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RADAR WAVEFORM SYNTHESIS FOR TARGET IDENTIFICATION

Abstract

A new scheme for radar detection and discrimination, the ra-
dar waveform synthesis method, is investigated. This scheme con-
sists of synthesizing an aspect-independent waveform for the
] incident radar signal which excites an arbitrarily oriented tar-
= , get in such a way that the return radar signal from the target
4 ‘ ' contains only a single natural resonance mode of the target in the
late-time period. When the synthesized incident radar signal for
exciting a particular natural mode of a known, preselected target
is applied to a wrong target, the return radar signal will be
significantly different from that of the expected natural mode,
thus, the wrong target can be sensitively discriminated. The
selection of an optimum pulse duration of the required incident
signal for the purpose of shaping its waveform is also studied.

Three kinds of targets, an arbitrarily oriented thin wire, a
sphere and a normally oriented infinite cylinder, have been in-
vestigated. The casesof an arbitrarily oriented wire and a sphere
have been completed and the results are reported in Parts 1 and 2.
The case of infinite cylinder will be completed shortly and in-
complete results of this case are outlined in Part 3.
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1. Introduction

In recent years, research on radar target identification and
discrimination utilizing a short-pulse waveform has been conducted
by a number of workers [1-8]. One interesting scheme is to irradi-
ate a target with a simple waveform such as an impulse, a step or
a ramp signal, and then analyze the scattered field from the tar-
get in terms of natural resonance modes of the target. It is known
that the waveform of the scattered field is aspect dependent, but
the set of natural resonant frequencies extracted from the scattered
field is independent of the aspect angle [9-13]. Using this pro-
perty, a target can be identified if the extracted set of natural
frequencies is compared with the collection of known data on the
natural frequencies of various targets. Two different targets can
also be differentiated if the two sets of natural frequencies are
compared. One of the problems associated with this scheme is
difficulty in obtaining accurate natural frequencies of the target
from a noisy scattered field.

In this paper, an inverse scheme, to be called the radar-wave-
form-synthesis method, is investigated. Instead of analyzing the
field scattered by the target in terms of its natural resonance
modes, this new scheme synthesizes the waveform of the incident
radar signal in such a way that, when it excites the target, the
return radar signal contains only a single natural mode of the
target. It will be shown that when the incident radar signal
synthesized to excite a particular natural mode of a preselected
target is applied to a different target, the return signal will
be significantly different from that of the expected natural mode.
The wrong target can thus be sensitively discriminated.

The simplest case of this radar waveform synthesis scheme has
been studied by Chen [14] for the case of a thin wire irradiated
by a radar pulse at normal incidence. For this case, it is possi-
ble to synthesize a required waveform for the incident radar wave
to excite a single-mode return response at all post-incidence times.
When this study is generalized to oblique incidence, difficulties
are encountered in obtaining a realizable required incident wave-
form for exciting a single-mode, scattered field. Furthermore,




the required incident radar signal appears to be aspect dependent.
This difficulty arises because there exists a finite transit time
for an obliquely-oriented wire, i.e. a finite time for an impulse
to pass the wire. The impulse response of this wire consists of
an early-time, forced response in addition to the sum of natural
modes which describes a normally oriented wire. This early-time,
forced impulse response is difficult to approximate analytically,
and consequently is responsible for problems encountered when
synthesizing an incident radar signal to excite a single-mode,
scattered field at all post-incidence times.

To overcome this difficulty, we have concentrated on the be-
havior of the late-time response of the wire, and have found a
scheme to synthesize the required waveform for an incident radar
signal of finite duration to excite a single-mode, scattered field
in the late-time period (where the early-time impulse response is
not required, since that period has elapsed). More significantly,
this synthesized incident radar signal was found to be aspect in-
dependent.

Initially the impulse response of an obliquely oriented wire
is approximated analytically. This response is found to consist
of a forced response, which exists only during the early-time
period, augmenting a causal sum of natural resonance modes. It is
next demonstrated that an aspect-independent, incident radar signal
which excites a single-mode return signal after the early-time
period can be synthesized. The aspect-independent, required wave-
forms of the incident radar signals which excite various single-
mode return signals from an arbitrarily oriented wire are then ob-
tained. Numerical examples on required waveforms for exciting
various single-mode return signals, and those on the return signals
from a wire oriented at various angles are given. Numerical ex-
amples are also given to show that when the synthesized incident
signal which excites a particular natural mode of a preselected
target is applied to a different target, the return signal from the
wrong target becomes significantly different from that of the ex-
pected natural mode. The possibility of shaping the waveform of
the required incident signal by adjusting the duration of the
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incident signal, and other features of the radar waveform synthe-
sis method are also discussed.

2. Geometry of Problem

A thin-wire cylinder of length L and radius a is illuminated
by an incident-wave radar signal at angle 6 as indicated in Fig.
1. The electric field of this transient plane wave is assumed to
be

ﬁi(z,t) = 7 F(t-zcosé/c) (1

where polarization is specified by constant vector 7 and F(t) is
an unknown waveform function to be determined by the requirement that

El(z,t) excite a single-mode, scattered field. The component of
'Ei(z,t) tangential to the wire surface, in the Laplace transform
domain, is

=1

-8z cosé/fc
Etan (2)

(z,8) = sing F(s)e

This electric field excites a transient induced current on the
wire, and the induced current subsequently generates a transient

backscattered electric field. The goal is to synthesize an aspect-
independent waveform F(t) for the incident radar signal in such a
way that the backscattered field, or the return radar signal, from
the wire oriented at any aspect angle 6 contains only a single
natural mode of the target.

3. Induced Current and Backscattered Field

The induced current, 1(z,s), on the wire can be found as the
solution to Pocklington's integral equation [10]

L
j; r(z,z',s)I1(z',s)dz' = S(z,s) (3)

with the thin-wire kernel

, R = VQz-z')z + a2

2 2 -
r(z,z',s) = <f3§ - 57) E_iEii

32 c

47R
(4)
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and the excitation forcing function

S(z,s) = -, sing[s F(s) e 5% cose/c]. (5)

If the only singularities of I(z,s) in the finite, complex
s-plane are simple poles at natural frequencies s = g, + jwa
and it is assumed that no entire-function contribution exists,
then the SEM representation [9,12] for the induced-current solu-
tion to eq. (3) is

N 1 ‘
I(z,s) =Zl a (s) v (2) (s-s)) (6) E

a:
where va(z) is the current distribution of the ath natural-
resonance mode. Coupling coefficients aa(s) are obtained [12]
from the inverse operator to integral equation (3) with the

"class-2" [9] representation

L
j(; 8(z,s) \)a(z) dz . (7)

L L

3
dzv (Z)‘/. \b(Z') s r(z,z',s)
[Ty R T—

A development of this result specific to the thin-wire scatterer

is presented in the Appendix; it demonstrates the apparent ap-
proximate nature of that representation for aa(s). Since the

above coupling coefficient is frequency dependent, it leads as
necessary to an early-time response having a forced component which

differs from a pure sum of natural modes. If v _(z) is represented
by the well known approximation

aa(s) =

dz'
=8
5%84

b . N

ve(2) = sin(fsz> (8)

a (s) can be evaluated in closed form, and the induced current
I(z,s) is determined to be




| 2 _.
1(z,5) = Ar_sind s Fls) x

uOL2 [2 log(L/a)~1]

SN

N [ ] - (_1)ae-sL cose/d}[ 1 .1 ] Sin(gzz '
> - i
Ezl s? cosze/c2 + azﬁfjéf sa(s-sa) sk (s s%)

The backscattered electric field can be determined from the
far-field expression

E%(s) = - zsA(s)sin® (10)

where A(s) is the vector potential in the backscattered direction
maintained by I(z,s), and it can be expressed as

L
Afs) = —2 e "SRm/CJrO I(z,8)e™%% €080/ q; (11

R, in eq. (11) is the distance between the wire and a distant obser-
+vation point in the cylinder's radiation zone.
The final expression for Es(s) can then be obtained as

—sRm/c
ES(s) = K; S——— F(s) H(s,0) (12)
where
L s'n26
K, = -L S5t , and (13)

72[2 log(L/a) - 1]

F(s) = waveform function of the incident radar signal.
Transfer function H(s,0) in eq. (12) is expressed as

N

- 2 -
H(s,9) =Z ii[ 1 - (-l)ae ST] [ 1 1 J

+
a=1l a“ k1 + (T/ai)77§7 sa(s-sa) sa(s-ég)

N

(14)

where the incident-wavefront transit time is
T = (L/c)cos®. (15)




It appears feasible at this point to synthesize F(s) required
to excite a single-mode scattered field by requiring E3(s) to re-
present such a field in eq. (12) and subsequently solving for
F(s) in terms of known H(s,8). This procedure was implemented
successfully [14] for the special case of normal incidence. With
obliquely-incident illumination, it becomes difficult, due to the
complex frequency dependence of H(s,8), to evatuate f£(t) by numeri-
cally inverse transforming F(s); furthermore f(t) is a very ill-
behaved signal in the early-time period. The latter problem arises
because the above synthesis procedure demands that Es(t,e) con-
sist of a single natural mode at all post-incidence times, includ-
ing the early-time period where the forced impulse response is
poorly behaved and difficult to approximate. If the frequency-
domain synthesis method is abandoned, then these difficulties
are overcome by adopting a time-domain synthesis procedure for
incident signals of finite duration Te' When Es(t,e) is not con-
strained in the early-time period 0 < t < Te + 2T, then the
forced impulse response is not encountered and it is found that a
single-mode scattered field can be excited in the late-time period
t>T, + 2T by well-behaved, aspect-independent incident wave-
forms of finite duration.

