-mode backscatters
from two coupled wire targets which are orientied
at an angle and illuminated by an incident radar
signal at an arbitrary direction. The case of
special interest will be a wire target placed over
a ground plane and illuminated by an incident sig-
nal. Results of this study will guide the experiment
to be conducted on a ground plane.
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2. We will initiate the study on the cross-wire structure
which simulates an aircraft.

3. We will design an experimental setup for conducting
the experiment.

3. Personnel

The following personnel have participated in this research

program.

(1) Kun-Mu Chen, Professor and principal investigator.
(2) Dennis P. Nyquist, Professor and senior investigator.

(3) Byron Drachman, Associate Professor of mathematics,

consultant.

(4) Che-I Chuang, Graduate Assistant.
(5) Doug V. Westmoreland, Graduate Assistant.

4. Publication

Results of this research program have been published in the

following papers.

(1) K.M. Chen, "Radar Waveform Synthesis Method -- A New Radar
Detection Scheme", presented at 1980 IEEE International
AP-S Symposium, Laval University, Quebec City, Canada, June
2-6, 1980.

(2) K.M. Chen, D.P. Nyquist, C-I Chuang, D. Westmoreland, and B.
Drachman, "Incident-Waveform Synthesis for Single-Mode
Scattering by an Obliquely Illuminated, Thin-Wire Cylinder",
Presented at 1981 National Radio Science Meeting, Boulder,
Colorado, Jan. 12-16, 1981.

(3) K.M. Chen and D. Westmoreland, "Impulse Response of a Conduct-
ing Sphere Based on Singularity Expansion Method", Proceed-
ings of IEEE, Vol. 69, No. 6, pp. 747-750, June 1981.

(4) K.M. Chen, "Radar Waveform Synthesis Method - A New Radar
Detection Scheme", to appear in IEEE Trans. on Antennas and
Propagation, July 1981.

(5) K.M. Chen, D.P. Nyquist, D. Westmoreland, Che-I Chuang, and
B. Drachman, "Radar Waveform Synthesis for Target Discrimina-
tion", presented at 1981 IEEE International AP-S Symposium,
Los Angeles, California, June 16-19, 1981.
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(6) K.M. Chen and D. Westmoreland, "Synthesis of Radar Signal
for Exciting a Single-Mode Backscatter from a Sphere",
presented at 1981 National Radio Science Meeting, Los Angles,
California, June 16-19, 1981.

(7) K.M. Chen, D.P. Nyquist, D. Westmoreland, Che-I Chuang, and
B. Drachman, "Radar Waveform Synthesis for Single-Mode
Scattering by a Thin Cylinder and Application for Target
Discrimination", submitted to IEEE Trans. on Antennas and
Propagation.
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fig. 2. The impulse response of an infinite cylinder of radius a -

when the Impulse signal is incident normally an the cylinder.