4. TImpulse Response

The impulse response h(t,8) of the wire is first determined
by inverting the transfer function as

N
h(t,8) =1 7! [n(s,0)] = 3 h, (t,0). (16)
a=1

h(t,8) is a function of aspect angle 6, and ha(t,ﬂ) reoresnnts

that impulse response associated with the o'th natural mode. It

is found that ha(t’e) can be obtained analytically in closed form
by inversion of Ha(s,e); it is decomposed into an early-time

forced component which is nonzero only for 0 < t < 2T and a natural
component, consisting of a pure natural mode, which exists for all
0 <t < ». These results are summarized below.
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} During the early-time period 0<t<2T the forced response is

h (t,0) = ar’ %ot [[o (t)-w_g,(t)] coes w t
a't’ ;3];‘[5 ¢ 9% a92 a
. a

+ lwyg; (£)+0,9,(8)] sin mqt], an

while for the late-time period of t>2T the natural response is

(17"3 Uat .
h, (t,8) = —*—s e [}oagl(ZT)-wugz(zr)) cos wt
T ‘sa‘

+ [w g, (21)+0,g,(2T)] sin wut] (18)

where

t
-o t'
gl(t) = J; e % cos mat'[fl(t')sin bt'+bf2(t')cos bt’')dat’

(19)

t
-0 t'
j. e % sin wat'[fl(t')sin bt'+bf2(t')cos bt'ldt’

(t) =
92 0
(20)
3 fl(t) = u(t)~-2u{t-T)+u(t~2T) (21)
fZ(t) = tu(t)-2(t-T)u(t-T)+(t-2T)u(t-2T) (22)

b = %E , and T = (L/c)cos8.

If integrals g;(t) and g,(t) are calculated, the impulse
response is expressed in an alternative form as




A

hy (£,8) = [u(t) G, (£)=2(=1)%u(t-T) G, (t-T)+u(t~2T)G_(t-21)]
~2[Bar(sa)fl(t)-car(sa)fz(t)] sin bt
-2[Dur(sa)fl(t)+Ear(sa)f2(t)] cos bt (23)

where
cat
(%(t) = 2e [Aar(sa) cos wat-Aai(sa) sin wat] (24)
r e ) b4sa b3(sa2~b2)
< = ’ B (s ) =
o' a 0‘2(5012 + b2)2 a'a 2(!2(8(!2 + b2)2
5 4
b b's
C (s ) = D - a
a'Sq 2 Y I (sy) =
20%s (s, *+b°) @™o u2(5a2+b2)2
4
- b
Ea‘sa) -

2a2(sa2+b2)

With Bar(sa) = Re{Bu(sa)}, etc. The first term of eq. (23) is a
natural mode and the second and third terms represent a forced
response which exists only during the period of 0<t<2T where T=L
cosf/c. Thus, the impulse response, h(t,8), consists of a natural
component which is the sum of natural modes and exists for all
times, and a forced component which exists only in the early-time
period of 0<t<2T.

Impulse-response waveforms for the thin-cylinder structure
are indicated in Figs. 2 and 3. Fig. 2 displays the impulse
responses obtained by summing the first 10 natural modes (first
layer of poles) in series (16) for 60° and 30° aspect angles. The
impulse response is observed to depend strongly upon the aspect
angle and to consist of a rapidly-oscillating forced response
during the early-time period 0<t<2T followed by the relatively-
slowly-varying natural response (a sum of pure natural modes) in
the late-time period 2T<t<~x. Convegence of the impulse-response
series was checked at 60° aspect by including 999 terms (pole lo-
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cations estimated by an approximate recursion method) with results
as indicated in Fig. 3. The result is observed to be a smoothing
of the late-time response, which is well approximated by the 10-
term series, while the rapidly-oscillating, early-time response
persists with increased frequency. Further convergence studies in-
dicated that the second and third layers of poles provide essen-
tially no contribution to the late-time natural response, while
their early-time nature is also rapidly oscillatory and does not
result in smoothing the total early-time impulse response. Although
adequate convergence of the early-time impulse response could not
be achieved (this may be related to a Gibb's-type phenomenon), it
is noted that convolution of this response with any relatively-
smooth signal, e.g., a step or a Gaussian pulse, will eliminate

the rapid oscillation leaving essentially the envelope of that
response, The latter results are similar to step and smoothed-
impulse responses obtained by other investigators.

The difficulty encountered during initial attempts to synthe-
size an incident waveform which excites a single-mode scattered
field at all post-incidence times is due to the erratic behavior
of the approximated forced impulse response during its early-time
period. If the scatter-field waveform, given by the convolution
Es(t,e) = f£(t)*h(t,0), is required to consist of a single natural
mode for all t>0, then required incident signal f(t) must be such
as to smooth the early-time forced impulse response which is in-
tersected in the convolution; the result is a poorly-behaved re-
quired incident waveform. To overcome this difficulty, a time-
domain synthesis procedure for incident waveforms of finite
duration T, is developed which requires single-natural-mode scatter
field response in the late-time period t>Te+2T but does not con-
strain that response in the early-time period 0<t<Te+2T. It is
emphasized that this method avoids the forced impulse response en-
tirely, such that this slowly-convergent component is never required.

5. Single-Mode Excitation

It was demonstrated in eq. (23) that the impulse response can
be expressed as
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N ot
h(t,8) = £(t,8) + 2, a_(8)e cos (w t + ¢ (8))  (25)
ney B n
where
£(t,06) = forced response which exists only during the

period of 0<t<2T,

N o_t
Y a_(8) e N cos(w. t + ¢_(8)) = the sum of natural modes
n n n which exists for all t,

n=1
a_(8) = aspect dependent amplitude of the nth natural
n E
mode,
¢n(9) = aspect dependent phase angle of the nth natural

mode,

R S

and o +jw = s = the nth natural frequency. h(t,) is shown
graphically in fig. 4a.

If the wire is illuminated with an incident signal, Ei(t),
of duration T  as shown in fig. 4b, the scattered field, ES(t),
should appear like that shown in fig. 4c, consisting of an ir-

regular waveform for the early-time period 0<t<T +2T followed by

a pure single natural mode for tzTe+2T if the waveform of Ei(t)

is properly synthesized. This phenomenon can be shown mathemat -

ically as follows.

The scattered field, Es(t,e), can be expressed, based on
the convolution theorem, as

T
E%(t,8) = Jf € glieryn(e-t’,0)de’
0

Te L N o, (t=t")
= 1o ET(t") [E(t-t ,8) +n§i a (8)e

-eos[mn(t-t')+¢n(e)]J atct .
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For the latc time period t>T_+2T, the forced respouse term does
not contribute to the integral because £(t-t',8)=0 for Oit'gie
if tzTe+2T. The property £(t,8) = 0 for t>2T has been used. The
scattered field in the late-time period then becomes

T ; N o (t~t')
E%(t,0) = J[oe El(t'){'z: a_(8)e " °°'fwn(t-t')+¢n(e)l] dt
: n=1

(26)
for tzTe+2T.

Equation (26) can be rewritten as

N
E%(t,8) =Y a_(8) eont[A (w_t + ) -
, N nCOS8 (6 0 (8)) +B, sin (w t + ¢ _(0))]

(27)
where the coefficients An and Bn are defined as
A T . -o_t!
n _ | e El(t')e P cos mnt' at'. (28)
Bn 0 sin mnt'

It is important to observe that A, and B are independent of the
aspect angle 6. It is possible to choose an optimsal E (t) in
such a way that all the coefficients vanish except one; by so
doing, ES(t,0) will consist of a single natural mode.

6. Required Incident Signals and Return Signals

It is possible to choose an aspect-independent Ei(t) to excite
a single-mode Es(t,e). Consider initially the class of incident

E—
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waveforms El(t) constructed as a linear combination of natural
modes (this choice is generalized in Sect. 9) as ;
o_t

m

N
i .
E' (t) =£El e (bm cos mmt + ¢, sin mmt) (29)

where Sm = %m + jmm is the m'th natural frequency, and bm and Cm
are unknown coefficients to be determined based on the requirement
that only a single-mode E%(t,8) be excited.

Substituting representation (29) in eq. (28) leads to

N N2
A = Mom P ¥ 2 Mom Sn (20)
m=1 m=1
T3 N4
B =2 Mhm bm + 2: M Cm (31)
om=1 m=1
where T
4 1
1
M ( '
nm o cos w t' cosw t! 1
M2 ¢ ' cosw_t' sinw_t° i
) gm , _ e-(on-om)t i n m dt’
Mnm o sincunt' coscumt' ? 1
1 {
Mnm sinw _t' sinw _t!
n m
) : ]
(32)
It is observed that the Mim's are explicit functions of incident

radar pulse duration Te’ and Te is a parameter of freedom which

can be varied to obtain a desirable El(t) waveform.
The unknown coefficients bm and c_ can be solved for from

eqs. (30) and (31) as

m

¥ e e e e —yr—— o
FUIE VAN — S REWERUPIRINY SU IO -t .
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[ o) )
{ bl -1 AlT
b - h
2 ! 5 )
L] 1 . -
hd Mm“ : Mnm .
3 . ' .
by, ' Ay
S L . J - - (33
B
< : 1
? B
€2 3 L 2
r . Mm | nm :
- L ' :
. ’
B
c N
\ N p L ’

In eq. (33), matrix [Mnm] is of 2Nx2N order, while [ :i ] and [ g% ]
are two column 2N matrices. 1 1

To obtain a single-mode scattered field (e.g. the j'th mode),
it is required that Bj =1 and B, =0 for n#j and A, =0 for all n. b
and ¢, are easily determined from eq. (33), and EY(t) is subsequently
obtained from representation (29). With this E (t), the scattered
field, E°(t,0), will be

s o.t
E (t,0) = a;(8)e J sin(wjt + 65(0)) (34)

It is noted that with this synthesized E (t) , the scattered field, ;
ES (t,8), remains single-mode for any aspect angle 0, even though
the amplitude a (6) and the phase angle ¢ (8) vary with 6. 1In
other words, when this synthesized E™ (t) lllumlnates the wire, the

: return signal contains only a single natural mode for any aspect
‘ angle of the wire.

Numerical results computed according to this scheme are shown
in figs. 5 to 10. It was found that when the duration of the in-
cident signal, T,, is one period of the first natural mode, the
required incident signal also becomes predominantly single-mode.
That is




Te = T) 3 ol 7Ty = 2-16 (@

leads to a desirable waveform for the incident signal. Fig. 5
shows the required waveforms for the incident radar signal to 3
excite a return radar signal from an arbitrarily oriented wire
containing only the first, the second and the third natural mode,
respectively. For the first-mode excitation, the required incident
signal consists of one cycle of the first natural mode and some
small components of higher-order modes as shown in fig. 5a. For
the second-mode excitation, the required incident signal consists
of about two cycles of the second natural mode and some small com-
ponents of other modes as shown in fig. 5b. This required wave-
form looks like a distorted second natural mode. For the third-

mode excitation, the required incident signal consists mainly of
about three cycles of the third natural mode as shown in fig. 5c.
It is emphasized that these required waveforms are independent of

aspect angle,or valid for any aspect angle of the wire.
Fig. 6 shows the return radar signals from a wire oriented at

various angles, 6=15°, 45°, 60° and 89°, when the wire is il-
luminated by the incident radar signal of fig. 5a which is synthe-
sized for the first-mode excitation. It is observed that the
return signal for each case of aspect angle remains that of the
first natural mode, even though the amplitude and the phase angle
vary with the aspect angle. Also the late-time period starts at
different time for different aspect angles. These changes in the
amplitude, the phase angle, and the starting point of the late-
time period with the change in the aspect angle are not important
in the practical detection of the return signal; the most important

and desirable feature of the return signal is for it to remain

single-mode. A single-mode, return signal can be easily identified

if it is displayed visually. It is noted that the return signal

during the early-time period changes irregularly with the aspect

angle, and it is not shown in the figure for the sake of clarity.
Fig. 7 shows the return radar signals from a wire oriented

at various angles of 15°, 45°, 60° and 89°, when the wire is
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| illuminated by the incident radar signal of Pig. 5c which is
” synthesized for the third-mode excitation. Aagain, the return ]
signal remains that of the third natural mode for any aspect angle.

7. Target Discrimination
When the synthesized incident signal for exciting a particular

natural mode of au;;;Eicular targét is applied to a different
target, the return signal from the wrong target is expected to
be significantly different from that of a single natural mode.
Thus, the wrongtarget can be sensitively discriminated. Two

numerical examples are given.

e g

Fig. 9 shows the return radar signals from three targets, the
right target (wire), a wire 5% longer than the right target and
a wire 20% longer, when they are illuminated at 30° aspect angle
by the incident radar signal of fig. 5a which is synthesized for
exciting the first natural mode of the right target. It is observed
L in fig. 9 that the return radar signal from the fight target is

a pure first natural mode; that from the 5% longer target displays
a slightly distorted waveform and a shifted frequency from that
of the first natural mode of the right target; and that from the
20% longer target shows an irregular waveform. Based on these
return signals, it is easy to discriminate the wrong targets from
the right target.

Figure 10 shows the return radar signals from the same three
F targets of fig. 9 when they are illuminated at 60° aspect angle
by the incident radar signal of fig. 5c which is synthesized for
exciting the third natural mode of the right target. The return
radar signal from the right target shows a pure third natural
mode, that from the 5% longer target displays an irregular ampli-
tude variation and a shifted frequency, and that from the 20%
longer target shows an irregular waveform. Again, the wrong tar-
gets can be easily discriminated from the right target.

8. Pulse Duration and Waveform of Required Incident Signal

In Section 6, it was indicated that the waveform of the
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b required incident signal for exciting a singlé?mode return

X signal can be controlled by adjusting the pulse duration,

! Te> of the incident signal. Through extensive numerical cal-
! culation, it was found that when Te is equal to or greater
than Tl’ the period of the first natural mode, the aspect-

! independent, required incident signal for exciting a single-
mode return signal consists mainly of that wanted natural
mode, as shown in fig. 5. However, when Te is less than Tl’
the required incident signal starts to have an irregular wave-
form and a high amplitude. This phenomenon can be observed

in fig. 11, where six waveforms for the aspect-independent,
required incident signal for exciting the first natural-mode
return signal from an arbitrarily oriented wire are shown

for signals possessing six different durations, Te = 0.25 Tl,
0.5 Ty 0.75 Tyr Ty 1.5 Ty and 2 T,. It is observed that for
the first three cases, Te< Tl' the waveforms of the required

incident signal are radidly oscillatory and of high amplitude,
while the last three cases Te > Tl’ have gquite realizable wave-
forms of mainly single mode. It is noted that to eliminate any
possibility of creating irreqular waveforms for the cases of
Te < T, due to numerical error, the required incident signal for
the case of Ty = 0.5 T, was convolved with the impulse response
of the wire, and the numerical result on the return signal
turned out to be a pure first natural mode of the wire.

With this example, it is easy to conclude that the optimum
i pulse duration for the incident signal should be a period of the
( first natural mode or longer. However, it is found that with
s an incident signal of longer pulse duration the sensitivity of
discrimination between different targets decreases. This is
easily visualized because as the pulse duration of the incident
signal is increased, the situation approaches to the case of the

continuous wave excitation of the target and the return signail
will contain only the excitation frequency.
Therefore, in the selection of an optimum pulse duration for
the incident signal the following three factors should be considered:
(1) the pulse duration should be equal to or longer than a period
of the first natural mode of the target, (2) an incident signal of
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longer pulse duration may be implemented with less difficulty,

and (3) the sensitivity of target discrimination decreases with

the increase in the pulse duration.

9. Uniqueness of Synthesized Waveforms

The uniqueness of incident field waveform Ei(t), syn-
thesized to excite a backscattered field consisting of a
single natural mode, is considered here. It was demonstrated
in the last section that Ei depends strongly upon its dura-
tion T,, so the question of uniqueness must be considered
for that class of waveforms with T, specified. Numerical re-
sults in Sections 6-8 are all based upon the natural-mode
expansion (29) for Ei(t) with N=10 (N = number of terms re-
tained in impulse-response series). Eq. (28) provides 2N
linear, algebraic equations for the 2N amplitude coefficients
in the series representation of Ei. For finite N, this solu-
tion requires the backscatter field to consist of the single
n=j mode, while those modes having l<n<j, j<n<N are not ex-
cited. Modes having n>N are not constrained; this tranca-
tion is justified by the negligible contribution of such modes
to the late-time impulse response. The question naturally
arises whether a different choice of basis functions in the
expansion for Ei(t) will lead to the same synthesized wave-
form. It is conjectured that Ei is unique among the class
of waveforms expanded in a complete basis set (the natural
modes are believed to be complete, although they are not
orthogonal) for N infinite. In practice, N can be truncated
at some finite value if the series converge adequately rap-
idly.

The dependence of Ei upon basis functions in its expan-
sion with N=10 was studied using rectangular pulse, impulse,
and pure sinusoidal basis functions. Figure 12 indicates re-
sults for Ei(t) synthesized to excite a single mode (n=1)
backscatter field and constructed from the various basis
functions. The signal duration was chosen as T, = Ty, and

it 1{s observed that El obtained with each alternative basis
set is similar to the result of the natural-mode expansion.
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Each of these Ei(t) waveforms will excite the same n=1 mode
backscattered field, but will not excite those modes with
1<n<10. These El waveforms may excite different higher-
order modes with n>10, which have not been constrained. As
N is increased, the Ei(t) waveforms obtained with different
basis sets become more nearly equal, and in the limit N»e
provide a unique representation for Ei.

10, Conclusion

It has been demonstrated that an aspect-independent,
optimal incident radar waveform Ei of finite duration Te can
be synthesized to excite a thin-cylinder-target backscatter
field which consists of a single natural mode of that target f ]
in the late-time period t>T +2T (T = target transit time). 't
By constraining only the late-time target response, a time- |
domain synthesis technique was developed which does not re-
quire knowledge of the forced, early-time impulse response.

The optimal signal duration was found to be near T, =T
(T1 = period of first target natural-resonance mode), in
which case the E' waveform is very nearly equal to that of

the desired single-natural-mode return signal. Incident
signals of shorter duration become poorly behaved with rapid,
high-amplilade oscillations, while long duration signals

will result in loss of target resolution ability. It was
demonstrated that a target-identification scheme based upon
illuminating the target with a waveform synthesized to excite
a single natural-resonance mode backscatter is capable of

sensitive target discrimination, since the response of a
wrong target with 57 length deviation differs identifiably
from a single-mode signal. Since the narrow-band spectral
content of optimal incident waveforms very nearly overlaps
that of the response they excite, then this target identifi-
cation technique should possess inherently good signal-to-
noise ratio characteristics, as well as enabling the use of
narrow-band filters and amplifiers. Optimal, synthesized in-
cident waveforms of specified, finite duration are unique when
represented by expansions in complete basis sets in the limit
where all terms in the impulse-response series are included.
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Derivation

Appendix: Mode Amplitude of Induced Current, aa(s)

’ of Eq. (7).

The time dependent amplitudes of the resonant mode for the in-

duced current, ad(s), as expressed in eq. (7) is derived here.
The substitution of eq. (6) in eq. (3) leads to

1 L
f (z') dz' = 8(z,s) (A1)

T —r e
—— .

N -
3y a,(s) (s-s)) . ri(z,z',s) v

|
f
[‘ a=1
f Defining L
{ f I'(z,2',s) v_ (2') dz' = M _(z,s) (2)
o o
o)
we can rewrite eq. (Al) as
N -1
T a,ls) (s-s ) M, (z,s) = s(z,s) (A3)

a=1
Multipling eqg. (A3} with vB(z) and then integrate it over z from 0

to L:
N -1 L L
aa(s) (s-sa) f M, (z,s) VB(Z) dz =f s(z,s) \)B(z) dz
1 ° (A4)

)3

a= o
After defining pL
[ Ma (z,s) 'VB(z) dz = MBa(S) {A5)
and
L
s(z,s) vB(z) dz = SB(S) ’ (A6)
o
{ .
» we can rewrite eq. (Ad4) as
N -1
z:aa(s) (s-s ) MBG(S) = SB(S) (A7)
a=1
Equation (A7) can be rearranged as
-1 N -1
as(s) (s—sB) MBB(s) +;§iau(s) (s-s ) Mea(s) = sB(s) (A8)
a#B

\—_z__' ‘ — S e
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] The L.H.S. of eq. (A8) appears to have singularities in the s-
A plane at Syt Sgeec-v while the R.H.S. of the equation is analytic. |
To clear this difficulty, let's expand MSB(S) and MSa(s) into ?
Taylor series' around the respective poles.

3
M, (s) = |M;,(s) + (s-s,) =z M,,(s)
B8 [ BB ] s=s, 8 [BS g8 ] s=s,
+ 1 (s-s )2 uﬂi .M (s) + (A9)
bl B0 552 B8 T Js=s, T
where
L L
M (s) - Vglz) az I'(z,z',sg) vg(2') dz' = ¢ (a10)
88 s=sg o o

because if vB(z') is the B8th natural mode, no excitation is
needed to excite it, and ve(z') should satisfy eq. (3) with

S(z,s)=0.
- 5 L L
= M, (s) = vg (2) GZI 3 r(z,z',s) vo(z') az'
l_as B8 ]S=SB [o B ° 9s s=sg B8
82 L Lr 82 (All)
— MBB(S) = vB(z) dz — I'(z,z's) vB(z') dz'
ds s=Sg o o Lds s=Sg
(A12)
Thus, eq. (A9) becomes
"3 1 2 .2
M,.(s) = (s=s_)|{=— M__(8) + = (s=-s,) 2° M_ (s) S
BB 8 [BS 88 ]s=sB 2 B l;? g8 ]s____SB
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By expanding MBa(s) around s=s . We can similarly show that

= (a- 9 I 121 .2
MBQ(S) = (s Sa)[as MBa(s)]S=s + 5 (s sa) [;25 MBa(sﬂs* ...
@ s

=8

a
(al4)
! If we assume that
va(z') = sin (é“z') ' (Al15)
)
we can show after a tedious integration that
L
3 ' ' v 2
. [55 '(z,z ,sﬂ s=s va(z ) dz Kva(z) (Al6)

where K is a constant. We can then show that

d ‘= L 4 L 9
5= MBa(S) s=s, = . vB(z) z-[ [;5 P(Z,Z',Sq v, (z') dz
H o

S=8
o

L
= Kf \)B(z) va(z) dz =0 for o #8 (al7)
o}

Similarly, we can approximate

2
[—37 M (s):L 0 for o #8 (A18)
s Ba =g
a
Thus,
MBa(s) =0 if a+#8 (A19)

Equation (A8) can now be simplified to

d 1 32
aB(S)'[ﬁg'MBB(SJs=sB £ 5(5-33)[—~7 M88(5J3=ss+""= SB(S)

o gt e

9s

(A20)
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| The first term of the L.H.S. of eq. (A20) usually dominates,
¢ especially near s=sg. Therefore, aB(s) can be approximately

L
SB(S) J{ S(z,s) Vv (z) dz

3
[a_s- MBB(S)] s=sB f (z) dzf r_ Tr{z,z"' ]S=SB \)B(z') dz'

(A21)

determined as

(s) =

ag

which is the result of eq. (7).
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fig. 1. A thin wire is {lluminated by a radar
signal at an oblique angle,.
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PART 2

RADAR WAVEFORM SYNTHESIS FOR EXCITING SINGLE-
MODE BACKSCATTERS FROM A SPHERE
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& 1. Introduction

Techniques of using a short radar pulse to identify the radar
target have been studied by a number of workers [1-6]. Typical
scheme consists of illuminating the target with a radar pulse and
then identify the target by identifying it with its natural modes
that are extracted from the return signal. One of the problems
associated with this scheme is difficulty in obtaining accurate
natural frequencies of the target from a noisy return signal, In
a recent study by our group, an inverse scheme, called the radar
waveform synthesis method, has been investigated [7]. Instead of
analyzing the return signal from the target in terms of its
natural mode, this new scheme synthesizes the waveform of the inci-
dent radar signal in such a way that, when it excites the target,

the return radar signal contains only a single natural mode of the
target. It can be shown that when the incident radar signal syn-
thesized to excite a particular natural mode of a preselected
target is applied to a different target, the return signal will be
significantly different from that of the expected natural mode.
The wrong target can thus be sensitively discriminated.

In this paper, the geometry of a perfectly conducting sphere
is used as the radar target. We aim to synthesize suitable inci-
dent radar signals which can be used to excite various single-mode
backscatters from the sphere. To solve the problem, the scattered
field from the sphere excited by an incident signal with an arbi-
1 trary waveform is determined in the spectural domain. The back-

scattered field is then determined. An approximate impulse res-
ponse in the time domain is obtained by summing up an infinite
number of natural modes based on the Singularity Expansion Method.
That impulse response is further approximated by the sum of finite
numbers of damped sinusoids yielding an accurate result in the
late-time period.

It is then demonstrated that a proper incident signal can be
synthesized in such a way that when it excites the sphere, or when
it convulutes with the impulse response, the return signal contains
only a single natural mode of the sphere in the late-time period.

A, — o
e Py
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A method of synthesizing required incident signals tor exciting
various single-mode backscatters is presented. Numerical coxamples
are given to show the required incident signals for various single-
mode excitations and the resulting return signals which exhibit
single natural mode of the sphere.

When an incident signal synthesized to excite a particular
natural mode of a sphere is applied to a wrong sphere with a
slightly different radius from that of the right sphere, the re-
turn signal from the wrong sphere is found to be significantly
different from that of a natural mode of a sphere. The wrong
sphere is, thus, sensitively discriminated from the right sphere.
This indicates the applicability of the radar waveform synthesis
method for radar target discrimination.

2. Theory

The geometry of the problem is shown in fig. 1 where a radar
signal propagating in the +z-direction is incident upon a per-
fectly conducting sphere which has radius a and has its center
located at the origin of the coordinates. The electric field of
the incident radar signal is assumed to be

Bl(?,t) = XF(t - 222w (r - 23 (1)

where F(t) is an unknown waveform function to be synthesized in
such a way that El(?,t) excites a single-mode backscatter from the
sphere. The Laplace transform of eq. (1) can be expressed as

El(?,5) = F(s)e Y@ x e YR cose (2)

where Y = s/c. When the unit vector x is written in terms of
spherical vector components, eq. (2) becomes

El(?,s) = F(s)e'Ya [sine cos¢ R + cose cos¢ o - sin¢&]e'YR cos@

(3)

EC TS . .
Since El(r,s) satisfies the wave equation,

VxVXE-+ yz E - 0, (4)
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El(?,s) can be expressed in terms of spherical vector wave func-
tions (see Appendix) as follows:

E'(F,s) = F(s)e @ 2: (2,850 + by R 5)
n=

where
1
BPn(cose) -

2 RO = Lo i (vR)Pl(cos@)cossd - i (YR)—Dr— sings
| (6)
R{1) . nind in(vn)p}l(cose)cosq» R
aP (cos8) ~
+ 9x o [R i (R)] =B cosoe
1 3 . 1 o
- vRe1eg 3k LR i, ('R)] P:(cos8)sines (7)

The superscript (i) for M and N functions stands for the use of

i, (YR) which is the first kind of the modified spherical Bessel

functlon of order n. P1 (cos®8) is the associated Legendre function

of order n and degree 1 These functions are detailed in Appendix.
The coefficients a, and b in eq. (5) can be determined by

comparing eqs. (5) and (3) after e - YRcosb in eq. (3) is expanded

into spherical harmonics [8] :

n 2n+l _ n+l 2n+l :
= (-1) AneIY b, = (-1) SYGI0) (8) i

Therefore, the incident electric field fi(?,s) can be ex-
pressed as

Bi(F,s) = F(s)e™ ™ :E; 1" Z%ilTT [Jﬁig Néi%] (%)

Similarly, the scattered electric field from the sphere
ﬁs(?,s) can be expressed in terms of spherical vector functions as

WEDAD .  nicch #over  wrm Wl

N

- —— -,
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li(sye ¥d t (-1)" 2n+l [ oin 4o Nl

1 ' n=1 n(n+1)

»n
(—
L]

(10)

where'ﬂﬁ%% and ﬁg%g have Fhe same expressions of ﬁé%) and ﬂﬁi%
as given in eqs. (6) and (7) except with their in(YR) function
replaced by kn(YR) function which is the second kind of modified
spherical Bessel function, kn(YR) function is needed to give
attenuating behavior of the scattered field as R approaches to
infinity.

The coefficient ch and dn in eq. (10) can be determined
based on the boundary conditions on the spherical surface

EL + ES = 0 and Ei +E; =0 onR=a,
to be
i (Ya)
€p T Ya (11)
R ip(YR (12)
Rk(Y

The final expression for the scattered electric field is

-va § n 2n+l in(Ya) = (k)
- F(s)e :z;l D" Ay [kn(va)] n(k)

fs(?,s)

9 .

(13)
(R K (YR)) ein

R=a

The backscattered electric field in the far zone of the
sphere should be in the x-direction, parallel to the direction of
the incident electric field, and can be found from

TE T e em e e e

bl s et ke e $a2 e e
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- * [ES]R“’, 6=m, ¢=m

Since as R approaches to infinity,

-YR
7 1 L] 1l 2 m™ 1
ky(YR)=F gp e “and yp H(R kn(vR))—» - Ty e
and
1 1
P_(cos8) _140 9P (cosb) _13N
[Qm ] - - e, [ % ] - L,
G=m 6=1
as R+», 8=7 and ¢=7 , ﬁél;x)l and ﬁéi‘% functions become
-YR n
(k) _gk) o 1 (-1
Motn = Nern”® 7 1R, °© e,
Thus, the backscattered electric field becomes
-Y(R +a) . ) d [
B S o€ 1n(¥a)§§[Rkn(YR)] R=a~ W[Rln(ym] R=a’n (Y2)
s) = -XZF(S)——YT-—_ -(2n+1) T
© M= k, (Ya) WE&n(YR)] R=a
(15)
Using the following Wromskin,
in 00 [x 0] - K00k [x 5,69] = - 3R) (16)
eq. (15) can be simplified to be
-Y(R_+a)
2n+l (17)

a2 :
B0s) = ¥ F(s) e :
L A Vs k, (va) [%(R kn(YR))] -

The backscattered electric field BS given in eq. (17) can be
developed further because the modified spherical Bessel functions
can be expressed with truncated power serieses as follows [9]

- -
- ——— e e -
— . — e Fd -l ettt - P
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-C . :
k(o) = § ¢ Z; iy 2o (18) |
. [;kn(;)] - - ,}e'iz_:) A adao® (19)

If eqs. (18) and (19) are substituted in eq. (17), we have the
final expression for ﬁs(s) as

2n
= .32 1a _-YR, -a) 2n+1
ES(s) x 3R © F(s) 2: t‘QTs);i'(Z) (20)
where

- +8)! 1 .n-
£,(5) = z_‘b T 5 ¢ (21)

gale) = e}; Tt # (g P (22)

Ya and Y = s/c.

[t
n

=~
1]

distance between the observation point and the
center of the sphere,

The backscattered electric field can also be expressed as

BS(s) = -x g e S(Ra72)/C p(syns) (23)
where
® 2n
_ 2n+1l . - a
Hs) = By peEg e Mith - g s (24)

In eq. (23), F(s) is the unknown function describing the waveform
of the incident radar signal, and H(s) is the transfer function of
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the sphere. The transfer function H(s) as expressed in eq. (24)

is a poorly converging infinite series and its evaluation for large
value of g requires sophisticated Watson's transformation [10] or
extensive Fourier-numerical method [11]. To synthesize an incident

radar signal which excites a single-mode backscatter from a sphere,
it is necessary to obtain a reasonably accurate impulse response
which is the Laplace inverse transform of H(s). This is done in
the next section.

3. Impulse Response

The impulse response h(t) is obtained by inverting H(s). In
the process of inverting H(s), the roots of fn(c) and gn(g) func-
tions in eq. (24) are computed based on Muller's algorithm. There
are n roots for each fn(;) function and n+l1 roots for each gn(g)
function, as can be seen easily from eqs. (21) and (22). If these
roots are plotted in the s-plane (or the r-plane), they can be

! grouped into branches of roots as shown in fig. 2. Except those
roots lying on the negative real axis, all other roots are in con- ﬁ
jugate pairs. These roots indicate the locations of the simple
poles of H(s) in the s-plane. It is noted that the roots in one
branch come from either fn(c) or gn(;) but they do not belong to
the same index n. For example, the first branch (and other odd-
numbered branches) of roots come from gn(;) functions of various n,
and the second branch (and other even-numbered branches) of roots

TV SISO

come from fn(;) function of various n. Through numerical calcula-
tion, we found that this kind of regrouping the roots in the s-plane
provides an interesting information; asymptotically, the roots bhe-
longing to the same branch have a simple arithmetic relation be-
tween their locations on the s-plane, and the residues of H(s) at

these roots (or poles) possess a simple geometric relation between
their complex amplitudes.

For simplicity, we can designate the roots with the symbol,
Cij’ where the subscript i represents the ith branch and the sub-
script j means the jth root of the branch. Also we can use j=0
to designate those roots lying on the negative real axis. 1In

general, we can express



-8-

. * .

Cij T 045 * Jwijs Tij T 035 7 Juyy and g0 = 0405

The transfer function H(s) contains only simple poles located
at these roots and the residues of H(s) evaluated at these poles
are given by

wa za Ti: i *e *= ro. i
[Res H(s) ]at 15 aij aij+3aij’ [Res H(s)]at gij aij aij Jaij.

Some lower-order roots and the corresponding residues of H(s) are
tabulated in Table 1.

The transfer function H(s) can be expanded into an infinite
series as

*
H(s) = ﬁ; : 3ij 21 210
1 =\ + ) &4 TTy, (25)

The summation of the second term of eq. (25) starts from i=2 be-
cause there is no root of the first branch lying on the negative
real axis. The upper limit of the summation over i, N, is dictated
by the maximum number of the branches needed to be considered.
Numerically it was found that a reasonably accurate solution can be
obtained with N less than 3.

The impulse response can then be obtained as

h(t) = (g) 12: JZ; 2 Re(ag e ﬁijT) . (;f;) 12; ;g %ioT

(26)

where T = t/(a/c) is a normalized time, and each term of eq. (26)
represents a natural mode of the sphere.

Examining Table 1, one can observe a simple arithmetic relation
between the values of roots (or the locations of poles) belonging
to the same branch if j is bigger than 10. That is,

Cij - Cij-l = Aci + constant, if j > 10. For example,

A%, = -0.035 + j0.98 and Az, = -0.078 + j0.96 for j > 19,

‘!‘_‘ . . T T e e .

[ N
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| Similarly, there is a simple geometric rclation between the
residues at these poles of the same branch if j is bigger than 10.
f , That is, aij/aij-l = Ri + constant, if j > 10. For example,

j jl.22

and R2 = 1.19 e for j > 109.

In view of these simple relations, the infinite sum of the

f modes in eq. (26) can be divided into two parts; the first part is

‘ the sum of the first 10 or 20 terms and the second part is the sum

b of the rest of the terms. For example, we can sum the modes coming
from the poles of the first branch, i=1, as

- (< "15" gyt
[h(T)]l (a)z Re 35__: 413¢ + (g-) 2 Re JZ;O a ;e 1

(27)

Now the simple relations between roots and residues for large j can
be used to approximate the last term of eq. (27) as an infinite geo-
metric series which is then summed up to be

y t15° gy 107[ AT T AL, ALt @
J = 1,15 [ 1%.2 1
Z Re ;Z;B 3;5€ 2 Re a; 19¢ Rle 1 + (Rle ) +...+(R1e )
Aclr
Cl 191’ Rle
=2Reja; ¢ 77 — (28)
1—R1e

| The fact that Az contains a negative real part has been used, and eq. (28) is
{ valid for t > 0. For t=0, the impulse response can be shown to be infinite,
: directly from eq. (24) based on the initial value theorem.
If numerical values of 31,19’ ;1’19, R1 and A;l are substituted in eq. (28),

we have

C..T
ZRe[S; aje O ]=
=2

89.34e 1+ 79T peos (19. 321 -0.485)-1.09e 0+ 0357 cos (18, 341-1.66)7

: 1+ 1.19¢ 90772 18¢70-035T 05 (0. 987 + 1.18)
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The first term of eq. (27) can be easily summed up numerically,
and when it is combined with eq. (29) the part of the impulse res-
ponse, h(t), which is contributed by the modes of the first branch
poles, can be computed as a function of time. It was found that a
reasonably good result can be obtained just considering the contri-
bution from the poles of the first branch.

A numerical example is given in Figs. 3 and 4. Fig. 3 shows
the impulse response computed from the sum of the first 19 pairs
of the poles of the first branch, or the first term of eq. (27).

It shows a strong oscillatory response in the early-time period,
but no creeping wave peak is observed. This result is wrong,
judging from the existing results. However, if the term given in
eq. (29), which represents the contribution due to the rest of the
poles of the first branch, is added to the contribution from the
first 19 pairs of the poles, a surprising result is obtained; the
strong oscillatory rvesponse during the early-time pariod is can-
celled and a sharp peak representing the creeping wave contribution
appcars at t = t(c/a) = 5.25, as shown in Fig. 4. It is noted that
an impulse at t=0 is added in Fig. 4, as it should be. The impulse
response shown in Fig. 4 agrees with the existing results. An ap-
proximate impulse response based on Fourier-numerical method [11]
is included in Fig. 4 for comparison. If the contribution from

the poles of other branches is considered, the accuracy of the im-
pulse response during the early-time period can be improved. It

is noted that if more than 19 pairs of poles in the first branch
are considered without the compensation of a corresponding correc-
tion term, the oscillatory response in the early-time period be-
comes stronger instead of weaker. This is due to the fact that

the amplitude (residue) of the mode increases with the order of the
mode (Table 1). For many practical applications the result of

Fig. 4 is sufficient.

For our purpose of synthesizing an incident radar signal which
excites a single-mode backscatter from a sphere, it is desirable
to obtain an approximate impulse response in the form of a truncated
sum of natural modes. To do so, it is necessary to approximate the
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correction term of eq. (29) with two damped sinusoids which pos-
sess the forms of natural modes. This step was accomplished nu-
merically by the cut and try approach. We found the two damped

"2-0T (o5 (18.8917 + .4838) and

cos (19.50t - .7159), can approximate the correction

sinusoids, 1.34 e
127 e 3T
term of eq. (29) quite well for t > 2. Since we aim to synthesize
a required incident radar signal for exciting a single-mode back-
scatter in the late-time period, we do not need the information

on the early-time behavior of the impulse response. The approxi-
mate impulse response constructed with the first 19 natural modes
of the first branch and two damped sinusoids which approximate the
correction term of eq. (29) is shown in Fig. 5. This approximate
impulse response approximates the true impulse response quite
accurately for t > 2. Thus, it will be used in the synthesis of
the incident radar signal for exciting a single-mode backscatter
in the late-time period.

4. Excitation of Simple-Mode Backscatter

The approximate impulse response of a sphere can be represented
by the first 19 natural modes from the first branch of poles, two
damped sinusoids which approximate the correction term of eq. (29)
for t > 2, and a term which compensates the error for the early-
time period of 0 < t < 2. Symbolically, we can express the impulse
response h(t) as

o_T
h(t) = \ﬁl a, e T cos (wnT + qbn) + g(1) (30)

In eq. (30), the first 19 terms of the summation,

o.T
n
jii a, © cos (mnr + ¢n), represent the sum of the first 19 natural
modes from the first branch of poles. The last two terms of the
o_T :
summation, ‘ﬁ; a, e N cos (wnt + ¢n), represent the two damped ;
n=20 ;

sinusoids which approximate the correction term of eq. (29) for
T >2, i.e,,

T et e———————

P
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2.0

0 s - v o -
dyp © cos(wzor + ¢20) (%) 1.34 ¢ COos (I8, 891 + ,483R)

55

a,; e cos(wyy T *+ ¢,;) (g) 0.127 e *°>Tcos(19.507 - .7159).

The term £(t) exists only during the period of 0 < t < 2, and is

the term to be added to the summation term of eq. (31) to yield an
accurate impulse response for that period of time because with only the
summation term of eq. (31) it does not give accurate result for h(t)
during that early-time period. The function £(t) is difficult to
determine but it is not needed if we only aim to produce a single-

mode backscatter in the late-time period. )

We now aim to synthesize an incident electric field El(r) of
duration Te in such a way that when it illuminates the sphere, the
backscattered electric field ES(T) consists only of a single
natural mode in the late-time period of 7 > vt  + 2. The backscat-
tered electric field ES(T) can be expressed, based on the convolu-

tion theorem, as

T . A
ES (1) € EY(r)h(r - 17)dr
A

T . cn(T-T')
f € El () [ﬁl a_ e COS(wn(T-T‘)+¢n)+E(T-T’)] dt
o =

(31)

I[f the normalized observation time 1 > Te * 2, the term £(t-1°)
does not contribute to the integral because g(1) = 0 for v > 2.
Thus, eq. (31) becomes

E3(1) = j‘TeEi(r’) [f; 2, eO“(T-T‘)COS(“’n(T'T’)”"n)] dt’
0 =

2 o_T
= ;i; a e n [5ncos(wnt+¢n) + B sin(u T + ¢n)] (32)

for v > Te * 2.
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where the coefficients An and Bn are defined as

An Te i -onr’ cos wnr’
8 = El (1) e dt” (33)
o sin wnr’

Based on eq. (33), it is now possible to choose an optimal E' (1)
in such a way that all the coefficients vanish except one; by so
doing, ES(T) will consist of a single natural mode.

5. Required Incident. Signals and.Return Signals

It is possible to choose an E}(1) to excite a single-mode ES(1).
Consider an incident electric field Ei(T) constructed from a linear
combination of 21 damped sinusoids, 19 natural modes and two damped
sinusoids approximating the correction term of eq. (29), as that
appeared in eq. (30):

21 5 T
El() = 2. e ™ (b . i 34
= ] n COS W, T cp Sin me) (34)
m=

where Cp = Op * juy is the m'th natural frequency and g,, and ¢,

are the equivalent values of the two damped sinusoids, and bm
and ¢, are unknown coefficients to be determined based on the re-
quirement that only a single-mode ES(1) be excited.

Substituting representation (34) in eq. (33) leads to

21 21
1 2
A= oo M b+ 20 ME ¢ (35)
no & mmom 0 & TnmoTm
21 21
. 3 4
B, = Z Mim Pm * z_: Mim Snm (36)
m=1 m=1

where
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(o, -op)T

[cos
cos

{sin

sin
\.

dt
cos w_T ’

sin w_ T

(37)

It is observed that the M;m's are explicit functions of incident

radar pulse duration Teo and Te
can be varied to obtain a desirable El(T) waveform.
The unknown coefficients bm and ¢
(35) and (36) as

eqs.

€21

-

e o

In eq. (38), matrix [Mnm] is of 42x42 order, while

are two column 42 matrices.

To obtain a single-mode scattered field (e.g., the j'th mode),

- -1

B

21 4

is a parameter of freedom which

can be solved for from

(38)

b, A
-Ci] and [Bi]

it is required that Bj=1 and B =0 for n#j and An=0 for all n. bm

and Cm

quently obtained from representation (34).

are easily determined from eq. (38), and El(r) is subse-
With this E' (1), the
scattered field, ES(T),becomes single-mode and can be expressed as
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3 ‘ 'S - ch .
E°(t) = a. e sin (ij + ¢j) (39)

J

Some numerical results on the required incident signals for
exciting various single-mode backscatters and resulting single-
mode return signals are shown in Figs. 6 and 7, Figure 6 shows
the required incident signal for exciting the first-mode backscatter
(cl = -0.5 + j0.866) and the return signal which indeed shows the
first natural mode in the late-time period of T >9. The duration
of the required incident signal is set to be one period of the first
natural mode,

1 2T 27

= - -

GI * 5866 7.26.

The waveform of the required incident signal is found to contain
a rapidly oscillatory component in the initial stage. However,
the return signal contains only the much slower varying, first
natural mode in the late-time period. This phenomenon is different
from the case of a thin wire where the required incident signal
for single-mode excitation consists mainly of the wanted natural
mode [7]. The reason is that the natural modes of a thin wire are
nearly orthogonal while that of a sphere are not orthogonal due to
their large damping coefficients. It is noted that the return
signal was obtained by convoluting the required incident signal
with the approximate impulse response given in eq, (30). The early-
time part of the return signal exhibits an irregular waveform and
is not shown in the figure for the sake of clarity.
Figure 7 shows the required incident signal for exciting the

; third-mode backscatter (;3 = ~0.843 + j2,758) and the return signal
which contains only the third natural mode in the late-time period
of t > 9. The required incident signal has a duration of one period
of the first natural mode, and its waveform consists of a rapidly
oscillatory component superimposed on a slowly varying component,
The third-mode return signal was created by the numerical convolu-
tion of the required incident signal with the approximate impulse
response,

I The required incident signals for exciting the first and the

third-mode backscatter appear to be somewhat irregular in waveform.
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However, they can be constructed with 21 natural modes of appro-
] priate amplitudes and phase angles as shown in Table 2. It
appears that higher amplitudes for higher-order natural modes are
1 needed to construct the required incident signal.

The relation between the signal duration and the waveform of
the required incident signal was also studied. It was found that
when the signal duration is shortened, the waveform of the required
incident signal resembles that shown in Fig. 6 or Fig. 7 but it
contains a more rapidly oscillatory component in the initial stage.

5. Target Discrimination

To show the capability of target discrimination of this method,
two numerical examples are given in Figs. 8 and 9. Figure 8 shows
the return signals from two spheres, the right sphere and a wrong ‘
sphere which radius is 10% smaller than that of the right sphere,
when they are illuminated by the required incident signal for ex-
citing the first-mode backscatter from the right sphere as that
shown in Fig. 6. It is observed that the return signal from the
right sphere is a pure first natural mode while that from the
wrong sphere shows distortions in its waveform. Figure 9 shows the
return signals from the same two spheres when they are illuminated
by the required incident signal for exciting the third-mode back-
scatter from the right sphere as that shown in Fig. 7. The return
signal from the right sphere is a pure third natural mode while
that from the wrong sphere exhibits an irregular waveform. From

R i

these two examples, it is evident that the wrong target can be sen-
sitively discriminated from the right target if the incident sig-
nals are properly synthesized for single-mode excitation. It is
noted that if the wrong target were a thin wire or some other non-
spherical object, the return signals from the wrong target would be
entirely different from the natural modes of a sphere, and the dis-
crimination of the wrong target from the right target would be tri-
vial in that case.

6. Conclusion
It has been demonstrated that by expressing the backscattered

field of a sphere in terms of its natural modes, it is possible to

S e s ———————— —
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synthesize an incident radar signal of appropriate waveform in
such a way that when it illuminates the sphere, the return signal
contains only a single natural mode of the spherc in the late-time
period. When that synthesized incident signal is applied to a
wrong target, the waveform of the return signal will be signifi-
cantly different from that of natural modes of the sphere; thus,
the wrong target can be sensitively discriminated from the right
target. Since a single-mode radar return contains a narrow fre-
quency band it may lead to improved signal-to-noise ratio and can
be processed by narrow-band filters and amplifiers.

Rl T RS S e
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Appendix: Solutions of Wave Equation in Terms of Spherical Vector
Wave Functions.

Consider the wave equation for the Laplace transformed F field:

2

- -
VX9VXE+Y E=20 (A1)

where ¥ = s/c.
To solve eq. (Al), we consider first the corresponsing scalar wave
equation,

v2g - v¥g =0 (A2)

Assuming g(R,0,¢) = gl(R)gz(e)g3(¢), and by the technique of vari-
able separation, gl(R),gZ(e) and g3(¢) can be shown to satisfy
the following equations.

2
d°g dg
2 1 1 2.2 ~
R d—li—z— + 2R I + [‘Y R -n(n+1)] gl = 0 (A3)
dg 2
1 d ... 2 m .
st dg (sine ggo) * [pv1) - o]y = 0 (A4)
2
LE S S (AS)
el &3

The solution for gl(R) is given by

T4y, (YR) i (YR)

£ (R) = 7% - (A6)

Kpasy (YR k, (YR)

where In+%(YR) is the first kind of modified Bessel function of
order n+l, Kn+%(YR) is the second kind of modified Bessel function
of order n+%, in(YR) and kn(YR) can be considered as the first and
second kind of modified spherical Bessel functions of order n.
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The solution for gz(e) is

m -
8,(8) = P (cose) (A7)

where Pﬁ(cose) is the associated Legendre's function of order n and

degree m,.
The solution for gs(e) is

cos m¢
g5(0) = ) (A8)
sin m¢

Therefore, the general solution for g(R,0,¢) is

g(R,0,0) = 2, O,
n

m kn(YR)

in(YR) n cos m¢
Pn(cose) (A9)
sin m¢

It is possible to construct from g(R,6,¢) two possible solu-
tions for E which satisfy eq. (Al) and Maxwell's equations as fol-
lows. The first solution for E is

M (R,6,0) = v x (Rg) (A10)
and the second solution for E is
R (R,8,0) - + v x N (R,6,0) (A11)

These two solutions can be shown to satisfy eq. (Al) by direct sub-

stitution.
The substitution of eq. (A9) in eq. (Al0) gives

in(YR) n sin m¢
P_(cos9)
§mn sinb kn(YR) n cos m¢

<D >

55 (Al12)

sin m¢

i, (YR) Pﬁ(cose) cos m¢ ;
k, (YR)
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The substitution of eq. (Al2) in eq. (All) leads to

i_ (YR) cos mé ~
R = Qégill n Pg(cose) R

§mn kn(YR) sin m¢
1 3 R in(YR) Pﬂ(cose) cos m¢ ~
+ —_— 8
TR 3R R kn(YR) 36 sin m¢
. R i_(YR) sin m¢ | .~
m__ 2 n P™ (cos0) 0 (A13)

+ ———— —
TRsin® 3R R kn(YR) cos mé¢

The subscript e and o stand for the even and odd M and N functions.
The general solution for E is any combination of even and odd ﬁ
and N functions of any m and n.

It is noted that these solutions deviate from the conventional
Mie series [8] in that the present solutions use modified spherical
Bessel functions while Mie series uses ordinary spherical Bessel
functions.

N o
TR e e e
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fig. 1 A perfectly conducting sphere of radius
a is {lluminated by a radar signal propa-
gating in the + z-direction.
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Table 1: Poles of the first and second branches shown in the above figure

and the corresponding residues.

poles of lst residues at Clj poles of 2nd residues at ;2.
branch+ r i branch a. =als 'aJ
1y =01y ey [y T Ay tdagg [ tag = ogy +dupy | By T Ay Y JAyy
r 1 Y 1
%13 “13 | 1 213 %25 | “23 2 33
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- .5000 08660 o . 1 . 732 "1 0500 ) 8660 O. 8 . 660
~+7020) 1,807 |-2.757 ¢57731-1.8391.754 |}-18.05 2.344
~,8430 ) 2,758 |~1.879 |=-3.357 |-2.104 | 2,657 ]-10.29 |-321.07
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13 1-1.528] 12,46 |-18.,13]-14,09]|-3.551 ] 1> 03 [-40.465 | -807.6
14 | -1.572] 13.44 7.004 | -24,65)~3.647 | 12.98 ?19.4 | -396.4
15 1~-1.6137 14,42} 28.,20]-3.,078]|-3.739 | 13.94 828.8 902.5
16 —10653 15.40 14088 27057 "30827 14&89 "69702 13130
12| -1.691 16,38} -21.84| 26.611-3.912} 15.85 |-1771. | -259.0
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fig. 3 The impulse response of a conducting sphere of radius a

computed from the first 19 pairs of poles of the first
branch.
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fig. 5 Approximate impulse response for 1>2 constructed with

the first 19 natural modes of the first branch poles

and two damped sinusoids which approximate the correction
term.
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natural mode of a sphere, and the return signal which

contains only the third natural mode.
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Table 2. Natural Modes Used to Construct the Required Incident
Signals for Exciting the First and the Third Mode Backscatters.
; \ i 21 ot
E(1) =3 ae"” Cos(w T+ ¢), o0<1<7.26.
n n n
n=1
— - T )
E (t) for First-Mode Excitation E~ for Third~Mode Excitation
n | Natural Mode Components n Natural Mode Components
-.57 -.5T
1| .2703 e *°Tcos(.8661-91.86°) 1] .2624 ¢ ">Tcos(.8661+171.1°)
‘ 2| .1085 e " 792%cog (1.8071+128.11°) 2| .2072 e *7%%T¢0s (1.8071+138. 72°)
’ 3] .1245 ¢ 8437005 (2.7587+90. 38°) 3| 2.743 e "843Tcos(2.7581-83.66°)
4| .1394 e 2% o5 (3. 7157+46. 48°) 4l .3245 %05 (3.7151468. 75°)
51 .1639 ¢ 1-%48T¢oq(4.6761-5.45°) 51 .2045 e 10487 0g (4.6767+21.09°)
6| .2184 e 11297005 (5.6421-62.5°) 6| .2880 e 1-12%7cos (5. 6427-48.45°)
7] .3265 ¢ 12917 cos(6.617-114.95°) 7| .4556 e 1°2%1Tcog(6.611-120.05°)
8| .4909 e 1267Tcos(7.581-161.2°) 8| .8078 e 1°2%7Tcog (7.581-172.15°)
9 |.6914 ¢ 13277 cog(8.551+155.26°) ol 1.264 e 1°3277¢og(8.551+143.81°)
10 | .9013 ¢ 1°38270q(9.5271+112.82°) 10 | 1.752 e 1382705 (9. 5271+102.09°)
11 |1.108 ¢ 1*43%7cos(10.51+69.4°) 11 ] 2.233 e 1-%3%T0g (10.51459. 56°)
12 | 1.304 e 1+483Tc0g(11.481422.87°) 12| 2.687 e 1-483Tc0g (11.481+13.75°)
13 | 1.507 e 1*3%8%c0g(12.467-26.37°) 13 | 3.151 e 1°%87cog (12.461-35.07°)
14 |1.839 e 1°37%%0g(13.441-78. 36°) 12 | 3.895 e 137205 (13.441-86.90°)
15 |2.337 e 1:%13T0g(14.427-128.73°) 15 | 5.025 e 1%13Tcog (14.427-137.11°)
- 4
16 | 3.010 e 1+®33Tcos(15.401-173.66°) 16 | 6.560 e 1+%°3Tcos(15.401+178.25°)
17 | 3.634 ¢ 1-617cog(16.381+148.54°) 17 | 8.011 e 1+®91Tcos(16. 381+140.79°) |
i
=L —de ]
18 |3.794 "1 7% 7% cos (17, 361+125.69°) 18 | 8.443 e 1*7%"Tcog(17.367+118.21°)
i
19 {4.933 e 1+ 762T¢oq(18.3414156.14°) 19 | 11.00 717627 (18, 347+148.72°)
-2.07 -2,071 o
20 |9.203 e Cos (18.8911-58.56°) 20 | 20.45 e Cos (18.8911-65.54°) 1
-,557 -.557
21 {0.193 e Cos(19.507-79.67°) 21 | .0437 e Cos (19.507~86.75°)
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fig. 8 The return signals from the right sphere and a wrong sphere which
radius is 107 smaller than that of the right sphere when they are
illuminated by the incident signal synthesized to excite the first i
natural mode of the right sphere.
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- The next step is to perform the integration around the branch cut

Work in Progress

The study on the radar waveform synthesis for exciting a single-
mode backscatter from a normally oriented, infinite cylinder is
in its final stage. The results obtained up to date are briefly
outlined below.

A radar signal propagating in the +x-direction is incident on
an perfectly conducting, infinite cylinder of radius a with its
axis located along the z axis. The electric field of the incident
radar signal, in its Laplace transform, is assumed to be

_Ei(f}s) =y F(s)e Y3g YTCOS¢ L

where F(s) is an gnknown waveform function to be synthesized in
such a way that‘iﬁ(fis) excites a single-mode backscatter from
the cylinder, and y = s/c.

The backscattered electric field can be obtained, through a
long theoretical development, to be

E(Es) = -3 F(s) [52 e Y (T = y(e) (2)

where r_ is the distance between the observation point and the
cylinder and H(s) is the transfer function. ' H(s) can be expressed
as '

o I;(E)e'zg
H(S) = z (n A (3)
n=o0 Kn(g)VTE

where I;(g) and K;(E) are the derivatives of the first and the
second kind of the modified Bessel functions, ‘n=1 for n=0 and
¢n=2 for n > 0, and £ = ya = s(a/c).

The impulse response of the cylinder is obtained by inverting
H(s). To invert ?(s), the first step ?s to find the poles of H(s)

or the roots of K (£). The roots of K, (8) are shown in Fig. 1.

of H(s) along the negative real axis on the s-plane. By so doing,
the impulse response of the cylinder h(t) can be expressed as

. e g e Yy T Y cdmar. -7
I N S et




L

-2~
n or - ( 2
o n+l 13 t © -£(t - ’ '
h(t) = £ 5 2 Re(a.e ™) 4+ 3 %I e I (8K, (&) de

12
(&) + v’1. ()]
(%)

I,

where Eni is the ith root of the K;(E) function and ai is the
residue of H(s) at Eni‘ The first term of eq. (4) is the sum of
all the natural modes and the second is a line integral which comes
from the integration around the branch cut.

Numerically, we have found that the sum of a finite number
of natural modes plus the numerical integration of the line inte-
gral of eq. (4) given an approximate impulse response which is
quite accurate for the late-time period. Preliminary results of
the approximate impulse response of the cylinder is shown in Fig.
2.

We are in the process of calculating the required incident
signals for exciting various single-mode backscatters. Once these
required incident signals are obtained, the return signals can be
obtained by convoluting the incident signals with the impulse res-
ponse of the cylinder. We expect to complete these calculations
in the near future.

2. Future Plans

The following topics will receive major attention in the fu-
ture.

1. We will initiate the study on the radar waveform
synthesis for exciting single-mode backscatters
from two coupled wire targets which are orientied
at an angle and illuminated by an incident radar
signal at an arbitrary direction. The case of
special interest will be a wire target placed over
a %round plane and illuminated by an incident sig-
nal. Results of this study will guide the experiment
to be conducted on a ground plane.

i |
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2. We will initiate the study on the cross-wire structure

which simulates an aircraft.

3. We will design an experimental setup for conducting
the experiment.

3. Personnel

The following personnel have participated in this research
program.
(1) Kun-Mu Chen, Professor and principal investigator.

(2) Dennis P. Nyquist, Professor and senior investigator.
(3) Byron Drachman, Associate Professor of mathematics,

consultant.
(4) Che-I Chuang, Graduate Assistant.
(5) Doug V. Westmoreland, Graduate Assistant.

4., Publication

Results of this research program have been published in the
following papers.

(1) K.M. Chen, "Radar Waveform Synthesis Method -- A New Radar
Detection Scheme'', presented at 1980 IEEE International
AP-S Symposium, Laval University, Quebec City, Canada, June

2-6, 1980.

(2) K.M. Chen, D.P. Nyquist, C-I Chuang, D. Westmoreland, and B.
Drachman, "Incident-Waveform Synthesis for Single-Mode
Scattering by an Obliquely Illuminated, Thin-Wire Cylinder",
Presented at 1981 National Radio Science Meeting, Boulder,
Colorado, Jan. 12-16, 1981,

(3) K.M. Chen and D. Westmoreland, "Impulse Response of a Conduct-
ing Sphere Based on Singularity Expansion Method', Proceed-
ings of IEEE, Vol. 69, No. 6, pp. 747-750, June 1981.

(4) K.M. Chen, "Radar Waveform Synthesis Method - A New Radar
Detection Scheme', to appear in IEEE Trans. on Antennas and

Propagation, July 1981.

(5) K.M. Chen, D.P. Nyquist, D. Westmoreland, Che-I Chuang, and
B. Drachman, "Radar Waveform Synthesis for Target Discrimina-
tion", presented at 1981 IEEE International AP-S Symposium,
Los Angeles, California, June 16-19, 1981.
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‘ presented at 1981 National Radio Science Meeting, Los Angles,
California, June 16-19, 1981.
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